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Abstract

The well known cycle double cover conjecture in graph theory is strongly related to the compatible circuit

decomposition problem. A recent result by Fleischner et al. (2018) gives a sufficient condition for the

existence of a compatible circuit decomposition in a transitioned 2-connected Eulerian graph, which is based

on an extension of the definition of K5-minors to transitioned graphs. Graphs satisfying this condition are

called SUD-K5-minor-free graphs. In this work we formulate a generalization of this property by replacing

the K5 by a 4-regular transitioned graph H, which is part of the input. Furthermore, we consider the decision

problem of checking for two given graphs if the extended property holds. We prove that this problem is NP-

complete and fixed parameter tractable with the size of H as parameter. We then formulate an equivalent

problem, present a mathematical model for it, and prove its correctness. This mathematical model is then

translated into a mixed integer linear program (MIP) for solving it in practice. Computational results show

that the MIP formulation can be solved for small instances in reasonable time. In our computations we

found snarks with perfect matchings whose contraction leads to SUD-K5-minor-free graphs that contain

K5-minors. Furthermore, we verified that there exists a perfect pseudo-matching whose contraction leads

to a SUD-K5-minor-free graph for all snarks with up to 22 vertices.

Keywords: Transition Minor, Cycle Double Cover, Compatible Circuit Decomposition, Integer

Programming

1. Introduction

The cycle double cover conjecture (CDCC) is a famous conjecture in graph theory. It states that for

every bridgeless undirected graph there exists a multiset of cycles in the graph covering every edge exactly

twice. This already over 40 years old conjecture is well studied and was originally posed by Szekeres [12]

and Seymour [11]. Jaeger reduced the problem from general bridgeless graphs to the class of all snarks [6].

There are several similar definitions of snarks, but we will use the same definition as Jaeger does: A snark
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G

L(G)

Figure 1: Transformation of a part of a 3-regular graph G into its line graph L(G) and two transitions per vertex, represented

by a red vee (∨) between their two edges. The vertices of G are represented by black circles, the edges of G by black solid lines,

the vertices of L(G) by red squares, and the edges of L(G) by red dashed lines.

is a simple cyclically 4-edge-connected cubic graph with chromatic index four. Note that a cyclically k-edge

connected graph is a graph where at most one component contains cycles after removing fewer than k edges.

Finding a cycle double cover in a snark, or in general in a 3-regular graph, is correlated to the compatible

circuit decomposition (CCD) problem, which is formulated on graphs with a transition system. A transition

system is a collection of transitions, where each transition represents a set of two adjacent edges. For a

formal definition see Definition 2 in Section 2.2 The CCD problem asks for a given 2-connected Eulerian

graph G and a transition system T if there exists a set of circuits in G such that none of its circuits contains

both edges of any transition T in T .

Consider for a 3-regular graph G its 4-regular line graph L(G) together with two transitions per vertex

as shown in Figure 1. If the line graph together with the given transition system contains a compatible

circuit decomposition, one can construct a cycle double cover of the original graph G.

Another correlation between the CCD problem and the CDC problem for 3-regular graphs can be seen

by the following construction. Let G be a 3-regular graph and H the 4-regular graph obtained from G after

contracting each edge of a perfect matching M of G. Now we define a transition system on H by adding

transitions between two edges if and only if their corresponding edges in G are adjacent. Then, if H contains

a compatible cycle decomposition, one can construct from it a cycle double cover in the original graph G

containing the 2-factor Q = E(G)−M as a subset. This construction can even be extended to contractions

of perfect pseudo-matchings, which are spanning subgraphs, where each component is either a K2 or a claw,

which consists of a vertex of degree three connected to three vertices of degree one. In this case the resulting

graph H has vertices of degree four or six.

Therefore, to prove the existence of a cycle double cover in a graph it suffices to find a perfect pseu-

do-matching such that its contraction leads to a transitioned graph containing a CCD. Since the number of

vertices of the contracted graph is at most half of the number of vertices of the original graph, it may be

faster to find a CCD in the much smaller graph than a CDC in the original graph. On the other hand, if a
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snark contains a CDC one cannot conclude that it also contains a perfect matching whose contraction leads

to a graph with a CCD; the Peterson graph is a counter example. If we allow perfect pseudo-matchings,

this direction is still an open problem.

Already in 1980 Fleischner [3] proved that every 2-connected planar Eulerian graph has a CCD regardless

of the structure of the transition system. This result was generalized by Fan and Zhang [2] who proved that

whenever the graph has no K5-minor it has a CCD. These two results both only use the graph structure

and ignore the transition system. In order to include the structure of the transition system, Fleischner et

al. [4] extended the definition of transition minors to transitioned graphs and proved that if a transitioned

2-connected Eulerian graph is SUD-K5-minor free, it contains a CCD, which is a generalization of Fan and

Zhang’s result. For a definition of SUD-K5-minor free graphs see Definition 8 and Example 1 in the next

Section.

This recent result of Fleischner et al. leads to the question of how to check for a graph if it contains a

SUD-K5-minor. This task is not easy because of the complex nature of the definition of a SUD-K5-minor.

Because of this difficulty Fleischner et al. could not provide a snark and a perfect pseudo-matching whose

contraction leads to a graph that is SUD-K5-minor free but has a K5-minor, i.e. an example in the context

of snarks where the new theorem is stronger than the old theorem.

In this article we analyze the problem of finding a SUD-K5-minor and formulate a generalization that

checks if a graph is sup-(H,S)-minor free. Furthermore, we prove some complexity results for this problem

concerning NP-hardness and fixed parameter tractability. Finally, we describe a practical algorithm to solve

it. With that algorithm we were able, among other things, to find a snark and a perfect matching whose

contraction leads to a graph that is SUD-K5-minor free but has a K5-minor.

There is no literature yet that is concerned with finding SUD-K5-minors, although the problem of finding

K5-minors is well analyzed. Robertson and Seymour proved that checking if a graph contains a K5-minor

can be done in polynomial time [10]. We will use the same proof-idea to prove that checking whether a graph

contains a SUD-K5-minor can be done in polynomial time. The polynomial algorithm described in the proof

of Robertson and Seymour is not practically applicable since its computation time has large constants and

polynomial factors. A more practical algorithm was provided by Reed and Li who proved that checking if a

graph contains a K5-minor can be done in linear time [9]. This algorithm heavily depends on the fact that a

4-connected graph contains no K5-minor if and only if it is planar and that checking planarity can be done

in linear time. Since there is no known extension of planarity to transitioned graphs that would lead to a

connection between planarity and the existence of SUD-K5-minors, this linear time approach cannot easily

be extended to checking the existence of SUD-K5-minors.

