
Algorithms and Complexity Group | Institute of Logic and Computation | TU Wien, Vienna, Austria

Technical Report AC-TR-19-005
May 2019

Combining Resolution-Path
Dependencies with
Dependency Learning

Tomáš Peitl, Friedrich Slivovsky, and
Stefan Szeider

This is the authors’ copy of a paper that is to appear in the proceedings of SAT 2019,
the 22nd International Conference on Theory and Applications of Satisfiability Test-
ing, Lisbon, Portugal, July 9-12, 2019
www.ac.tuwien.ac.at/tr

Combining Resolution-Path Dependencies with
Dependency Learning?

Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{peitl,fs,sz}@ac.tuwien.ac.at

Abstract. We present the first practical implementation of the reflex-
ive resolution-path dependency scheme in a QBF solver. Unlike in De-
pQBF, which uses the less general standard dependency scheme, we do
not compute the dependency relation upfront, but instead query relevant
dependencies on demand during dependency conflicts, when the solver is
about to learn a missing dependency. Thus, our approach is fundamen-
tally tied to dependency learning, and shows that the two techniques
for dependency analysis can be fruitfully combined. As a byproduct, we
propose a quasilinear-time algorithm to compute all resolution-path de-
pendencies of a given variable. Experimental results on the QBF library
confirm the viability of our technique and identify families of formulas
where the speedup is particularly promising.

1 Introduction

Dependency analysis is a state-of-the-art technique in QBF solving, in which
the QBF solver attempts to identify spurious syntactic dependencies between
variables and by doing so simplify the quantifier prefix. The historically older
approach to dependency analysis are dependency schemes [14], first implemented
in the QCDCL (Quantified Conflict-Driven Clause/Cube/Constraint Learning)
solver DepQBF [2]. A dependency scheme is a mapping that, given a formula,
identifies pairs of variables that are syntactic dependencies according to the
quantifier prefix, but can in fact be safely ignored. DepQBF employs the stan-
dard dependency scheme in order to identify pairs of variables that are guaran-
teed to be independent. A more recent idea, implemented in the QCDCL solver
Qute [11], is dependency learning, where the solver speculatively assumes all
pairs of variables to be independent, and updates the information whenever it
proves wrong during search.

Since the dawn of DepQBF and its use of the standard dependency scheme,
one of the main open questions in QBF dependency analysis has been whether
stronger dependency schemes can be utilized as well. Since DepQBF uses tailor-
made data structures to efficiently compute the standard dependency scheme [3],
one cannot answer this question by simply substituting a different dependency
scheme into DepQBF. Of particular interest would be an efficient implementation

? This research was partially supported by FWF grants P27721 and W1255-N23.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

of the reflexive resolution-path dependency scheme [16,17], the strongest known
tractable sound one.

The main issue with implementing dependency schemes is that the number of
pairs of variables in the dependency relation can in the worst case be quadratic,
which turns out to be impractical for a large number of relevant formulas. We
therefore take a different approach, and only compute parts of the dependency
relation on demand. We do this during dependency conflicts, a state of the solver
unique to QCDCL with dependency learning, in which the solver attempts to
perform a resolution step, but fails due to universal literals (in the case of clause
resolution) left of the pivot variable appearing in different polarities in the two
clauses and thus blocking the resolution step. When the solver encounters a
dependency conflict, it would normally have to learn a new dependency. Instead,
we compute the dependencies of the pivot variable and filter out any blocking
variables that are actually independent. If it turns out that no blocking variables
remain, the resolution step can be carried out, otherwise a dependency on one
or more of the remaining blocking variables is learned.

While it is known that resolution paths are equivalent to directed paths in the
implication graph of the formula [15], using this result directly would require us
to perform one search for each blocking variable, resulting in an overall quadratic
running time. Instead, we show that all dependencies of a given variable can be
found by searching for widest paths in a weighted variant of the implication
graph. This is a well-studied problem that can be solved efficiently, for instance
in overall quasilinear time using a variant of Dijkstra’s algorithm [9].

We implemented the dependency scheme in the QBF solver Qute, and eval-
uated our implementation on the entire QBF Library [5], preprocessed by the
preprocessor HQSpre [18]. We observed a modest increase in the total number
of solved instances. We also identified families of formulas on which the use of
the dependency scheme appears to be particularly beneficial.

2 Preliminaries

A CNF formula is a finite conjunction C1∧· · ·∧Cm of clauses, a clause is a finite
disjunction (`1 ∨ · · · ∨ `k) of literals, and a literal is a variable x or a negated
variable x. We will also refer to terms (also known as cubes), which are finite
conjunctions of literals. Whenever convenient, we consider clauses and terms as
sets of literals, and CNF formulas as sets of clauses. The length of a CNF formula
ϕ = C1 ∧ · · · ∧ Cm is defined as ‖ϕ‖ =

∑m
i=1 |Cm|.

We consider QBFs in Prenex Conjunctive Normal Form (PCNF), i.e., for-
mulas F = Q.ϕ consisting of a (quantifier) prefix Q and a propositional CNF
formula ϕ, called the matrix of F . The prefix is a sequence Q = Q1x1 . . . Qnxn,
where Qi ∈ {∀,∃} is a universal or existential quantifier and the xi are (univer-
sal or existential) variables. The depth of a variable xi is defined as δ(xi) = i,
the depth of a literal ` is δ(`) = δ(var(`)). If δ(x) < δ(y) we say that x is left
of y, y is right of x, and we write RF (x) = { v ∈ var(F) | δ(x) < δ(v) }, and

2

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

xi ≺F xj if 1 ≤ i < j ≤ n and Qi 6= Qj , dropping the subscript if the formula F
is understood. The length of a PCNF formula F = Q.ϕ is defined as ‖F‖ = ‖ϕ‖.

We assume that PCNF formulas are closed, so that every variable occurring
in the matrix appears in the prefix, and that each variable appearing in the
prefix occurs in the matrix. We write var(x) = var(x) = x to denote the variable
associated with a literal and let var(C) = { var(`) | ` ∈ C } if C is a clause
(term), var(ϕ) =

⋃
C∈ϕ var(C) if ϕ is a CNF formula, and var(F) = var(ϕ)

if F = Q.ϕ is a PCNF formula.
The semantics of a PCNF formula Φ are defined as follows. If Φ does not

contain any variables then Φ is true if its matrix is empty and false if its matrix
contains the empty clause ∅. Otherwise, let Φ = QxQ.ϕ. If Q = ∃ then Φ is true
if Φ[(x)] is true or Φ[(¬x)] is true, and if Q = ∀ then Φ is true if both Φ[(x)]
and Φ[(¬x)] are true.

2.1 QCDCL and Q-resolution

We briefly review QCDCL and Q-resolution [10], its underlying proof system.
More specifically, we consider long-distance Q-resolution, a version of Q-resolu-
tion that admits the derivation of tautological clauses in certain cases. Although
this proof system was already used in early QCDCL solvers [19], the formal def-
inition shown in Figure 1 was given only recently [1]. A dual proof system called
(long-distance) Q-consensus, which operates on terms instead of clauses, is ob-
tained by swapping the roles of existential and universal variables (the analogue
of universal reduction for terms is called existential reduction).

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

The resolution rule allows the derivation of C1 ∨C2 from clauses C1 ∨ e and ¬e∨C2,
provided that the pivot variable e is existential and that e ≺ var(`u) for each universal
literal `u ∈ C1 such that `u ∈ C2. The clause C1 ∨C2 is called the resolvent of C1 ∨ e
and ¬e ∨ C2. Each variable u for which `u ∈ C1 and `u ∈ C2 is said to be merged
over e in this resolution step.

C (universal reduction)
C \ {u,¬u}

The universal reduction rule admits the deletion of a universal variable u from a
clause C under the condition that e ≺ u for each existential variable e in C.

Fig. 1. Long-distance Q-resolution.

A (long-distance) Q-resolution derivation from a PCNF formula Φ is a se-
quence of clauses such that each clause appears in the matrix of Φ or can be
derived from clauses appearing earlier in the sequence using resolution or univer-
sal reduction. A derivation of the empty clause is called a refutation, and one can

3

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

show that a PCNF formula is false, if, and only if, it has a long-distance Q-res-
olution refutation [1]. Dually, a PCNF formula is true, if, and only if, the empty
term can be derived from a DNF representation of its matrix by Q-consensus.

Starting from an input PCNF formula, QCDCL generates (“learns”) con-
straints—clauses and terms—until it produces an empty constraint. Every clause
learned by QCDCL can be derived from the input formula by Q-resolution, and
every term learned by QCDCL can be derived by Q-consensus [4,6]. Accordingly,
the solver outputs true if the empty term is learned, and false if the empty
clause is learned.

3 Resolution-Path Dependency Scheme

The reflexive resolution path dependency scheme detects spurious dependencies
of PCNF formulas based on resolution paths [16, 17].

Definition 1 (Resolution Path). Let F = Q.ϕ be a PCNF formula and let
X be a set of variables. A resolution path from `1 to `2k in F is a sequence
π = `1, . . . , `2k of literals satisfying the following properties:

1. for all i ∈ {1, . . . , k}, there is a Ci ∈ ϕ such that `2i−1, `2i ∈ Ci,
2. for all i ∈ {1, . . . , k}, var(`2i−1) 6= var(`2i),
3. for all i ∈ {1, . . . , k − 1}, `2i = `2i+1.

If additionally

4. for all i ∈ {1, . . . , k − 1}, {`2i, `2i+1} ⊆ X ∪X,

then we say that π is a resolution path via X. If π = `1, . . . , `2k is a resolution
path in F (via X), we say that `1 and `2k are connected in F (with respect
to X). For every i ∈ {1, . . . , k − 1} we say that π goes through var(`2i) and
var(`2i), 1 ≤ i < k are the connecting variables of π.

Definition 2 (Proper Resolution Path). Let `, `′ be two literals of a PCNF
formula F such that δ(`′) < δ(`) . A resolution path from ` to `′ is called proper,
if it is a resolution path via RF (var(`′))∩var∃(F). If there is a proper resolution
path from ` to `′, we say that ` and `′ are properly connected (in F).

Resolution paths can be understood in terms of walks in the implication graph
of a formula [15].

Definition 3 (Implication graph). Let F = Q.ϕ be a PCNF formula. The
implication graph of F , denoted by IG(F) is the directed graph with vertex set
var(F) ∪ var(F) and edge set { (`, `′) | there is a C ∈ ϕ such that `, `′ ∈ C and
` 6= `′ }.

Lemma 1 ([15]). Let F be a PCNF formula and let `, `′ ∈ var(F)∪ var(F) be
distinct literals. The following statements are equivalent:

1. `, `1, `1, . . . , `k, `k, `
′ is a resolution path from ` to `′,

4

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

2. `, `1, . . . , `k, `
′ is a path in IG(F).

The resolution path dependency scheme identifies variables connected by a pair
of resolution paths as potentially dependent on each other. We call a pair of
variables connected in this way a dependency pair.

Definition 4 (Dependency pair). Let F be a PCNF formula and x, y ∈
var(F). We say {x, y} is a resolution-path dependency pair of F with respect
to X ⊆ var∃(F) if at least one of the following conditions holds:

– x and y, as well as ¬x and ¬y, are connected in F with respect to X.

– x and ¬y, as well as ¬x and y, are connected in F with respect to X.

It remains to determine the set X of variables with respect to which a pair x, y
of variables needs to be connected to induce a dependency. For x ≺F y, the orig-
inal resolution-path dependency scheme only included dependency pairs {x, y}
connected with respect to existential variables to the right of x, excluding x
and y. It turns out that this dependency scheme can be used for reordering the
quantifier prefix [15] but does not lead to a sound generalization of Q-resolution
as required for use within a QCDCL-solver [16]. By dropping the restriction
that x and y must not appear on the resolution paths inducing a dependency
pair, we obtain the reflexive resolution-path dependency scheme, which yields a
sound generalization of Q-resolution [16].

Definition 5 (Proper dependency pair). Let F be a PCNF formula and
x, y ∈ var(F), δ(x) < δ(y). We say {x, y} is a proper resolution-path dependency
pair of F if at least one of the following conditions holds:

– x and y, as well as ¬x and ¬y, are properly connected in F .

– x and ¬y, as well as ¬x and y, are properly connected in F .

Definition 6. The reflexive resolution-path dependency scheme is the mapping
Drrs that assigns to each PCNF formula F = Q.ϕ the relation

Drrs
F = {x ≺F y | {x, y} is a proper resolution-path dependency pair of F }.

When Drrs is used in QCDCL solving, the solver learns clauses in a generalization
of long-distance Q-resolution called LDQ(Drrs)-resolution. Figure 3 shows the
proof rules of LDQ(Drrs)-resolution. Soundness of LDQ(Drrs)-resolution has been
established by [12].

Theorem 1 (Corollary 3, [12]). LDQ(Drrs)-resolution is sound.

We note that the soundness of the corresponding LDQ(Drrs)-consensus for terms
still remains as an open problem. In our experiments with the proof system, we
have been able to independently verify the truth value of all formulas by a
different QBF solver.

5

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

(input clause)
C

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1∨e and ¬e∨C1,
where e is an existential variable, the (long-distance) resolution rule can derive the
clause C1 ∨ C2, provided that (u, e) /∈ Drrs

F for each universal variable u with u ∈ C1

and u ∈ C2 (or vice versa), and that C1 ∨C2 does not contain an existential variable
in both polarities.

C (generalized ∀-reduction)
C \ {u,¬u}

The ∀-reduction rule derives the clause C \ {u,¬u} from C, where u ∈ var(C) is a
universal variable such that (u, e) /∈ Drrs

F for every existential variable e ∈ var(C).

Fig. 2. Derivation rules of LDQ(Drrs)-resolution for a PCNF formula F = Q.ϕ.

4 Using Resolution-Path Dependencies in Practice

The major issue with implementing any dependency scheme for use in a QBF
solver is the fact that the size of the dependency relation is inherently worst-case
quadratic in the number of variables—all pairs of variables of opposite quantifier
type potentially need to be stored. QBFs of interest often contain hundreds of
thousands of variables, and therefore any procedure with quadratic complexity is
infeasible. DepQBF overcomes this by identifying equivalence classes of variables
with identical dependency information, and storing only one chunk of data per
equivalence class [3]. This compressed form, however, is specifically tailored to
the standard dependency scheme, and cannot directly be transferred to other
dependency schemes.

4.1 Dynamically Applying Drrs

In order to avoid the quadratic blowup, we take a different approach. We do not
aim at computing the entire dependency relation, but instead compute parts of
it on demand, when a dependency conflict occurs.

Dependency conflicts in clause learning in QCDCL with dependency learning
take place in the following way (in this entire section we focus on the case of
clauses, but the case of term learning is dual): the solver attempts to resolve
two clauses, C1 and C2, over a pivot variable e, but there is a non-empty set of
universal variables U , such that

∀u ∈ U u ≺ e, (u ∈ C1 ∧ u ∈ C2) ∨ (u ∈ C1 ∧ u ∈ C2).

These variables are blocking the resolution step, as is shown in the pseudocode
snippet in Algorithm 1 (for a more thorough treatment of QCDCL with depen-
dency learning we refer to [11]). The reason why this occurs is that the solver

6

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

mistakenly assumed e not to depend on any u ∈ U , and this erroneous assump-
tion is now to be rectified by learning the dependency of e on at least one variable
from U .

Algorithm 1 Conflict Analysis with Dependency Learning

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do
4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint , reason, pivot) then
7: constraint = resolve(constraint , reason, pivot)
8: constraint = reduce(constraint)
9: else // dependency conflict

10: U = illegalMerges(constraint , reason, pivot)
11: D = D ∪ { (v, pivot) | v ∈ U }
12: return none, decisionLevel(pivot)
13: end if
14: end while
15: btlevel = getBacktrackLevel(constraint)
16: return constraint , btlevel
17: end procedure

We can conveniently insert a dynamically computed dependency scheme at
this moment. Before any dependency of e is learned, the dependencies of e ac-
cording to the dependency scheme are computed. Any u ∈ U that turns out
to be independent of e can be removed from the set of blocking variables. If
everything in U is independent, no dependency needs to be learned, and conflict
analysis can proceed by performing a resolution step in LDQ(Drrs)-resolution,
in which all u ∈ U are merged over e. If some variables in U turn out to be
actual dependencies of e, at least one of them has to be learned as usual. The
modification to the conflict analysis process is shown in Algorithm 2.

The computed dependencies of e are then stored and re-used in any future
dependency conflicts featuring e as the pivot variable, as well as in strengthening
the reduction rule.

Soundness of QCDCL with dependency learning and the reflexive resolution-
path dependency scheme follows from the soundness of long-distance Q(Drrs)-res-
olution, the underlying proof system used by the algorithm.

4.2 Dynamically Computing Drrs

When computing resolution-path connections, it is natural to start with a vari-
able v, and compute all variables which depend on v. This is because in this
case, the set of connecting variables that can form proper resolution paths is

7

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

Algorithm 2 Conflict Analysis with DL and a Dependency Scheme

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do
4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint , reason, pivot) then
7: constraint = resolve(constraint , reason, pivot)
8: constraint = reduce(constraint)
9: else // dependency conflict

10: U = illegalMerges(constraint , reason, pivot)
11: rrs deps[pivot] = getDependencies(pivot)

12: U = U ∩ rrs deps[pivot]

13: if U = ∅ then
14: goto 7
15: else
16: D = D ∪ { (v, pivot) | v ∈ U }
17: return none, decisionLevel(pivot)
18: end if
19: end if
20: end while
21: btlevel = getBacktrackLevel(constraint)
22: return constraint , btlevel
23: end procedure

fixed—all existential variables right of v are permitted—and the task of find-
ing everything that depends on v is reducible to reachability in a single directed
graph. However, since a dependency conflict may feature any number of blocking
variables, we would potentially need to perform the search many times in order
to check each dependency. It would be preferable to compute all dependencies of
the pivot variable instead. However, since for every blocking variable u ∈ U , the
set of allowed connecting variables may be different, we cannot reduce the task
of finding all dependencies of the pivot e to just reachability in a single directed
graph, and we need a different approach.1

Definition 7. Let F be a PCNF formula, ` a literal of F , and w` : var(F) ∪
var(F)→ R ∪ {±∞} the mapping defined by

w`(l) =





∞ if l = `,

δ(`) if l 6= ` and var(l) is existential,

−∞ otherwise.

The depth-implication graph for F at `, denoted DIG(F , `) is the weighted ver-
sion of IG(F) where the weight of an edge (`1, `2) is defined as w(`1, `2) = w`(`1).

1 This is the case regardless of the quantifier type of the pivot, the issue is that different
targets in the set of blocking variables can be reached using different connecting
variables.

8

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

For a path π in a weighted directed graph G, the width of π is defined as the
minimum weight over all edges of π. The following theorem relates resolution
paths in a formula with widest paths in its depth-implication graph.

Theorem 2. Let `, `′ be two literals of a PCNF formula F such that δ(`′) <
δ(`). There is a proper resolution path from ` to `′ if, and only if, the widest path
from ` to `′ in DIG(F , `) has width larger than δ(`′).

Proof. Let π = `, `2, . . . , `2k−1, `′ be a proper resolution path, and let π′ =
`, `2, . . . , `2k−2, `′ be the corresponding path in DIG(F , `) (by Lemma 1). The
width of π′ is defined as

w(π′) = min
{
w(`, `2), . . . , w(`2k−2, `

′)
}

= min
{
w`(`), . . . , w`(`2k−2)

}
.

Since w`(`) = ∞ and π is proper and hence none of its connecting variables
are universal, we have that w(π′) = min {δ(`2), . . . , δ(`2k−2)} > δ(`′), where the
inequality follows from π being proper.

Conversely, let π′ = `1, `2, . . . , `k, `
′ be a path of width greater than δ(`′),

and let π = `1, `2, `2, . . . , `k, `k, `
′ be the corresponding resolution path. Since

w(π′) > δ(`′), no connecting variables in π can be universal, and they all have
to be right of `′, hence π is proper. ut

Naively applying the algorithm from [15] would result in an overall quadratic
running time needed to determine all dependencies of a given variable v. Using
Theorem 2 we can reduce the task to two searches for widest paths, and obtain
a much more favourable time bound.

Theorem 3. Given a variable v of a PCNF formula F , all resolution-path de-
pendencies, i.e., the set {x ∈ var(F) | (x, v) ∈ Drrs

F }, can be computed in time
O
(
‖F‖ log ‖F‖

)
.

Proof. In order to find out whether a given candidate variable x is a dependency
of v, one has to determine whether there is a pair of proper resolution paths,
either from v to x and from v to x, or from v to x and from v to x. Theorem 2 tells
us that the existence of proper resolution paths is equivalent to existence of wide
paths. A generalization of Dijkstra’s algorithm can compute widest paths from
a single source to all destinations in a given graph in quasilinear time [9]. The
key observation is that the entire computation is performed within two graphs,
namely DIG(F , v) and DIG(F , v). By computing all widest paths from both
v and v, and then subsequently checking for which candidate variables x both
polarities of x are reached by a wide enough path, we can find all dependencies
of v.

By using the clause-splitting trick like in [15] we can, in linear time, obtain an
equisatisfiable formula F ′ with var(F) ⊆ var(F ′) such that the resolution-path
connections between variables of F are the same. Since F ′ has bounded clause
size, we get that the number of edges in IG(F ′) is O

(
‖F ′‖) = O

(
‖F‖), and the

stated running time is then simply the running time of Dijkstra’s algorithm. ut

9

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

5 Experiments

We modified the dependency-learning solver Qute so as to perform the procedure
described above—when a dependency is about to be learned, resolution-path de-
pendencies of the pivot variable are computed, and all blocking variables that
turned out to be spurious dependencies are eliminated. Furthermore, the com-
puted dependencies are kept for re-use in future dependency conflicts featuring
the same pivot variable, as well as to be used in generalized ∀-reduction.

We evaluated our solver on a cluster of 16 machines each having two 10-
core Intel Xeon E5-2640 v4, 2.40GHz processors and 160GB of RAM, running
Ubuntu 16.04. We set the time limit to 900 seconds and the memory limit to 4GB.
As our benchmark set, we selected the QDIMACS instances available in the QBF
Library2 [5]. We first preprocessed them using the preprocessor HQSpre3 [18]
with a time limit of 400 seconds, resulting in a set of 14893 instances not solved by
HQSpre. Out of these instances, we further identified the set of easy instances as
those solved within 10 seconds by each of the following solvers: CaQE4 3.0.0 [13],
DepQBF5 6.03 [2], QESTO6 1.0 [8], Qute7 1.1 [11], and RaReQS8 1.1 [7]. We
decided to focus only on instances not solved by at least one of these solvers in
under 10 seconds, as it arguably makes little sense to try and push state of the
art for formulas that can already be solved in almost no time regardless of the
choice of the solver. That left us with a set of 11262 instances.

Table 1 and Figure 3 show the comparison between plain Qute and the version
which implements the dependency scheme (Qute-Drrs). The version with the
dependency scheme solved 176 (roughly 4.5%) more instances than the version
without. The scatter plot in Figure 3 deserves further attention. While the overall
number of solved instances is higher for Qute-Drrs, the plot is skewed towards
Qute-Drrs. We attribute this to a small overhead associated with the use of the
dependency scheme, which is most apparent for the easiest formulas. The plot
also shows that there are a few formulas solved by the plain version, but not
by Qute-Drrs. This is only partly due to the additional time spent computing
resolution paths, and is, in our opinion, in much larger part due to the heuristics
being led off the right track towards a proof of the formula.

We found two families of instances where the increase in number of solved
instances is even more significant, as is documented in Table 1. Particularly
on the matrix multiplication and reduction finding benchmarks the dependency
scheme provides a tremendous boost of performance, resulting in almost four
times as many solved instances.

2 http://www.qbflib.org/
3 https://projects.informatik.uni-freiburg.de/users/4
4 https://www.react.uni-saarland.de/tools/caqe
5 https://github.com/lonsing/depqbf
6 http://sat.inesc-id.pt/˜mikolas/sw/qesto
7 https://github.com/perebor/qute
8 http://sat.inesc-id.pt/˜mikolas/sw/areqs

10

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

Table 1. Number of instances solved by plain Qute vs Qute using the reflexive
resolution-path dependency scheme on the ‘matrix multiplication’ and ‘reduction find-
ing’ families of formulas, as well as on all instances.

MM-family RF-family all instances

of instances 334 2269 11262

solved by Qute (SAT / UNSAT) 34 (4/30) 423 (140/283) 3959 (1467/2492)
solved by Qute-Drrs (SAT / UNSAT) 123 (4/119) 484 (144/340) 4135 (1489/2646)

6 Conclusion and Future Work

We presented the first practical implementation ofDrrs in a QBF solver. Thus, we
have demonstrated that the strongest known tractable sound dependency scheme
can be efficiently used in QBF solving. Our approach shows that dependency
schemes can be fruitfully combined with dependency learning. Our algorithm
for the computation of all resolution-path dependencies of a given variable may
also be of independent interest.

While the additional prefix relaxation that comes from Drrs is no cure-all
for the hardness of QBF, we have found families of formulas where it provides
a significant speedup. In particular, the use of the dependency scheme turned
out very beneficial on the ‘matrix multiplication’ and ‘reduction finding’ classes,
which are both practically relevant applications and further improvement using
QBF would be valuable.

A possible direction for future work is to try to further improve the time
bound of our algorithm for computing the resolution-path dependencies of a
variable either by using data structures more suitable for this concrete scenario,
or by preprocessing the formula. A succinct, possibly implicit, representation of
Drrs for use in other solver architectures would also be very interesting.

References

1. Valeriy Balabanov and Jie-Hong Roland Jiang. Unified QBF certification and its
applications. Formal Methods in System Design, 41(1):45–65, 2012.

2. Armin Biere and Florian Lonsing. Integrating dependency schemes in search-
based QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and
Applications of Satisfiability Testing - SAT 2010, volume 6175 of Lecture Notes in
Computer Science, pages 158–171. Springer Verlag, 2010.

3. Arming Biere and Florian Lonsing. A compact representation for syntactic depen-
dencies in QBFs. In Oliver Kullmann, editor, Theory and Applications of Satis-
fiability Testing - SAT 2009, volume 5584 of Lecture Notes in Computer Science,
pages 398–411. Springer Verlag, 2009.

11

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

10−3 10−2 10−1 100 101 102 103

Qute

10−3

10−2

10−1

100

101

102

103

Q
u

te
-D

rr
s

Fig. 3. Runtimes of Qute with and without Drrson all instances.

12

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

4. Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof
generation and strategy extraction in search-based QBF solving. In Kenneth L.
McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning - LPAR 2013, volume 8312 of Lecture Notes
in Computer Science, pages 291–308. Springer Verlag, 2013.

5. E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tacchella. Quantified Boolean
Formulas satisfiability library (QBFLIB), 2005. www.qbflib.org.

6. Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/term
resolution and learning in the evaluation of Quantified Boolean Formulas. J. Artif.
Intell. Res., 26:371–416, 2006.

7. Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke.
Solving QBF with counterexample guided refinement. In Alessandro Cimatti and
Roberto Sebastiani, editors, Theory and Applications of Satisfiability Testing - SAT
2012, volume 7317 of Lecture Notes in Computer Science, pages 114–128. Springer
Verlag, 2012.

8. Mikolás Janota and Joao Marques-Silva. Solving QBF by clause selection. In
Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, pages 325–
331. AAAI Press, 2015.

9. Volker Kaibel and Matthias Peinhardt. On the bottleneck shortest path problem.
Zib-report 06-22, Zuse Institute Berlin, 2006.

10. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean
formulas. Information and Computation, 117(1):12–18, 1995.

11. Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for
QBF. Journal of Artificial Intelligence Research, vol. 65, 2019.

12. Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-resolution
with dependency schemes. Journal of Automated Reasoning, 63(1):127–155, Jun
2019.

13. Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In Roope
Kaivola and Thomas Wahl, editors, Formal Methods in Computer-Aided Design -
FMCAD 2015, pages 136–143. IEEE Computer Soc., 2015.

14. Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean formulas.
Journal of Automated Reasoning, 42(1):77–97, 2009.

15. Friedrich Slivovsky and Stefan Szeider. Quantifier reordering for QBF. Journal of
Automated Reasoning, 56(4):459–477, 2016.

16. Friedrich Slivovsky and Stefan Szeider. Soundness of Q-resolution with dependency
schemes. Theoretical Computer Science, 612:83–101, 2016.

17. Allen Van Gelder. Variable independence and resolution paths for quantified
Boolean formulas. In Jimmy Lee, editor, Principles and Practice of Constraint
Programming - CP 2011, volume 6876 of Lecture Notes in Computer Science, pages
789–803. Springer Verlag, 2011.

18. Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker. HQSpre - an effective
preprocessor for QBF and DQBF. In Axel Legay and Tiziana Margaria, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Inter-
national Conference, TACAS 2017, volume 10205 of Lecture Notes in Computer
Science, pages 373–390, 2017.

19. Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean
satisfiability solver. In Lawrence T. Pileggi and Andreas Kuehlmann, editors,
Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided
Design, ICCAD 2002, San Jose, California, USA, November 10-14, 2002, pages
442–449. ACM / IEEE Computer Society, 2002.

13

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

5

