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Computing Optimal Hypertree Decompositions∗

André Schidler† Stefan Szeider†

Abstract
We propose a new algorithmic method for computing the hypertree
width of hypergraphs, and we evaluate its performance empirically.
At the core of our approach lies a novel ordering based character-
ization of hypertree width which lends to an efficient encoding to
SAT modulo Theory (SMT). We tested our algorithm on an exten-
sive benchmark set consisting of real-world instances from various
sources. Our approach outperforms state-of-the-art algorithms for
hypertree width. We achieve a further speedup by a new technique
that first solves a relaxation of the problem and subsequently uses
the solution to guide the algorithm for solving the problem itself.

1 Introduction
1.1 Background The notion of a hypertree decomposition
and the corresponding hypergraph invariant hypertree width
were introduced by Gottlob et al. [14], who showed that many
key problems arising in databases and constraint satisfaction
can be solved in polynomial time when certain hypergraphs
associated with the problem instances have bounded hyper-
tree width. Since its introduction, hypertree width has become
very popular, and it found many further applications, includ-
ing Projected Solution Counting, Solution Enumeration (with
polynomial delay), Constraint Optimization, and Combinato-
rial Auctions (see, e.g., the survey article by Gottlob, Greco,
and Scarcello [12]). The fundamental nature of hypertree
width is further underlined by the existence of combinatorial,
game-theoretic, as well as logical characterizations [12].

Bounded hypertree width is witnessed by a hypertree
decomposition of bounded width, a concept similar to a tree
decomposition, but where bags are not required to be small
but rather to admit small (hyper)edge covers. This way, large
bags can still lead to hypertree decompositions of small width
and, in turn, admit efficient solutions to the problem at hand.
However, all the solution algorithms that utilize small hyper-
tree width are exponential in the width. Hence the problem
of computing hypertree decompositions of small width is of
essential importance. Given a hypergraph H and an integer
W , determining whether H has hypertree width ≤W is NP-
complete. The parameterized problem, where W is consid-
ered as the parameter, is W [2]-hard, i.e., not fixed-parameter
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tractable under complexity-theoretic assumptions [13]. Only
whenW is a constant, one achieves polynomial-time tractabil-
ity, with the order of the polynomial depending on W (i.e.,
XP-tractability in terms of parameterized complexity). A first
algorithm for computing hypertree width was proposed by
Gottlob et al. in their original paper on hypertree width [14],
a second, improved algorithm was later proposed and tested
experimentally by Gottlob and Samer [15]. Both algorithms
involve a step where all subsets of size W of the set of hyper-
edges are examined, in order to find small sets of hyperedges
that form a separator of the hypergraph, which gives a lower
bound of Ω(mW ) for the running time, where m denotes the
number of hyperedges of the hypergraph. We will refer to
both algorithms as separator based algorithms. This expo-
nential lower bound on the running time for the separator
based algorithms in terms of the hypertree width arises also in
experimental settings, where these algorithms perform reason-
ably well on instances of small hypertree width, but struggle
with instances of medium-sized hypertree width [15]. We
could reproduce this expected behavior in our experiments
where we used TU Longo, a recent implementation of the
Gottlob-Samer algorithm.

1.2 Contribution We propose a new practical approach
for computing the exact hypertree width of hypergraphs. We
follow a logical approach which was initiated by Samer and
Veith [19] for tree decompositions and was later successfully
used for other (hyper)graph width measures, including clique-
width [16], treecut width and treedepth [11], and fractional
hypertree width [7]. For hypertree width, we had to introduce
several new concepts and ideas to make this approach work.
The general idea is to use a polynomial-time encoding
algorithm, which takes as input a hypergraph H and an
integer W , and produces a propositional formula F (H,W ),
such that F (H,W ) is satisfiable if and only if the hypertree
width of H is at most W . By trying systematically different
values of W , we can determine the smallest W for which
F (H,W ) is satisfiable, i.e., the hypertree width of H .
Subsequently, we use a polynomial-time decoding algorithm
which translates a satisfying assignment of F (H,W ) into
hypertree decomposition of H of width W .

Our encoding utilizes an ordering based characteriza-
tion of hypertree width, where we arrange the vertices in a
linear ordering subject to certain constraints. Already the
successful SAT-encodings for treewidth and fractional hyper-
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tree width [19, 7] used ordering based characterizations of
the corresponding width measures (for treewidth, this char-
acterization uses the well-known characterization of graphs
of bounded tree-width in terms of partial k-trees [4]). How-
ever, for hypertree width, an ordering based characterization
is not straightforward. What makes it challenging to express
hypertree width in terms of a linear ordering is the Special
Condition in the definition of hypertree decompositions (see
Section 2), which is formulated in terms of the descendancy
relation in the decomposition tree. However, we succeeded in
formulating the characterization in such a way that we could
base a compact and efficient SAT encoding on it.

For bounding the width of a hypertree decomposition,
we need to compute small hyperedge covers of vertex
sets. For this purpose, we use in our encoding certain
arithmetic constraints instead of propositional cardinality
constraints [20] (as Samer and Veith did). During the
solving process, these arithmetic constraints are mapped
to propositional logic in an incremental fashion. This
incremental encoding is handled by an SMT (SAT Modulo
Theory) solver [2, 18], where a First-Order Logic solver
(handling the arithmetic constraints) interacts with the SAT
solver.

For our approach, the Special Condition is not making
the problem easier. On the contrary, it makes the problem
harder, as it blows up the encoding size significantly with a
cubic number of additional clauses so that the solving time
increases by an order of magnitude. Based on the observation
that in practice the Special Condition often does not increase
the width, we designed an approach that tries to avoid the
usage of the full encoding or at least supports the full encoding
with information gained from a relaxed encoding without the
Special Condition.

