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Abstract. We introduce new proof systems for quantified Boolean for-
mulas (QBFs) by enhancing Q-resolution systems with rules which ex-
ploit local and global symmetries. The rules are based on homomor-
phisms that admit non-injective mappings between literals. This results
in systems that are stronger than Q-resolution with (injective) symme-
try rules. We further strengthen the systems by utilizing a dependency
system D in a way that surpasses Q(D)-resolution in relative strength.
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1 Introduction

In a 1985 paper, Krishnamurthy [12] introduced symmetry rules which strengthen
the propositional resolution system to admit exponentially shorter proofs, for in-
stance, linearly sized proofs for the Pigeon Hole Principle. The global symmetry
rule exploits the automorphisms of the entire input formula. The even stronger
local symmetry rule exploits the existence of isomorphic images of subsets of
clauses within the formula. Szeider [19] further strengthened Krishnamurthy’s
proof systems, generalizing the symmetry rules to homomorphism rules by con-
sidering clause-preserving mappings that are not necessarily injective.

Recently, Kauers and Seidl [11] lifted Krishnamurthy’s most basic symmetry
rule, the global symmetry rule, to Q-resolution (Q-Res), the standard resolution-
based proof system for quantified Boolean formulas (QBFs) in prenex conjunctive
normal form (PCNF). They showed that several families of formulas that require
exponentially-sized Q-resolution proofs admit polynomially-sized proofs if the
generalized symmetry rule is added.

Our main contribution is the introduction and study of proof systems based
on Q-resolution that are even stronger than the one studied by Kauers and
Seidl [11]: we lift the local symmetry rule to the quantified setting, as well as the
local and global homomorphism rules. A straightforward lifting of the rules from
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(WWTF), projects ICT19-060 and ICT19-065.



Technical Report AC-TR-20-007

2 Ankit Shukla, Friedrich Slivovsky, and Stefan Szeider

the propositional case to the quantified case insists that the mapping between
literals on which the symmetries (or more generally, homomorphisms) operate
does not jump between quantifier blocks. A more general version allows a jump
between quantifier blocks, as long as the relative position of the variables in
the quantifier prefix is preserved. We go even a step further, and parameterize
our systems by a dependency scheme D [15], and only require the mapping to
preserve dependencies according to the chosen dependency scheme. Thus, our
systems strengthen Kauers and Seidl’s system along three dimensions:

1. from global symmetries to local symmetries,

2. from symmetries to homomorphisms, and

3. from quantifier-block preserving mappings to dependencies preserving map-
pings with respect to a dependency system.

Each of the three dimensions alone provides an exponential speedup.

Figure 1 gives an overview of the proof systems considered in this paper. In
the figure, D stands for the reflexive resolution-path dependency scheme [18], a
variant of the resolution-path dependency scheme [17,20], or any stronger depen-
dency scheme. The separations between LH and LS, LH and GH, LS and GS, GH
and GS, and GS and Q-Res, as well as the corresponding separations between the
systems using a dependency scheme D, follows from the propositional case [19].

We show an exponential separation between LH(D) and LH for the reflexive
resolution-path dependency scheme (Theorem 3). This result also provides sep-
arations between LS(D) and LS, GH(D) and GH, and GS(D) and GS (see the
legend in Figure 1 for definitions).

2 Preliminaries

Formulas and Assignments. A literal is a negated or unnegated variable. If x is
a variable, we write T = -z and =% = z, and let var(z) = var(—z) = z. We
sometimes call literals « and —x the positive and negative polarity of variable x.
If X is a set of literals, we write X for the set {Z : 2 € X }. A clause is a finite
disjunction of literals, and a term is a finite conjunction of literals. We call a
clause tautological if it contains the same variable negated as well as unnegated.
A CNF formula is a finite conjunction of non-tautological clauses. Whenever
convenient, we treat clauses and terms as sets of literals, and CNF formulas
as sets of sets of literals. We write var(S) for the set of variables occurring
(negated or unnegated) in a clause or term S, that is, var(S) = { var(¢) : £ € S }.
Moreover, we let var(¢) = oy var(C) denote the set of variables occurring in
a CNF formula ¢.

A truth assignment (or simply assignment) to a set X of variables is a map-
ping 7 : X — {0,1}. We write [X] for the set of truth assignments to X, and
extend 7 : X — {0,1} to literals by letting 7(—z) = 1 — 7(z) for x € X. Let
7:X — {0,1} be a truth assignment. The restriction C[7] of a clause (term)
S by 7 is defined as follows: if there is a literal £ € S N (X U X) such that
7€) =1 (7(£) = 0) then S[r] = 1 (S[r] = 0). Otherwise, S[r] = S\ (X U X).
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Q-Res(D) = Q(D)-resolution
GH LS(D) = Q-Res(D) + Local Symmetry Rule
GS(D) = Q-Res(D) + Global Symmetry Rule
LH(D) = Q-Res(D) + Local Homomorphism Rule
GH(D) = Q-Res(D) + Global Homomorphism Rule
Q-Res = Q-resolution
Q-Res(D) LS = Q-Res + Local Symmetry Rule
GS = Q-Res + Global Symmetry Rule
LH = Q-Res + Local Homomorphism Rule
- GH = Q-Res + Global Homomorphism Rule

Fig. 1: Proof system map. A — B indicates that system A p-simulates system B, but
B cannot p-simulate A.