In the next section we present the graph theoretic definitions and notations we are using. In Section 3

we introduce the problem ESTM, its equivalent problem EBSRTM and prove the complexity results. A

mathematical model for EBSRTM is then presented in Section 4.2, which also includes the correctness proof
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of the model. Based on the mathematical model a mixed integer linear programming model is presented in

Section 5. The computational results of the MIP model are presented in Section 6. Finally, we conclude

with Section 7 and sketch possible future work.

2. Preliminary Discussion

In this section we present all graph theoretical definitions needed for formulating our problem. Further-

more, we introduce some terminology and notation that will be used later on.

2.1. Terminology and Notation

In this article whenever we refer to a graph we mean an undirected multigraph without loops if not

specified otherwise. Let P2(X) denote the set of all unordered pairs of elements in X, i.e. P2(X) =

{S ⊆ X | |S| = 2}. We denote a graph by G = (V,E, r), where V is the vertex set, E the set of edges and

r : E → P2(V ) a function that maps each edge to its two incident vertices. Note that by this notation we

exclude loops. We abbreviate e = uv if e ∈ E is incident to u, v ∈ V , i.e. r(e) = {u, v}. If e = uv and

f = uv for e, f ∈ E with e 6= f we call e, f parallel edges. To distinguish between different graphs we

also use the notation G = (VG, EG, rG) or we simply write V (G) = VG and E(G) = EG. Furthermore,

for a vertex v ∈ V we write E(v) = {e ∈ E | v ∈ r(e)} for the set of all edges incident to v and N(v) =

{v′ ∈ V | ∃e ∈ E : e = vv′} for the set of all neighbors of v.

For a partial function α : A 9 B we will use the following notations. For a subset X ⊆ A we write

α[X] := {b ∈ B | ∃a ∈ X : b = α(a)} for the image ofX under α and for a ∈ A we simply write α[a] := α[{a}].
Similarly, for a subset Y ⊆ B we write α−1[Y ] := {a ∈ A | α(a) ∈ Y } for the preimage of Y under α and

for b ∈ B we simply write α−1[b] := α−1[{b}]. Note that α−1[b] may be empty if α is not surjective. If α is

injective we denote by α−1 : B 9 A the inverse partial function of α and α−1(b) = a if and only if α(a) = b.

Furthermore, we denote by dom(α) = α−1[B] ⊆ A the domain of α.

2.2. Basic Definitions

Definition 1 (Eulerian Graph). A connected graph is called an Eulerian graph if every vertex has even

degree.

We define a transition system as in [4] but use a different notation, which will be useful later on.

Definition 2 (Transition System). Let G be a graph. A transition system of G is a set T ⊆ V ×P2(E)

of transitions that satisfies the following. Each transition T ∈ T with T = (v, {e1, e2}) has to satisfy

{e1, e2} ⊆ E(v). We use the projections π1(T ) := v and π2(T ) := {e1, e2} to denote the values of T .
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Furthermore, we write T (v) := {T ∈ T | π1(T ) = v} for the set of all transitions at vertex v. The transitions

at a vertex v must all be edge-disjoint, i.e.

π2(T1) ∩ π2(T2) = ∅ ∀v ∈ V,∀T1 ∈ T (v),∀T2 ∈ T (v) : T1 6= T2

The graph G with a non-empty transition system T is called a transitioned graph and denoted by (G, T ).

A completely transitioned graph is a transitioned graph where for each vertex each incident edge is in

one transition of the vertex, i.e. E(v) =
⋃
T∈T (v) π2(T ) for all v ∈ V (G). For every subgraph H of G,

T |H = {T ∈ T | π2(T ) ⊆ E(H)}. Clearly, a connected completely transitioned graph is Eulerian.

The following two definitions are adopted from [4].

Definition 3 (Separator). Let G be a graph. A vertex subset U is a separator of G separating G to G1,

G2 if E(G) = E(G1) ∪ E(G2), V (G1) ∩ V (G2) = U , and E(G1) ∩ E(G2) = ∅. We call U a t-separator if

|U | = t. We say a separator U separating subgraphs X1, X2 of G if U is a separator of G separating G to

G1, G2 with Xi ⊆ Gi, i = 1, 2.

Definition 4 (Bad-Cut-Vertex). Let (G, T ) be a transitioned graph. A 1-separator {v} separating G to

G1, G2 is a bad-cut-vertex if (v,E(v) ∩ E(G1)) ∈ T (v) implying that |E(v) ∩ E(G1)| = 2.

Definition 5 (Minor). Let G be a graph. H is a minor of G if and only if H can be derived from G by

deletion of vertices, deletion of edges and contraction of edges.

For our purposes we will use the following equivalent representation of H. The vertices of H correspond to

non-empty vertex-disjoint connected subgraphs of G. We can formalize this by a partial surjective function

ϕ : V (G) 9 V (H), which maps vertices in G to vertices in H. Note that ϕ is a partial function which means

that there might be vertices in G that do not get mapped on vertices in H. Furthermore, the preimage

ϕ−1[w] ⊆ V (G) for each w ∈ V (H) must be connected in G.

The edges of H correspond to edges of G. We can again formalize this by a partial injective and surjective

function κ : E(G) 9 E(H), which maps an edge in G to its corresponding edge in H. The end vertices of

an edge κ(e) ∈ E(H) correspond to the connected subgraphs that contain the end vertices of the edge e in

G. Formally this means

rH(κ(e)) = ϕ [rG(e)] ∀e ∈ dom(κ). (1)

Note, that we also do not allow loops for minors, even if you could generate one by contracting some

edges. Next we define a transition minor as in [4] but with a different notation.

Definition 6 (Transition Minor). Let (G, T ) be a transitioned graph and H a minor of G with corre-

spondence maps ϕ and κ. We define a transition system S on H as follows. We keep all transitions whose

edges do not get deleted or contracted; formally that means:

S ′ := {(ϕ(π1(T )), κ[π2(T )]) | T ∈ T , π1(T ) ∈ dom(ϕ), π2(T ) ⊆ dom(κ)} . (2)
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The transitioned graph (H,S ′) is called a reduced transition minor of (G, T ).

If w ∈ V (H) is a vertex of degree four and there exists a transition between two of the incident edges, we

also want to add a transition between the other two edges. Formally we get all in all the following transition

system

S := S ′(w) ∪ {(w,E(w) \ π2(T )) | w ∈ V (H),deg(w) = 4, T ∈ S ′(w)} . (3)

We call the transition graph (H,S) a transition-minor of (G, T ).

The next two definitions are generalizations of the definitions of a SUD-K5 and of SUD-K5-transition-

minor free from [4].

Definition 7 (Sup-(H,S)). Let (H,S) be a completely transitioned 4-regular graph. A transitioned graph

(H ′,S ′) is a sup-(H,S) graph if the following holds.