To that aim, we proceed in two phases, where we first
use a relaxed encoding to compute a hypertree decomposition
that does not necessarily satisfy the Special Condition. We
then try to modify the decomposition so that the Special
Condition is satisfied, without increasing the width. For
this purpose, we have developed two alternative approaches
and compared them empirically. The first approach tries
to greedily repair the decomposition in order to satisfy the
Special Condition. The second approach utilizes the full
encoding but adds stratification clauses so that the solution
to the relaxed encoding directs the solver. If the modification
fails, we enter the second phase, where we use the full
encoding, including clauses for the Special Condition, but
without any stratification clauses.

The two-phase approach provides a considerable speedup
compared to using just the full encoding alone.

We implemented these ideas in our solver HtdSMT and
tested them thoroughly. For comparison purposes, we used
TU Longo, a recent implementation of the Gottlob-Samer
algorithm.

We were able to show that our multi-phase approach
performs well in practice. Especially our stratified approach
yielded encouraging results.

2 Preliminaries
A hypergraph is a pair H = (V,H), consisting of a set V of
vertices and a set E of hyperedges (sometimes just referred
to as edges), each hyperedge is a subset of V (H).

The primal graph (or 2-section) of a hypergraph H =
(V,E) is the graph P (H) = (V,EP (H)) with EP (H) =
{ {u, v} | u 6= v, there is some e ∈ E such that {u, v} ⊆ e }.

Consider a hypergraph H = (V,E) and a set S ⊆ V .
An edge cover of S (with respect to H) is a set F ⊆ E such
that for every v ∈ S there is some e ∈ F with v ∈ e. The
size of an edge cover is its cardinality.

A tree decomposition of a hypergraph H = (V,E) is a
pair T = (T, χ) where T = (V (T ), E(T )) is a tree and χ
is a mapping that assigns to each t ∈ V (T ) a set χ(t) ⊆ V
(called the bag at t) such that the following properties hold:

T1 for each v ∈ V there is some t ∈ V (T ) with v ∈ χ(t)
(“v is covered by t”),

T2 for each e ∈ E there is some t ∈ V (T ) with e ⊆ χ(t)
(“e is covered by t”),

T3 for any three t, t′, t′′ ∈ V (T ) where t′ lies on the path
between t and t′′, we have χ(t) ∩ χ(t′′) ⊆ χ(t′) (“bags
containing the same vertex are connected”).

Throughout this paper, the term node refers to an element
of V (T ) and vertex refers to an element of V .

We will use the following well-known fact (see, e.g., [5]).

FACT 2.1. Let (T, χ) be a tree decomposition of a graph G
and K a clique in G, then there exists a node t ∈ V (T ) with
V (K) ⊆ χ(t).

Using this fact it is easy to see that a hypergraph and its primal
graph share exactly the same tree decompositions.

A generalized hypertree decomposition of H is a triple
G = (T, χ, λ) where (T, χ) is a tree decomposition of H
and λ is a mapping that assigns each t ∈ V (T ) an edge
cover λ(t) ⊆ E(H) of χ(t). The width of G is the size
of a largest edge cover λ(t) over all t ∈ V (T ), and the
generalized hypertree width ghtw(H) of H is the smallest
width over all generalized hypertree decompositions of H . It
is already NP-hard to decide whether a given hypergraph
has generalized hypertree width ≤ 2 [10]. To make the
recognition of hypergraphs of bounded width tractable, one
needs to strengthen the definition of generalized hypertree
width by adding the aforementioned Special Condition as
follows.

A hypertree decomposition [14] of H is a generalized
hypertree decomposition G = (T, χ, λ) of H where T is a
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rooted tree that satisfies in addition to T1–T3 also a certain
Special Condition (T4). To formulate this condition, we call
a vertex v to be omitted at a node t ∈ V (T ), if v /∈ χ(t),
but λ(t) contains a hyperedge e with v ∈ e. The Special
Condition now states the following:

T4 If a vertex v is omitted at t, then it must not appear in
the bag χ(t′) of any descendant node t′ of t.

In other words, T4 states that if t, t′ ∈ V (T ) are nodes
such that t′ is a descendant of t, then for each e ∈ λ(t) we
have (e \ χ(t)) ∩ χ(t′) = ∅. The hypertree width htw(H) of
H is the smallest width over all hypertree decompositions
of H . Clearly ghtw(H) ≤ htw(H).

To avoid trivial cases, we consider only hypergraphs
H = (V,E) where each v ∈ V is contained in at least one
e ∈ E. Consequently, every considered hypergraph H has
an edge cover, and the parameters ghtw(H) and htw(H) are
always defined. If |V | = 1 then htw(H) = ghtw(H) = 1.

In the following, we also assume that each considered hy-
pergraph H is connected (i.e., its primal graph is connected).
One can easily adapt our results to disconnected hypergraphs
by operating component-wise.

3 Ordering Based Characterization of Hypertree
Width

The first SAT encoding of treewidth was suggested by Samer
and Veith [19]. It used an ordering based characterization of
treewidth. More recent SAT encodings of treewidth are also
ordering based [1, 3]. Fichte et al. [7] extended this approach
to computing the fractional hypertree width of hypergraphs,
which only required a relatively little modification of the
treewidth encoding.

For hypertree width, however, it turns out that expressing
the special condition within an ordering based characteriza-
tion requires new ideas. Let us consider an example that il-
lustrates one of the difficulties. In the existing ordering based
characterizations, each linear ordering (vπ(1), . . . , vπ(n)) of
the vertices of the (hyper)graph corresponds to a decomposi-
tion tree with n nodes, with vπ(n) corresponding to the root of
the tree. The bag χ(vπ(i)) associated with the tree node vπ(i)
contains all the vertices vπ(j) with π(j) ≥ π(i) such that
vπ(i) and vπ(j) belong to the same hyperedge, plus some ad-
ditional fill-in vertices that are required for the connectedness
condition T3.