The restriction ¢[r] of a CNF formula ¢ by the assignment 7 is defined ¢[7] =
{Clr]:CegClr]#1}.

PCNF Formulas. A PCNF formula is denoted by & = Q.¢, where ¢ is a CNF
formula and Q = Q1 X, ... Q. X, is a sequence such that Q; € {V,3}, Q; # Qi1
for 1 <7 < n, and the X; are pairwise disjoint sets of variables. We call ¢ the
matriz of @ and Q the (quantifier) prefiz of @, and refer to the X; as quantifier
blocks. We require that var(¢) = X1 U---U X, and write var(®) = var(¢). We
define a partial order <g on var(¢) as z <¢ y < = € X;,y € X;,i < j. We
extend <g to a relation on literals in the obvious way and drop the subscript
whenever @ is understood. For z € var(®) welet Rg(z) = {y € var(®) : x <gs y }
and Lg(z) = {y € var(®) : y <¢ =} denote the sets of variables to the right
and to the left of x in @, respectively. Relative to the PCNF formula @, variable
x is called ewmistential (universal) if x € X; and Q; = 3 (Q; = V). The set of
existential (universal) variables occurring in @ is denoted vars(®) (vary(®P)).
We define the set lit3(@) (lity(P)) as a set of all existential (universal) literals
corresponding to vars(®) (vary(®)), i.e., if x € vars(®) then both z, —~z € litg(P)
(resp. for the universal variable). The length of a PCNF formula & = Q.¢ is given
by its cardinality |®|; the number of clauses in the matrix. The size of a PCNF
formula ¢ = Q.¢ is defined as ||[| = }" -, |C|. If 7 is an assignment, then &[7]
denotes the PCNF formula Q’.¢[7], where Q' is the quantifier prefix obtained
from Q by deleting variables that do not occur in ¢[r]. True and false PCNF
formulas are defined in the usual way.
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Proof Systems. A proof of a formula F' is a finite object x which certifies falsity
of F in the sense that, if x is given, then falsity of F' can be verified in polynomial
time (proofs of falsity are also called refutations). A proof system TT is a set of
proofs such that (i) elements of TT can be recognized in polynomial time, and (ii)
a formula F' is false if and only if TT contains a proof of F'.

Let TT, TT" be proof systems. We say that TT' p-simulates TT if every proof
2 € TT can be transformed into a proof ' € TT' in polynomial time such that x
and 7’ prove the same formula. If TT and TT" p-simulate each other, then we say
that they are p-equivalent.

Q-Resolution. Q-resolution is a generalization of propositional resolution to
PCNF formulas [6]. Q-resolution is of practical interest due to its relation to
search-based QBF solvers that implement Quantified Conflict Driven Constraint
Learning (QCDCL) [7,21]: the traces of QCDCL solvers correspond to Q-reso-
lution proofs [9,10].

Q-resolution proof system consists of propositional resolution and the univer-
sal reduction rule for dealing with universally quantified variables. This system
(Figure 2) was shown to be sound and complete for false PCNF formulas [6].

C’1Ve "6\/02
C1V Cs

< (input clause) (resolution)

An input clause C' € ¢ can be used as an axiom. From two clauses C1 V e and —e V Cs,
where e is an existential variable, the resolution rule can derive the clause C; Vv Cy,
provided that it is non-tautological. Here, e is an existential variable called the pivot.

c
C\ {u, "}

The V-reduction rule derives the clause C from C V[ if var(l) is universal and there is
no existential variable e € var(C) with [ <g¢ e.

(V-reduction)

Fig. 2: Derivation rules of Q-resolution for a PCNF formula ¢ = Q.¢.

3 Dependency Schemes and Q(D)-Resolution

QCDCL generalizes the well-known DPLL procedure [8] from SAT to QSAT. In
essence, DPLL is a recursive algorithm that picks a variable of its input formula
and calls itself for both possible instantiations of that variable. Modern SAT
solvers derived from the DPLL algorithm, delegate the choice of which variable
to branch on to clever heuristics [16].

In QCDCL, the quantifier prefix imposes constraints on the order of variable
assignments: a variable may be assigned only if it occurs in the leftmost quantifier
block with unassigned variables. Often, this is more restrictive than necessary.
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For instance, variables from disjoint subformulas may be assigned in any order.
Intuitively, a variable can be assigned as long as it does not depend on any
unassigned variable. This is the intuition underlying a generalization of QCDCL
implemented in the solver DepQBF [13,14]. Dependency schemes are mappings
that associate every PCNF formula with a binary relation on its variables that
refines the order of variables in the quantifier prefix.3

Definition 1 (Dependency Scheme). A dependency scheme is a mapping
D that associates each PCNF formula @ with a relation Dg C { (z,y) : ¢ <¢ y }
called the dependency relation of @ with respect to D.

