May 2019

Proof Complexity of Fragments of Long-Distance Q-Resolution

Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

This is the authors' copy of a paper that is to appear in the proceedings of SAT 2019, the 22nd International Conference on Theory and Applications of Satisfiability Testing, Lisbon, Portugal, July 9-12, 2019
www.ac.tuwien.ac.at/tr
Proof Complexity of Fragments of Long-Distance Q-Resolution

Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{peitl,fs,sz}@ac.tuwien.ac.at

Abstract. Q-resolution is perhaps the most well-studied proof system for Quantified Boolean Formulas (QBFs). Its proof complexity is by now well understood, and several general proof size lower bound techniques have been developed. The situation is quite different for long-distance Q-resolution (LDQ-resolution). While lower bounds on LDQ-resolution proof size have been established for specific families of formulas, we lack semantically grounded lower bound techniques for LDQ-resolution.

In this work, we study restrictions of LDQ-resolution. We show that a specific lower bound technique based on bounded-depth strategy extraction does not work even for reductionless Q-resolution by presenting short proofs of the QParity formulas. Reductionless Q-resolution is a variant of LDQ-resolution that admits merging but no universal reduction. We also prove a lower bound on the proof size of the completion principle formulas in reductionless Q-resolution. This shows that two natural fragments of LDQ-resolution are incomparable: Q-resolution, which allows universal reductions but no merging, and reductionless Q-resolution, which allows merging but no universal reductions. Finally, we develop semantically grounded lower bound techniques for fragments of LDQ-resolution, specifically tree-like LDQ-resolution and regular reductionless Q-resolution.

1 Introduction

The effectiveness of modern satisfiability (SAT) solvers has established propositional logic as the language of choice for encoding hard combinatorial problems from areas such as formal verification [8, 33] and AI planning [27]. However, since the computational complexity of these problems usually exceeds the complexity of SAT, propositional encodings of such problems can be exponentially larger than their original descriptions. This imposes a limit on the problem instances that can be feasibly solved even with extremely efficient SAT solvers, and has prompted research on decision procedures for more succinct logical formalisms such as Quantified Boolean Formulas (QBFs).

QBFs augment propositional formulas with existential and universal quantification over truth values and can be exponentially more succinct. The downside of this conciseness is that the satisfiability problem of QBFs is PSPACE-

* This research was partially supported by FWF grants P27721 and W1255-N23.
complete [29], and in spite of substantial progress in solver technology, practically relevant instances remain hard to solve. Unlike in the case of SAT, where Conflict-Driven Clause Learning (CDCL) [15] has emerged as the single dominant solving paradigm, there is a variety of competing solver architectures for QBF, most of which are either based on a generalization of CDCL (QCDCL) [11, 35], quantifier expansion [7, 17], or clausal abstraction [18, 26, 30].

Research in proof complexity has provided valuable insights into the theoretical limits of different solving approaches and their relative strengths and weaknesses. *Q-resolution* [21] is perhaps the most well-studied QBF proof system, largely due to the fact that it is used by QCDCL solvers for proof generation (see Section 3). Early proof size lower bounds for Q-resolution relied on propositional hardness or ad-hoc arguments [21]. Semantically grounded lower bound techniques based on strategy extraction have been developed only recently [6, 4]. These techniques identify properties of winning strategies extracted from proofs and use them to derive proof size lower bounds. They not only help us prove lower bounds for new classes of formulas but afford a better understanding of what kinds of problems certain proof systems can solve efficiently.

Long-distance Q-resolution is a variant of Q-resolution which allows the derivation of syntactically tautological clauses in certain cases [1] and which is arguably the most natural proof system for use in a QCDCL solver [35, 13]. Although lower bounds for long-distance Q-resolution have been proved [3, 6], we lack semantically grounded lower bound techniques for this proof system. In this paper, we present results on the proof complexity of restricted versions of long-distance Q-resolution:

1. We prove an exponential lower bound on the reductionless Q-resolution [9] for the proof size of a class of QBFs with short Q-resolution refutations [20].
2. We observe that the QParity formulas [6] have short proofs in reductionless Q-resolution. It has already been shown that these formulas have short (linear) proofs in long-distance Q-resolution [12], and in fact these proofs are reductionless. In combination with the first result, this proves the incomparability of Q-resolution and reductionless Q-resolution. It also marks the breakdown of a semantically grounded lower bound technique for Q-resolution [6]—strategies corresponding to reductionless Q-resolution proofs cannot be efficiently represented by bounded-depth circuits.
3. Finally, we develop semantically grounded lower bound techniques for restricted subsystems of long-distance Q-resolution. Specifically, we show that the strategy functions computed by proofs in regular reductionless Q-resolution are read-once branching programs, and that tree-like long-distance Q-resolution proofs correspond to bounded depth circuits.

2 Preliminaries

We assume a countably infinite set V of propositional *variables* and consider propositional formulas constructed from V using the connectives \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication), and \leftrightarrow (the biconditional).
The size $|\varphi|$ of a propositional formula φ is number of variable occurrences in φ plus the number of connectives. Given a propositional formula φ, we write $\text{var}(\varphi)$ to denote the set of variables occurring in φ. A literal is a variable v or a negated variable $\neg v$. A clause is a finite disjunction of literals. A clause is tautological if it contains both v and $\neg v$ for some variable v. A propositional formula is in conjunctive normal form (CNF) if it is a finite conjunction of non-tautological clauses. An assignment (or variable assignment) is a function that maps a subset $X \subseteq V$ of variables to the set $\{0, 1\}$ of truth values. Given a propositional formula φ and an assignment $\tau : X \to \{0, 1\}$ with $\text{var}(\varphi) \subseteq X$, we let $\varphi[\tau]$ denote the truth value obtained by evaluating φ under τ. The formula φ is satisfied by τ if $\varphi[\tau] = 1$, otherwise it is falsified by τ.