For instance, if we consider the simple hypergraph
H = (V,E) where V = {v1, . . . , vn} and E = {V }, the
ordering (v1, . . . , vn) would correspond to a decomposition
tree which is a path, with vn at the root. The bags are the sets
χ(vi) = {vi, . . . , vn}. As there is only one hyperedge, the
edge cover for each vi must be λ(vi) = {V }, in particular
λ(vn) = {V }. However, as v1 is omitted at every node vi,
2 ≤ i ≤ n, the special condition forbids the vertex v1 to be
present in any of the bags χ(vi) for 1 ≤ i ≤ n − 1. Hence

there is no hypertree decomposition that corresponds to this
ordering in the conventional sense.

We fix this problem by adapting the ordering to allow
the elimination of several vertices at once, not just one after
the other. We accomplish this by introducing an equivalence
relation ≡ where equivalent vertices are eliminated simulta-
neously.

The second issue with hypertree decompositions is the
fact that fill-in vertices are not just required to satisfy the
connectedness condition T3, but also to satisfy the Special
Condition T4. Fill-in vertices for the sake of T3 can be
handled easily in a deterministic fashion, by adding certain
edges that are enforced by the ordering (cf. Condition O3
below). Fill-in vertices for the sake of T4, however, are
not enforced deterministically by the ordering. Even worse,
adding a fill-in vertex for the sake of T4 might invalidate
T3, and hence more fill-in vertices need to be added for the
sake of T3, and so forth. Therefore, our ordering based
characterization of hypertree width involves also a DAG
(directed acyclic graph) D, which contains more information
than can be deterministically derived from the ordering alone.
The arcs of D can represent fill-in vertices of either kind.

A tuple (D,≺,≡, λ) is a generalized hypertree ordering
of a hypergraph H = (V,E) if D is a DAG with vertex
set V , ≺ is a topological ordering of D, ≡ is an equivalence
relation on V , and λ is a mapping that assigns to each vertex
v ∈ V a set λ(v) ⊆ E of hyperedges, such that the following
conditions are satisfied:

O1 For each pair u ≺ v of distinct vertices of H , if u, v ∈ e
for some e ∈ E, then D contains the arc (u, v).

O2 For each pair u ≺ v of distinct vertices of H , if u ≡ v,
then D contains the arc (u, v).

O3 For any three vertices u ≺ v ≺ w of H , if D contains
the arcs (u, v) and (u,w), then it also contains the arc
(v, w).

O4 For any three vertices u ≺ v ≺ w of H , if u ≡ v and
D contains the arc (v, w), then it also contains the arc
(u,w).

O5 For each vertex v of H , λ(v) is an edge cover of the set

χD(v) := [v]≡ ∪N+
D (v).

Here, [v]≡ denotes the equivalence class of ≡ to which v
belongs to, and N+

D (v) denotes the set of out-neighbors of v
in D.

OBSERVATION 3.1. If u ≡ v, then χD(u) = χD(v).

Proof. W.l.o.g, assume u ≺ v. Then u ≡ v implies that D
contains the arc (u, v). Condition O4 implies that N+

D (v) ⊆
N+
D (u), Condition O4 implies that N+

D (u) ⊆ N+
D (v), hence

N+
D (u) = N+

D (v). Since [u]≡ = [v]≡, the statement follows.

3
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Let Ord = (D,≺,≡, λ) be a generalized hypertree
ordering of H = (V,E). We define the canonical tree of
Ord as the rooted tree T whose set of nodes is V and whose
root r is the ≺-largest element of V . The edges of T are
defined by letting the parent of each vertex u ∈ V \ {r} to be
the ≺-smallest vertex v ∈ N+

D (u).
The following observation shows that the tree T is well

defined.

OBSERVATION 3.2. If H is connected, then for each v ∈
V \ {r} we have N+

D (v) 6= ∅.

Proof. Assume to the contrary that there is some v ∈ V \{r}
with N+

D (v) = ∅. Let G be the undirected graph with
V (G) = V and where E(G) contains the edge {u, v}
whenever D contains the arc (u, v) or (v, u). Because of
Condition O1, it follows that P (H) is a spanning subgraph
of G; hence G is connected. Let P be a shortest path in G
that connects v with r, and let u be the ≺-smallest vertex
on P . Since N+

D (v) = ∅, it follows that u ≺ v. Let x, y
be the vertices that are adjacent with u on P . Since u is the
≺-smallest vertex on P , u ≺ x and u ≺ y follows. Hence D
contains the arcs (u, x) and (u, y). Because of Condition O3,
D contains one of the arcs (x, y) and (y, x); in any case, G
contains the edge s = {x, y}. The edge s provides a shortcut
for P , as we can remove u from P and connect x with y via s,
obtaining a shorter path between v and r. This contradicts
the assumption that P is a shortest path. Hence N+

D (v) 6= ∅.

We are now in the position to define hypertree order-
ings, which, as we will see, correspond to hypertree decom-
positions. A hypertree ordering of H = (V,E) is a gen-
eralized hypertree ordering Ord = (D,≺,≡, λ) of H that
satisfies the following Special Condition: For any two ver-
tices u, v such that u is a descendant of v in the canonical
tree T (consequently u ≺ v) and any e ∈ λ(v) we have
(e \ χ(v)) ∩ χ(u) = ∅.

The width of the (generalized) hypertree ordering Ord =
(D,≺,≡, λ) is defined as maxv∈V |λ(v)|.

THEOREM 3.1. A hypergraph has (generalized) hypertree
width W if and only if it has a (generalized) hypertree
ordering of width W .