The mapping which simply returns the prefix ordering of an input formula can
be thought of as a baseline dependency scheme:

Definition 2 (Trivial Dependency Scheme). The trivial dependency scheme
D' associates each PCNF formula & with the relation D§Y = { (z,y) : 2 <¢ y }.

DepQBF uses a dependency relation to determine the order in which vari-
ables can be assigned: if y is a variable and there is no unassigned variable x
such that (z,y) is in the dependency relation, then y is considered ready for
assignment. DepQBF also uses the dependency relation to generalize the V-
reduction rule used in clause learning [14]. As a result of its use of dependency
schemes, DepQBF generates proofs in a generalization of Q-resolution called
Q(D)-resolution [18], a proof system that takes a dependency scheme D as a
parameter.

Dependency schemes can be partially ordered based on their dependency re-
lations: if the dependency relation computed by a dependency scheme D, is a
subset of the dependency relation computed by a dependency scheme Dy for
each PCNF formula, then Dy is more general than Dy. The more general a de-
pendency scheme, the more freedom a solver has in choosing decision variables.
Currently, (aside from the trivial dependency scheme) DepQBF supports (a re-
fined version [13, p.49] of) the standard dependency scheme [15]. We will work
with the more general reflezive resolution-path dependency scheme [18], a vari-
ant of the resolution-path dependency scheme [17,20]. This dependency scheme
computes an overapproximation of variable dependencies based on whether two
variables are connected by a (pair of) resolution path(s).

Definition 3 (Resolution Path). Let & = Q.¢ be a PCNF formula and let
X be a set of variables. A resolution path (from ¢ to fo;) via X (in @) is a

sequence {1, ..., {9 of literals satisfying the following properties:
1. For all i € [k], there is a C; € ¢ such that l9;_1, 02 € C;.

2. For all i € [k], var(lo;—1) # var(le;).

3. For all i € [k} — 1], Légi,€2¢+1} CXUX.

4. For all i € [k‘ — 1], lo; = f2i+1.

3 The original definition of dependency schemes [15] is more restrictive than the one

given here, but the additional requirements are irrelevant for the purposes of this
paper.
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If m = {¢q,...,0o is a resolution path in @ via X, then we say that ¢; and /o
are connected in ¢ (with respect to X). For every i € {1,...,k—1}, we say that
m goes through var(€a;).

One can think of a resolution path as a potential chain of implications: if each
clause C; contains exactly two literals, then assigning ¢; to 0 requires setting o
to 1. If, in addition, there is such a path from £, to fof, then £; and ¢5;, have
to be assigned opposite values. Accordingly, the resolution path dependency
scheme identifies variables connected by a pair of resolution paths as potentially
dependent on each other.

Definition 4 (Dependency Pair). Let & be a PCNF formula and x,y €
var(®). We say {z,y} is a resolution-path dependency pair of ¢ with respect to
X C vara(QP) if at least one of the following conditions holds:

— z and y, as well as =z and —y, are connected in @ with respect to X.
— x and —y, as well as —z and y, are connected in ¢ with respect to X.

Definition 5. The reflexive resolution-path dependency scheme is the mapping
D™ that assigns to each PCNF formula & = Q.¢ the relation D™ = {z <o
y : {x,y} is a resolution-path dependency pair in ¢ with respect to Rg(x) \
vary(P) }.

The derivation rules of Q(D)-resolution are shown in Figure 3. Here, as in the
rest of the paper, D denotes an arbitrary dependency scheme.

CiVe —eV Co
Ci1V Cs

Mol (input clause) (resolution)

An input clause C' € ¢ can be used as an axiom. From two clauses C1 V e and —e V Cy,
where e is an existential variable, the resolution rule can derive the clause Cy V Ca,
provided that C7 V C2 does not contain a universal variable in both polarities.

ﬁ (V-reduction)
The V-reduction rule derives the clause C'\ {u,-u} from C, where u € var(C) is a
universal variable such that (u,e) ¢ Dg for every existential variable e € var(C).

Fig. 3: Derivation rules of Q(D)-resolution for a PCNF formula ¢ = Q.¢.

A derivation in a proof system consists of repeated applications of the deriva-
tion rules to derive a clause from the clauses of an input formula. A sequence
S = Cy,...,Ck of clauses is a Q(D)-resolution derivation of Cj, from a PCNF
formula @ = Q.¢ if for each i € {1,... k} at least one of the following holds

1. C; € ¢ (C; is an axiom).
2. C can be derived from C7 and C5 by the resolution rule.
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3. C can be derived from C’ by V-reduction with respect to the dependency
scheme D.

The size |S| of a derivation S is the number k of clauses in the sequence. A
refutation is a derivation of the empty clause.

Proposition 1 (Slivovsky and Szeider [18]). Q(D™®)-resolution is a com-
plete proof system for false formulas; i.e., a PCNF formula is false if, and only
if, there exists a Q(D™)-resolution refutation of it.