We consider Quantified Boolean Formulas in Prenex Conjunctive Normal Form (PCNF). A PCNF formula $F = Q \varphi$ consists of a quantifier prefix Q and a propositional formula φ in conjunctive normal form, called the matrix of F. The quantifier prefix is a sequence $Q_1 x_1 \ldots Q_n x_n$ where $Q_i \in \{\exists, \forall\}$ and the x_i are pairwise distinct variables for $1 \leq i \leq n$. The quantifier prefix defines an ordering $<_F$ on its variables as $x_i <_F x_j$ for $1 \leq i < j \leq n$. We assume that $\{x_1, \ldots, x_n\} = \text{var}(\varphi)$ and write $\text{var}(F) = \text{var}(\varphi)$. The set of existential variables of F is $\text{var}_\exists(F) = \{x_i \mid 1 \leq i \leq n, Q_i = \exists\}$, and the set of universal variables of F is $\text{var}_\forall(F) = \{x_i \mid 1 \leq i \leq n, Q_i = \forall\}$.

A strategy function for a universal variable $u \in \text{var}_\forall(F)$ is a Boolean function $f_u : 2^{D_u^F} \to \{0, 1\}$. Here, $D_u^F = \{v \in \text{var}_\exists(F) \mid v <_F u\}$ is the set of existential variables to the left of u in the quantifier prefix and $2^{D_u^F}$ denotes the set of assignments of D_u^F. A universal winning strategy for a PCNF formula F is a family $\{f_u \mid u \in \text{var}_\forall(F)\}$ of strategy functions with the following property. Let $\tau : \text{var}(F) \to \{0, 1\}$ be an assignment satisfying $\tau(u) = f_u(\tau|_{D_u^F})$ for each universal variable u, where $\tau|_{D_u^F}$ denotes the restriction of τ to D_u^F. Then the matrix of F is falsified by τ. A PCNF formula F is false if there exists a universal winning strategy for F and true otherwise.

3 Q-Resolution Proof Systems

In this section, we are going to introduce several clausal proof systems for PCNF formulas. The original Q-resolution proof system consists of propositional resolution and the universal reduction rule for dealing with universally quantified variables. This system—which is displayed in Figure 1—was shown to be sound and complete for false PCNF formulas [21]. Different variants of Q-resolution can be identified as the proof systems underlying search-based QBF solvers. For instance, the traces of certain DPLL-style algorithms can be mapped to Q-resolution proofs [14]. However, since ordinary Q-resolution explicitly forbids tautological resolvents, this requires that literals that would result in a tautology be resolved away in a recursive manner, a process that was shown to require exponential time in the worst case [32].

The exponential overhead can be avoided by a more intricate analysis of the implication graph [23], but arguably the more natural solution is to allow
An input clause \(C \in \varphi \) can be used as an axiom. From two clauses \(C_1 \lor e \) and \(\neg e \lor C_2 \), the resolution rule can derive the clause \(C_1 \lor C_2 \) provided that it is non-tautological. Here, \(e \) is an existential variable called the pivot.

\[
\frac{C \lor \ell}{C} \quad \text{(universal reduction)}
\]

The universal reduction rule can derive the clause \(C \) from \(C \lor \ell \) if \(\text{var}(\ell) \) is universal and there is no existential variable \(e \in \text{var}(C) \) with \(\ell < \varphi e \).

Fig. 1. Derivation rules of \(Q \)-resolution for a PCNF formula \(F = Q \varphi \).

tautological clauses during learning. This was the approach taken by an early version of CDCL for QBF [35], but the resulting proof system was only studied and proven sound under the name of long-distance \(Q \)-resolution much later [1].

Long-distance \(Q \)-resolution involves a generalized resolution rule that allows for the derivation of tautologies, or equivalently, of merged literals. A merged literal \(u^* \) is generated for a universal variable \(u \) upon resolving a clause \(C_1 \lor e \lor u \) with a clause \(C_2 \lor \neg e \lor \neg u \). Here, it is required that \(e < u \) in the quantifier prefix.

Since \(u^* \) is essentially a shorthand for \(u \lor \neg u \), we let \(u^* = u^* \) and \(\text{var}(u^*) = u \).

The resolution rule of long-distance \(Q \)-resolution is shown in Figure 2. The long-distance \(Q \)-resolution (LDQ-resolution) proof system is comprised of the input clause rule, long-distance resolution, and universal reduction.

\[
\frac{C_1 \lor e \quad \neg e \lor C_2}{(C_1 \setminus C_2) \lor (C_2 \setminus C_1) \lor \{ u^* \mid u \in \text{var}(C_1 \cap C_2) \}} \quad \text{(long-distance resolution)}
\]

The long-distance resolution rule can derive clauses containing merged literals \(u^* \) for universal variables \(u \). We require that \(e < \varphi u \) for each such variable \(u \in \text{var}(C_1 \cap C_2) \), and that \(C_1 \lor C_2 \) does not contain an existential variable and its negation.

Fig. 2. The long-distance resolution rule for a PCNF formula \(F \).

The QBF solver GhostQ [22] uses a restricted version of long-distance \(Q \)-resolution without universal reduction. Indeed, in a search-based solver that assigns variables in the order of the quantifier prefix, universal reduction is not required to derive a learned clause. One only needs to identify purely universal clauses, which are treated as if they were empty. The corresponding traces can be construed as derivations in the proof system shown in Figure 3. We refer to
this system—which was first studied under the name of Q^w-resolution [9]—as reductionless Q-resolution.

\[
\frac{\neg e \lor C_2}{(C_1 \setminus C_2) \lor (C_2 \setminus C_1) \lor \{ u^* \mid u \in \text{var}(C_1 \cap C_2) \}} \quad (\text{long-distance resolution})
\]

Every input clause $C \in \varphi$ can be used as an axiom.

\[
\frac{C_1 \lor e}{\neg e \lor C_2}
\]

As usual, we consider derivations in these proof systems which are sequences C_1, \ldots, C_k of clauses such that each clause C_i is an axiom or derived from clauses appearing earlier in the sequence using one of the proof rules. The size of a derivation is the number k of clauses in the sequence. A refutation is a derivation of the empty clause or, in the case of reductionless Q-resolution, a derivation of a purely universal clause.

In the following sections, we will sometimes write $C_1 \circ_x C_2$ to denote the resolvent of C_1 and C_2 on pivot x. If the pivot is understood we may simply write $C_1 \circ C_2$.

4 A Lower Bound for Reductionless Q-resolution

We generalize an exponential lower bound for level-ordered Q-resolution [19] for the completion principle formulas CR_n defined below. A Q-resolution derivation is level-ordered if the order of pivot variables encountered on any path in the derivation follows the order in the quantifier prefix. A level-ordered Q-resolution refutation can be turned into a reductionless Q-resolution refutation simply by omitting the reduction steps.

Definition 1 ([19]). Let

\[
\text{CR}_n = \exists_{1 \leq i,j \leq n} x_{ij} \forall z \exists_{i=1}^n a_i \exists_{j=1}^n b_j \left(\bigwedge_{1 \leq i,j \leq n} A_{ij} \land B_{ij} \right) \land A \land B,
\]

where

\[
A_{ij} = x_{ij} \lor z \lor a_i, \quad B_{ij} = \overline{x_{ij}} \lor \overline{z} \lor b_j, \quad A = \overline{a_1} \lor \cdots \lor \overline{a_n}, \quad B = \overline{b_1} \lor \cdots \lor \overline{b_n}.
\]
We will prove the following result.

Theorem 1. Any reductionless Q-resolution refutation of the formula CRₙ has size at least 2ⁿ.

In the following we assume n ≥ 2 (Theorem 1 obviously holds for n = 1), Π is a reductionless Q-resolution refutation of CRₙ, C is a clause of Π, and C⊥ the conclusion of Π (recall that a reductionless Q-resolution refutation ends in a purely universal clause). For the purposes of this subsection, we will consider a merged literal u∗ as a shorthand for u ∨ ¬u.

Claim 1. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n,
- if aᵢ ∈ C or xᵢj ∈ C then z ∈ C,
- if bⱼ ∈ C or xᵢj ∈ C then z ∈ C.

Proof. The statement holds for input clauses and universal literals are never removed from clauses. ⊓ ⊔

Claim 2. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n,
- if aᵢ ∈ C then z ∈ C or C = A,
- if bⱼ ∈ C then z ∈ C or C = B.

Proof. The statement holds for input clauses. Let C be the resolvent of C₁ and C₂ and assume without loss of generality that z ∈ C₁. By induction hypothesis either z ∈ C₁, in which case z ∈ C, or C₁ = A, in which case the resolution step is over some pivot aᵢ. That means aᵢ ∈ C₂, and by Claim 1 we have z ∈ C₂ and so z ∈ C. ⊓ ⊔

Claim 3.
- For all 1 ≤ i ≤ n, if z \notin C ∧ π₁ \notin C ∧ C ≠ B, then there is j, such that xᵢj ∈ C,
- For all 1 ≤ j ≤ n, if z \notin C ∧ bⱼ \notin C ∧ C ≠ A, then there is i, such that xᵢj ∈ C.

Proof. By induction on the proof size. The statement clearly holds for input clauses. Let C be the resolvent of C₁ and C₂. Since z \notin C, both z \notin C₁ and z \notin C₂. Since π₁ \notin C, either π₁ \notin C₁ or π₁ \notin C₂, assume the first. If C₁ = B, then the resolution step can only resolve away one of the literals, and so there is j such that xᵢj ∈ C. By Claim 2 (since C ≠ B) we have z ∈ C, a contradiction. Therefore C₁ ≠ B and by induction hypothesis there is j such that xᵢj ∈ C₁. Unless the resolution step is on xᵢj, we have xᵢj ∈ C, so it remains to prove that this is indeed not the case. If xᵢj were the pivot, then πᵢj ∈ C₂, hence z ∈ C₂, a contradiction. ⊓ ⊔

Claim 4. The conclusion C⊥ contains z⁺.

Proof. C⊥ contains no existential literals and is distinct from A and B, so in order not to be in contradiction with Claim 3, the statement has to hold. ⊓ ⊔
Claim 5. If \(z, \bar{z} \in C \), then for all \(1 \leq i, j \leq n \) we have \(a_i, \overline{a_i}, b_j, \overline{b_j} \notin C \).

Proof. Consider the last \(C \) that violates this implication. Clearly \(C \neq C_\bot \). Therefore, there is \(C_0 \) and \(C_1 \) such that \(C_1 \) is the resolvent of \(C \) and \(C_0 \). Clearly \(z, \bar{z} \in C_1 \). Since \(C_1 \) no longer violates the condition, there is no literal right of \(z \) in \(C_1 \). Hence \(C_0 \) is neither \(A \) nor \(B \). Therefore by Claim 1 and Claim 2, a literal on \(z \) is in \(C_0 \). Since \(C \) violates the implication, there is a literal right of \(z \) in \(C \), but since there is none in \(C_1 \), the pivot variable must be right of \(z \). That means the resolution step is illegal, a contradiction. \(\square \)

Claim 6. If \(C \) is the resolvent of \(C_1 \) and \(C_2 \) and \(z, \bar{z} \in C \), then neither \(C_1 \) nor \(C_2 \) contains any of the literals \(a_i, \overline{a_i}, b_j, \overline{b_j} \).

