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André Schidler, and Stefan Szeider
Algorithms and Complexity Group, TU Wien, Vienna, Austria

aschidler@ac.tuwien.ac.at, sz@ac.tuwien.ac.at

Abstract

Decision trees of low depth are beneficial for understanding
and interpreting the data they represent. Unfortunately, finding
a decision tree of lowest depth that correctly represents given
data is NP-hard. Hence known algorithms either (i) utilize
heuristics that do not optimize the depth or (ii) are exact but
scale only to small or medium-sized instances. We propose
a new hybrid approach to decision tree learning, combining
heuristic and exact methods in a novel way. More specifically,
we employ SAT encodings repeatedly to local parts of a deci-
sion tree provided by a standard heuristic, leading to a global
depth improvement. This allows us to scale the power of exact
SAT-based methods to almost arbitrarily large data sets. We
evaluate our new approach experimentally on a range of real-
world instances that contain up to several thousand samples. In
almost all cases, our method successfully decreases the depth
of the initial decision tree; often, the decrease is significant.

1 Introduction
Decision trees are among the oldest and most widely used
tools for the description, classification, and generalization of
data (Murthy 1998). Since decision trees are easy to under-
stand and interpret, they can contribute to the general objec-
tive of explainable and interpretable AI (Gilpin et al. 2018).
In this context, one prefers decision trees of low depth as they
are easier to understand and interpret (Molnar 2019). In view
of the parsimony principle, low depth decision trees have a
better chance to generalize over additional samples (Bessiere,
Hebrard, and O’Sullivan 2009). Since low depth decision
trees require fewer tests per sample, they are strongly pre-
ferred in applications like in medical diagnosis where tests
might be costly, risky, or intrusive (Podgorelec et al. 2002).

Unfortunately, finding a decision tree of lowest depth that
correctly classifies a given data set is NP-hard (Hyafil and
Rivest 1976). Consequently, the standard heuristic methods
for decision tree learning like C4.5 (Quinlan 1993) or ITI
(Utgoff, Berkman, and Clouse 1997), which are fast and scale
to large data sets, do not find decision trees of lowest depth.
Therefore, several exact methods have been proposed that en-
code the problem into SAT or CSP and use SAT/CSP solvers
to find an optimal tree (Bessiere, Hebrard, and O’Sullivan
2009; Narodytska et al. 2018; Avellaneda 2020; Janota and
Morgado 2020). Indeed, in many cases, these exact methods
produce decision trees that are significantly smaller in size

or depth than the decision trees found by standard heuristic
algorithms. However, the exact methods can only be applied
to relatively small data sets. The currently best method is
due to Avellaneda (2020). It is capable of producing decision
trees of a depth up to 12.

In this paper, we propose a novel approach to learning
decision trees of low depth. We combine the scalability of
heuristic methods with the strength of encoding-based ex-
act methods, thus taking the best of the two worlds. Our
approach follows the principle of SAT-based Local Improve-
ment (SLIM) which starts with a solution provided by a fast
heuristic. It then repeatedly applies a SAT-based exact method
locally to improve the solution. SLIM has shown to be effec-
tive in graph decomposition problems (Lodha, Ordyniak, and
Szeider 2017b; Fichte, Lodha, and Szeider 2017; Lodha, Or-
dyniak, and Szeider 2017a; Ganian et al. 2019) and Bayesian
network structure learning (Ramaswamy and Szeider 2021).
Key to our approach is a suitable notion of a local instance I ′,
generated from a subtree T ′ of a given decision tree T , so
that we can utilize a new decision tree T ′′ for I ′ of lower
depth than T ′ to reduce the depth of T . To make this work,
we introduce new classification categories which guarantee
that certain samples end up in the same leaves of T ′′. This
allows us to insert subtrees copied from T at these leaves,
obtaining a new global decision tree T ∗ (Theorem 1). By
adding certain weights to the new classification categories,
we can ensure that by decreasing the depth locally, we can
eventually decrease the depth globally (Theorem 2).

Because of the new classification categories and the
weights, a local instance poses a more complex classification
problem. The available SAT/CSP encodings only support bi-
nary unweighted classification instances and are therefore not
directly applicable. We show, however, how SAT encodings
can be generalized to accommodate non-binary weighted
classification instances and propose a subtree selection strat-
egy that avoids weights (Corollary 1). We further propose a
new encoding based on a characterization of decision trees in
terms of partitions (Theorem 3), which allows us to handle
local instances of higher depth than it is possible with known
encodings.

We establish a prototype implementation of our approach
(DT-SLIM) and empirically evaluate it on data sets from the
UCI Machine Learning Repository. Our experimental results
are very encouraging: we can improve the depth of heuristi-
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cally obtained decision trees in almost all cases, in some cases
significantly. For instance, the decision tree for benchmark
set “australian” computed by the standard heuristic Weka has
a depth of 53, which DT-SLIM reduces to a depth of 22.

We also compare the test accuracy of the decision trees, be-
fore and after local improvement. The principle of Occam’s
Razor suggests that a decision tree of lower depth generalizes
better to additional data. Our results affirm this suggestion.
In a vast majority of the cases, deep decision trees general-
ize worse than their depth-improved counterparts. In several
cases, DT-SLIM significantly increases the test accuracy; for
instance, reducing the decision tree depth for benchmark set
“objectivity” from 36 to 10 increases the test accuracy from
55% to 78%.

2 Preliminaries
Classification problems. An example (or sample or fea-
ture vector) e is a function e : feat(e)→ {0, 1} defined on a
finite set feat(e) of features (or attributes). For a set E of sam-
ples, we put feat(E) =

⋃
e∈E feat(e). We say that two sam-

ples e1, e2 agree on a feature f if f ∈ feat(e1)∩ feat(e2) and
e1(f) = e2(f). If f ∈ feat(e1)∩feat(e2) but e1(f) 6= e2(f),
then we say that the samples disagree on f .

A classification instance I is a pair (E,C) where E is a set
of samples, for all e1, e2 ∈ E we have feat(e1) = feat(e2),
and C is a mapping that assigns each sample e ∈ E an
integer C(e), the classification of e. For a set E′ ⊆ E we let
C(E′) = {C(e) : e ∈ E′ }.

An important special case are binary classification in-
stances I = (C,E) with C(E) = {0, 1}; here we call an
e ∈ E negative if C(e) = 0 and positive if C(e) = 1.

A set E′ ⊆ E of samples of a classification instance (C,E)
is uniform if |C(E′)| ≤ 1, otherwise, E′ is non-uniform.

A classification instance (C ′, E′) is a subinstance of
(C,E) if E′ ⊆ E and C ′ is the restriction of C to E′.

Given a classification instance (E,C), a subset F ⊆
feat(E) is a support set of E if any two samples e1, e2 ∈ E
with C(e1) 6= C(e2) disagree in at least one feature of F .

Finding a smallest support set is an NP-hard task, even for
binary classification instances (Ibaraki, Crama, and Hammer
2011, Theorem 12.2).

Decision trees. A (binary) decision tree, or DT, for short,
is a rooted tree T with vertex set V (T ) and arc set A(T ),
where each non-leaf node v ∈ V (T ) is labeled with a feature
feat(v) and has exactly two outgoing arcs, a left arc and a
right arc. We write feat(T ) = { feat(v) : v ∈ V (T ) }. The
depth d(T ) of a decision tree T is the length of a longest path
from the root to a leaf. PT (v) denotes the path from the root
to the node v and PT,i(v) denotes the i + 1-th node on this
path, where P0(v) is the root. We also define the depth of a
node v ∈ V (T ) in T , denoted dT (v), as the length of PT (v);
clearly dT (v) ≤ d(T ).

Consider a classification instance (E,C) and a decision
tree T with feat(T ) ⊆ feat(E). For each node v of T we
define ET (v) as the set of all samples e ∈ E such that
for each left (right, respectively) arc (u,w) on PT (v) we
have e(f) = 1 (e(f) = 0, respectively) for the feature f =
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e1 0 1 0 0 0 1 0 1 1
e2 0 1 0 1 0 0 0 1 1
e3 1 0 0 0 1 0 1 1 0
e4 0 0 1 0 0 1 0 0 1
e5 1 0 0 1 0 0 0 0 1
e6 0 1 0 1 0 0 1 0 0
e7 0 1 0 1 0 0 1 1 1
e8 0 0 1 0 1 0 1 1 1
e9 1 0 0 1 0 0 1 1 0
e10 1 0 0 0 0 1 0 1 1
e11 0 0 1 1 0 0 1 0 1
e12 1 0 0 0 1 0 1 0 0

humid?

sunny? 1
golf

0
no golf

rain?

1
golf

windy?

1
golf

0
no golf

yes no

Figure 1: Left: A classification instance with 12 samples and
8 features, the last column indicating whether the sample is
positive or negative. Right: a decision tree of depth 4 for the
classification instance on the left.

sunny?

humid? rain?

0 1 windy? 1

1 0

yes no

Figure 2: A decision tree of depth 3 for the classification
instance in Fig. 1.

feat(u). We say that T classifies (E,C) (or simply that T is
a decision tree for E) if ET (v) is uniform for each leaf v of
T . If T classifies (E,C), then, slightly abusing notation, we
write C(v) = c if v is a leaf of T with C(ET (v)) = {c}.

For a decision tree T and a node v ∈ V (T ), we denote
by Tv the decision tree formed by the subtree of T rooted
at v. If T classifies a classification instance (E,C), then Tv

classifies the subinstance (ET (v), C ′).
Figure 1 shows an example for a classification problem

and a corresponding decision tree. Figure 2 shows a decision
tree of smallest depth for the same instance.

3 Local Improvement
Assume we are given a classification instance I = (E,C),
which is too large to compute a decision tree of smallest depth
for it using an exact method such as a SAT encoding. We can
use a heuristic method to compute a non-optimal decision
tree T for I . The idea of local improvement is to repeatedly
select subtrees T ′ of T that induce a local instance I ′ that
is small enough (possibly after further simplification and
reduction) to be solved by an exact method. Once we have
found a decision tree T ′′ for I ′ of smallest depth (or at least
a depth that is smaller than the depth of T ′), we can replace
T ′ in T with the new T ′′, obtaining a new decision tree T ∗
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T for I T ′ for I ′ T ′′ for I ′ T ∗ for I
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Figure 3: Local improvement workflow. The numbers indicate the leaves’ classes; squares indicate special leaves.

for I .
However, to instantiate this general idea, we need to de-

velop a suitable concept of a local instance. It must guarantee
that when we have found a new local tree T ′′, we can extend
each leaf of T ′′ with parts of T so that the overall deci-
sion tree T ∗ correctly classifies all the samples in ET ′′(v).
The key to our solution is based on the introduction of new
classes.

Let r be the root of T ′, let `1, . . . , `k be those leaves
of T ′ that are not leaves of T , and let s = maxe∈E C(e).

The local instance associated with T ′ is the pair I ′ =
(E′, C ′) where E′ = ET (r) and C ′ is the mapping defined
by

C ′(e)=

{
C ′(e)=s + i if e ∈ ET (`i) for some 1 ≤ i ≤ k;
C ′(e)=C(e) otherwise.

Let T ′′ be any decision tree for I ′. Obviously, T ′′ will con-
tain for each i ∈ {1, . . . , k} at least one leaf m such that
C ′(E′T ′′(m)) = {s+ i}. We call such a leaf m a special leaf
with classification s + i.

To describe how the new decision tree T ∗ is built together,
we need the following operation on decision trees: Let T1, T2

be decision trees, x a leaf of T1 and y the root of T2. The
extension of T1 at x with T2 is the decision tree T3 obtained
from T1 and T2 by taking the vertex-disjoint union of the two
trees and identifying x with y.

To construct T ∗, we start with the decision tree T0 obtained
from T by deleting all the descendants of the root r of T ′.
From T0 we obtain T1 by extending it at r by T ′′. Finally,
from T1 we obtain T ∗ by extending each special leaf m with
classification s + i with a new copy Tm

`i
of T`i . Figure 3

shows an example of this process.
The next theorem states that this replacement process is

sound.
Theorem 1. The decision tree T ∗ classifies I .
Proof. For showing the claim, let `∗ be any leaf of T ∗. We
will show that |C(`∗)| ≤ 1. Let P be the unique path in T ∗

from the root of T ∗ to `∗. We distinguish several cases.
Case 1: P does not run through r. Hence `∗ is also a

leaf of T . Since T correctly classifies I by assumption, 1 ≥
|C(ET (`∗))| = |C(ET∗(`

∗))| = |C(`∗)|.
Case 2: P runs through r.
Subcase 2.1: `∗ is a leaf of T ′′. Since `∗ is also a leaf of T ∗,

it isn’t a special leaf. The latter implies that C(`∗) = C ′(`∗).

Since T ′′ correctly classifies I ′, we have |C ′(`∗)| ≤ 1, hence
again |C(`∗)| ≤ 1.

Subcase 2.2: `∗ is not a leaf of T ′′. Consequently, P runs
through a special leaf m of T ′′. Let s+ i be the classification
of m. By construction, the subtree T ∗m of T ∗ is a copy of
the subtree T`i of T , and the leaf `∗ of T ∗m is the copy of a
leaf ` of T ∗m. Since C ′(m) = {s + i}, we have ET∗(m) ⊆
ET (`i). Consequently ET∗(`

∗) ⊆ ET (`). Since T correctly
classifies I , |C(`)| ≤ 1, and from ET∗(`

∗) ⊆ ET (`) we thus
get |C(`∗)| ≤ 1.

Let us now turn to the question of decreasing the depth of
the input decision tree T employing such a local replacement.
This does not work out of the box: Even when d(T ′′) < d(T ′)
it still can happen that d(T ∗) > d(T ), since the depth of a
special leaf v of T ′′ of classification s + i can be larger than
the depth of the corresponding leaf `i of T ′, resulting in a
larger depth of T ∗ if the subtree attached to v at T ∗ is large.

To overcome this problem, we enrich the local instance by
additional information, defining a weighted version of the
classification problem.

Weighted Classification. A weighted classification in-
stance is a tuple Iw = (E,C, d) where I = (E,C) is a
classification instance, and d is a mapping that assigns each
c ∈ C(E) a non-negative positive integer d(c). I and Iw
have the same decision trees, just the depth for decision trees
are defined differently for I and Iw. Consider a decision
tree T for Iw. For a leaf ` of T with classification c (i.e.,
C(`) = {c}), we define the weighted depth of ` in T as
dw,T (`) = dT (`) + d(c). The weighted depth dw(T ) of T is
the maximum weighted depth over all its leaves.

We will show how decreasing locally the weighted depth
of the weighted local instance within our local improvement
setting allows us to decrease the depth of the global decision
tree.

Let I = (E,C), I ′ = (E′, C ′), T , T ′, T ′′ and T ∗ as
above, and let I ′w = (E′, C ′, d) denote the weighted local
instance, where the weights for c ∈ C ′(E′) are defined as
follows: if c = s + i then d(c) = d(T`i); if c ≤ s, then
d(c) = 0. We note that T ′ is a decision tree of the weighted
local instance and hence dw(T ′) is defined.

Theorem 2. If dw(T ′′) ≤ dw(T ′) then d(T ∗) ≤ d(T ).
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Proof. Assume dw(T ′′) ≤ dw(T ′) and consider a longest
path P ∗ in T ∗ between the root of T ∗ and a leaf `∗ of T ∗.

If P ∗ does not pass through r, the root of T ′′, then it is
also a root-to-leaf path of T , and so d(T ∗) = L(P ∗) ≤ d(T ),
and the claim of is established.

It remains to consider the case where P ∗ passes through r.
Let P be a longest path in T which passes through r. Conse-
quently, L(P ) ≤ d(T ).

We can write L(P ∗) = L∗0 + L∗1 + L∗2 where L∗0 is the
length of the part of P ∗ between the root of T ∗ and r, L∗1 is
the length of the part of P ∗ between r and a leaf of T ′′, and
L∗2 is the length of the part of P ∗ between a leaf of T ′′ and `.
It is possible that L∗2 = 0.

Similarly, we can write L(P ) = L0 + L1 + L2, where the
three integers are defined similarly, using L1 for the length
of the part of P inside T ′.

By the definition of the weights, we have L1 + L2 =
dw(T ′), and L∗1 + L∗2 = dw(T ′′). Since dw(T ′′) ≤ dw(T ′),
L∗1 + L∗2 ≤ L1 + L2. Since L∗0 = L0 by construction, this
gives d(T ∗) = L(P ∗) ≤ L(P ) ≤ d(T ), as claimed.

We now identify a special case of Theorem 2 where we
only need to consider the unweighted local instance and still
ensure that d(T ∗) ≤ d(T ). Let us call a subtree T ′ of T
to be safe if for every leaf ` of T ′ it holds that d(T ′) ≤
dw(T ′)− d(`).

Corollary 1. If T ′ is safe and d(T ′′) ≤ d(T ′) then d(T ∗) ≤
d(T ).
Proof. Let T ′ be a safe subtree with d(T ′′) ≤ d(T ′). Let
`′′ be a leaf of T ′′ with dw,T ′′(`

′′) = dw(T ′′) and let c be
the classification of `′′ in T ′′. There must be a leaf ` of
T ′ with classification c = d(`). From the definitions we
get dw(T ′′) = dw,T ′′(`

′′) = d(c) + dT ′′(`
′′) ≤ d(c) +

d(T ′′) ≤ d(c) + d(T ′). Since T ′ is safe, we have d(T ′) ≤
dw(T ′)− d(c), and so we get from dw(T ′′) ≤ d(c) + d(T ′)
that dw(T ′′) ≤ d(c) + dw(T ′) − d(c) = dw(T ′). By Theo-
rem 2, d(T ∗) ≤ d(T ) follows.

4 SAT Encodings
The use of SAT encodings to induce decision trees has
gained increased attention in recent times (Bessiere, Hebrard,
and O’Sullivan 2009; Narodytska et al. 2018; Avellaneda
2020; Janota and Morgado 2020). Out of all these encod-
ings, DT depth by Avellaneda (2020) performed best for our
purposes. We give a brief outline of this encoding and re-
fer to the original paper for further details. The idea behind
DT depth is to encode a complete binary tree of a specific
depth. Constraints assigning each internal node exactly one
feature and each leaf exactly one class are used. The deci-
sion tree is made consistent with the dataset as follows: for
each sample and node it is encoded which feature the node
must have assigned for the sample to use it. The same is
done for leaves and classes. This idea allows the decision
tree structure to be encoded efficiently. Given a depth d the
encoding requires Ω(2d) many clauses (Avellaneda 2020).
The encoding can easily be extended to support more than
two classes. This increases the number of clauses by a fac-
tor of log2(|C(E)|). The encoding does not support weights

without significant changes. Since the number of clauses is
exponential in the depth, there is an upper bound on the depth
that can be feasibly encoded using DT depth. To allow the
exploration of subtrees of larger depths, we propose a new en-
coding that significantly outperforms the existing encodings
in that respect.

Our new encoding DT pb. The idea behind our encoding
is to formulate the problem in terms of partitions. This ap-
proach has been used successfully for different graph-related
problems and was introduced by Heule and Szeider (2015) for
clique-width computation. We first reformulate the problem
of finding a decision tree with a given depth for a classifica-
tion instance I by partitioning the set of samples (Theorem 3).
We then directly convert this definition into a propositional
CNF formula ϕ(I, d), that is satisfiable if and only if a de-
cision tree of depth d that classifies the instance I exists
(Theorem 4).

Let I = (E,C) be a classification instance and S =
(S0, . . . , Sd) a sequence of partitions of E that has length
d. We refer to the equivalence classes as groups. S is a DT-
sequence which classifies C if the following conditions hold.
DT1 S0 = {E}.
DT2 For all 1 ≤ m ≤ d it holds that, for each group g ∈

Sm−1\Sm, there are groups g′, g′′ ∈ Sm with g = g′∪g′′,
such that for some f ∈ feat(E), e′(f) = 0 for all e′ ∈ g′

and e′′(f) = 1 for all e′′ ∈ g′′.
DT3 For each g ∈ Sd it holds that for all e1, e2 ∈ g :

C(e1) = C(e2).
We note that the definition implies that Sm is a refinement
of Sm−1, for 1 ≤ m ≤ d. The definition of DT-sequences
corresponds to the definition of ET (v) and it is easy to see
that decision trees can be converted into DT-sequences of the
same depth; and the other way around. This leads us to the
following theorem.
Theorem 3. A classification instance can be classified by a
decision tree of depth d if and only if it can be classified by a
DT-sequence of length d.

We encode a DT-sequence of length d for I = (E,C)
where E = {e1, . . . , en} and F = feat(E) = {f1, . . . , fk}.
The result of our encoding is a propositional formula ϕ(I, d).
This formula is satisfiable if and only if there is a DT-
sequence of length d, and therefore a decision tree of depth d
exists, that classifies I .

We use the variables gi,j,m, for 1 ≤ i < j < n, 0 ≤ m ≤
d, with the semantics that gi,j,m is true if and only if samples
ei and ej are in the same group at level m. We also use the
variables si,m,` for 1 ≤ i ≤ n, 0 ≤ m ≤ d, 1 ≤ ` ≤ k to
ensure DT2 is satisfied.

At the start, i.e., depth 0, all samples belong to the same
group. We add the unary clause gi,j,0 for all 1 ≤ i < j ≤ n.
At the last level, all samples in one group must belong to
the same class. We enforce this by adding the unary clause
¬gi,j,d for all 1 ≤ i < j ≤ n, such that ei and ej belong to
different classes.

As Sm is a refinement of Sm−1, we have to ensure that
samples in different groups can not be in the same group at
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a higher level. We state this by adding the clause gi,j,m ∨
¬gi,j,m+1 for all 1 ≤ i < j ≤ n, 0 ≤ m < d.

In order to verify that DT2 holds, we must first ensure
that at each level m, for every sample i there exists a cor-
responding feature to satisfy. For this purpose, we add the
clause

∨
1≤`≤k si,m,` for 1 ≤ i ≤ n, 0 ≤ m < d and

ensure consistency within groups by adding the clauses
¬gi,j,m ∨ ¬si,m,` ∨ sj,m,` for 1 ≤ i < j ≤ n, 0 ≤ m < d,
1 ≤ ` ≤ k.

We can now encode DT2 using the following clauses. For
all 1 ≤ i < j ≤ n, 0 ≤ m < d, 1 ≤ ` ≤ k: if ei(f`) =
ej(f`) we add the clause ¬gi,j,m ∨ ¬si,m,` ∨ gi,j,m+1, oth-
erwise we add the clause ¬si,m,` ∨ ¬gi,j,m+1.

By construction of the formula and from Theorem 3 we
obtain the following result.

Theorem 4. ϕ(I, d) is satisfiable if and only if there exists a
decision tree of depth at most d that classifies I .

The number of clauses in ϕ(E, d) is O(|E|2 · |feat(E)| ·d).
While most of these clauses are binary or ternary, the number
of literals per clause is in O(|feat(E)|). Therefore, the main
factor determining the encoding size is the number of samples
and not the depth.

Our encoding excels for instances that require deep deci-
sion trees but have few samples. In comparison to DT depth,
DT pb can solve instances that require deep and unbalanced
decision trees. DT depth encodes a complete tree of the re-
quired depth, which causes an exponentially large encoding,
while DT pb will remain comparatively small as long as the
number of samples is small.

We can encode weights with DT pb by using different
maximum depths for the different classes. Let dmin be the
lowest weight among all classes. Given a class c, for all
ei, ej ∈ E such that C(ei) = c, C(ej) 6= c, we add the
clauses ¬gi,j,w, where w = d− d(c) + dmin is the allowed
depth in regards to the weight of c.

5 Subtree Selection and Feature Reduction
In this section, we describe the overall algorithm that facil-
itates the SAT-based local improvement, building upon the
theoretical results of Section 3 and the encodings described
in Section 4.

As before, let T be a decision tree for a classification
instance I = (E,C). Our aim is to select a subtree T ′ which
gives rise to a local instance I ′ = (E′, C ′) (and a weighted
local instance I ′w = (E′, C ′, d)). Since we will try to find
a shorter decision tree T ′′ for I ′d with a SAT encoding, we
need to select T ′ in such a way that the encoding size remains
feasible.

Before we encode I ′w we further simplify it through
feature reduction. We select a support set (recall the def-
inition from Section 2) F ⊆ feat(I ′w) and consider the
new classification instance RF (I ′w) = (RF (E′), RF (C ′), d)
where RF (E′) = { e|F : e ∈ E′ } (the restrictions of the
samples from E′ to F ) and RF (C ′), which is defined by
RF (C ′)(e|F ) = C ′(e). The latter definition is sound since
F being a support set guarantees that for any two samples
e1, e2 ∈ E′, if C ′(e1) 6= C ′(e2), then C ′(e1|F ) 6= C ′(e2|F ).

Since C ′(E′) = RF (C ′)(RF (E′)), we can keep the same
weighting d.

Observation 1. If F is a support set for I ′w, and T ′′ is a
decision tree for RF (I ′w), then T ′′ is also a decision tree
for I ′w.

We note, however, that not every decision tree for I ′w is
necessarily a decision tree for RF (I ′d), and so with feature
reduction we might lose depth-optimality.

With fewer features, RF (I ′w) can have fewer samples than
I ′w since several samples (with the same classification) may
collapse to a single sample if they agree on all the features
in F .

Support sets can be determined in several ways. A natural
choice is to take F = feat(T ′), i.e., just keeping precisely
those features used by the subtree T ′. It is easy to see that F
is indeed a support set for I ′w. This way, we can compute the
support set quickly and often significantly reduce the number
of samples. However, such a support set limits the improve-
ment options to a rearrangement of the nodes in T ′. As an
alternative, we use other heuristic methods for determining
support sets, with the potential of discovering completely
different subtrees, but with a higher computational cost.

We use two heuristic methods: (i) Starting with F =
feat(I ′w), we iteratively remove one feature after the other.
After each removal, we check whether F is still a support
set. In case F is not a support set, we undo the removal
and continue. (ii) As discussed by Boros et al. (2003), we
start with F = ∅ and check for each pair e1, e2 ∈ E′ such
that C(e1) 6= C(e2) whether F contains a feature in which
e1 and e2 disagree on; if not, we add such a feature to F .
We compute support sets using both methods and use the
smallest.

For subtree selection, we proceed as follows. We first select
a node r of T as the root of T ′ and then “grow” the subtree
step by step, adding one node after the other, as long as
the depth of T ′ remains below some predefined number d̂,
and the number of samples in RF (I ′w) remains below some
predefined number ĉ. The algorithm proceeds in a greedy
fashion: in each iteration, it adds all nodes u ∈ V (Tr)\V (T ′)
where d(Tu) is maximal. This method has two advantages.
First, it creates unbalanced trees that can then be balanced
by the SAT solver to reduce the maximal depth. Second,
it selects only safe subtrees, avoiding the requirement of
weights, which simplifies the encoding.

We can now formulate the entire algorithm, which we refer
to as DT-SLIM(H), whereH denotes the heuristics used to
generate the initial decision tree T . The pseudo-code for
DT-SLIM(H) is shown in Algorithm 1. It iteratively selects
a leaf v with maximum depth, ignoring those in the list of
completed nodes D. The first subtree used to create a new
instance is rooted at node u ∈ PT (v), such that u is the node
closest to the root with |ET (u)| ≤ ĉ. It uses this instance
without any further reductions (r = 0). The algorithm then
proceeds up the path. For each node it tries to find a subtree
using the following methods in the given order. First, DT-
SLIM tries to find a subtree whose leaves are also leaves of
T (l = 1) and then allows for more general subtrees. Each
time, the algorithm first tries to reduce the instance using
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Algorithm 1: DT-SLIM.
Data: An instance I = (C,E), a decision tree

T = (V,A), a depth limit d̂, a sample limit ĉ.
Result: A new decision tree T and local instance I

1 D ← ∅
2 T ∗ = T
3 while V (T ∗) \D 6= ∅ do
4 v ← arg maxv∈V (T )\Dd(v)
5 i← min{ i : |ET (PT∗,i(v))| ≤ ĉ ∨ i = d(v) }
6 if i < d(v) then
7 T ′, I ′ = subtree(PT∗,i(v), I, T ∗, d̂, ĉ, 0, 0)
8 if T ′′ = compute dt(I ′, d(T ′)− 1) then
9 T ∗ = replace(T ∗, T ′, T ′′)

10 while i > 0 and T = T ∗ do
11 i← i− 1
12 for l ∈ {1, 0}, r ∈ {1, 2} do
13 T ′, I ′ = subtree(PT∗,i(v), I, T ∗, d̂, ĉ, r, l)
14 if T ′′ = compute dt(I ′, d(T ′)− 1) then
15 T ∗ = replace(T ∗, T ′, T ′′)
16 break
17 if T = T ∗ then
18 D ← D ∪ PT∗(v)

the features feat(T ′) (r = 1) and then uses a heuristically
computed support set (r = 2).

6 Experiments
Instances. We take all classification instances from the
UCI Machine Learning Repository1 that use discrete do-
mains and contain more than 500 samples. We convert these
instances to a binary domain by assigning a binary identifier
to each distinct value. Additionally, we take the instances
from Narodytska et al. (2018) 2, which were already used
before (Bessiere, Hebrard, and O’Sullivan 2009; Olson et al.
2017). In total, we use 37 different instances, which vary in
the number of features (8 to 2195), the number of samples (11
to 23954), and the depth of a heuristically computed decision
tree (3 to 97).
Accuracy. We compare the accuracy of the decision tree
before and after local improvement on a set of samples for
which the tree was not optimized. The accuracy is the percent-
age of these new samples correctly classified by the decision
tree. Four of the considered instances already come with a
designated test set. For all the other instances we use 5-fold
stratified cross-validation (also known as rotation estimation
(Breiman et al. 1984; Kohavi 1995)) and report the average.
We therefore run the experiments on 169 distinct instances.

The heuristic decision trees were generated by the tools
ITI (Utgoff, Berkman, and Clouse 1997) and Weka, the lat-
ter using the C4.5 algorithm (Quinlan 1993). The tools are
configured to compute unpruned decision trees with 100%
accuracy on the test set. Using unpruned trees as the input
for DT-SLIM allows us to provide an accurate analysis of

1https://archive.ics.uci.edu/ml/datasets/
2We thank the authors for providing these instances.

DT-SLIM’s impact. One can still prune afterward to avoid
overfitting for the prize of reduced accuracy on the train-
ing set. The same configurations have been used for ITI by
Narodytska et al. (2018) and for Weka by Avellaneda (2020).

Setup. We use servers with two Intel Xeon E5-2640 v4
CPUs running at 2.40 GHz and using Ubuntu 18.04. The
memory limit for each run is 8 GB and we use a timeout
of 12 hours for the whole instance. We use the SAT solver
Glucose 4.13 and the well-established decision tree inducers
ITI 3.14 and Weka 3.8.45.

Results. We use a hybrid encoding which combines
DT depth and DT pb. As previously discussed, there is
a depth limit up to which DT depth performs better than
DT pb, but for larger depths, DT pb performs better or is
the only encoding that can handle such depths. To find the
optimal threshold for switching encodings, we designed the
following experiment. We artificially create simple instances
that require a decision tree of a chosen depth. We increase
this depth incrementally and observe how the runtime devel-
ops. The experiment shows that depth 10 is the best value for
switching.

We establish the parameter values d̂ and ĉ as follows. Since
the number of samples the encoding can handle depends on
the depth, we do not use a single value ĉ, but overload ĉ as
a mapping from a depth value d to a sample limit. The goal
is, given a time limit t, to find for each depth d a sample
limit ĉ(d) such that the SAT solver will find an improved sub-
tree within t seconds for most instances. d̂ is then implicitly
defined as the maximum d such that ĉ(d) > 0. We refer to
d̂ and ĉ for a given t as dt and ct respectively. In order to
find these limits, we run DT-SLIM on selected instances and
increase d̂ and ĉ incrementally from 3 to 49 and 10 to 1000
respectively, giving the SAT solver 900 seconds to find an
improved subtree. We measure the time it takes to produce
either an improved subtree (SAT), to determine that this is
not possible (UNSAT), or the time limit is reached. From
the results we derive three sets of parameters: (i) d60 = 12
and c60 ranges from 70 to 15, (ii) d300 = 15 and c300 ranges
from 300 to 90, and (iii) d800 = 39 and c800 ranges from 500
to 105.

The different parameter sets produce different results, as
shown in Table 1 for decision trees generated by Weka and
in Table 2 for decision trees generated by ITI. We present
detailed results for selected instances in Tables 3 and 4.

We quantify the impact of our new encoding by running
DT-SLIM on all instances using only DT depth and the pa-
rameters d300, c300, as they match the limits of DT depth
the closest. We refer to this modified version as DT-SLIM*
and compare it to DT-SLIM using the same parameters. DT-
SLIM(Weka) finds decision trees with a depth at least as low
as the decision trees found by DT-SLIM*(Weka) and on av-
erage the depth of decision trees found by DT-SLIM(Weka)

3https://www.labri.fr/perso/lsimon/glucose/
4https://www-lrn.cs.umass.edu/iti/
5https://www.cs.waikato.ac.nz/∼ml/weka/
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Depth Test Acc.
Parameters Av. Var. Av. Var. Imp Best

Weka 22.63 436.76 0.67 0.10 – –

SL
IM

d60, c60 13.64 244.42 0.75 0.06 36 1
d300, c300 13.45 261.29 0.76 0.05 36 6
d800, c800 14.33 318.01 0.76 0.05 35 15

Table 1: DT-SLIM(Weka): Comparison of the changes regard-
ing depth and test accuracy based on the choice of timeout
and corresponding limits. Imp shows how many of the 37
decision trees could be improved, and Best shows for how
many instances DT-SLIM found the lowest depth using this
setting. The first row shows the baseline.

Depth Test Acc.
Parameters Av. Var. Av. Var. Imp Best

ITI 10.75 28.80 0.77 0.45 – –

SL
IM

d60, c60 8.55 22.99 0.77 0.04 36 1
d300, c300 8.35 22.35 0.78 0.03 36 6
d800, c800 8.59 29.60 0.77 0.03 35 15

Table 2: DT-SLIM(ITI): As in Table 1.

have 34% lower depth. The difference between decision trees
found by DT-SLIM(ITI) and DT-SLIM*(ITI) is less definite.
While the average difference in depth between decision trees
is only 2% in favor of DT-SLIM(ITI), on a per instance level,
DT-SLIM(ITI) generates trees with between 2% higher and
20% lower depth than the trees generated by DT-SLIM*(ITI).
Discussion. The trees generated by Weka and ITI vary
greatly in depth: Weka-induced trees are, on average, twice
as deep as ITI-induced trees. This relationship does not show
in the tree size, where Weka-induced trees have, on average,
367 nodes, which is similar to the average size of 320 nodes
for ITI-induced trees.

This difference in depth explains the difference in gains
seen in Tables 3 and 4. Here, Weka-induced trees provide
more possibilities for depth reduction. In terms of test accu-
racy, the gains for ITI-induced trees are usually small, while
for Weka-induced trees, there are several instances where

Instance Weka DT-SLIM
Name |F | |E| d a d a

australian 1163 552 53.00 0.14 22.00 0.14
ccdefault 211 23955 96.60 0.71 80.00 0.71
haberman 92 240 71.20 0.66 63.80 0.62
hiv schilling 40 2617 18.80 0.81 11.80 0.79
hungarian 330 235 27.00 0.19 9.40 0.59
ida 2195 59998 61.00 1.00 51.00 1.00
objectivity 316 796 36.60 0.55 10.60 0.78

Table 3: Comparison of depth and accuracy on selected in-
stances before and after DT-SLIM(Weka) with d800, c800.

Instance ITI DT-SLIM
Name |F | |E| d a d a

australian 1163 552 14.00 0.42 12.60 0.48
ccdefault 211 23955 22.20 0.71 18.40 0.71
hiv 1625 40 1300 13.20 0.85 10.00 0.83
hungarian 330 235 14.00 0.38 9.60 0.59
ida 2195 59998 19.00 1.00 18.00 1.00
kr-vs-kp 37 2556 14 0.98 10.20 0.97
mammog 19 513 13.20 0.68 8.80 0.64

Table 4: Comparison of depth and accuracy on selected in-
stances before and after DT-SLIM(ITI) with d800, c800.

the test accuracy significantly improved with DT-SLIM. This
suggests that without pruning, the Weka-induced trees suffer
more from overfitting. Independent of the tree’s source, DT-
SLIM improved the depth of almost all trees and often by a
significant amount.

The results appear robust. We observe only a small influ-
ence of the parameter settings. In general the shortest timeout
performs worst, while it depends on the instance which of
the other two timeout settings perform better. The overall
timeout for the whole instance has more impact. For the large
instances, DT-SLIM did not reach a plateau within 12 hours,
hence a longer timeout enables further improvements.

The new encoding does indeed provide significant addi-
tional reduction in the decision tree’s depth. As expected,
the gains are higher for Weka-induced trees, as the higher
depths make DT pb more applicable. Nonetheless, even for
the more shallow ITI trees, the difference in depth is up to
20%, which is a significant gain.

7 Conclusion
We have presented the new approach DT-SLIM to learning
decision trees of small depth, combining standard heuristic
methods with exact methods. We facilitated this with (i) a
general replacement scheme utilizing new classification cate-
gories, (ii) a subtree selection strategy, (iii) a feature reduc-
tion heuristic, and (iv) a new partition-based SAT encoding,
specifically designed to support non-binary classification and
to scale to larger depths.

We have experimentally evaluated this approach on an
extensive set of standard benchmark instances, using two
different standard heuristics for the initial decision tree, yield-
ing two instantiations of our new approach, DT-SLIM(Weka)
and DT-SLIM(ITI). Our experiments show that in almost all
cases, a depth reduction is possible, often the reduction is
substantial. Our experiments confirm the expectation that, on
average, decision trees of lower depth provide higher accu-
racy. For future work, we propose to extend the DT-SLIM
approach to work directly with non-binary features without
binarization, or even continuous-valued features by utilizing
SMT-encodings.
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