Definition 6 (Equality formulas [3]). For every n € N, the n'" equality
formula is

EQ(n) := 31 ... xpVuy .. upn Tty .. Ly, /\ ((a:Z Vo Vi) A (EV@Ti\/E))/\\/ti.
i=1

=1

For every n € N, the formula EQ(n) is false, and any Q-resolution refutation of
EQ(n) has size exponential in n [3].

4 Homomorphisms

For a finite set L C lit of literals, a mapping p : L — lit is a renaming if
p(0) = p(f) for every pair ¢, € L of clashing literals in the domain of p. We
generalize renamings to clauses and formulas in the obvious way. For a clause C,
the image p(C) under renaming may be tautological. We define p.s(¢) as the
set of all non-tautological p(C) with C' € ¢. In the propositional case, the image
of a resolution derivation under a renaming contains a resolution derivation. For
QBFs, we have to take variable dependencies induced by the quantifier prefix into
account to make sure universal reduction steps are applicable in the image. We
define a notion of renaming that imposes additional restrictions to ensure that
the image of a Q(D)-resolution derivation is again a Q(D)-resolution derivation.

Definition 7. Let &1 = Q1.¢1 and &3 = 9Q5.¢2 be PCNF formulas and let D be
a dependency scheme for which Q(D)-resolution is sound. For any L C lit(®q),
a renaming p : L — lit(P2) is a D-renaming from @q to Po if it satisfies the
following conditions:

1. For every £ € L, qtypeg, (£) = qtypeg,(p({)).
2. If p(€) = p(¢') and qtypeg, (¢) =V, then £ = /'
3. If £,0' € L and (var(p(£)),var(p(f'))) € Dg, then (var(€),var(f')) € Dg,.

This definition satisfies several desiderata. First, in the absence of universal
variables, it boils down to a previously defined notion of homomorphisms of
propositional formulas in CNF. Second, it enables us to transfer Q(D)-resolution
derivations, as stated in the following lemma.
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Lemma 1. Let &1 = Q1.¢1 and $3 = Qs.¢2 be PCNF formulas and let D be a
dependency scheme for which Q(D)-resolution is sound. If Cy,...,Cy is a Q(D)-
resolution derivation from ¥ C ¢1 in @1 and p : lit(yp) = lit(P3) is a D-renaming
such that p(Cy) is non-tautological and pes(¢) C ¢2, then p(Ch), ..., p(Ck) con-
tains a Q(D)-resolution derivation of C;, C p(Cy) from clauses peis(¢) in Ps.

Proof. We proceed by induction on the length k of the derivation and distinguish
three cases. First, if Ci € ¢; is an initial clause and p(Cj) is non-tautological
then p(Ck) € ¢o by assumption. Second, if Cj is derived from clause C; with
1 < i < k by universal reduction, then Cy, = C; \ {{,} for a universal lit-
eral ¢, with var(¢,) = u, and (u,e) ¢ Dg, for every existential variable e
occurring in C;. We argue that p(C;) is non-tautological. Towards a contra-
diction assume that p(C;) is tautological. Since p(C}) is assumed to be non-
tautological the only way for p(C;) = p(Ci) U {p(£.)} to be tautological is that
p(Ly) € p(C;). Because p preserves quantifier types and C; is non-tautological,
there must be a universal literal ¢’ € C; with var(¢') # u such that p(¢') = p(£y,).
That means p(¢) = p(¢,) and thus ¢/ = ¢, by Property 2 and in particular
var(¢') = var(¢,) = u, a contradiction. Thus p(C;) is non-tautological and we
can apply the induction hypothesis to conclude that p(Cy), ..., p(C;) contains
a Q(D)-resolution derivation of C} C p(C;) from pes(¢0) in Po. By Property 1,
every existential literal in C} C p(C;) is the image of an existential literal in C;.
Property 3 ensures that (p(u),p(e)) ¢ Dg, for every existential variable p(e)
occurring in p(C;), so a clause C}, C p(Cy) can be obtained from C; C p(C;) by
universal reduction.

Finally, let Cj be derived by resolution on pivot variable e from C; and C}
with 1 <14 < j < k. Assume without loss of generality that e € C; and —e € Cj,
so that C; C C U {e} and C; C Cy U {—e}. If p(C;) and p(C;) are both non-
tautological we can apply the induction hypothesis to obtain Q(D)-resolution
derivations of clauses C} C p(C;) and C C p(C;) from @,. If the pivot variable
is contained in both clauses we obtain C}, C p(Cy) by resolution, otherwise we
choose as €} one among the clauses C; and C} that does not contain the pivot.
Otherwise, since p(Cy) is non-tautological, the clause p(C;) C p(Ck) U {p(e)}
can be tautological only if there is a literal ¢ € C; such that p(£) = p(—e).
Symmetrically, the clause p(C;) C p(Cy) U {p(—e)} can be tautological only
if there is a literal ¢ € C; such that p(¢') = p(e). It follows that at most
one of p(C;) and p(Cj) can be tautological. Assume without loss of generality
that p(C;) is tautological and let £ € C; such that p(¢) = p(—e). Then p(C;) C
p(Cx) U p(=e) = p(Cx) and there is a Q(D)-resolution derivation of C} C p(Ck)
from @, by induction hypothesis. ad

This result states that if we apply a D-renaming to each clause in a Q(D)-
resolution derivation, a subsequence of the resulting sequence of clauses is a
Q(D)-resolution derivation of a clause subsuming the image of the final clause
in the original derivation. In particular, the length of the derivation can only
decrease.

If any of the conditions of Definition 7 is dropped, then Lemma 1 no longer
holds, in the sense that we might obtain derivations that are not syntactically
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correct. Mapping existential to universal literals may introduce tautologies that
are removed by universal reduction, which is unsound in general and forbidden
in Q(D)-resolution. The same problem can occur if universal literals are not
mapped in an injective way. If universal literals can be mapped to existential
literals, or independence according to the dependency scheme D is not preserved,
universal reduction may not be applicable in the image.

A D-renaming p from @ to itself is a D-homomorphism from clause set ¢ to
clause set 1) with respect to @ if p(¢) C 1. The set of all D-homomorphisms
from ¢ to 9 with respect to @ is denoted Homg(qﬁ, ¥). D-homomorphisms gener-
alize symmetries of PCNF formulas, which are renamings that may only change
the order of variables within quantifier blocks [11]: any such mapping is bijective
and preserves the type of a variable, as well as dependencies indicated by the
trivial dependency scheme.

5 The Homomorphism Rule

Let & = Q.¢ be PCNF formula and let D be a tractable dependency scheme
for which Q(D)-resolution is sound. Consider a Q(D)-resolution derivation of a
clause C' from clauses ) C ¢ in @. If there is a homomorphism ¢ € Homg(w, ?)
then the local homomorphism rule can derive the clause ¢(C). We call the re-
stricted form of this rule, which can only be applied if ¥ = ¢ the global homo-
morphism rule. The proof systems GH(D) and LH(D) arise from Q(D)-resolution
by addition of the global and local homomorphism rule, respectively.

We present an example to illustrate the local homomorphism rule. Con-
sider the PCNF formula ¢ = Q.¢ where QO = Vab3dzVedyzw and ¢ =
{C1,Cs,C5,Cy,Cs} with Cy = {—a,—wy,2},C = {c,y,w},C3 = {¢,~2},Cy =
{b,—x},Cs = {—a,z}. We use trivial dependency scheme D%V for this illustra-
tion. Consider the following Q(D)-resolution derivation S from the formula @:

C axiom;

Cs axiom;

{—a,c,w, z} resolution from C; and Co;

Cs axiom;

{—a,c,w} resolution from {—a,c,w,z} and Cs.

Using the above resolution derivation S, we derive the clause {—a, ¢, w} from ®.
We define a non-injective mapping p over the subset of variables of @ as follows;
pla) = a, p(c) = b, py) = p(w) = —x and p(z) = z. By the definition of
renaming the complement of the literal takes the negation of the value defined
by p, for example, p(—z) = —z. Note that the renaming jumps between the
quantifier blocks by allowing the mapping of literals from one quantifier block
to another. Let ¢ = {C,C2,C3} C ¢, the image of ¢ under the renaming p is
p() = {C4,C5} C ¢. All the three restrictions of Definition 7 are satisfied, hence
the renaming p € Homg (1, ¢). Thus, by using the local homomorphism rule, we
can obtain the clause p({—a,c,w}) = {—a,b, —x} and add it to the matrix ¢.
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Proposition 2. The systems GH(D) and LH(D) are sound for any dependency
scheme D such that Q(D)-resolution is sound. That is, a PCNF formula that
has a refutation in GH(D) or LH(D) is false.

Proof. Let & = Q.¢ be a PCNF formula and let S = C1,...,Cy be an LH(D)-
refutation of @. If S does not use the local homomorphism rule, then @ is false
by the soundness of Q(D)-resolution. Otherwise, let C; be derived from C; by
application of the local homomorphism rule, where 1 < ¢ < j < k. That is,
there is a subset of clauses ¥ C ¢ such that C; can be derived from v in @
and ¢ € HomZ (1, ¢) is a homomorphism with ¢(C;) = C;. By Lemma 1, the
sequence ¢(C1),...,¢(C;) contains a Q(D)-resolution derivation of C} C ¢(C;)
from clauses ¢(¢) C ¢ in . We can replace C; with the corresponding derivation
and (possibly) simplify the proof to obtain an LH(D)-refutation of ¢ with one
less application of the local homomorphism rule. In this way, we can get rid of all
uses of the local homomorphism rule one by one and obtain a Q(D)-resolution
refutation of &. O

6 Lifting Lower Bounds from Q(D"™)-Resolution to
LH(DI‘rS)

Let D be an arbitrary but fixed tractable and sound dependency scheme. Let
@ = Q.¢ be a PCNF formula with a 3CNF matrix such that each clause contains
at least two literals and cannot be simplified by universal reduction. Moreover,
we assume that each clause contains at most one universal literal. Observe that
any formula not solved by unit propagation can be transformed into this format
by applying unit propagation and splitting clauses.

From & we construct a formula ¢° = Q°.¢° as follows. Let £1,...,¢, be the
sequence of literals appearing in ¢. For each existential literal £; we introduce
new existential variables y;1,...,¥; +9 and z; at the same quantifier depth and
create a chain of binary clauses

Ly =~y vieh {-vi2 vish - A48 Uigro b {Yj 40, G} }-

We add the variable z; to all clauses of L;. except the fourth and (j+7)th one
to obtain a formula L;, called the link of £;. The clause widths of a link yield a
sequence

33323...3233
N——
7 + 1 times

that uniquely identifies an existential literal ¢;.
Next, we replace each existential literal of @ by the first literal in its link.
More specifically, if E; = {¢;,£;41,{;j+2} is a clause of ¢, we let

E? :={yk1 : L is existential, j <k <j+2 yU{l € E;:{is universal }.

We combine the above definitions to obtain the formula
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S
¢° = (B}, ... Ep y U [ J (L U {2}
j=1

We refer to clauses EY as main clauses, clauses in L; as link clauses, and to unit
clauses {z;} as auziliary clauses.

Since link clauses only contain existential variables, homomorphisms from L;
into ¢° coincide with homomorphisms of propositional formulas defined by Szei-
der [19], and so the following result carries over to our setting.

Lemma 2 (Szeider [19]). HomZ.(L;, ¢°) = {idp,;} for any 1 <j <.

The formulas @ and ®° have the same dependencies according to the
resolution-path dependency scheme.

Lemma 3. For every existential literal {; € lit(P) and y;; with 1 <i < j+9,
we have D™ g0 (£;) = D™ g0 (y,.5) = D™ 5 (£;), as well as D™ g0 (z;) = 0.

Proof. There is a natural correspondence between resolution paths of @ and &°.
Each resolution path in @ can be extended to a resolution path in ¢° by using
links. Formally, if £;,,¢;,,...,¢;,, is a resolution path of ¢ we obtain a resolution

path of &' by replacing each literal ¢;,, , for 1 < ¢ < k by the sequence

£j21ﬁ—1 » Wizio1,d2i—1+93 Ydzi—1.d2i—1+9s - -+ Yjai—1,2s "Yjai1,15 Yjni 1

of literals from L’ = in reverse order, and each adjacent literal £;,, for 1 <i <k
by the sequence

Yijzi,1s Yj2i,15 Ygai,25 -+ Yjoi,gai+9s Yiai,jai+95 Lo

of literals from L;»% in order. Conversely, any resolution path of @° with original
literals of @ as endpoints can be transformed into a resolution path of & by
removing sequences of link literals. Since link variables y;; are introduced at
the same quantifier depth as var(¢;) and vary(®) = vary(P°), it follows that
D"™g0(¢;) = D™ g(¢;). Further, a dependency-inducing resolution path of @°
from a universal variable u to its negation —u goes through a literal ¢; if, and
only if, it goes through all the link variables y;;, s0 D™®g0 (¢;) = D™ g0 (y; ;) for
1 <7 < j+ 9. Finally, the variables z; occur negatively exclusively in the unit
clauses (—z;), so0 D™ g (z;) = 0. 0

For a QBF proof system TT and a false formula @, let PSizer;(®) denote the size
of a shortest TT-refutation of @.

Corollary 1. PSizeqpr=).res(P°) < PSizeq(prr=)-res(P) + O(||D]?).

Proof. The original matrix ¢ can be obtained from ¢° by resolving each exis-
tential literal ¢; in a main clause E; with the link clauses in L; and the aux-
iliary clause {—z}. This requires O(j) steps for each literal ¢; with 1 < j <'s,
and s € O(]|?||). Let S denote the corresponding Q(D"™*)-resolution derivation.
As resolution-path dependencies are preserved by Lemma 3, a Q(D™*)-resolution
refutation S’ of @ can be appended to S so as to obtain a Q(D™®)-resolution
refutation of @°. O
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We want to show that any LH(D™)-refutation of the “rigid” version &° of
a PCNF formula @ can be mapped back to a Q(D"™)-resolution refutation of
the original formula @. To do this, we introduce a new existential variable z and
define a renaming p : lit(9°) — lit(P) U {z} as follows:

p(u) = u, for each universal variable u;
p(Ys.i) =L, for 1<j<s,1<i<j+09;
p(t;) ==, for 1 <j<s;
P(Zj) =z, for 1< j<s.

With this renaming, every link clause becomes tautological, every auxiliary
clause {—z;} becomes p({—z;}) = {2}, and main clauses EY are mapped back
to original clauses p(E7) = E;. Hence pqs(¢°) as defined in Section 4 is nothing
but ¢ U {{—z}}, and —z is a pure literal of pqs(¢°).

Lemma 4. The mapping p : lit(®°) — lit(P) U {z} is a D™ -renaming from &°
to @, =32Q.90 U {{—-z}}.

Proof. By construction, the mapping preserves quantifier types and is injective
with respect to universal variables. Moreover, the new variable z and clause {—z}
do not affect resolution-path dependencies in ¢, and z has no dependencies itself,
s0 D™ g0 (v) = D™¢_(p(v)) holds for every variable v € var(®°) by Lemma 3.

O

The following result establishes that “interesting” LH(D)-derivations using
at least two main clauses from &° cannot use the homomorphism rule in a non-
trivial way.

Lemma 5. Let S = C1,...,Ck be a Q(D)-resolution derivation from ¢’ C ¢°
in @° such that no subsequence of S is a Q(D)-resolution derivation of Cy, in ®.
If S contains at least two main clauses as input clauses then p(Cy) = p(¢(Ck))
for any homomorphism o € Homb. (¢', ¢°).

A formal proof of Lemma 5 is rather tedious and has to be omitted due to space
constraints, but the underlying intuition is fairly simple. Since main clauses are
only connected through links, two main clauses can take part in a resolution
proof only if the two links corresponding to the pivot literal are present, which
by Lemma 2 leaves the identity as the only homomorphism that can be applied
to the main clauses or the clauses in the links. Having identified such a “rigid”
part of a proof, one can then show that any other clause C' that participates
in the proof has the same image under p as its homomorphic image ¢(C), in
symbols p(C) = p(¢(C)).

The next result states that LH(D)-derivations that use at most one single
main clause cannot be too long.

Lemma 6. For any Q(D)-resolution derivation S of a clause C in ®° with
at most one main clause among its input clauses, there is a Q(D)-resolution
derivation S of C' C C in ®° of length O(|®°|3).
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Proof. Let S = C4,...,Ck be a Q(D)-resolution derivation of C' = Cf in &°
that contains at most one main clause among its input clauses. Any remaining
input clauses are auxiliary or link clauses. We construct the derivation S’ by first
resolving each link clause containing a literal z; with the auxiliary clause {-z;}.
This requires at most |®°] resolution steps. We then proceed as in S while (pos-
sibly) omitting resolution steps on variables z;. The length of S’ can be crudely
bounded as follows. After resolving out z; we are left with binary link clauses L}
and a single main clause of size at most three. Any Q(D)-resolution derivation
starting from these clauses can derive clauses of size at most three, and there
are O(|®°|?) such clauses. O

Lemma 7. PSizeq(prs).res(?) < PSize y(pre=)(9°) - O(|°]3).

Proof. Let C1,...,Ck be an LH(D™®)-refutation of #°. By Lemma 4, the map-
ping p is a D™-renaming from @° to @, so if no clause of C1,...,Cy is de-
rived by the local homomorphism rule, we can apply Lemma 1 and conclude
that p(C1),...,p(Ck) is a Q(D™*®)-resolution refutation of ¢. Otherwise, we are
going to turn p(Ch),...,p(Ck) into a Q(D'®)-resolution refutation of @ that
is not too much larger. Suppose clause C; is derived from C; using the local
homomorphism rule for some 1 < ¢ < j < k. That is, Cy,...,C; contains
a Q(D™®)-resolution derivation S of C; from clause set ¢’ C ¢° in @°, and
there is a homomorphism ¢ € HomZ (¢',¢°) such that ¢(C;) = Cj. If the
derivation of C; involves at most one main clause then its size is in O(|®°|®)
by Lemma 6. By Lemma 1, the sequence ¢(C1),...,¢(C;) contains a Q(D**®)-
resolution derivation of the clause ¢(C;) = C;. We simply replace p(C;) by
the image p(¢(Ch)),...,p(p(C;)) of this entire derivation, increasing the proof
size by O(|®°|). Otherwise, the derivation S uses at least two main clauses. In
this case, Lemma 5 tells us that p(C;) = p(¢(C;)) = p(C;), so we can simply
use p(C;) instead of p(C;). In this manner, we obtain a Q(D"*®)-resolution refu-
tation of @, of size k - O(|®°|®). Since —z is pure in &, the refutation cannot
contain the clause {—z}, and is in fact a Q(D'*®)-resolution refutation of the
original formula &. a

7 Separating LH(D™) from LH

In this section, we will use Corollary 1 and Lemma 7 to lift known separations
of Q-resolution systems without the homomorphism rule to systems with the ho-
momorphism rule. First, we show that our assumption from the previous section
that the formula @ has a matrix in 3CNF does not affect certain semantic lower
bound techniques. More specifically, we show that long clauses occurring in the
equality formulas can be split without affecting the cost of these formulas [3].

Definition 8 (Universal Winning Strategy). For any set V of variables,
let [V] denote the set of assignments of V. Let & = VU 3FE; ... VU,3E,.¢ be a
false QBF. A universal strategy for @ is a sequence S = (.5;)1<i<pn of functions S; :
[E1U---UFE;_1] — [U;]- The response of S to an existential assignment 7 :
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vars(®) — {0, 1} is the assignment S(7) = J;—, Si(7|g,u--UE,_, ). The universal
strategy S is a universal winning strategy if the assignment U .S(7) satisfies the
matrix ¢ for every existential assignment 7 : varg(®) — {0, 1}.

Definition 9 (Cost). Let & = VU13E; ... VU,3E,.¢ be a false QBF and let
S = (Si)1<i<n be a universal winning strategy for @. The cost of S is defined
as cost(S) = max{|rng(S;)| : 1 < i < n}, where rng(f) denotes the range of
function f. The cost of the QBF @ is the minimum cost of any universal winning
strategy for @.

The cost of a false QBF @ is a lower bound on the size of any Q-resolution
refutation of ®.

Theorem 1 (Beyersdorff, Blinkhorn, and Hinde [3]). Let C1,...,Cy be a
Q-resolution refutation of a QBF ®. Then k > cost(P).

Lemma 8. Let & = Q.9 U{C} be a PCNF formula with clause C = Cy U Cy
and let y be a fresh variable. Further, let &' = Q3Jy.¢ U {Cy U {y},Co U {-y}}
be the formula obtained from @ by splitting C. Then & and &' have the same
universal winning strategies.

Corollary 2. If®* is obtained from @ by splitting clauses, then ®* and @ have
the same cost.

Proposition 3 (Beyersdorff, Blinkhorn, and Hinde [3]). For each n € N,
EQ(n) has cost 2™.

This implies an exponential proof size lower bound by Theorem 1. At the same
time, it is known that these formulas have short Q(D™*)-resolution refutations.

Theorem 2 (Blinkhorn and Beyersdorff [2]). For each n € N, EQ(n) has
a Q(D's)-resolution refutation of size O(n).

We are now ready to prove an exponential separation of LH(D"™®) from LH(D"").

Theorem 3. There is an infinite sequence (P )nen of false formulas such that
the shortest LH(D™®)-refutation of ®,, is polynomial in n but any LH(D™)-
refutation of ®,, has length 292

Proof. For each n € N, let EQ"(n) denote a QBF obtained from EQ(n) by
splitting clauses until each clause contains at most three literals in total and at
most one universal literal. By Proposition 3 and Corollary 2, EQ*(n) has cost 2™
and thus requires Q-resolution refutations of size at least 2™ by Theorem 1. At
the same time, since the original formula can be obtained by resolving on ex-
istential variables introduced by splitting, and splitting does not introduce new
resolution-path dependencies among the original variables, Theorem 2 implies
that EQ*(n) has a linear-size Q(D™®)-resolution refutation. Now, consider the
“rigid” versions EQ°(n) of EQ*(n). Clearly, the size of EQ°(n) is polynomi-
ally bounded in the size of EQ(n). By Theorem 2 and Corollary 1, the formu-
las EQ°(n) have polynomial-size Q(D'*®)-resolution refutations, and thus also
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polynomial-size LH(D"*)-refutations. On the other hand, Lemma 7 tells us that
any LH(D™)-refutation of EQ°(n) can be shorter than a Q-resolution refutation
of EQ*(n) by at most a polynomial factor. O

Since the short LH(D™®)-refutations in the above theorem do not use the local
homomorphism rule, analogous separations hold for weaker systems.

Corollary 3. There is an infinite sequence (Pn)nen of false formulas such
that the shortest TI(D™®)-refutation of ®,, is polynomial in n but any TTI(D™Y)-
refutation of @, has length 22 for TT € {GH, LS, GS}.

8 Concluding Remarks

We have lifted the local and the global homomorphism rule from propositional
resolution to the quantified case, introducing several generalizations, including
the use of dependency schemes. Although we have established an exponential
lower bound for the most general system LH without a dependency scheme, we
left open to prove an exponential lower bound for LH(D™®).

The systems introduced here are incomparable with the proof systems
LQU+ [1] and IR-calc [4]. Since they are stronger than GS, there are classes
of formulas that are easy for our systems and hard for LQU+ and IR-calc [11].
For the converse, we can apply our construction to the QPARITY [4] formulas
and make them rigid, so that they are hard for LH. Both LQU+ and IR-calc can
derive the original formula and then proceed with short refutations of QPARITY.

There are several possibilities for further strengthening LH(D™®). One possi-
bility is to consider a suitably defined dynamic homomorphism rule [19] which
considers homomorphisms between sets of derived clauses. Neither of the lower
bounds established in this paper applies to proof systems that use such a dy-
namic rule: all the modifications made to the input formula to achieve rigidity
can be undone by a polynomial number of resolution steps so that after these
steps symmetries and homomorphisms can be exploited to get short proofs.

Another possibility, somewhat related to the dynamic systems discussed
above, is based on the idea of symmetry recomputation, as considered by
Blinkhorn and Beyersdorff [5], which exploits symmetries of the input formula
after the application of a partial assignment. We think that this idea can be
combined with our homomorphism systems.

All these ideas for even stronger proof systems for QBF give rise to challeng-
ing theoretical questions that include separation results, as well as lower and
upper bounds. Another interesting line of research is concerned with the possi-
bility of utilizing the strength of the various homomorphism rules considered in
this paper within a QBF solver.
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