Proof. If \(z, \bar{z} \in C_1 \) or \(z, \bar{z} \in C_2 \), then the statement follows from Claim 5. Otherwise, the resolution step merges \(z \) and \(\bar{z} \). That means the pivot must be left of \(z \), and so any of the literals \(a_i, \overline{a_i}, b_j, \overline{b_j} \) would end up in \(C \) if contained in any of the premises, a contradiction with Claim 5. \(\square \)

For the next claims, we need to introduce sets \(M \) and \(S \) as follows. We let

\[
M = \{ C \in \Pi \mid \exists^* \in C \}
\]

be the set of clauses which contain a merged literal. We define \(S \) as the “boundary” of \(M \), i.e., the set of clauses that do not contain a merged literal but have a direct descendant that does, formally

\[
S = \{ C \in \Pi \mid C \notin M \text{ and there are } C_0, C_1 \in \Pi \text{ s.t. } C_1 = C \circ C_0 \text{ and } C_1 \in M \}.
\]

Claim 7. If \(C \in S \), then \(a_i, \overline{a_i}, b_j, \overline{b_j} \notin C \).

Proof. Follows from Claim 6 as \(C \in S \) has a direct descendant with \(z^* \). \(\square \)

Claim 8. If \(C \in S \) then \(|C \setminus \{ z, \bar{z} \}| \geq n \).

Proof. By Claim 7 and the fact that \(C \notin M \) we get that all preconditions of one of the rows of Claim 3 are satisfied for \(C \), which means that either for all \(i \) there is a \(j \) such that \(x_{ij} \in C \), or for all \(j \) there is an \(i \) such that \(\overline{x_{ij}} \in C \), in both cases a total of \(n \) distinct literals, none of which is a literal on \(z \). \(\square \)

Proof (of Theorem 1). Consider \(\Pi' = S \cup M \). Clauses in \(M \) have direct ancestors only in \(M \) or \(S \) (any direct ancestor that is not in \(M \) is by definition in \(S \)). Since \(C_\bot \in M \), \(\Pi' \) is a reductionless Q-resolution refutation of \(S \). If we disregard literals on \(z \), it is in fact a resolution refutation of the propositional formula \(S \), which means that \(S \) is unsatisfiable. By Claim 8, every clause in \(S \) has at least \(n \) literals, and so it excludes at most \(2^{n^2-n} \) of the assignments to the variables of \(S \). Therefore, \(S \) must have at least \(2^n \) clauses in order to exclude all assignments and be unsatisfiable. \(\square \)

Corollary 1. Reductionless Q-resolution does not \(p \)-simulate tree-like Q-resolution.

Proof. Since \(CR_n \) have short proofs in tree-like Q-resolution [20], the separation follows from Theorem 1. \(\square \)
Remark 1. Theorem 1 has another interesting consequence. Since QCDCL with dependency learning can solve CR\textsubscript{n} in polynomial time [25], Theorem 1 implies that in order to harness the full power of QCDCL with dependency learning, one has to perform universal reduction during clause learning. This is in contrast with “ordinary” QCDCL where universal reduction is not required to derive a learned clause [22].

5 Short Proofs of QParity in Reductionless Q-Resolution

In this section, we prove that the QParity formulas, which require exponentially long proofs in Q-resolution [6], have short proofs in reductionless Q-resolution. It has already been shown that these formulas have short proofs in long-distance Q-resolution [12, Theorem 9]. We simply observe that these proofs—which we reproduce below for the sake of completeness—are in fact reductionless.

Definition 2 ([6]). Let QParity\textsubscript{n} = \exists x_1, \ldots, x_n \forall z \exists y_2, \ldots, t_n. \phi_n, where

\[\phi_n = T_2^3 \land T_3^2 \land T_3^3 \land T_4^2 \land \left(\bigwedge_{i=3}^{n} T_i^1 \land T_i^2 \land T_i^3 \land T_i^4 \right) \land Z^1 \land Z^2, \]

\[T_2^1 = x_1 \lor x_2 \lor Z_2, \quad T_2^1 = t_{i-1} \lor x_i \lor t_i, \quad Z^1 = t_n \lor z, \]

\[T_2^2 = x_1 \lor \overline{x_2} \lor t_2, \quad T_2^2 = t_{i-1} \lor \overline{x_i} \lor t_i, \quad Z^2 = \overline{t_n} \lor z, \]

\[T_2^3 = \overline{x_1} \lor x_2 \lor t_2, \quad T_2^3 = t_{i-1} \lor x_i \lor t_i, \]

\[T_2^4 = \overline{x_1} \lor \overline{x_2} \lor Z_2, \quad T_2^4 = t_{i-1} \lor \overline{x_i} \lor t_i, \]

Theorem 2. There is a reductionless Q-resolution refutation of QParity\textsubscript{n} of size 6n - 5.

Proof. For 2 \leq i \leq n - 1 and 1 \leq j \leq 2, we let Z_{i-1}^1 = t_{i-1} \lor z^*, Z_j^2 = t_i \lor z^*, and Z_n^1 = Z^1, and it is easy to verify that

\[Z_{i-1}^1 = \left(T_i^j \circ t_i, Z_i^1 \right) \circ_{x_i} \left(T_i^j \circ t_i, Z_i^2 \right). \]

Hence, we derive Z_2^1 and Z_2^2 in a total of 6(n - 2) steps. Next, we have

\[(z^*) = \left(T_1^1 \circ t_1, Z_1^2 \right) \circ_{x_1} \left(T_2^1 \circ t_2, Z_2^2 \right) \circ_{x_2} \left(T_3^1 \circ t_3, Z_3^2 \right), \]

and so the formula is refuted. The resolution steps on the x\textsubscript{i} are sound, because x\textsubscript{i} < z for all 1 \leq i \leq n. The total number of resolution steps is 6n - 5. \qed

Corollary 2. Q-resolution does not p-simulate reductionless Q-resolution.

Remark 2. While strategies extracted from Q-resolution refutations (of PCNF formulas containing a single universal variable) correspond to bounded-depth circuits [6], Theorem 2 implies that reductionless Q-resolution proofs cannot be efficiently transformed into bounded-depth circuits.
6 Lower Bounds from Strategy Extraction

In this section, we will show how to extend the scope of lower bound techniques based on strategy extraction [6] to fragments of long-distance Q-resolution. We begin by observing that strategies extracted from reductionless Q-resolution proofs correspond to branching programs [5].

We briefly review the definition of a branching program and refer to the book by Wegener for more details [34]. A branching program or binary decision diagram (BDD) on a set X of variables is a directed acyclic graph with a unique source node and at most two sink nodes. Each node v is labelled with a variable $\lambda(v) \in X$, except for the sinks, which are labelled with 0 or 1. If there are two sink nodes, their labels must be distinct. Moreover, every node has exactly two outgoing edges labelled with 0 and 1, respectively. A path v_1, \ldots, v_n from the source of a branching program to its sink is consistent if the label of edge (v_i, v_{i+1}) agrees with the label of edge (v_j, v_{j+1}) whenever v_i and v_j are labelled with the same variable. A consistent path corresponds to an assignment in the obvious way. A branching program B on X computes a Boolean function f_B in the following way. Let $\tau: X \rightarrow \{0, 1\}$ be an assignment. We follow the (consistent) path induced by τ to a sink node v, and set $f_B(\tau) = \lambda(v)$. The size of a branching program is the number of nodes in it.

Let $\pi = C_1, \ldots, C_k$ be a reductionless Q-resolution derivation from a PCNF formula F. For each universal variable $u \in \text{var}_\forall(F)$, we construct a branching program $B_u F(\pi)$ in the following way [9, 5]. We first introduce two nodes v_0 and v_1 with $\lambda(v_0) = 0$ and $\lambda(v_1) = 1$. We now consider the clauses C_i in the order of their derivation and associate a node v_i with each one. Depending on how clause C_i was derived, we distinguish two cases:

1. If C_i is an input clause, we let
 $$v_i = \begin{cases}
 v_0, & \text{if } u \in C_i; \\
 v_1, & \text{otherwise.}
 \end{cases}$$

2. If C_i is the resolvent of clauses $C_j = C_j' \lor e$ and $C_l = \neg e \lor C_l'$, there are two possibilities depending on the order of variables e and u in the prefix:
 - If $e < u$, we introduce a fresh node v_i to $B_{\pi}(\pi)$ and label it $\lambda(v) = e$. Moreover, we add a 0-labelled edge from v_i to v_j and a 1-labelled edge from v_i to v_l.
 - Otherwise, $u < e$ and we cannot have $u \in \text{var}(C_j \cap C_l)$ by the rules of reductionless Q-resolution (see Figure 3). If $u \in \text{var}(C_j)$, we let $v_i = v_j$. Otherwise, we let $v_i = v_l$.

Finally, we remove all nodes that cannot be reached from v_k. The following statement is immediate from the construction.

Lemma 1. If $\pi = C_1, \ldots, C_k$ is a reductionless Q-resolution derivation from a PCNF formula F and $u \in \text{var}_\forall(F)$ is a universal variable, then $B_{\pi}(\pi)$ is a branching program on $D_u F$ of size at most k.
Moreover, if the derivation \(\pi \) is a refutation, these branching programs compute a universal winning strategy. To show this, we first prove the following statement.

Lemma 2. Let \(\pi = C_1, \ldots, C_k \) be a reductionless \(Q \)-resolution derivation from a PCNF formula \(F \). Let \(\tau : \text{var}(F) \rightarrow \{0,1\} \) be an assignment that does not satisfy \(C_k \), and let

\[
\sigma^\pi_F = \{ u \mapsto f(B^\pi_F(\tau))| \sigma_{D^\pi_F} | \ u \in \text{var}(F) \}
\]

be the assignment computed by the branching programs \(B^\pi_F(\tau) \) in response. Then \(C_i[\sigma^\pi_F \cup \tau] = 0 \) for some input clause \(C_i \in \pi \).

Proof. We proceed by induction on the size \(k \) of the derivation. If \(\pi = C_1 \) then \(C_1 \) must be an input clause, and \(B^\pi_F(\tau) \) consists of a single node labelled 0 if \(u \in C_1 \) and labelled 1 if \(\neg u \in C_1 \). Accordingly, the function \(f(B^\pi_F(\tau)) \) constantly returns an assignment that falsifies any universal literal on variable \(u \). This proves the base case.

Suppose the statement of the lemma holds for derivations of size up to \(k - 1 \). If \(C_k \) is an input clause, the same reasoning as in the base case applies, so suppose \(C_k \) is derived by resolution from clauses \(C_i = C'_i \lor e \) and \(C_j = \neg e \lor C'_j \) with \(1 \leq i, j < k \). Let \(\pi_i = C_1, \ldots, C_i \) and let \(\pi_j = C_1, \ldots, C_j \) be the derivations of the corresponding clauses. We claim that \(\sigma^\pi_F(u) = \sigma^\pi_F(u) \) for each universal variable \(u \in \text{var}(C_i) \) if \(\tau(e) = 0 \), and \(\sigma^\pi_F(u) = \sigma^\pi_F(u) \) for each universal variable \(u \in \text{var}(C_j) \) if \(\tau(e) = 1 \).

Choose a universal variable \(u \) and let \(\tau' = \tau|_{D^\pi_F} \) be the corresponding restriction of \(\tau \). We consider two cases. If \(e < u \) it is not difficult to see that

\[
f(B^\pi_F(\tau))(\tau') = \begin{cases} f(B^\pi_F(\tau))(\tau') & \text{if } \tau(e) = 0, \\ f(B^\pi_F(\tau))(\tau') & \text{otherwise.} \end{cases}
\]

Accordingly, we have \(\sigma^\pi_F(u) = \sigma^\pi_F(u) \) if \(\tau(e) = 0 \) and otherwise \(\sigma^\pi_F(u) = \sigma^\pi_F(u) \). On the other hand, if \(u < e \) by construction of the branching program we have

\[
f(B^\pi_F(\tau)) = \begin{cases} f(B^\pi_F(\tau)) & \text{if } u \in \text{var}(C_i), \\ f(B^\pi_F(\tau)) & \text{otherwise.} \end{cases}
\]

If \(u \in \text{var}(C_i) \) then \(\sigma^\pi_F(u) = \sigma^\pi_F(u) \). If \(u \in \text{var}(C_j) \) as well then we must have \(u \in C_i \cap C_j \) or \(\neg u \in C_i \cap C_j \) since \(u \notin \text{var}(C_i \cap C_j) \) by definition of reductionless \(Q \)-resolution. It follows that \(f(B^\pi_F(\tau)) \) and \(f(B^\pi_F(\tau)) \) compute the same constant function. Otherwise, if \(u \notin \text{var}(C_i) \) then \(\sigma^\pi_F(u) = \sigma^\pi_F(u) \).

This proves the claim.

If \(\tau(e) = 0 \) then by induction hypothesis \(C_i[\sigma^\pi_F \cup \tau] = 0 \) for an input clause \(C_l \in \pi_i \). We can assume without loss of generality that \(\pi_i \) does not contain any universal variable besides those in the clause \(C_l \). It follows from the claim that the assignment \(\sigma^\pi_F \cup \tau \) falsifies \(C_l \) as well. The case \(\tau(e) = 1 \) is symmetric. \(\square \)
Lemma 3. Let $\pi = C_1, \ldots, C_k$ be a reductionless Q-resolution refutation of a PCNF formula F. The set $\{ f(B^u\pi) \mid u \in \text{var}(F) \}$ is a universal winning strategy.

Proof. Because π is a refutation the clause C_k must not contain existential variables. Thus every assignment $\tau : \text{var}(F) \rightarrow \{0, 1\}$ is an assignment that does not satisfy C_k, and by Lemma 2 the universal response σ^F_π (defined as in the statement of that lemma), in conjunction with the assignment τ, must falsify an input clause.

These results allow us to translate lower bounds for branching programs to lower bounds on the size of reductionless Q-resolution refutations. Let $f : X \rightarrow \{0, 1\}$ be a Boolean function, let $\varphi(X)$ be a Boolean circuit encoding f, and let u be a variable not occurring in φ. Using Tseitin transformation [31], we can construct a CNF formula $\psi(X, u, Y)$ such that $\exists Y. \psi(X, u, Y)$ is logically equivalent to $\varphi(X) \neq u$. The PCNF formula $F = \exists X \forall u \exists Y. \psi(X, u, Y)$ is a false PCNF formula with f as a unique universal winning strategy (cf. the lower bounds from strategy extraction for Q-resolution [6]). We call such a formula F a PCNF encoding of f.

Proposition 1. Let F be a PCNF encoding of a Boolean function f such that any branching program computing f has size at least m. Then any reductionless Q-resolution refutation of F requires at least m clauses.

Proof. Since f is the unique universal winning strategy for F, the statement follows immediately from Lemma 1 and Lemma 3.

To the best of our knowledge, the only lower bounds on the size of general branching programs for explicitly defined Boolean functions currently known are polynomial [24]. Accordingly, Proposition 1 does not yield strong lower bounds for reductionless Q-resolution. However, we can lift lower bounds for restricted classes of branching programs to lower bounds on the proof size in restricted versions of reductionless Q-resolution.

6.1 Regular Reductionless Q-Resolution

Every reductionless Q-resolution derivation $\pi = C_1, \ldots, C_k$ can be represented by a directed acyclic graph $G(\pi)$ on vertices v_1, \ldots, v_k where v_i is labelled with C_i and there is an edge from v_j to v_i if $i < j$ and C_i is one of the clauses C_j was derived from (that is, edges are oriented from conclusions to premises). Each edge is labelled with the corresponding pivot variable.

A reductionless Q-resolution refutation $\pi = C_1, \ldots, C_k$ is regular if each variable occurs at most once as a label on any directed path starting from the vertex labelled with clause C_k. Each strategy function computed by such a proof corresponds to a so-called read-once branching programs or free binary decision diagram (FBDD). A read-once branching program is a branching program where each variable is encountered at most once on any path from the source to a sink [34].
Lemma 4. Let $\pi = C_1, \ldots, C_k$ be a regular reductionless Q-resolution refutation of a PCNF formula F. Then $B_u^F(\pi)$ is a read-once branching program of size at most k for each universal variable $u \in \text{var}_\forall(F)$.

Proof. Consider $B_u^F(\pi)$ for any universal variable $u \in \text{var}_\forall(F)$. By construction, the sequence of variables encountered on any path starting from the source of $B_u^F(\pi)$ is a subsequence of the pivot variables seen as edge labels on any path starting from the source of $G(\pi)$. In particular, every variable occurs at most once. Since $B_u^F(\pi)$ is a branching program of size at most k by Lemma 1, it is in fact a read-once branching program of size at most k. \Box

The FBDD size of a Boolean function f is the size of the smallest read-once branching program representing f. We can transfer lower bounds on the FBDD size of Boolean functions into lower bounds on the regular reductionless Q-resolution proof size of certain PCNF formulas, as stated in the next result.

Proposition 2. Let F be a PCNF encoding of a Boolean function f with FBDD size m. Any regular reductionless Q-resolution refutation of F has size at least m.

Proof. The statement follows from Lemma 4 and Lemma 3. \Box

Unlike in the case of general branching programs, strong lower bounds on the FBDD size of many explicitly defined Boolean functions are known [34]. For instance, we can use the following result due to Bollig and Wegener [10].

Theorem 3 ([10]). There is a Boolean function g in n variables that can be computed by a Boolean circuit of size $O(n^{3/2})$ but has FBDD size $\Omega(2^{\sqrt{n}})$.

Corollary 3. There is a Boolean function g in n variables with a PCNF encoding F of size polynomial in n such that any regular reductionless Q-resolution refutation of F has size $\Omega(2^{\sqrt{n}})$.

6.2 Tree-like Long-Distance Q-Resolution

In this subsection, we are going to prove lower bounds on the size of tree-like long-distance Q-resolution. As in the case of reductionless Q-resolution, a long-distance Q-resolution derivation $\pi = C_1, \ldots, C_k$ can be represented by a labelled DAG $G(\pi)$. A derivation π is called tree-like if the DAG $G(\pi)$ is a tree.

We want to show that every tree-like long-distance Q-resolution refutation of a PCNF encoding of a Boolean function f can be efficiently turned into a bounded-depth circuit computing f. First, we generalize the construction of the branching programs B_u^F described at the beginning of this section to long-distance Q-resolution derivations. Let $\pi = C_1, \ldots, C_k$ be a long-distance Q-resolution derivation from a PCNF formula F. For each universal variable $u \in \text{var}_\forall(F)$, we construct a labelled DAG $B_u^F(\pi)$ in the same way as for a reductionless Q-resolution derivation, except for the following modification: if clause C_i is derived from a clause C_j by universal reduction and $u \in \text{var}(C_j) \setminus \text{var}(C_i)$, we set $v_i = v_0$, where $\lambda(v_0) = 0$. It is readily verified that we obtain a branching program of size at most k, as stated in the following lemma.
Lemma 5. If \(\pi = C_1, \ldots, C_k \) is a long-distance Q-resolution derivation from a PCNF formula \(F \) and \(u \in \var\forall(F) \) is a universal variable, then \(B^{\#}_F(\pi) \) is a branching program on \(D^{\#}_F \) of size at most \(k \).

A universal winning strategy can be computed from a long-distance Q-resolution refutation as follows [2]. We maintain a kind of decision list [28] for each universal variable that is intended to encode a strategy function. Specifically, we consider sequences \(L = (\varphi_1 \rightarrow \psi_1), \ldots, (\varphi_k \rightarrow \psi_k) \) where each of the \(\varphi_i \) and \(\psi_i \) are propositional formulas. Such a list, which we call a generalized decision list, represents a Boolean function \(f : \cup_{i=1}^k \var(\varphi_i) \cup \var(\psi_i) \rightarrow \{0, 1\} \) to all the variables appearing in formulas on the list. If there is no index \(i \) with \(1 \leq i \leq k \) such that \(\tau \) satisfies \(\varphi_i \), we define \(f_L(\pi) = 1 \). Otherwise, let \(i \) be the smallest index such that \(\tau \) satisfies \(\varphi_i \). Then \(f_L(\pi) = \psi_i[\tau] \). The size of a decision list \(L = (\varphi_1 \rightarrow \psi_1), \ldots, (\varphi_k \rightarrow \psi_k) \) is \(|L| = \sum_{i=1}^k (|\varphi_i| + |\psi_i|) \).

Given a long-distance Q-resolution refutation \(\pi = C_1, \ldots, C_k \) of a PCNF formula \(F \), we construct a family \(\mathcal{L}_F(\pi) = \{ L_u \mid u \in \var\forall(F) \} \) of generalized decision lists representing a universal winning strategy for \(F \). For \(Q \in \{\exists, \forall\} \), let \(C^Q_i = \{ \ell \in C_i \mid \var(\ell) \in \var_Q(F) \} \) denote the restriction of \(C_i \) to existential or universal literals. Moreover, for a Boolean function \(f \), let \(\phi(f) \) denote an encoding of \(f \) as a propositional formula. We consider applications of universal reduction in the same order as they appear in the proof. Let \(C_i \) be a clause derived by universal reduction from a clause \(C_j \), and let \(u \in \var(C_j) \setminus \var(C_i) \). Let \(\pi_i = C_1, \ldots, C_i \) and \(\pi_j = C_1, \ldots, C_j \) denote the subderivations ending in clauses \(C_i \) and \(C_j \), respectively. We add an entry

\[
\left(C^\exists_i \land \bigwedge_{v \in \var(C^\forall_j)} v \leftrightarrow \phi(f(B^{\#}_F(\pi_i)))) \rightarrow \phi(f(B^{\#}_F(\pi_j)))) \right)
\]

at the end of the decision list \(L_u \). Observing that the functions \(f(B^{\#}_F(\pi_i)) \) correspond to the (negated) phase functions introduced for the purpose of efficiently extracting universal winning strategies from long-distance Q-resolution refutations [2], it can be verified that the strategy functions computed by the corresponding algorithm coincide with the functions computed by the decision lists defined according to (1).

Proposition 3 ([2]). Let \(\pi \) be a long-distance Q-resolution refutation of a PCNF formula \(F \). The set \(\{ f_{L_u} \mid L_u \in \mathcal{L}_F(\pi) \} \) is a universal winning strategy.

We now argue that this winning strategy can be represented by a bounded-depth circuit for certain proofs in tree-like long-distance Q-resolution. Specifically, we will show that this is the case for every tree-like refutation of a PCNF formula \(B^{\#}_F \) of a Boolean function. We first observe that the branching programs \(B^{\#}_F \) for tree-like proofs are decision trees. A decision tree is a branching program that can be turned into a tree by deleting the sink nodes.
Lemma 6. If \(\pi = C_1, \ldots, C_k \) is a tree-like long-distance Q-resolution derivation from a PCNF formula \(F \), then \(B_u^\pi(\pi) \) is a decision tree for each universal variable \(u \in \text{var}_\forall(F) \).

Proof. It is not difficult to see that after deleting the sink nodes labelled with 0 and 1 from \(B_u^\pi(\pi) \), the corresponding DAG can be obtained from \(G(\pi) \) by deleting vertices and edges as well as contracting induced paths. Since \(G(\pi) \) is a tree, the result is also a tree. \(\square \)

Every decision tree can be efficiently translated into a CNF formula by taking the conjunction over the negations of its consistent paths [28]. Moreover, a generalized decision list \(L = (\varphi_1 \rightarrow \psi_1), \ldots, (\varphi_k \rightarrow \psi_k) \) can be represented by a circuit

\[
\phi(L) = \bigvee_{i=1}^k \left(\bigwedge_{j=1}^{i-1} \neg \varphi_j \land \varphi_i \right) \rightarrow \psi_i \quad (2)
\]

Lemma 7. Let \(L = (\varphi_1 \rightarrow \psi_1), \ldots, (\varphi_k \rightarrow \psi_k) \) be a generalized decision list such that \(d \) is the maximum depth of any formula \(\varphi_i \) and \(\psi_i \), for \(1 \leq i \leq k \). Then \(\phi(L) \) is equivalent to \(f_L \). Moreover, \(\phi(L) \) has depth at most \(d + 4 \) and \(|\phi(L)| = O(|L|^2) \).

Let \(F \) be the PCNF encoding of a Boolean function \(f \) and consider a tree-like long-distance Q-resolution refutation \(\pi \) of \(F \). Because \(F \) contains only a single universal variable, each entry in a decision list of \(L_F^\pi(\pi) \) given by (1) simplifies to \(C \rightarrow \phi(f(B_u^\pi(\pi'))) \), and the right hand side of this implication can be efficiently transformed into a CNF because \(B_u^\pi \) is a decision tree by Lemma 6. We thus obtain the following result.

Proposition 4. There is a polynomial \(p(\cdot) \) and a constant \(d \) such that, for any tree-like long-distance Q-resolution refutation \(\pi \) of the PCNF encoding of a function \(f \), there exists a Boolean circuit of size at most \(p(|\pi|) \) and depth at most \(d \) computing \(f \).

Proof. By Lemma 5 and Lemma 6, each labelled DAG \(B_u^\pi(\pi') \) is a decision tree of size at most \(|\pi'| \) for the universal variable \(u \) of \(F \) and each subproof \(\pi' \) of \(\pi \). Each such decision tree can be efficiently encoded as a CNF formula and the decision list has no more than \(|\pi| \) entries of size polynomial in \(|\pi| \), so it follows from Lemma 7 that there is a polynomial \(p(\cdot) \) such that \(\phi(L_u) \) has size at most \(p(|\pi|) \) and depth at most 6. Finally, \(\{f_L\} \) is a universal winning strategy for \(F \) by Proposition 3, so \(f_L \) must coincide with \(f \). \(\square \)

Since any bounded-depth circuit computing the \(n \)-bit parity function has size exponential in \(n \) [16], Proposition 4 allows us to obtain the following exponential lower bound on the size of refutations of QPARITY in tree-like long-distance Q-resolution.

Theorem 4. Any refutation of QPARITY \(n \) in tree-like long-distance Q-resolution requires size exponential in \(n \).
7 Conclusion

We studied the proof complexity of fragments of long-distance Q-resolution. We proved that reductionless Q-resolution cannot p-simulate even tree-like Q-resolution. Since reductionless Q-resolution can be used to derive learned clauses in QCDCL solvers [22], this is another indication that QCDCL\(^1\) proofs correspond to a fairly weak fragment of (long-distance) Q-resolution [20]. The QParity formulas, on the other hand, have short refutations in reductionless Q-resolution. These formulas require Q-resolution refutations of exponential size [6], so Q-resolution and reductionless Q-resolution turn out to be incomparable.

The existence of short proofs of QParity also marks the breakdown of an elegant technique for obtaining lower bounds on the size of Q-resolution refutations through strategy extraction [6]. Evidently, strategies corresponding to reductionless Q-resolution proofs do not correspond to bounded-depth circuits.

We proved that arguments based on strategy extraction can nevertheless be used to obtain lower bounds for restricted versions of long-distance Q-resolution. Specifically, we showed that regular reductionless Q-resolution proofs correspond to read-once branching programs, and that tree-like long-distance Q-resolution proofs correspond to bounded-depth circuits, allowing us to transfer known lower bounds.

Obtaining a characterization of the strategies corresponding to (even reductionless) long-distance Q-resolution refutations that could be used in obtaining lower bounds remains as an intriguing open problem.

References

\(^1\) At least without techniques like dependency learning [25].