In the next two sections, we will establish the theorem
algorithmically, showing that we can efficiently translate
between hypertree decompositions and hypertree orderings
of the same width.

4 From Hypertree Decompositions to Hypertree
Orderings

Let (T, χ, λ) be a hypertree decomposition of a hypergraph
H = (V,E) of width W .

We are going to define a hypertree ordering Ord =
(D,≺,≡, λ′) of the same width.

We call a vertex v to be forgotten at node t ∈ V (T ) if
v ∈ χ(t) but v /∈ χ(t′) for the parent t′ of t in T ; all vertices
in χ(r) are forgotten at r. Because of Conditions T1 and T3
of a tree decomposition, it follows that each vertex v ∈ V
is forgotten at exactly one node t ∈ V (T ) which we denote
by f(v).

Let≡ be the equivalence relation on V defined by letting
two vertices u, v to be equivalent if and only if they are
forgotten at the same node, i.e., if f(u) = f(v).

Let ≺∗ be the partial order on V defined by u ≺∗ v if
and only if u 6= v and f(u) is a descendant of f(v) in T . We
let ≺ to by an arbitrary but fixed total order that refines ≺∗.

OBSERVATION 4.1. For any two vertices u, v such that v ∈
χ(f(u)) and u 6≡ v, we have u ≺ v.

Proof. Since v is not forgotten at f(u), but belongs to
χ(f(u)), it must be forgotten at a node f(v) which is an
ancestor of f(u), hence u ≺∗ v, and consequently, u ≺ v.

To define D, we take as its arcs all the arcs (u, v) for
u, v ∈ V for which u ≺ v and v ∈ χ(f(u)). By construction,
≺ is indeed a topological ordering of D. We observe that for
all u, v ∈ V with u ≡ v we have χD(u) = χD(v).

CLAIM 4.1. D satisfies all the Conditions O1–O4 of a
generalized hypertree ordering.

Proof. To verify Condition O1, let u, v ∈ V such that
u, v ∈ e for some e ∈ E and u ≺ v. Condition T2 implies
that u, v ∈ χ(t) for some t ∈ T . Let t0 ∈ V (T ) be a node
with this property that is closest to the root. Consequently
t0 = f(u) or t0 = f(v). Since u ≺ v, t0 = f(u) follows of
necessity. Thus we have v ∈ χ(f(u)), and consequently D
contains the arc (u, v).

To verify Condition O2, let u, v ∈ V such that u ≡ v
and u ≺ v. We have f(u) = f(v), and v ∈ χ(u), hence D
contains the arc (u, v).

To verify Condition O3, let u, v, w ∈ V with u ≺ v ≺ w
such that D contains the arcs (u, v) and (u,w). From the
definition ofD it follows that v, w ∈ χ(f(u)). The node f(v)
lies in T on the path between f(u) and the root of T (possibly
f(u) = f(v)). Since v ≺ w, w ∈ χ(f(v)). Consequently, D
contains the arc (v, w).

To verify Condition O4, let u, v, w ∈ V with u ≺ v ≺ w
such that u ≡ v and D contains the arc (v, w). From the
definition of D we infer that w ∈ χ(f(v)). Since u ≡ v, we
have w ∈ χ(f(u)), which in conjunction with u ≺ w implies
that D contains the arc (u,w).

We define a labeling λ′ of V by letting λ′(v) = λ(f(v))
for each v ∈ V . Since χD(v) = χ(f(v)), λ′(v) is an edge
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cover of χD(v). We conclude that Ord is indeed a generalized
hypertree ordering of H of width W .

It remains to verify that the Special Condition holds. Let
T ′ be the canonical tree of Ord.

CLAIM 4.2. For any two vertices u1, u2 ∈ V such that u1
is a descendant of u2 in T ′ (consequently u1 ≺ u2), either
(i) f(u1) = f(u2), or (ii) f(u1) is a descendant of f(u2)
in T .

Proof. We show that the claim holds in the case that u2 is
the parent of u1; the general claim follows then by induction.
Assume f(u1) 6= f(u2). This implies u1 6≡ u2. However,
since u2 is the parent of u1,D contains the arc (u1, u2), hence
u2 ∈ χD(u1) = χ(f(u1)). Thus u2 must be forgotten in T
at some node f(u2) 6= f(u1) that lies on the path between
f(u1) and the root of T . In other words, f(u1) is a descendant
of f(u2).

Since λ′(ui) = λ(f(ui)) and χD(ui) = χ(f(ui)), for
1 ≤ i ≤ 2, it follows that Condition T4 of the hypertree
decomposition with respect to f(u1) and f(u2) implies the
special condition for the hypertree ordering Ord with respect
to u1 and u2.

We conclude that this direction of the translation works
as claimed.

5 From Hypertree Orderings to Hypertree Decom-
positions

Now, to see the reverse translation, let Ord = (D,≺,≡, λ) be
a hypertree ordering of a hypergraphH = (V,E) of widthW .
Let T be the canonical tree rooted at r.

CLAIM 5.1. G = (T, χD, λ) is a hypertree decomposition
of H of width W .

Proof. We verify that G satisfies all the Conditions T1–T4.
Condition T1 holds, since v ∈ χD(v) for every v ∈ V .
Condition T2 holds as well: for any e ∈ E, if v is the ≺-
smallest vertex such that v ∈ e, then e ⊆ χD(v) follows by
Property O1 of D.

To verify Condition T3, assume to the contrary that the
condition is violated with respect to a vertex v. In other words,
the set of nodes {u ∈ V (T ) | v ∈ χ(u)} induces in T more
than one connected subtrees T1, . . . , Tk. Let Ti be the subtree
with v ∈ V (Ti), and let j ∈ {1, . . . , k} \ {i}. Let rj be the
root of Tj . Since [v]≡ ⊆ V (Ti), we have [v]≡ ∩ V (Tj) = ∅.
Consequently, for every node u ∈ V (Tj), we have v ∈ χ(u)
but u /∈ [v]≡, hence D contains the arc (u, v). This implies
that rj is not the root of T , and so it has a parent pj in T . By
construction, v /∈ χ(pj). Since by definition of the canonical
tree, pj is the ≺-smallest vertex for which D contains the
arc (rj , pj), but since D contains (rj , v), we conclude that
pj ≺ v. Hence, by Condition O3 of a hypertree ordering,
it follows that D also contains the arc (pj , v), but then

v ∈ χ(pj), a contradiction to our assumption. Hence we
conclude that Condition T3 holds as well. Condition T4 holds
as the Special Condition for Ord directly translates into T4 via
the canonical tree. It remains to observe that by construction,
the width of G is W .

We conclude that the reverse direction of the translation
works as well.

6 SMT Encoding
In this section, we describe how we can express the existence
of a hypertree ordering of a hypergraph H of width ≤ W
in terms of an SMT formula, which is a conjunction of
propositional clauses and arithmetic constraints. GivenH and
W we proceed in two steps, first producing an SMT-formula
F ′(H,W ), which is satisfiable if an only if ghtw(H) ≤ W ,
and secondly, adding additional clauses to obtain an SMT
formulaF (H,W ), which is satisfiable if an only if htw(H) ≤
W .

6.1 Encoding Generalized Hypertree Width Let H =
(V,E) be the given hypergraph with n vertices v1, . . . , vn.

For expressing the ordering ≺ we use
(
n
2

)
Boolean

variables oi,j for 1 ≤ i < j ≤ n (similarly as Samer and
Veith [19] did for treewidth), where oi,j is true if and only
if i < j and vi ≺ vj . We use the notation o∗i,j defined as
follows:

o∗i,j :=

{
oi,j if i < j;

oj,i otherwise.

To enforce that ≺ is indeed a linear ordering, we must ensure
transitivity, which we establish by adding for all mutually
distinct 1 ≤ i, j, k ≤ n the clause

o∗i,j ∨ o∗j,k ∨ o∗i,k.

For expressing the equivalence relation≡we use
(
n
2

)
Boolean

variables ei,j for 1 ≤ i < j ≤ n, where ei,j is true if and
only if i < j and vi ≡ vj . We use the notation e∗i,j defined as
follows:

e∗i,j :=

{
ei,j if i < j;

ej,i otherwise.

Also here we must ensure transitivity (within each equiv-
alence class, not over the entire set V as for oi,j above),
which we accomplish by adding for all mutually distinct
1 ≤ i, j, k ≤ n the clause

e∗i,j ∨ e∗j,k ∨ e∗i,k.

For expressing the DAGD we use n(n−1) Boolean variables
ai,j , for distinct 1 ≤ i, j ≤ n, where ai,j is true if and only
if D contains the arc (vi, vj). First we ensure that ≺ is a
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topological ordering of D by adding for each pair of distinct
1 ≤ i, j ≤ n the clause

o∗i,j ∨ aj,i.

Furthermore, we add clauses that correspond to Conditions
O1–O4 of the definition of a generalized hypertree ordering.
That is, for Condition O1 we add for all distinct 1 ≤ i, j ≤ n,
such that some e ∈ E contains both vi and vj , the clause

o∗i,j ∨ ai,j .

For Condition O2, we add for all distinct 1 ≤ i, j ≤ n the
clause

o∗i,j ∨ e∗i,j ∨ ai,j .
For Condition O3, we add for all three mutually distinct
1 ≤ i, j, k ≤ n the clause

o∗j,k ∨ ai,j ∨ ai,k ∨ aj,k.

For Condition O4, we add for all three mutually distinct
1 ≤ i, j, k ≤ n the clause

o∗i,j ∨ o∗j,k ∨ e∗i,j ∨ aj,k ∨ ai,k.
In order to encode Condition O5, we first need a representa-
tion of the bags χD(vi) and edge covers λ(vi), for 1 ≤ i ≤ n.
Accordingly, we introduce a Boolean variable bi,j for each
pair of (not necessarily distinct) 1 ≤ i, j ≤ n, which is true if
and only if vj ∈ χD(vi). For all distinct 1 ≤ i, j ≤ n we add
the three clauses

ai,j ∨ bi,j , e∗i,j ∨ bi,j , bi,j ∨ ai,j ∨ e∗i,j ,

representing the equivalence ai,j ∨ e∗i,j ↔ bi,j , and for all
1 ≤ i ≤ n we add the unit clause bi,i.

In order to represent the edge covers, we introduce for
each 1 ≤ i ≤ n and each e ∈ E an integer-valued weight
variable wi,e, which has the value 1 if e ∈ λ(vi) and the
value 0 otherwise. Although this could be done also by
Boolean variables, we use integer-valued variables as we
can use arithmetic constraints for ensuring that each vertex
in a bag is covered (Condition O5) and for bounding the
width of the ordering. For encoding Condition O5 in a
compact way, we use the fact that for each vertex v ∈ V
there is a vertex vi ∈ V , the ≺-smallest vertex in [v]≡, with
χD(v) = χD(vi) = N+

D (vi) ∪ {vi}. Hence it suffices to
check that λ(vi) covers all the vertices vj ∈ N+

D (vi) and
the vertex vi. We accomplish this by adding for all distinct
1 ≤ i, j ≤ n the arithmetic constraint

ai,j ∨
∑

e∈E,vj∈e
wi,e ≥ 1,

and for all 1 ≤ i ≤ n the arithmetic constraint
∑

e∈E,vi∈e
wi,e ≥ 1.

Finally, for bounding the width, we add for each 1 ≤ i ≤ n
the arithmetic constraint

∑

e∈E
wi,e ≤W.

All the clauses and arithmetic constraints added so far
ensure that the formula is satisfiable if and only if H has
a generalized hypertree decomposition of width ≤ W . It
remains to encode the Special Condition.

6.2 Encoding the Special Condition For expressing the
Special Condition, we need to represent the canonical tree.
To this aim, we introduce n2 Boolean variables pi,j for
1 ≤ i, j ≤ n where for i 6= j, pi,j is true if and only if
vj is the parent of vi in the canonical tree, and pi,i is true if
and only if vi is the root of the canonical tree. We add the
clause

n∨

i=1

pi,i

stating that at least one node vi is the root of the canonical
tree, and we add for all distinct 1 ≤ i, j ≤ n the clause

o∗i,j ∨ pi,i
stating that the root must be the ≺-largest vertex. Next, we
add for each 1 ≤ i ≤ n the clause

n∨

j=1

pi,j

stating that each node has a parent in the canonical tree or
is the root. Finally, we enforce that the parent of vi is the
≺-smallest vertex vj ∈ N+

D (vi) by adding for any three
distinct 1 ≤ i, j, k ≤ n the clause

ai,j ∨ o∗j,k ∨ pi,k.

We represent the descendancy relation of the canonical tree
with n(n−1) Boolean variables di,j for distinct 1 ≤ i, j ≤ n,
where di,j is true if vj is a descendant of vi in the canonical
tree. We obtain the descendancy relation as the transitive
closure of the parent relation. The base case is handled by
adding for all distinct 1 ≤ i, j ≤ n the clause

pi,j ∨ di,j ,

and the inductive step is handled by adding for all three
distinct 1 ≤ i, j, k ≤ n the clause

di,j ∨ dj,k ∨ di,k.
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To enforce that the di,j-variables represent the smallest
relation that contains the transitive closure of the parent
relation, we add for any three distinct 1 ≤ i, j, k ≤ n the
clause

pi,j ∨ dj,k ∨ di,k,

stating that if the parent is not a descendant, than neither are
the children, as well as for any two distinct 1 ≤ i, j ≤ n the
clause

o∗i,j ∨ dj,i,

stating that the descendancy relation respects the ordering
Ord. In addition, we introduce n2 auxiliary variables ci,j ,
for 1 ≤ i, j ≤ n, where ci,j is true if vj ∈

⋃
e∈λ(vi) e. We

enforce this by adding for all 1 ≤ i, j ≤ n and e ∈ E such
that vj ∈ e the clause

(wi,e = 0) ∨ ci,j ,

and the arithmetic constraint

ci,j ∨
∑

e∈E,vj∈e
we,i ≥ 1.

We can now enforce the Special Condition by adding for all
1 ≤ i, j ≤ n and all k ∈ {1, . . . , n} \ {i, j} the clause

di,j ∨ cj,k ∨ bi,k ∨ bj,k.

This now completes the encoding of H having hypertree
width ≤W .

7 Symmetry Breaking
In general, there can be many hypertree orderings that cor-
respond to the same (generalized) hypertree decomposition.
In Section 4, when we translated a hypertree decomposition
into a hypertree ordering, we had the choice of picking any
total order ≺ that refines the partial order ≺∗. However, if we
fix a lexicographic order of the vertices, say v1, . . . , vn, then
there exists a unique linear order ≺ that refines ≺∗. Algorith-
mically, we can think of obtaining ≺ by successively deleting
vertices until all vertices have been deleted, by choosing the
next vertex to delete as the lexicographically smallest among
all the ≺∗-smallest vertices, similarly to the Topological Sort-
ing procedure. Since we have exactly one choice at each step,
the obtained ≺ is unique.

To enforce in the SMT encoding that ≺ is this unique
ordering, we introduce for all 1 ≤ i < j ≤ n and each
k ∈ {1, . . . n} \ {i, j} a Boolean variable `i,j,k. The variable
`i,j,k is true if and only if vj ≺ vk ≺ vi, and there is
an arc (vk, vi). This means that we can pick vj in the
deletion procedure sketched above before vi, although vi
is lexicographically smaller than vj , since the arc (vk, vj)
prohibits us choosing vi earlier.

Consequently, for all 1 ≤ i < j ≤ n and all k ∈
{1, . . . n} \ {i, j} we add the following clauses

o∗i,k ∨ ak,i ∨ `i,j,k, `i,j,k ∨ o∗j,k, `i,j,k ∨ ak,i,

whose conjunction is logically equivalent to the equivalence
`i,j,k ↔ o∗j,k ∧ ak,i. Finally, for all 1 ≤ i < j ≤ n, we add
the clause

oi,j ∨ aj,i ∨
∨

k∈{1,...,n}\{i,j}
`i,j,k,

which states that if vj ≺ vi although i < j, then there must
be an arc from vj to vi or an arc from vk to vi for some k > j.

In our experiments (see Section 9), we compared the
performance of our encoding with and without symmetry
breaking. It turned out that symmetry breaking gives a
significant speedup for the computation of hypertree width
via the full encoding. Interestingly, for the encoding of
generalized hypertree width, the symmetry breaking clauses
impaired the performance.

8 Utilizing Generalized Hypertree Decompositions
Due to the often considerably higher efforts of computing
a hypertree decomposition compared to its generalized vari-
ant, we developed an alternative approach for computing
hypertree decompositions. Instead of using the full encoding
F (H,W ) for hypertree width as described above, we use
the encoding F ′(H,W ) for generalized hypertree width, and
try to utilize a satisfying assignment of it to obtain a hyper-
tree decomposition of the same width. Only if this fails, we
use the full encoding F (H,W ′), with W ′ ≥ W . Next, we
discuss our two strategies for utilizing generalized hypertree
decompositions.

8.1 Greedy Repair The first strategy is to generate
an optimal generalized hypertree ordering using the SMT
encoding F ′(H,W ), and transform it into a generalized
hypertree decomposition (T, χ, λ) of width W utilizing the
method laid out in Section 5. Then, we modify the tree T by
trying out each of its nodes as the root. For each such choice,
we extend the labelings χ and λ monotonically, possibly
adding vertices to bags and adding hyperedges to edge covers,
until we either obtain a correct hypertree decomposition of
width W , or fail:

1. As long as Condition T4 is violated, i.e., if for some
t ∈ V (T ) there is a vertex v that is omitted at t but is
contained in χ(t′) for some descendant t′ of t, we add
v to χ(t). Adding v to χ(t) might cause Condition T3
to be violated, or that λ(t) is no longer an edge cover of
χ(t).

2. As long as Condition T3 is violated, i.e., if for t, t′, t′′ ∈
V (T ) where t′ lies on the path between t and t′′, we
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have some v ∈ χ(t) ∩ χ(t′′), but v /∈ χ(t′), we add v to
χ(t′). Adding v to χ(t′) might cause Condition T4 to
be violated, or that λ(t′) is no longer an edge cover of
χ(t′).

3. As long as there exists a tree node t such that λ(t) is not
an edge cover of χ(t), we add hyperedges to λ(t) until
χ(t) is covered. Adding hyperedges to λ(t) might cause
the size of λ(t) to exceed W .

4. We fail if |λ(t)| > W for some t ∈ V (T ); otherwise we
start over at Step 1.

We note that as long as any condition is violated, bags are
extended, and if all conditions hold and the width bound
W has not been exceeded, we have found a valid hypertree
decomposition.

8.2 Stratified Encoding With the second strategy, we
also start by generating a hypertree ordering using the
SMT encoding. We now utilize some information from a
satisfying assignment τ of F ′(H,W ) and add additional
stratification clauses S(τ) to F (H,W ). If it still holds
that F (H,W ) ∧ S(τ) is satisfiable, then htw(H) = W ;
the converse, however, might not be true any more. So, if
F (H,W )∧S(τ) is unsatisfiable, then this approach has failed.
The clauses in S(τ) reflect some information regarding the
generalized hypertree ordering Ord = (D,≺,≡, λ) of H
that is represented by τ . Now the search for a satisfying
assignment for F (H,W ) is guided by this information.

We implemented and tested the following variants Si(τ)
for stratification clauses, ordered from the most restrictive to
the least and restrictive.

Fixing the ordering. S1(τ) is the conjunction of all the unit
clauses o∗i,j , where τ sets o∗i,j to true, for 1 ≤ i, j ≤ n.
Therefore, S1(τ) forces the solver, to maintain the full
ordering.

Fixing the tree structure. S2(τ) is the conjunction of all
the clauses pi,j ∨ pj,i, where j 6= i and τ sets pi,j to
true, for 1 ≤ i, j ≤ n. This suggests a structure for the
canonical tree, but allows the solver to choose the root
and orientation.

Fixing the bags. S3(τ) is the conjunction of all the unit
clauses bi,j , where τ sets bi,j to true, for 1 ≤ i, j ≤ n.
The bags are thereby initialized with the same vertices as
in the generalized hypertree decomposition. The solver
can extend the bags and change the ordering.

Fixing the arcs. S4(τ) is the conjunction of all the clauses
ai,j ∨ aj,i, where τ sets ai,j to true, for 1 ≤ i, j ≤ n.
In other words, S4(τ) forces the solver to keep the arcs
from D but allows to invert their orientation.

For each of these stratification strategies, the formula
F (H,W ) ∧ Si(τ) can generally be solved faster than
F (H,W ). In our experiments, S4 performed best, as we
will discuss in detail in the next section.

9 Experiments and Results
9.1 Experimental Setup We implemented the ideas
and concepts presented above in our solver HtdSMT 1. We
implemented both encoder and decoder in Python 2.7. Their
running time is relatively uncritical, as the main work is
carried out by the SMT solver. In principle, any SMT solver
can be used. We tested optimathsat2 and Z3 3. Due to better
results with the former, we used it in the final version. Data
between encoder and SMT solver is passed using files to
avoid the overhead of the Python interface.

We used nodes with two Intel Xeon E5540 CPUs with
2.53 GHz each. Each node ran Ubuntu 16.04, Python 2.7.12,
gcc 5.5.0 20171010 and optimathsat 1.6.2. Each run was
limited to 8 GB of RAM and thirty minutes runtime.

9.2 Benchmark Instances We tested our solver against
the 100 public instances of the 2019 PACE (Parameterized
Algorithms and Computational Experiments) challenge4. The
instances are a subset of the Hyperbench collection5 [9].
The PACE organizers [6] selected the instances based on
the expected runtime as follows. A heuristic method solved
the instances with a relaxed Special Condition. The instances
were then divided into the categories easy (solved within
60 seconds), medium (solved in 300 to 900 seconds), and
hard (not solved within the 7200 second time limit). The
gaps in the definitions are deliberate. Finally, 10 easy, 30
medium, and 60 hard instances were randomly selected. For
all instances, we were able to solve, the hypertree width
turned out to be equal to the generalized hypertree width.

9.3 Comparison with the Gottlob-Samer Algorithm To
provide a comparison with the state-of-the-art, we compared
our algorithm with TU Longo6, a recent implementation of
the Gottlob-Samer algorithm [15]. TU Longo participated
besides HtdSMT in the 2019 PACE challenge [6], where
(according to preliminary results) it reached second place
in both the exact and heuristic track. In the exact track, an
earlier version of HtdSMT reached the first place. For our
experiments we used the same setup and instances as the
PACE competition, and provide more detailed information
and results on variants of our approach to provide further
insight on the performance of individual techniques.

1https://github.com/ASchidler/frasmt pace/ (experimental results of this
paper are based on Commit 5354ef8)

2http://optimathsat.disi.unitn.it
3https://z3prover.github.io
4https://doi.org/10.5281/zenodo.3354607
5http://hyperbench.dbai.tuwien.ac.at
6https://doi.org/10.5281/zenodo.3236369
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9.4 Results In Tables 1, 2, 3, and 5 we provide primary
data of our experiments:

1. the number of instances out of the selected 100 PACE
instances a particular decomposition algorithm could
solve within the time limit of 30 minutes;

2. the average running time per instance over the instances
solved by all the methods listed in the table.

Table 1 compares the performance of the three different
strategies implemented in HtdSMT . The Stratified Encoding
can solve the most instances, while the Greedy Repair
approach is the fastest method. Although the stratified
encoding may seem superior, we need all three methods to
solve the maximum number of instances, as each method can
solve instances, that none of the others can solve. Together,
all three methods can solve a total of 75 different instances.

Approach Solved Av. Time [s]

Greedy Repair 61 / 100 25.55
Stratified Encoding 72 / 100 45.14
HTD Encoding 62 / 100 130.84

Table 1: Comparison of different solving strategies discussed
in this paper.

Table 2 shows a comparison of the four different stratifi-
cation strategies, as discussed in Section 8.2. S4 outperforms
the other methods in both runtime and number of solved
instances and is, therefore, the method we use for HtdSMT .

The SMT solver in our tests was able to find a generalized
hypertree ordering for 80 instances. The success rate of the
stratified encoding, under the precondition that a generalized
hypertree ordering is available, is therefore remarkably high
(approximately 90 %).

Stratification Strategy Solved Av. Time [s]

S4(τ) - Arcs 72 / 100 90.04
S1(τ) - Ordering 69 / 100 85.59
S3(τ) - Bags 69 / 100 90.90
S2(τ) - Tree 68 / 100 86.06

Table 2: Comparison of different stratification strategies, as
discussed in Section 8.2.

In Table 3, we compare HtdSMT with TU Longo.
For this comparison, HtdSMT executed the three solving
strategies serially: first, the greedy repair, then the stratified
encoding and finally the full encoding. This modified version
was able to solve 73 instances within the 30-minute time limit.
We see that HtdSMT can solve considerably more instances
in a shorter amount of time compared to TU Longo .

Name Solved Av. Time [s]

HtdSMT 73 / 100 7.56
TU Longo 35 / 100 138.63

Table 3: Comparison of different solvers.

It is interesting to see the performance differences be-
tween HtdSMT and TU Longo with respect to the magnitude
of the hypertree width of the given instance. Table 4 shows the
results of the different strategies and solvers grouped by hy-
pertree width. TU Longo performs best for lower widths, but
the performance decreases drastically the higher the width be-
comes. In contrast, our algorithm HtdSMT performs equally
well on higher widths.

Hypertree Width

Solver 2 3 4 5 6

Stratified Encoding 8 9 7 29 19
Full Encoding 7 9 9 26 11
Greedy Repair 7 9 7 26 12
TU Longo 9 11 8 7 0

Table 4: Comparison of different solvers and solving strate-
gies grouped by hypertree width.

The cactus plot in Figure 1 provides further information
on how the various solving approaches scale with respect to
the given time limit.

Finally, Table 5 compares the performance of the SMT
encodings with and without symmetry breaking (see Sec-
tion 7). For hypertree decompositions, symmetry breaking
gives us a significant speedup (approximately 15 %). For gen-
eralized hypertree decompositions, however, the addition of
the symmetry breaking clauses has a negative effect. This ef-
fect can be explained by the significant increase in the relative
encoding size, as can be seen from Table 5.

Name Solved Av. Time [s] Av. Size [MB]

HTD SB 62 / 100 150.22 254.20
HTD 62 / 100 175.39 161.01
GHTD SB 73 / 100 77.05 132.27
GHTD 80 / 100 46.91 39.08

Table 5: Impact of symmetry breaking (SB) in conjunction
with computing hypertree decompositions (HTD) and gener-
alized hypertree decompositions (GHTD). The column Size
shows the average size of the encoding file taken over all 100
instances.
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Figure 1: Comparison of different solving approaches.

10 Concluding Remarks
We have presented a new approach for practically computing
the hypertree width of hypergraphs and evaluated them
experimentally on benchmark instances. Our approach uses
a new ordering based characterization of hypertree width,
which leads to an efficient SMT encoding. For further
speedup, we developed a two-phase approach, which first
computes a generalized hypertree decomposition, and utilizes
parts of its structure for computing the hypertree width. We
realized this alternative approach in two ways: with a Greedy
Repair algorithm, and with a Stratified Encoding. The latter
is a novel encoding technique, where a satisfying assignment
for a partial encoding is used to generate stratification clauses
for guiding the solver on the full encoding. Our results are
highly encouraging. Our methods outperform the state-of-
the-art algorithm, solving 73 out of 100 benchmark instances
compared to 35. In particular, on instances of medium to
large hypertree width, our approach outperforms the existing
approach.

As future work, we have several ideas for further
improvements. For instance, the preprocessing methods
developed by Fichte et al. [7] for fractional hypertree width
could be adapted for a use within HtdSMT . Especially the
hyper-clique heuristic should provide a performance increase
for generalized hypertree width so provide the means for
speeding up the Greedy Repair and Stratified Encoding
approaches; it doesn’t apply directly to hypertree width, as it
implicitly determines the root of the decomposition tree.

Another interesting avenue for future research is to
scale our approach to larger hypergraphs through SAT-based
local improvement methods which have recently provided
encouraging results for branchwidth and treewidth [17, 8].
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