The graph H ′ can be decomposed into |E(H)|+ |V (H)| connected edge-disjoint subgraphs

{Pf | f ∈ E(H)} ∪ {Qw | w ∈ V (H)}

as follows.

1. The graphs {Qw | w ∈ V (H)} are vertex-disjoint connected subgraphs of H ′.

2. Each Pf for f ∈ E(H) with f = w1w2 is a path in H ′ joining V (Qw1) and V (Qw2), and all

{Pf | f ∈ E(H)} are internally disjoint.

3. Let Q+
w be the subgraph of H ′ induced by E(Qw) and the four adjacent paths Pf for f ∈ E(w).

Furthermore, let S(w) =
{
S1
w = (w, {f1, f2}), S2

w = (w, {f3, f4})
}

. Then the subgraph Q+
w has a bad

1-separator {uw} separating H1
w and H2

w such that Pf1 ∪ Pf2 ⊆ Hi
w and Pf3 ∪ Pf4 ⊆ H3−i

w for some

i ∈ {1, 2}.

Definition 8 (Sup-(H,S)-Transition-Minor free). Let (H,S) be a completely transitioned 4-regular

graph. A transitioned graph (G, T ) is sup-(H,S)-transition-minor free if and only if it does not have any

Eulerian transition-minor (H ′,S ′) that is a sup-(H,S) graph.

Example 1 (SUD-K5). The completely transitioned four-regular graph (H,S), called undecomposable K5

or short UD-K5, is defined by H = K5 and S = {(vi, {vi−1vi, vivi+1}), (vi, {vi−2vi, vivi+2}) | i ∈ Z5}, see

Figure 2. With this notation a sup-(H,S) graph is called a sup-undecomposable K5 or short SUD-K5. If a

graph is sup-(H,S)-transition-minor free it is called a SUD-K5-minor-free graph.

3. Problem Formulation

We are focusing in this work primarily on the following question.
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v0

v1

v2v3

v4

Figure 2: The completely transitioned graph UD-K5 with transitions represented by a vee (∨) between their two edges.

Problem 1 (Existence of Sup-Transition-Minors (ESTM)). Given a transitioned graph (G, T ) and

a completely transitioned 4-regular graph (H,S), does there exist an Eulerian transition minor of (G, T )

that is a sup-(H,S) graph?

Note that ESTM is the inverse problem of asking if a transitioned graph (G, T ) is sup-(H,S)-transition-

minor free. Next we will prove the following two complexity theorems.

Theorem 1. ESTM is NP-complete.

Theorem 2. ESTM restricted to simple graphs is NP-complete.

Formally it would be enough to prove that ESTM is in NP and that ESTM restricted to simple graphs

is NP-hard. But since the NP-hardness proof for ESTM restricted to simple graphs is based on the same

idea as the NP-hardness proof for the general ESTM, we first proof the more basic statement for the general

ESTM.

We will use the following lemmas to proof Theorem 1.

Lemma 1. If a graph H is a minor of a graph G with |V (H)| = |V (G)|, then H is a subgraph of G.

Proof. We cannot contract any edges in G to get H, since that would reduce the number of vertices.

Therefore, we only remove edges from G to get H, which results in a subgraph of G.

Lemma 2. Let (H,S) be a completely transitioned graph and (H ′,S ′) a sup-(H,S) graph. Then H is a

minor of H ′.

Proof. By contracting the paths Pf to one edge f and the connected subgraphs Qw to one vertex w we

get exactly H. Therefore, H is a minor of H ′.

Lemma 3. The minor relation is transitive, i.e. if H is a minor of H ′ and H ′ is a minor of G, then H is

also a minor of G.
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Proof. A minor can be constructed by a finite number of edge removals, vertex removals and edge con-

tractions. If we apply the steps from G to H ′ and then the steps from H ′ to H we still only applied a finite

number of steps and got from G to H. Therefore, H is also a minor of G.

Proof of Theorem 1. First we prove that ESTM is in NP. As a solution representation we use a

transitioned graph (H ′,S ′) with at most |V (G)| vertices together with the minor correspondence maps

ϕ : V (G) 9 V (H ′) and κ : E(G) 9 E(H ′), the decomposition {Pf | f ∈ E(H)} ∪ {Qw | w ∈ V (H)} of H ′

and the sequence of 1-separator vertices (uw)w∈V (H). The size of the solution representation is polynomial

in the input size. Furthermore, checking for a given solution representation if (H ′,S ′) is by the embeddings

ϕ and κ an Eulerian transition minor of (G, T ) can be done in polynomial time. Last but not least, us-

ing the given decomposition and 1-separator vertices it can be checked in polynomial time if (H ′,S ′) is a

sup-(H,S)-graph. Therefore, ESTM is in NP.

To prove that ESTM is NP-hard we define a polynomial-time reduction from the NP-hard Hamiltonian

cycle problem to ESTM. Let G be a simple graph for which we want to check if it contains a Hamiltonian

cycle. We define a double cycle graph H with n := |V (G)| vertices, i.e.

V (H) := {1, ..., n}.

The edges of H form two Hamiltonian cycles in H, i.e.

E(H) = {e1, ..., e2n}

with r(ei) = r(ei+n) = {i, i+ 1} for i < n and r(en) = r(e2n) = {1, n}. Furthermore, we define a complete

transition system S on H by adding transitions between all parallel edges of H, i.e.

S(i) := {(i, {ei, ei+n}), (i, {ei−1, ei−1+n})} ∀i > 1

and

S(1) = {(1, {e1, en+1}), (1, {en, e2n})} .

Additionally, we define a transitioned graph (G2, T ) by duplicating all edges in G and adding transitions

between them, i.e.

V (G2) = V (G), E(G2) = {e, e′ | e ∈ E(G)} , T (v) = {(v, {e, e′}) | e ∈ E(v)} ∀v ∈ V (G2)

Together (G2, T ) and (H,S) form an instance of ESTM. What is left to prove is that (G2, T ) has an Eulerian

transition minor that is a sup-(H,S) graph if and only if G has a Hamiltonian cycle.

If (G2, T ) has an Eulerian transition minor (H ′,S ′) that is a sup-(H,S) graph then we get by Lemma 2

that H is a minor of H ′ and by Lemma 3 that H is a minor of G2. Since V (H) = n = V (G2) we get by
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Lemma 1 that H is a subgraph of G2. This implies that G2 has a Hamiltonian cycle and therefore G has

one, too.

On the other hand, if G has a Hamiltonian cycle C, taking the edges in C and the duplicates of them

we get a subgraph H ′ of G2 that is isomorphic to H. By adding all transitions between two parallel edges

in H ′ to a transition system S ′ on H ′ we get that (H ′,S ′) is an Eulerian transition minor of G2 and that

the transition system S ′ corresponds to the transition system S on H. Therefore, (H ′,S ′) is trivially a

sup-(H,S) graph.

Proof of Theorem 2. In Theorem 1, we already proved that ESTM is in NP which implies that it is also

in NP if we restrict it to simple graphs. Similar to the proof of Theorem 1 we prove hardness by reducing

the Hamiltonian cycle problem to ESTM. Let G be an instance of a Hamiltonian cycle problem. Instead of

replacing edges in G by double edges as we did in the proof of Theorem 1, we replace this time each edge

e by a subgraph Ae. Each such subgraph Ae contains a K4 of which two vertices are connected to the one

end vertex of e and the other two edges are connected to the other end vertex of e, see Figure 3. Let G′ be

the resulting graph after replacing all edges e in G by the respective subgraphs Ae. We will call the vertices

in G′ that correspond to a vertex in G original vertices.

Furthermore, let H be a cycle of length n = |V (G)| and let H ′ be the result after replacing all edges

e in H by the subgraph Ae. We define the transition systems T and S on G′ and H ′ by adding for each

subgraph Ae the transitions as shown in Figure 3. The obtained graph H ′ is 4-regular and (H ′,S) is

completely transitioned. All in all we get that ((G′, T ), (H ′,S)) is an instance of ESTM restricted to simple

graphs.

We will prove now that G has a Hamiltonian cycle if and only if there exists an Eulerian transition minor

of (G′, T ) that is a sup (H ′,S) graph, i.e. that ((G′, T ), (H ′,S)) is a positive instance of ESTM.

⇒: Assume G has a Hamiltonian cycle C. We construct a corresponding subgraph H ′′ in G′ by adding

for each edge e ∈ E(C) the subgraph Ae to H ′′. Since the length of the cycle C is also n we get that

H ′′ is isomorphic to H ′. Furthermore, the transitions in H ′′ correspond to the transitions in H ′ and

therefore H ′′ is trivially a sup-(H ′,S) graph. On the other hand, due to its construction H ′′ together

with all transitions in H ′′ is an Eulerian transition minor of G′.

⇐: Let (H ′′,S ′) be an Eulerian transition minor of (G′, T ) and a sup-(H ′,S) graph. Note that there exists

a Hamiltonian path in each Ae, e ∈ E(H ′) from v1 to v2 and therefore H ′ has a Hamiltonian cycle.

The graph H ′ has |V (H)| + 4|E(H)| = n + 4n = 5n vertices and therefore the Hamiltonian cycle is

of length 5n. By definition of a sup-(H ′,S) graph the cycle in H ′ corresponds to a cycle in H ′′ with

at least the same number of vertices. Therefore, H ′′ has a cycle of length at least 5n. Since H ′′ is a

minor of G′, we get that also G′ contains a cycle C ′ of length at least 5n.
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v1 v2e
⇒ v1 v2

Ae

Figure 3: The graph Ae, which replaces an edge e in G and H. The transitions are represented by a vee (∨) between their two

edges.

Let (v1, ..., vN ) be the vertex sequence of C ′ with N ≥ 5n. By construction of G′ five consecutive

vertices in C ′ contain at least one original vertex. Thus, C ′ contains at least n original vertices, i.e.,

all original vertices. Furthermore, if vi and vj are original vertices and all vertices between them in

C ′, i.e. vk for i < k < j, are not original, then vi and vj must both be part of a common subgraph

Ae, and therefore they are connected by e in G. Thus, if we remove all non-original vertices from the

vertex sequence (v1, ..., vN ) we get a new vertex sequence in G of length n in which all consecutive

vertices are connected. Therefore, G is a Hamiltonian graph.

3.1. Problem Transformation

Definition 9 (Basic-Sup-(H,S)). Let (H,S) be a completely transitioned 4-regular graph. A transitioned

graph (H ′,S ′) is a basic-sup-(H,S) graph if the following holds.

The graph H ′ can be decomposed into |V (H)| many connected vertex-disjoint subgraphs

{Rw | w ∈ V (H)}

and |E(H)| many edges {f ′ | f ∈ E(H)}. For each edge f = w1w2 ∈ E(H) the edge f ′ connects the

subgraphs Rw1
and Rw2

. For a vertex w ∈ V (H) let R+
w be the subgraph of H ′ induced by E(Rw) and the

four adjacent edges f ′ for f ∈ E(w).

There exists an ordering of the outgoing edges of w by

E(w) = {f1, f2, f3, f4}

such that the following holds.

• The two transitions in S(w) are S1
w = (w, {f1, f2}) and S2

w = (w, {f3, f4}).

• There exists a transition S′w in S ′ such that the form of Rw and the transition S′w satisfy one of the

four possibilities (see Figure 4):

1. Rw is only one vertex w′ and S′w = (w′, {f ′1, f ′2}) ∈ S ′(w′)
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w′

f ′1 f ′2

f ′3f ′4

case 1

w′

w′n
f ′w

f ′1

f ′2

f ′3f ′4

case 2

w′

w′n

f ′wf ′′w

f ′1 f ′2

f ′3f ′4

case 3

w′

w′n
f ′w

f ′1

w′′n
f ′′w

f ′2

f ′3f ′4

case 4

Figure 4: The four possibilities for Rw and R+
w including the transition S′w. The solid edges represent the edges of Rw and the

dashed edges the four additional edges of R′w. The transition is represented by a vee (∨) between its two edges.

2. Rw is a K2 with two vertices w′ and w′n, where w′n is of degree two with two incident edges f ′1

and f ′w. Moreover, S′w = (w′, {f ′w, f ′2}) ∈ S ′(w′).
3. Rw is a cycle of length two, i.e. two vertices w′ and w′n and two parallel edges f ′w and f ′′w connecting

them. Furthermore, w′n has degree four and is incident to f ′1 and f ′2 and S′w = (w′, {f ′w, f ′′w}) ∈
S ′(w′).

4. Rw consists of a vertex w′ and two vertices w′n and w′′n and two edges f ′w and f ′′w connecting w′

with w′n and w′ with w′′n . Furthermore, w′n is incident to f ′1, w′′n is incident to f ′2, w′ is incident

to f ′3 and f ′4, and S′w = (w′, {f ′w, f ′′w}) ∈ S ′(w′).

Note that we did not specify the order of the edges f1, f2, f3, and f4 except that there must be transitions

(w, {f1, f2}) and (w, {f3, f4}) in S(w). Therefore, we could always interchange f1 and f2 with f3 and f4 in

the second condition. The condition only has to hold for one of the two possibilities.

Definition 10 (Basic-Sup-(H,S)-Reduced-Transition-Minor free). Let (H,S) be a completely tran-

sitioned 4-regular graph. A transitioned graph (G, T ) is basic-sup-(H,S)-reduced-transition-minor free if

and only if it does not have any reduced-transition-minor (H ′,S ′) that is a basic-sup-(H,S) graph.

Problem 2 (Existence of basic-sup-reduced-transition-minors (EBSRTM)). Given a transitioned

graph (G, T ) and a completely transitioned 4-regular graph (H,S), does there exist a reduced-transition

minor of (G, T ) that is a basic-sup-(H,S) graph?

Theorem 3. EBSRTM is equivalent to ESTM.

Proof. Let ((G, T ), (H,S)) be a positive instance of EBSRTM, i.e. there exists a reduced-transition minor

(H ′,S ′) of (G, T ) that is a basic-sup-(H,S) graph. We have to prove that this instance is also a positive

instance of ESTM. First of all the reduced-transition minor can be extended to a transition minor (H ′,S ′′)
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of (G, T ) by adding opposite transitions for degree four vertices. For every vertex w ∈ V (H) there exists

a subgraph Rw of H ′ that is of one of the four forms described in Definition 9 and shown in Figure 4. In

all four cases every vertex in this subgraph has degree two and four. Since every vertex in H ′ occurs in one

Rw, we get that H ′ is Eulerian.

It remains to show that (H ′,S ′′) is a sup-(H,S) graph. For each edge f ∈ E(H) we use the graph

induced by the single edge f ′ ∈ E(H ′) as path Pf . For each vertex w ∈ V (H) we use the subgraph Rw as

Qw. All defined subgraphs are connected and edge-disjoint since the graphs Rw are vertex-disjoint and the

edges f ′ are all different and always connect two different subgraphs Rw1
and Rw2

.

By definition of f ′ the path Pf only consists of f ′ and it connects the subgraphs Rw1 = Qw1 and

Rw2
= Qw2

if f = w1w2. The paths Pf are also internally disjoint since the edges f ′ are all different.

Furthermore, by definition the graphs Qw = Rw are vertex-disjoint connected subgraphs. The subgraphs

Q+
w = R+

w have in all four cases a bad 1-separator {uw := w′} separating H1
w and H2

w where H2
w is the graph

induced by {f ′3, f ′4} (in Figure 4 the lower part of the graphs below the vertex w′) and H1
w is the rest of R+

w ,

i.e. the graph induced by E(R+
w)\{f ′3, f ′4}. It is a bad 1-separator since by definition we get in all four cases

(w′, E(w′) ∩ E(H1
w)) ∈ S ′′(w′).

Furthermore, we have {f ′1, f ′2} ⊆ H1
w and {f ′3, f ′4} ⊆ H2

w which concludes the proof that (H ′,S ′′) is a

sup-(H,S) graph. Therefore, the instance ((G, T ), (H,S)) is also a positive instance of ESTM.

Now, let ((G, T ), (H,S)) be a positive instance of ESTM, we want to show that it is also a positive

instance of EBSRTM. Let (H ′,S ′) be an Eulerian transition-minor of (G, T ) that is a sup-(H,S) graph.

By removing the transitions in S ′ that do not correspond to a transition in T , see (3), we get a reduced-

transition-minor (H ′,S ′′) of (G, T ).

For each vertex w ∈ V (H) the subgraph Q+
w of H ′ has a bad 1-separator uw separating H1

w and H2
w.

Without loss of generality let S1
w := (uw, E(uw) ∩ E(H1

w)) ∈ S ′(uw). If S1
w /∈ S ′′(uw) we know that

deg(uw) = 4 and that S2
w := (uw, E(uw) \ S1

w = E(uw) ∩ E(H2
w)) ∈ S ′′(uw). In this case we exchange S1

w

and H1
w with S2

w and H2
w so that we always have

S1
w := (uw, E(uw) ∩ E(H1

w)) ∈ S ′′(uw).

Furthermore, we can assume without loss of generality that the paths Pf only consist of single edges, since

otherwise we could move some edges from Pf to one of the subgraphs Qw until Pf only consists of one edge.

Let Q1
w := Qw ∩ H1

w and Q2
w := Qw ∩ H2

w. Now we contract all edges in Q2
w such that only the vertex

uw remains. Furthermore, we contract all edges in E(Q1
w) \ S1

w, i.e. all edges in Q1
w that are not in the

transition S1
w. Starting from Qw and applying those contractions we call the resulting graph Rw. Applying

these contractions to all graphs Qw for w ∈ E(H) we call the whole resulting graph H ′′, which is a minor of

H ′. Let S ′′′ be the corresponding transition system of H ′′ such that (H ′′,S ′′′) is a reduced-transition-minor
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of (H ′,S ′′). We still have S1
w ∈ S ′′′ since we did not contract any of the edges incident to uw. Let R+

w be

the graph Rw together with the four adjacent paths Pf , each consisting of only one edge, for f ∈ E(w). To

see that R+
w has one of the four forms shown in Figure 4, we only have to distinguish different cases for the

degree of the vertex uw in Q1
w:

1. If uw has degree 0 in Q1
w, this would imply that Qw only consists of the vertex uw and therefore Rw

only consists of the vertex uw which results in case 1.

2. If uw has degree 1 in Q1
w, this would imply that Rw is a K2 which results in case 2.

3. If uw has degree 2 in Q1
w, there are two possibilities. If uw is not a cut vertex of Q1

w, then Rw is a

digon (two vertices and two parallel edges) which results in case 3. Otherwise, if uw is a cut vertex of

Q1
w then Rw is a path of length two which results in case 4.

Note that the degree of uw in Q1
w is at most two, since π2(S1

w) = E(uw) ∩ E(H1
w) and |π2(S1

w)| = 2. In

each of the four cases the transition S′ is exactly the transition drawn in the figure. Therefore, we just

proved that (H ′′,S ′′′) is a basic-sup-(H,S) graph. Since (H ′,S ′′) is a reduced-transition-minor of (G, T )

and (H ′′,S ′′′) is a reduced-transition-minor of (H ′,S ′′), we get by transitivity that (H ′′,S ′′′) is a reduced-

transition-minor of (G, T ). All in all we proved that the given instance ((G, T ), (H,S)) is also a positive

instance of EBSRTM.

With that result we can proof that EBSRTM and therefore also ESTM is fixed-parameter tractable with

the parameter k = |V (H)|.

Theorem 4. ESTM is fixed parameter tractable with the parameter k = |V (H)|.

Proof. We prove this by showing that EBSRTM is fixed parameter tractable and by Theorem 3 it follows

that also ESTM is fixed parameter tractable. The proof is similar to the one in [10].

Notice that every basic-sup-(H,S) graph (H ′,S ′) satisfies |V (H ′)| ≤ 3|V (H)|. This implies that for

a fixed k = |V (H)| there are only finite many possible graphs (H ′,S ′) that can be a basic-sup-(H,S)

graph for any graph (H,S) with |V (H)| = k. We can formulate now an algorithm that first generates

all possible graphs (H ′,S ′) and then checks for each of them if it is a basic-sup-(H,S) graph and if it

is a reduced-transition-minor of (G, T ). Since the size of the graphs H ′ and H are bounded, checking if

(H ′,S ′) is a basic-sup-(H,S) graph can be done in constant time. What is left is to prove that checking if

(H ′,S ′) is a reduced-transition-minor of (G, T ) can be done in polynomial time in m = |V (G)|+ |E(G)| if

k′ = |V (H ′)| ≤ 3k is fixed. By definition (H ′,S ′) is a reduced-transition-minor of (G, T ) if and only if there

exist partial mappings ϕ and κ as described in Definition 5 such that S ′ equals the set defined in (2).

Since κ must be a partial injective and surjective function and since each vertex of H ′ has at most degree

four, there are at most

|E(G)||E(H′)| ≤ m2k′ ≤ m6k
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many possibilities to define κ by choosing exactly one edge in G for each edge in H ′. Since k is fixed this

number is polynomial in m and therefore we can generate all those possibilities and check for each of them

if there exists an adequate partial mapping ϕ satisfying all needed properties. Therefore, let κ be a fixed

partial injective and surjective function from E(G) to E(H ′) for the rest of this proof.

Let

V0 :=
⋃

e∈dom(κ)

rG(e) ⊆ V (G)

be the set of all vertices in G that are incident to a mapped edge of κ. Since κ is injective and surjective,

we have |dom(κ)| = |E(H ′)| ≤ 2k′ and therefore |V0| ≤ 2|dom(κ)| ≤ 4k′. Since ϕ must satisfy (1), ϕ must

be defined on each vertex in V0 and only two values for ϕ(v) are possible for each v ∈ V0. Thus, the number

of possible definitions of ϕ on V0 is smaller than or equal to

|V0|2 ≤ (4k′)2

and is therefore constant in m. We can again generate all those possibilities and check for each of them if

there exists an adequate extension of ϕ to the whole vertex set V . Let therefore be ϕ already fixed and

defined on V0.

By using κ and the partially defined ϕ on V0 the transition set defined in (2) is already well-defined,

and we can compute it and check if it equals the transition set S ′. If the two transition sets do not match

we can discard this possibility. In the case when the two transition sets are equal we only have to check if

we can extend ϕ to V in such a way that ϕ is a partial surjective function and that each preimage ϕ−1[w]

is a connected vertex set in G for each w ∈ V (H ′). Since ϕ as defined already on V0 satisfies (1) we already

know that it is surjective without extending it at all. Therefore, we only have to extend it in such a way

that each preimage ϕ−1[w] is a connected vertex set in G for each w ∈ V (H ′). The existence of such an

extension is equivalent to the existence of disjoint spanning trees Tw in G for each w ∈ V (H ′), such that

the already defined sets ϕ−1[w]∩ V0 ⊆ Tw for each w ∈ V (H ′). Without loss of generality we can search for

spanning trees Tw such that all leaf vertices of Tw are in V0.

Let w ∈ V (H ′) be an arbitrary vertex. For each incident edge f in E(w) we know by (2) that exactly

one vertex in G incident to κ−1(f) is mapped to w under the already defined part of ϕ on V0. Therefore,

|ϕ−1[w] ∩ V0| ≤ degH′(w) ≤ 4 for each w ∈ V (H ′). Putting everything together we get that Tw has at

most four leaf vertices for each w ∈ V (H ′). Since Tw is a tree it holds that |E(Tw)| = V (Tw) − 1, which

implies that Tw has at most two vertices that have degree three or larger in Tw. These vertices could be in

V \ V0. The number of possible selections of such vertices of degree three or larger in Tw outside of V0 for

all w ∈ V (H ′) is bounded by |V (G)|2(|V (H′)|+1) ≤ m2k+2 and is therefore polynomial in m. We can again

iterate through all such possible selections of vertices of degree three or larger in Tw and check for each of

them if we can construct the trees Tw such that they satisfy all needed properties. Let Vw ⊆ V \ V0 be the
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fixed selected set of vertices of degree three or larger in Tw outside of V0 for each w ∈ V (H ′).

We construct now all possible labeled simple trees with the vertices Vw ∪
(
ϕ−1[w] ∩ V0

)
. Since those are

at most six vertices, the number of such labeled trees is finite. We can again iterate through all combinations

of labeled trees Lw for all w ∈ V (H ′) and check if the following holds for at least one of them. For each

w ∈ V (H ′) and its current labeled tree Lw we check if we can replace the edges of Lw by paths in G to get

a tree Tw in G. Since the trees Tw in G must be vertex disjoint for each w ∈ V (H ′) all those paths in G

replacing the edges of the labeled trees must be vertex disjoint. Therefore, what remains to check is if there

exist vertex disjoint paths in G connecting all vertex pairs rLw
(e) for each edge e ∈ Lw and each w ∈ V (H ′).

Note that the number of such pairs can be bounded by

∑

w∈V (H′)

|E(Lw)| =
∑

w∈V (H′)

|V (Lw)| − 1 ≤
∑

w∈V (H′)

5 = 5|V (H ′)| = 5k′ ≤ 15k,

which is assumed to be constant. This problem can be solved for a bounded number of pairs in polynomial

time in the size of G and therefore in m, as proven in [10]. This concludes our proof.

4. Modeling

In this chapter we present a mathematical model for solving the problem EBSRTM that can be expressed

as a mixed integer linear program, cf. Section 5. First we present the model, and then we prove extensively

that the model really solves EBSRTM, since this is not obvious.

A naive model would need variables for representing the unknown graph (H ′,S ′) and constraints to ensure

that (H ′,S ′) is a reduced-transition-minor of the given (G, T ) and that (H ′,S ′) is a basic-sup-(H,S). Such

a naive model would be quite large since we do not even know the size of (H ′,S ′). Furthermore, formulating

the constraints would be nontrivial and likely need a lot of additional auxiliary variables. The model we

will present does not describe the graph (H ′,S ′) directly. It just consists of mappings between (G, T ) and

(H,S) and constraints to ensure that a valid intermediate graph (H ′,S ′) exists.

4.1. Towards a Model

Let (G, T ) and (H,S) be given as the input. Let us assume now that there exists a reduced transition

minor (H ′,S ′) of (G, T ) that is a basic-sup-(H,S) graph, i.e. that the given instance is a yes instance of

EBSRTM. This situation and the notation which we will introduce in the following is visualized in Figure 5.

By the definition of a minor there exist partial mappings ϕ′ : V (G) 9 V (H ′) and κ′ : E(G) 9 E(H ′)

where ϕ′ is surjective and κ′ is injective and surjective. By the definition of a basic-sup-(H,S) graph we can

define the following natural partial mappings. The vertex mapping ϕ′′ : V (H ′) 9 V (H) maps each vertex in

the subgraph Rw to w for each w ∈ V (H). Since each Rw is non-empty, ϕ′′ is surjective. The edge mapping

κ′′ : E(H ′) 9 E(H) maps each edge f ′ to its corresponding edge f ∈ E(H) for each f ∈ E(H) as defined in

Definition 9. By definition this partial mapping is injective and surjective.
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w

Sw

(H,S)

w′

S′w

(H ′,S ′)

vw

Tw

C2
w

C1
w

(G, T )
ϕ′
−→
κ′

ϕ′′
−−→
κ′′

κ

ϕ

Figure 5: Exemplary visualization of the two input graphs together with the intermediate graph H′.

Using the above mappings we can define partial mappings from G to H by composing them. We define

the two functions

ϕ := ϕ′′ ◦ ϕ′ : V (G) 9 V (H),

and

κ := κ′′ ◦ κ′ : E(G) 9 E(H).

Since ϕ′ and ϕ′′ are surjective also ϕ is surjective and since κ′ and κ′′ are injective and surjective also κ is

injective and surjective.

We denote for each w ∈ V (H) the transition Sw := S1
w ∈ S as defined in Definition 9. Each such

transition Sw is associated via Definition 9 with a transition S′w in S ′. Furthermore, by this definition we

have π1(S′w) =: w′ ∈ ϕ′′−1[w]. Moreover, since S′w is in S ′ we get by definition of a reduced transition minor

that

Tw := (vw, κ
′−1[π2(S′w)]) ∈ T

for some vw ∈ ϕ′−1[w′] ⊆ ϕ−1[w].

To model the fact that each vertex set ϕ′−1[x] must be connected in G for each x ∈ V (H ′) and to model

the four different possible structures of each Rw, we further introduce for each w ∈ V (H) two trees C1
w and

C2
w. The two trees cover the connected subgraph ϕ−1[w] and share exactly one common vertex vw = π1(Tw).

The tree C2
w represents a spanning tree of ϕ′−1[w′] in G, where w′ is as specified in Definition 9 for each

w ∈ V (H). The tree C1
w represents a spanning tree of {vw}, {vw} ∪ ϕ′−1[w′n], or {vw} ∪ ϕ′−1[{w′n, w′′n}]

depending on the possible four cases for the form of Rw. Since the two trees share one vertex this ensures
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that the vertex set ϕ−1[w] = V (C1
w) ∪ V (C2

w) is connected in G. We have to distinguish the two trees to

formulate the constraint that the edges of Tw must be part of C1
w∪κ−1[π2(Sw)]. Since we are only concerned

with connectivity for the trees C1
w and C2

w we define them not as subtrees of G but as simple trees with

vertices V (Ciw) ⊆ V (G) and for each edge in E(Ciw), which is represented as a set of two vertices, there

must exist at least one edge in G whose end vertices are exactly those two vertices.

In case 3 of Definition 9 it may be that rG(κ′−1(f ′w)) 6= rG(κ′−1(f ′′w)). In this case only one of those two

edges will be included in the tree C1
w. Therefore, for this case we have to reformulate the condition that

the edges of Tw must be part of C1
w ∪ κ−1[π2(Sw)]. To do this we introduce a new partial injective mapping

θ : E(G) 9 V (H) to our model, which only maps an edge to the vertex w if Rw is of the form of case 3 of

Definition 9 and rG(κ′−1(f ′w)) 6= rG(κ′−1(f ′′w)). With that mapping we can reformulate the condition such

that the edges of Tw must be part of C1
w ∪ κ−1[π2(Sw)] ∪ θ−1[w].

With the above motivation we are ready to formulate our model.

4.2. The Model

Let (G, T ) and (H,S) be given as the input. We will use the following additional notation in the model.

If Ciw is a simple tree with vertices in G we define

Eiw :=
{
e ∈ E(G) | r(e) ∈ E(Ciw)

}

as the set of all edges in G whose end vertices are connected in Ciw by an edge. The model is now defined

as finding

1. a partial surjective function ϕ : V (G) 9 V (H),

2. a partial injective and surjective function κ : E(G) 9 E(H),

3. a partial injective function θ : E(G) 9 V (H),

4. for each w ∈ V (H) a pair (Tw, Sw) of transitions with Tw ∈ T and Sw ∈ S(w),

5. for each w ∈ V (H) two simple trees C1
w and C2

w with V (Ciw) ⊆ V (G) for i = 1, 2,

such that

E(Ciw) ⊆ rG[E(G)] ∀w ∈ V (H),∀i ∈ {1, 2} (4)

κ(e) = f ⇒ ϕ[rG(e)] = rH(f) ∀e ∈ E(G),∀f ∈ E(H) (5)

V (C1
w) ∪ V (C2

w) = ϕ−1[w] ∀w ∈ V (H) (6)

{π1(Tw)} = V (C1
w) ∩ V (C2

w) ∀w ∈ V (H) (7)

π2(Tw) ⊆ κ−1[π2(Sw)] ∪ θ−1[w] ∪ E1
w ∀w ∈ V (H) (8)

(
κ−1[π2(Sw)] ∩ E(π1(Tw))

)
∪ θ−1[w] ⊆ π2(Tw) ∀w ∈ V (H) (9)

e ∈ dom(κ) ∧ κ(e) ∈ π2(Sw)⇒ rG(e) ∩ V (C1
w) 6= ∅ ∀w ∈ V (H),∀e ∈ E(G) (10)

17

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
00

9



e ∈ dom(κ) ∧ κ(e) ∈ E(w) \ π2(Sw)⇒ rG(e) ∩ V (C2
w) 6= ∅ ∀w ∈ V (H),∀e ∈ E(G) (11)

v ∈ V (C1
w) \ {π1(Tw)} ∧ degC1

w
(v) = 1 ∧ v /∈

⋃
rG[θ−1[w]]

⇒ E(v) ∩ κ−1[π2(Sw)] 6= ∅
∀w ∈ V (H),∀v ∈ V (G) (12)

EC1
w

(π1(Tw)) ⊆ rG[π2(Tw)] ∀w ∈ V (H) (13)

θ(e) = w ⇒ rG(e) ⊆ V (C1
w) ∀e ∈ E(G),∀w ∈ V (H) (14)

θ(e) = w ⇒ rG(e) /∈ E(C1
w) ∀e ∈ E(G),∀w ∈ V (H) (15)

Constraints (4) ensure that the trees Ciw are simple trees where each simple edge corresponds to at least

one edge of G. Constraints (5) couple the edge map κ with the vertex map ϕ, similar to condition (1).

Furthermore, conditions (6) guarantee that the two trees C1
w and C2

w together really cover ϕ−1[w] and

together with constraints (7) this ensures that ϕ−1[w] is connected in G. Constraints (7) furthermore

enforce that π1(Tw) gets mapped to w under ϕ. Constraints (8) ensure that the edges of a transition Tw get

either mapped directly to edges of Sw (see f ′1, f
′
2 in case 1 and f ′2 in case 2 of Definition 9), or correspond to

edges of C1
w (see f ′w in case 2 or f ′w, f

′′
w in case 3 or 4), or get mapped to w by θ (f ′′w in case 3 of Definition 9

if rG(κ′−1(f ′w)) 6= rG(κ′−1(f ′′w))). On the other hand, constraints (9) guarantee that the only edges that

are incident to π1(Tw) and get mapped under κ to an edge in π2(Sw) are in π2(Tw). Furthermore, those

constraints ensure that only edges in π2(Tw) may be mapped to w under θ.

An edge in G that gets mapped under κ to π2(Sw) must be incident to a vertex in C1
w, which is ensured

by conditions (10). This forces edges like f ′1 or f ′2 in Definition 9 to be incident to a vertex of the upper

tree. On the other hand, conditions (11) guarantees that edges that get mapped under κ to E(w) \ π2(Sw)

are incident to a vertex of C2
w. This forces edges like f ′3 and f ′4 in Definition 9 to be incident to a vertex of

the lower tree.

Constraints (12) are the most complex ones of the model. They are needed to avoid situations like one

similar to case 4 of Definition 9 where f ′2 is not incident to w′′n but to w′n. In this case a leaf vertex of

the upper tree would have no incident edge in dom(κ). On the other hand, it may happen in case 3 if

rG(κ′−1(f ′w)) 6= rG(κ′−1(f ′′w)) that one leaf vertex of the upper tree also has no incident edge but is still

representing a valid case. But then we can ensure that this leaf vertex is incident to the edge that gets

mapped to w by θ. Therefore, to exclude the unwanted situation described above, which is similar to case

4, but to include the wanted cases in case 3, we need constraints (12).

Constraints (13) guarantee that all edges in the upper tree that are incident to π1(Tw) are represented

in G by edges in π2(Tw). Furthermore, constraints (14) enforce that if an edge e gets mapped by θ to a

vertex w that both incident vertices of e are in the upper tree C1
w and (15) ensures that the edge e itself is

not represented by an edge in C1
w.
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Theorem 5. For the above model exists a valid solution if and only if ((G, T ), (H,S)) is a yes instance of

EBSRTM.

We split this theorem into two parts, proofing each direction independently. Theorem 5 then directly

follows Proposition 1 and Proposition 2.

Proposition 1. If ((G, T ), (H,S)) is a yes instance of EBSRTM there exists a valid solution in the above

model.

Proof. Let ((G, T ), (H,S)) be a yes instance of EBSRTM and (H ′,S ′) a reduced-transition-minor of (G, T )

that is a basic-sup-(H,S) graph. In the first part of the proof we will derive the partial mappings ϕ, κ, θ,

the transitions Sw and Tw for w ∈ V (H), and the trees Ciw for w ∈ V (H), i ∈ {1, 2}. In the second part we

will prove that the constraints (4)–(15) are satisfied. Let ϕ′ and κ′ be the correspondence functions of the

minor H ′ of G, see the second part of Definition 5. W.l.o.g. we assume that dom(ϕ′) is minimal, i.e. after

removing any vertex from dom(ϕ′) the conditions of Definition 5 are not satisfied anymore. We will need

the following property for the minimal ϕ′.

Lemma 4. Every vertex v ∈ dom(ϕ′) is either incident to an edge e ∈ dom(κ′) or a cut vertex of ϕ′−1[ϕ′(v)].

Proof. Assume there is a vertex v ∈ dom(ϕ′) that is not incident to any edge in dom(κ′) and is no cut

vertex of ϕ′−1[ϕ′(v)]. We prove now that removing the vertex v from ϕ′ still leads to a valid vertex mapping

for Definition 5, which then is a contradiction to the minimality of ϕ′. Let ϕ′ = ϕ′ \ {(v, ϕ′(v))} be the

reduced mapping. We need to prove all conditions of Definition 5 for ϕ′. First of all ϕ′
−1

[ϕ′(v)] is non-empty

since H ′ is four regular and therefore there exists an edge f ∈ E(H ′) that is incident to ϕ′(v). Then we

have

ϕ′(v) ∈ rH(f) = ϕ′[rG(κ′−1(f))] = ϕ′[rG(κ′−1(f))],

which implies that ϕ′
−1

[ϕ′(v)] is non-empty. Furthermore, ϕ′
−1

[ϕ′(v)] = ϕ′−1[ϕ′(v)]\{v} is connected since

v was not a cut vertex of ϕ′−1[ϕ′(v)]. Last but not least (1) is also valid for ϕ′ since v was not incident to

any edges in dom(κ′).

Let the subgraphs Rw for w ∈ V (H) and the edges f ′ of H ′ for f ∈ E(H) be as described in Definition 9.

We define a new surjective function ϕ′′ : V (H ′) → V (H) and a partial injective and surjective function

κ′′ : E(H ′) 9 E(H) by

ϕ′′(x) = w ∀x ∈ Rw,∀w ∈ V (H)

and

κ′′(f ′) = f ∀f ∈ E(H).
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Function ϕ′′ is well-defined and surjective since the vertex sets of the non-empty subgraphs Rw partition the

vertex set V (H ′). The partial function κ′′ is well-defined and injective since the edge f ′ is different for each

f ∈ E(H). This can be seen by the fact that | {f ′ | f ∈ E(H)} | = |E(H)| in Definition 9. Furthermore, κ′′

is surjective since there exists an edge f ′ for every f ∈ E(H).

Now we can concatenate the given functions and get the surjective partial functions ϕ : V (G) 9 V (H)

and κ : E(G) 9 E(H) by ϕ = ϕ′′ ◦ϕ′ and κ = κ′′ ◦ κ′. Since both κ′ and κ′′ are injective κ is also injective.

Moreover, since the four maps ϕ′, ϕ′′, κ′, and κ′′ are surjective the maps ϕ and κ are also surjective.

In the following we use the notation in Definition 9, which is possible since we know that (H ′,S ′) is

a sup-(H,S) graph. For each vertex w ∈ V (H) let S′w ∈ S ′(w′) be the transition at vertex w′ defined in

Definition 9. Since the transition S′w is in the reduced-transition minor (H ′,S ′) of (G, T ) there must exist

a transition Tw ∈ T with κ′[π2(Tw)] = π2(S′w) and ϕ′(π1(Tw)) = π1(S′w) = w′. Furthermore, for w ∈ V (H),

let Sw := S1
w = (w, {f1, f2}) as specified in Definition 9. With this we defined for each vertex w ