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Abstract

Motivation: The constrained longest common subsequence (CLCS) problem was introduced as a specific
measure of similarity between molecules. It is a special case of the constrained sequence alignment
problem and of the longest common subsequence (LCS) problem, which are both well-studied problems
in the scientific literature. Finding similarities between sequences plays an important role in the fields of
molecular biology, gene recognition, pattern matching, text analysis, and voice recognition, among others.
The CLCS problem in particular represents an interesting measure of similarity for molecules that have a
putative structure in common.
Results: We propose an exact A∗ search algorithm for effectively solving the CLCS problem. This
A∗ search is guided by a tight upper bound calculation for the cost-to-go for the LCS problem. Our
computational study shows that on various artificial and real benchmark sets this algorithm scales better
with growing instance size and requires significantly less computation time to prove optimality than earlier
state-of-the-art approaches from the literature.
Availability: The source code of the project is accessible at https://www.ac.tuwien.ac.at/files/
resources/software/clcs.zip, and the benchmark instances are available at https://www.ac.
tuwien.ac.at/files/resources/instances/clcs/2d-clcs.zip

Contact: djukanovic@ac.tuwien.ac.at

1 Introduction
Strings are objects commonly used for representing DNA and RNA
molecules. Finding similarities between molecular structures plays an
important role for understanding biological processes that relate to these
molecular structures. A frequently applied measure of similarity is given
by considering the (length of) subsequences common to all given input
strings. Hereby, a subsequence of a string s is any sequence obtained by
deleting zero or more characters from s. The well-known longest common
subsequence (LCS) problem [26] has been studied for more than fifty years
in the literature: Given a set of at least two input strings, we seek for a
longest string that is a subsequence of all these input strings. This LCS
problem has numerous applications, not only in molecular biology [22],
but also in data compression [28], pattern recognition, file plagiarism
checking, text editing, and voice recognition [24], to name some of the
most prominent ones. Furthermore, the LCS problem is a special case
of the also prominent sequence alignment problem. Aligning multiple

sequences finds application in many tasks such as studying gene regulation
or inferring the evolutionary relationships of genes or proteins [6].

A literature review shows that there are several well-studied variants
of the LCS problem. Examples include the the repetition-free longest
common subsequence (RFLCS) problem [1], the longest arc-preserving
common subsequence (LAPCS) problem [23], and the the longest common
palindromic subsequence (LCPS) problem [10]. These variants provide
sequence similarity measures depending on the structural properties of
the compared molecules. In this paper we study the constrained longest
common subsequence (CLCS) problem [29, 2], which is defined as follows.
We are given two input strings s1 and s2 and a so-called pattern string P .
The goal of is to find the longest common subsequence of the two input
strings that includes P as a subsequence. A possible application scenario
of the CLCS problem concerns the identification of homology between
two biological sequences which have a specific or putative structure in
common [29]. A more concrete example is described in [9]. It deals with
the comparison of seven RNase sequences so that the three active-site
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2 Djukanovic et al.

residues, HKH, form part of the solution1. This pattern is responsible,
in essence, for the main functionality of the RNase molecules such as
catalyzing the degradation of RNA sequences.

1.1 Preliminaries

Before we start outlining our approach, let us introduce essential notation.
By |s| we denote the length of a string s over a finite alphabet Σ, and by
n we denote the length of the longer one among the two input strings s1

and s2, i.e., max(|s1|, |s2|). The j-th letter of a string s is denoted by
s[j], j = 1, . . . , |s|, and for j > |s| we define s[j] = ε, where ε denotes
the empty string. Moreover, we denote the contiguous subsequence—that
is, the substring—of s starting at position j and ending at position j′ by
s[j, j′], 1 ≤ j ≤ j′ ≤ |s|. If j > j′, then s[j, j′] = ε. Finally, let |s|a
be the number of occurrences of letter a ∈ Σ in s.

2 Related Work
The CLCS problem with two input strings s1 and s2 and a pattern string
P was formally introduced by Tsai [29]. A first solution approach based
on dynamic programming (DP), which runs in time O(|s1|2 · |s2|2 · |P |),
was also presented in this work. Due to its large time complexity, this
algorithm has no real practical relevance. Since then, several more efficient
algorithms were proposed. The most relevant ones are explained in more
detail in Section 5. Chin et al. [8] proved that the CLCS problem is a
special case of the constrained multiple sequence alignment (CMSA)
problem. Moreover, they developed an alternative DP–based approach
that requires O(|s1| · |s2| · |P |) space and time. In fact, this algorithm
can be regarded as the first practical algorithm for the CLCS problem.
By modifying the recursion of Tsai [29], Arslan and Eğecioğlu [2] also
obtained a more efficient algorithm requiring O(|s1| · |s2| · |P |) time.
The approach of Chin et al. [8] further inspired the development of
an algorithm suggested by Deorowicz [11] with a time complexity of
O(|P | · (|s1| · L + R) + |s2|), where L is the length of the LCS
of the two strings and R is the number of pairs of matching positions
between s1 and s2. Ideas by Hunt and Szymanski [20] were used to
achieve this complexity. Some improvements of the performance of
Deorowicz’s algorithm were introduced in a follow-up paper by Deorowicz
and Obstoj [12] by utilizing so-called external-entry points (EEP) which
were initially proposed in the context of the CMSA problem. Another
approach was proposed by Iliopoulos and Rahman [21]. This algorithm
has a time complexity of O(|P | · R · log logn + n). It makes use of
a specialized bounded heap data structure. Ho et al. [18] proposed a
method exploiting the idea that most corresponding CLCS lattice cells
in a DP approach remain unchanged in two consecutive layers when |Σ| is
small. This algorithm avoids corresponding redundant computations. To
the best of our knowledge, the latest algorithm developed for the CLCS
problem was proposed by Hung et al. [19]. It is based on the diagonal
approach for the LCS problem by Nakatsu et al. [27]. The method requires
O(|P | ·L · (n−L)) time and O(|s1| · |P |) space, where L is the length
of a CLCS. From the existing literature, the following conclusions can be
drawn.

• The algorithm by Chin et al. [8] is effective for rather short input strings
or when |Σ| is small.

• The algorithm by Deorowicz [12] can be seen as the state-of the-art
algorithm for instances with large alphabet sizes.

• The algorithm by Hung et al. [19] was shown to be one order of
magnitude faster than the algorithm of Deorowicz. Speed differences

1 National Center of Biotechnology Information database, at
http://www.ncbi.nlm.nih.gov.

are especially noticeable in the presence of a rather high similarity of
the input strings (> 70%) or a rather low similarity (< 20%).

Moreover, we can identify the following weaknesses in the computational
studies of the approaches from the literature.

• Most of the benchmark instances used in [19, 12] seem rather easy to
solve. In fact, most of the compared algorithms were able to do so in
a fraction of a second. This makes it difficult to make well-founded
claims about the running times. Moreover, we remark that, apart from
the real benchmark instances, all other benchmark instances from the
literature are not publicly available.

• The comparison of the two state-of-the-art algorithms from Hung et
al. and Deorowicz and Obstoj) in [19] was limited to instances with
a large fixed alphabet size |Σ| = 256. Although it was shown that
the algorithm of Hung et al. is an order of magnitude faster than the
algorithm from [12] on these instances, the observed differences in
running times may not be significant as they are mostly below 0.1
seconds.

2.1 Our Contribution

Our contribution is twofold. First, we present a novel A∗ search approach
for the CLCS problem. This algorithm works on a so-called state graph,
which is a directed acyclic graph whose nodes represent (partial) solutions.
Second, we re-implemented the leading algorithms from the literature
and compare our A∗ search with these on a wide and diverse set of
benchmark instances which is made publicly available. By means of this
comprehensive comparison we are able to make, for the first time, well-
founded claims about the practical performance of the considered methods
and their individual pros and cons. The obtained results in particular
indicate the practical efficiency of our A∗ algorithm. Running times of
the A∗ search are in most cases significantly lower than those of the
competitors.

The remainder of this article is organized as follows. In Section 3,
we first present the state graph that will serve as the environment for
our A∗ search. Section 4 presents the A∗ search algorithm, while further
details about the re-implemented competitors from the literature are given
in Section 5. The experimental comparison of the A∗ search to other
state-of-the-art methods is detailed in Section 6. Finally, Section 7 offers
conclusions and directions for future work.

3 The State Graph
In the following we introduce the state graph, whose inner nodes are
(meaningful) partial solutions, sink nodes are complete solutions, and
directed arcs represent (meaningful) extensions of partial solutions. Note
that this state graph has similarities to the one that we already presented
for the general LCS problem in [13, 14].

Henceforth, let S = (s1, s2, P,Σ) be the considered problem
instance. Let s be a string over Σ that is a subsequence of both input
strings s1 and s2. Moreover, for i = 1, 2, let psi be the position
in si such that si[1, p

s
i − 1] is the minimal string among all strings

si[1, x], x = 1, . . . , |si|, that contains s as a subsequence. We call
ps = (ps1, p

s
2) the position vector induced by s. Note that, in this way, s

induces a CLCS subproblemS[ps] that consists of strings s1[ps1, |s1|] and
s2[ps2, |s2|]. This is because s can only be extended by potentially adding
letters that appear both in s1[ps1, |s1|] and s2[ps2, |s2|]. In this context,
let substring P [1, k′] of pattern string P be the maximal string among all
strings P [1, x], x = 1, . . . , |P |, such that P [1, k′] is a subsequence of
s. We then say that s is a valid (partial) solution iff P [k′ + 1, |P |] is a
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Fig. 1. Example showing the full state graph for the problem instance ({s1 =

bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ = {a, b, c, d}). There are four
sink nodes representing non-extensible solutions (marked by light-gray color). The optimal
solution is s = bcacbb of length 6 that corresponds to the node v = (pv =

(9, 10), lv = 6, uv = 3). The longest path that corresponds to the optimal solution
is displayed by means of thick arrows.

subsequence of the strings in subproblem S[ps], that is, a subsequence of
s1[ps1, |s1|] and s2[ps2, |s2|].

The state graph G = (V,A) for our A∗ algorithm is a directed
acyclic graph, which—at any moment—is only known partially by our
A∗ approach. Each node v ∈ V (G) stores a triple (pv , lv , uv),
where pv is a position vector that induces subproblem S[pv ] =

(s1[pv1 , |s1|], s2[pv2 , |s2|], P [uv + 1, |P |],Σ), where lv is the length of
the currently best known valid partial solution that induces pv , and uv is
the length of the longest prefix string of pattern string P that is contained
as a subsequence in the best known partial solution that induces node v.
Moreover, there is an arc a = (v, v′) ∈ A(G) with label l(a) ∈ Σ

between two nodes v = (pv , lv , uv) and v′ = (pv′
, lv

′
, uv′

) iff

• lv = lv
′

+ 1 and
• Subproblem S[pv′

] is induced by the partial solution that is obtained
by appending letter l(a) to the partial solution that induces v.

As remarked already above, we are only interested in meaningful partial
solutions, and our A∗ search builds the state graph on the fly. In particular,
for extending a node v, the outgoing arcs—that is, the letters that may
be used to extend partial solutions that induce node v—are determined
as follows. First of all, these letters must appear in both strings from
S[pv ]; we call this subset of the alphabet potential letters. In order to

find the position of the first (left-most) appearance of each potential letter
in the strings from S[pv ] we make use of a successor data structure
determined during preprocessing that allows to retrieve each position in
constant time. Let this position of the first appearance of a potential letter
c in string si[p

v
i , |si| be Succ[i, pvi , c], i = 1, 2. Moreover, a potential

letter should not be taken for extending v in case it is dominated by
another potential letter: We say that a letter c is dominated by a letter
c′ 6= c iff Succ[i, pvi , c] ≥ Succ[i, pvi , c

′], i = 1, 2. Note that a
dominated letter cannot lead to a better solution than when taking the
letter by which it is dominated instead. Henceforth, we denote the set
of non-dominated potential letters for extending a node v by Σnd

v ⊆ Σ.
However, in order to generate only extensions of node v that correspond
to feasible partial solutions, we additionally have to filter out those
extensions that lead to subproblems whose strings do not contain the
remaining part of P as a subsequence. These cases are encountered by
introducing another data structure that is set up during preprocessing:
Embed [i, u] stores for each si, i = 1, 2, and for each u = 1, . . . , |P |
the right-most position x of si such that P [u, |P |] is a subsequence of
si[x, |si|]. Thus, for each letter c ∈ Σnd

v , if c 6= P [uv + 1] and
Succ[i, pvi , c] > Embed [i, uv + 1], letter c cannot be used for extending
a partial solution represented by v, and consequently it is removed from
Σnd

v . An extension v′ = (pv′
, lv

′
, uv′

) is generated for each remaining
letter c ∈ Σnd

v , where pv
′

i = Succ[i, pvi , c]+1 for i = 1, 2, lv
′

= lv +1

and uv′
= uv + 1 in case c = P [uv + 1], respectively uv′

= uv

otherwise.
The root node of the state graph is defined by r = (pr = (1, 1), lr =

0, ur = 0). Sink nodes are all non-extensible nodes and represent
complete solutions (in contrast to partial solutions). Consequently, a
longest path from the root node to a sink node in the state graph represents
an optimal solution to the CLCS problem. Finally, notice that the definition
of the state graph does not depend on the number of input strings, and can
therefore be straightforwardly extended to an arbitrary number of input
strings. An example of the full state graph for problem instance ({s1 =

bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ = {a,b,c,d})
is shown in Fig. 1. The root node, for example, can only be extended
by letters b and c, because letters a and d are dominated by the other
two letters. Furthermore, note that node ((6, 5), 3, 1) (induced by partial
solution bcc) can only be extended by letter b. Even though letter d is not
dominated by letter b, adding letter d can only lead to infeasible solutions,
because any possible solution starting with bccd will not have P = cbb

as a subsequence. Finally, the sequence of arc labels on the longest path is
bcacbb, which is therefore the (unique) optimal solution to this example
problem instance.

3.1 Upper Bounds for the CLCS Problem

One of the essential ingredients of an A∗ search is an admissible heuristic
function for estimating the cost-to-go, i.e., in our case the length of a CLCS
for any subproblem represented by a node of our state graph. In the context
of a maximization problem such as the CLCS problem, a heuristic function
is said to be admissible if it never underestimates the length of an optimal
solution. We therefore make use here of a tight upper bound function that
was originally developed for the LCS problem [13]. Note, in this context,
that any valid upper bound for an LCS problem instance is also an upper
bound for a corresponding CLCS problem instance obtained by adding a
pattern string P to the LCS problem instance.

Given a node v of the state graph, the LCS upper bound function
proposed by Blum et al. [3] determines for each letter an upper limit on
the number of its occurrences in any solution that contains the partial
solution inducing v as prefix string. Summing these values over all letters
from Σ, we obtain a valid upper bound on any complete solution that can
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4 Djukanovic et al.

be constructed starting from v:

UB1(v) =
∑

a∈Σ

min
(∣∣∣s1[pv1 , |s1|]

∣∣∣
a
,
∣∣∣s2[pv2 , |s2|]

∣∣∣
a

)
(1)

This bound is efficiently calculated in O(|Σ|) time by making use of some
data structures as detailed in [14].

An alternative DP–based upper bound function was introduced by
Wang et al. [30]. It makes use of the DP recursion for the LCS problem with
two input strings. A scoring matrix M is generated where entry M [x, y],
x = 1, . . . , |s1|+ 1, y = 1, . . . , |s2|+ 1 stores the length of the LCS of
s1[x, |s1|] and s2[y, |s2|]. Thus, an upper bound for a given state graph
node v is given by

UB2(v) = M [pv1 , p
v
2 ]. (2)

Neglecting the preprocessing step for generating M , this bound can
be efficiently retrieved in constant time. As neither of the two bounds
dominate the other, we use here the combination of both given by
UB(v) := min{UB1(v),UB2(v)}.

4 A∗ Algorithm for the CLCS Problem
A∗ is a so-called informed search algorithm that was originally developed
by Hart et al. [16] to find shortest paths in weighted graphs. The search
maintains a list of open nodes, which is initialized with the root node,
and works in a best-first-search manner by expanding in each iteration a
most promising open node. In order to rank open nodes, A∗ search makes
use of a priority function f(v) = g(v) + h(v), for v ∈ V (G), where,
g(v) denotes the length of a so far best path from the root node to v,
and h(v) is the heuristic estimate for the cost-to-go, i.e., the length of an
optimal further path from v to a goal node. As the state graph in the case
of the CLCS problem was already outlined in Section 3, it remains to be
mentioned that for h(v) we will use the upper bound UB(v) from the
previous section, and g(v) := lv .

In order for the search process to be efficient, our implementation
maintains two data structures: (1) a hash-mapN storing all nodes that were
encountered during the search, and (2) the open list Q ⊆ N containing all
not yet expanded/treated nodes. More specifically, N is implemented as a
nested data structure of sorted lists within a hash map. The position vector
pv of a node v = (pv , lv , uv) is mapped to a (linked) list storing pairs (lv ,
uv). This structure allows for an efficient membership check, i.e., whether
or not a node that represents subproblem a S[pv ] was already encountered
during the search, and a quick retrieval of the respective nodes.

Note that it might occur that several nodes representing the same
subproblem S[pv ] are stored, as the following example demonstrates:
Consider the problem instance with input strings s1 = bacxmnob,
s2 = abcxmbno, and pattern string P = b. The A∗ search might,
at some time, encounter node v1 = ((4, 4), 2, 1) induced by partial
solution bx, and—at some other time—it might encounter another node
v2 = ((4, 4), 3, 0) induced by partial solution acx. Even though the path
from the root node to node v1 is shorter than the path to node v2, the
former still leads to a better solution in the end (bxmno in comparison to
acxb). As the information which of the nodes leads to an optimal solution
is not known beforehand, both nodes are stored.

Finally, the open list Q is realized by a priority queue with priority
values f(v) = lv + UB(v), for all v ∈ V . In case of ties, nodes with
larger lv-values are preferred. In the case of further ties, nodes with larger
uv-values are preferred.

The search starts by inserting the root node of the state graph into N

and Q. Then, at each iteration, a node v with highest priority is retrieved
from Q and expanded by considering all successor nodes for a ∈ Σnd

v ). If
such an extensions leads to a new state, the corresponding node, denoted by

Algorithm 1 A∗ search for the CLCS Problem
1: Input: a problem instance (s1, s2, P,Σ)

2: Output: an optimal CLCS solution
3: Initialize hash-map N and priority queue Q

4: Create root node r = ((1, 1), 0, 0) and add it to N and Q

5: while Q 6= ∅ do
6: Retrieve node v with the highest priority from Q

7: Determine Σnd
v for node v

8: if Σnd
v = ∅ then // a complete node is reached

9: Return the solution that corresponds to node v

10: else
11: for each c ∈ Σnd

v do
12: Generate node vext by appending c to the part. solution of v
13: Retrieve Nrel ⊆ N : nodes representing subprobl. S[pvext ]

14: insert ← true

15: for each vrel ∈ Nrel do
16: if lvrel ≥ lvext ∧ uvrel ≥ uvext then
17: insert ← false

18: break // domination condition is fulfilled
19: end if
20: if lvext ≥ lvrel ∧ uvext ≥ uvrel then
21: Remove vrel from N and Q

22: end if
23: end for
24: if insert then // new state is non-dominated
25: Add vext to N and Q

26: end if
27: end for
28: end if
29: end while
30: Return no feasible solution exists

vext, is added to N and Q. Otherwise, vext is compared to the nodes from
set Nrel ⊆ N containing those nodes that represent the same subproblem
S[pv ]. Dominated nodes are identified in this way and dropped from the
search process, i.e., the dominated nodes are removed from N and Q.
If node vext is dominated by one of the nodes from Nrel, it can simply
be discarded. Otherwise, it is added to N and Q. In this context, given
v1, v2 ∈ Nrel we say that v1 dominates v2 iff lv1 ≥ lv2 ∧ uv1 ≥ uv2 .
We would like to emphasize that detecting the domination in Nrel was,
on average, slightly faster when the elements of the lists were sorted in
decreasing order of their uv-values. Therefore, we used this ordering in
our implementation.

As the upper bound function UB() is admissible—that is, it never
underestimates the length of an optimal solution—A∗ yields an optimal
solution whenever the node selected for expansion is a complete node [16].
Moreover, note that UB() also is monotonic, which means that the upper
bound of any child node never overestimates the upper bound of its parent
node. This implies that no re-expansion of already expanded nodes become
necessary [16]. In general, A∗ search is known to be optimal in terms of the
number of node expansions required to prove optimality w.r.t. the upper
bound and the tie–breaking criterion used. A pseudocode of our A∗ search
implementation for the CLCS problem is provided in Algorithm 1.

5 Algorithms Used for Comparison
Algorithm by Chin et al. [8]. This method is based on dynamic
programming. It uses a three-dimensional matrix M to store the lengths of
optimal solutions of subproblemsSi,j,k = (s1[1, i], s2[1, j], P [1, k],Σ)

for i = 1, . . . , |s1|, j = 1, . . . , |s2|, k = 1, . . . , |P |. All these
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An A∗ Search Algorithm for the CLCS Problem 5

values are obtained recursively on the basis of solutions to smaller
subinstances for which optimal values are already known. In essence,
the recursive procedure distinguishes the following cases and handles
them appropriately: s1[i] = s2[j] = P [k], s1[i] = s2[j] 6= P [k],
or s1[i] 6= s2[j]. In this way, optimal values of successor entries
(representing larger subproblems) are determined in constant time. Due
to its simplicity, the algorithm is fast for problem instances of small and
medium size but its performance degrades for longer sequences. In general,
its time and space complexity is O(|s1| · |s2| · |P |).

Algorithm by Arslan and Eğecioğlu [2]. This approach replaces the matrix
used in the original dynamic programming algorithm of Tsai [29] by
multiple three-dimensional matrices in order to realize some calculations
of the approach of Tsai more efficiently. In particular, the recurrence used
by Tsai was simplified. In the end, this results in an algorithm with the
same time complexity as the algorithm of Chin et al., however with a
memory requirement that is by a factor of three higher.

Algorithm by Iliopoulos and Rahman [21]. This method is based on
a modification of the dynamic programming formulation from [2]. To
perform the matrix calculations of each iteration efficiently, the authors
make use of a so-called bounded heap data structure [5] that was realized
by means of Van Emde Boas (vEB) trees [4]. This data structure allows
to calculate intermediate results more efficiently in O(log logn) time,
leading to a total time complexity of O(|P | ·R · log logn+n), where R
is the number of ordered pairs of positions at which input strings s1 and
s2 match.

Algorithm by Hung et al. [19]. This method is a more recent development
that is particularly suited for input strings that are highly similar. It was
developed on the basis of the so-called diagonal concept for the LCS
problem by Nakatsu et al. [27]. In general it can be said that the efficiency
of the algorithm grows with the length of an optimal CLCS solution. The
algorithm uses a tableD of dimension |P |×L, whereL is an upper bound
for the CLCS length. Each cell Di,l stores a triple associated with a partial
solution. At each iteration of the algorithm some of the cells are filled with
information such that for any triple (i′, j, k) ∈ Di,l, where i′ = 1, . . . , i,
the relation |CLCS(s1[1, i′], s2[1, j], P [1, |P | − k])| ≥ l holds. The
elements belonging to Di,l are determined by extending all the partial
solutions from Di−1,l−1, to which all the partial solutions of Di−1,l are
added, and by filtering out dominated pairs. If (i′, j, 0) ∈ Di,l and there
is no other (i′′, j′′, 0) ∈ Di,l with i′ 6= i′′ and j 6= j′′, it implies that
|CLCS(s1[1, i′], s2[1, j], P )| = l. In this way an optimal solution is
found for the specific subproblem.

Algorithm by Deorowicz [11]. Just like the previous approach, this
algorithm is a so-called sparse approach. The matrix utilized for the
calculations is processed for each level k = 0, . . . , |P | in a row-wise
manner and an ordered list is maintained to store for each rank (representing
the assumed length of an optimal solution) the lowest possible column
number. Furthermore, a two-dimensional matrix T is used to store
computed values from the current and previous levels. For each row i

and column j where s1[i] = s2[j], the list entries are recalculated. If
s1[i] = s2[j] 6= P [k], then the value for the match at (i, j) is calculated
from the highest rank in the list with a column number lower than j.
Otherwise, if s1[i] = s2[j] = P [k], the value is calculated from matrix
T . On completion, the highest rank in the list corresponds to the length of
an optimal solution.

Improvements of Deorowicz’s algorithm were introduced by
Deorowicz and Obstoj [12]. They utilize so–called external–entry points
(EEP) [17] initially proposed for the pairwise sequence alignment problem,
for omitting those cells in the lists that do not contribute to optimal
solutions.

6 Experimental Results
All algorithms were implemented in C++ with g++ 7.4 and the experiments
were conducted in single-threaded mode on a machine with an Intel Xeon
E5-2640 processor with 2.40 GHz and a memory limit of 32 GB. The
maximum computation time allowed for each run was limited to one hour.

We aimed to re-implement all algorithms from the literature in the
way in which they are described in the original articles as the respective
code could not be obtained. In a few cases, due to a lack of sufficient
details, we had to make our own specific implementation decisions. This
was in particular the case for the algorithm of Iliopoulos and Rahman
[21]: The bounded heap data structure has to be initialized for different
indices, and it remains unclear how this can be done efficiently. The authors
were contacted with this issue but we did not receive a response. Our
implementation creates a new bounded heap for a new index by copying
the content from the bounded heap of the previous index. This is the most
time-demanding part of the algorithm, which is in particular noticed in
the context of instances with large values of n. Unfortunately, the original
article does not contain any computational study that could serve as a
comparison but just focuses on asymptotic runtimes from a theoretical
point-of-view.

We emphasize that in general, we did our best to achieve efficient re-
implementations of the approaches from literature for the experimental
comparison.

6.1 Benchmark Instances

With the aim of creating a diverse set of problem instances, for each
combination of n ∈ {100, 500, 1000} (length of the input strings), |Σ| ∈
{4, 12, 20} (alphabet size), p′ =

|P |
n
∈
{

1
50

, 1
20

, 1
10

, 1
4
, 1

2

}
(length of

the pattern string), ten problem instances were randomly generated. This
results in a total of 450 instances. The following procedure was used for
generating each instances. First, a pattern string P was created uniformly
at random, that is, each character from Σ has an equal chance to be chosen
for each position of P . Second, two input strings of equal length n were
generated as follows. First, |P | different positions were randomly chosen
in each input string. Then, characters P [1], . . . , P [|P |] are placed (in this
order) from left to right at these positions. Finally, the remaining characters
of each input string were set to letters chosen uniformly at random from
the alphabet Σ. This procedure ensures that at least one feasible CLCS
solution exists for each benchmark instances. Unfortunately, none of the
artificial benchmarks from [12] and [19] were provided to us, although the
respective authors were contacted with this concern.

In addition to these artificially generated instances, we use a benchmark
suite from [12] based on strings representing real biological sequences2.
This benchmark set is henceforth called Real. It has its origins in
experimental studies on the constrained multiple sequence alignment
(CMSA) problem considered in [25, 9]. Each possible pair of sequences
from this data set, together with a pattern string, was used in [12] to define
a problem instance for the CLCS problem. Properties of the input strings,
together with their origins, are provided in Table 1. In particular, Chin
et al. [9] provided four sets of strings containing RNase sequences with
lengths from 111 to 327. In contrast, set ds4—containing aspartic acid
protease family sequences—was provided by Lu and Huang [25], also in
the context of the CMSA problem. Overall, benchmark set Real consists
of 121 problem instances.

2 Available at http://sun.aei.polsl.pl/~sdeor/pub/
do09-ds.zip.
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Table 1. Benchmark suite Real from [12].

data set number of
sequences

sequence length
(min, med, max)

|Σ| origin

ds0 7 (111, 124, 134) 20 [9]
ds1 6 (124, 149, 185) 20 [9]
ds2 6 (131, 142, 160) 20 [9]
ds3 5 (189, 277, 327) 20 [9]
ds4 6 (98, 114, 123) 20 [25]

Table 2. Instances with p′ = |P |
n = 1

50 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 60.9 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 319.3 < 0.1 0.1 0.2 6.5 0.1 < 0.1
4 1000 646.3 0.2 1 1.3 86.4 0.5 < 0.1

12 100 40.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 216.0 < 0.1 0.1 0.2 2.9 0.2 < 0.1
12 1000 435.5 0.3 0.5 1.4 39.4 1 0.1
20 100 33.5 < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 175.7 < 0.1 0.1 0.2 2.2 0.2 < 0.1
20 1000 355.4 0.3 0.5 1.4 26.6 1.1 < 0.1

Table 3. Instances with p′ = |P |
n = 1

20 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A*

4 100 61.9 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 323.0 0.1 0.5 0.4 15.7 0.2 < 0.1
4 1000 645.9 0.9 1.8 3.4 215.5 1.2 0.1

12 100 41.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 215.3 0.1 0.2 0.4 5.3 0.3 < 0.1
12 1000 437.0 0.9 1.1 3.4 69.2 2.2 0.2
20 100 32.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 170.9 0.1 0.2 0.3 3.3 0.2 < 0.1
20 1000 348.4 1 1.1 3.5 40.6 1.7 0.2

6.2 Results

We compare our A∗ search from Section 4 with our re-implementations
of the following state-of-the-art algorithms from the literature.

• Chin: Algorithm by Chin et al. [8];
• Deo: Algorithm by Deorowicz [11];
• AE: Algorithm by Arslan and Eğecioğlu [2];
• IR: Algorithm by Iliopoulos and Rahman [21];
• Hung: Algorithm by Hung et al. [19].

In general, all algorithms could find optimal solutions and prove
their optimality for all instances. However, the required runtimes differ
sometimes substantially. Tables 2–7 show these runtimes for each re-
implemented algorithm as well as our A∗ search in seconds averaged
over each group of instances. Results for the artificial instance sets are
subdivided into five different subclasses w.r.t. the value of p′, which
determines the length of pattern string P . Concerning benchmark suite
Real, the average running times refer to all those instances that belong to
the respective data set in combination with a patternP , cf. Table 7. For each
instance group (line), the lowest runtimes among the competing algorithms
are shown in bold font. The first two columns present the properties of the
instance group, while the third column |s| lists the average length of the
optimal solutions for the respective problem instances.
The following observations can be drawn from these results.

• The small instances (where n = 100) are easy to solve and all
competitors require only a fraction of a second for doing so.

Table 4. Instances with p′ = |P |
n = 1

10 : : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A*

4 100 62.6 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.9 0.3 0.6 0.9 26.8 0.4 < 0.1
4 1000 646.4 1.8 3.5 9.2 331.2 3.3 < 0.1

12 100 40.5 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 207.1 0.2 0.3 0.9 7.3 0.3 < 0.1
12 1000 419.0 2.1 2.2 8.3 91.1 2.7 0.2
20 100 31.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 157.4 0.2 0.3 0.9 5.3 0.2 < 0.1
20 1000 317.9 1.8 2.1 8.4 68.1 2 < 0.1

Table 5. Instances with p′ = |P |
n = 1

4 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A*

4 100 63.2 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.1 0.6 1.4 2.7 34.8 0.5 < 0.1
4 1000 642.5 5 6.6 113.6 436.6 4.5 0.1

12 100 39.9 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 203.0 0.6 0.7 3 18.7 0.3 < 0.1
12 1000 413.2 5.3 5.7 112 213.2 3.2 < 0.1
20 100 35.7 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 175.5 0.6 0.6 3.3 14.4 0.3 < 0.1
20 1000 351.1 5.2 5.9 105.4 154.8 1.8 0.1

Table 6. Instances with p′ = |P |
n = 1

2 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A*

4 100 63.9 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1
4 500 325.5 1.4 1.5 22.5 60.6 0.4 < 0.1
4 1000 652.5 19.1 12.6 336.5 739.4 3.6 < 0.1

12 100 54.6 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 276.5 1.4 1.4 23.9 34.2 0.2 < 0.1
12 1000 544.3 17.8 11.3 347.5 362.2 2.4 0.1
20 100 53.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 264.9 1.2 1.3 21.5 30.6 0.2 < 0.1
20 1000 524.5 18.8 11.1 341 278.8 1.5 0.1

Table 7. Benchmark set Real: Average runtimes in seconds.

data set P |s| Chin Deo AE IR Hung A∗

ds0 HKH 60.62 0.012 0.015 0.012 0.026 0.017 0.011
ds1 HKH 64.00 0.012 0.017 0.013 0.032 0.019 0.015
ds1 HKSH 63.93 0.011 0.021 0.017 0.033 0.017 0.011
ds1 HKSTH 63.87 0.016 0.022 0.019 0.043 0.024 0.012
ds2 HKSH 79.60 0.015 0.020 0.016 0.030 0.052 0.012
ds2 HKSTH 77.87 0.013 0.018 0.016 0.030 0.051 0.013
ds3 HKH 103.90 0.018 0.026 0.019 0.138 0.188 0.014
ds4 DGGG 43.87 0.012 0.022 0.014 0.023 0.049 0.012

• The first algorithm that starts losing efficiency with growing input
string length is IR. Already starting with n = 500, the computation
times start to grow substantially in comparison to the other approaches,
which is most likely due to the complexity of the utilized data
structures. We remark that our specific implementation decision
concerning the initialization of the bounded heap may have a
significant impact, as mentioned already in Section 5.

• Algorithm Chin clearly outperforms Deo when |Σ| is small. With
growing |Σ|, as already noticed in earlier studies [11], Deo becomes
more efficient. In fact, the two approaches perform similarly for |Σ| =
20. The advantages of Deo over Chin are noticed in particular for
higher p′; see Table 5.

• Algorithm Hung generally performs better than Deo and Chin. This
confirms the conclusions from the computational study in Hung et
al. [19].
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• With increasing p′ and thus an increasing length of P , all approaches
degrade in their performance, except for A∗ and Hung, which still
remain highly efficient.

• A general conclusion for the artificial benchmark set is that A∗ search
is in most cases about one order of magnitude faster than Hung, which
is overall the second-best approach.

• Concerning the results for benchmark set Real (see Table 7), we can
conclude that all algorithms only require short times as the input strings
are rather short. Nevertheless we can also see here that the A∗ search
is almost consistently fastest.

• Figure 2 shows the influence of the instance length on the algorithms’
runtimes for |Σ| = 4 and |Σ| = 20. Note that IR is not included
here since it was obviously the slowest among the competitors. It can
be noticed that the performance of A∗ is the only one that does not
degrade much with increasing n.

• Figure 3 shows the influence of the length of P on the algorithms’
runtimes for n = 500 and n = 1000 (in log-scale). It can be noticed
again that A∗ does not suffer much from an increase of the length of
P . This also holds for Hung but not the other competitors, whose
performance degrades with increasing |P |.

Finally, we also compare the amount of work done by the algorithms
in order to reach the optimal solutions. In the case of A∗, this amount of
work is measured by the number of generated nodes of the state graph.
In the case of Deo, this refers to the number of different keys (i, j, k)

generated during the algorithm execution. Finally, in the case of Hung, this
is measured by the amount of newly generated nodes in each Di,l (which
corresponds to the amount of non-dominated extensions of the nodes from
Di−1,l−1). Let us call this measure the amount of created nodes for all
three algorithms. This measure is shown in log-scale in Fig. 4 for the
instances with n = 500. The x-axis of these graphics varies over different
ratios p′ =

|P |
n

. The curve denoted by Max (see legends) is the theoretical
upper bound on the number of created nodes, which is |s1| × |s2| × |P |
for an instance (s1, s2, P,Σ). The graphics clearly show that A∗ creates
the fewest nodes in comparison to the other approaches. The difference
becomes larger with an increasing length of P , which correlates with an
increase in the similarity between the input strings. For those instances with
strongly related input strings, the upper bound UB used in the A∗ search
is usually tighter, which results in fewer node expansions. The amount of
created nodes in A∗ decreases with an increasing length of P after some
point, because the search space becomes more restricted; see Fig. 4 and
|Σ| = 4 from p′ ≥ 1

4
onward and |Σ| = 20 from p′ ≥ 1

20
onward.

7 Conclusions and Future Work
In this paper we considered the constrained longest common subsequence
(CLCS) problem. The problem is well studied in the literature, which offers
algorithms based on dynamic programming as well as sparse approaches.
In contrast, we presented an A∗ search for this problem, which is guided
by tight upper bound function for the LCS problem. The effectivity of
this approach was demonstrated by comparing it to several other so far
leading algorithms from the literature. The A∗ search is able to solve all
artificially generated benchmarks as well as the real benchmark instances
in a fraction of a second. More specifically, the running times required
by A∗ are about an order of magnitude smaller than those of the second-
best algorithm. Interestingly, the performance of A∗ does not degrade
much with an increase of the instance size, which is not the case for the
other algorithms from the literature. We conclude that A∗ search is a tool
that has a great potential to be used for the study of similarities between
sequences. In fact, our A∗ search is the new state-of-the-art method for
the CLCS problem.

In future work, we plan extend this A∗ search towards the general
CLCS problem with an arbitrary number of input strings, which is an
NP–hard problem. Moreover, we consider the A∗ search also a promising
framework for solving related LCS problem variants such as the restricted
LCS (RLCS) problem [15, 7]. For those instances where A∗ search might
fail to prove optimality (e.g., due to exceeding a memory limit), the A∗

framework might be turned into an anytime algorithm [31] in order to
obtain high-quality heuristic solutions already early during the search
process.
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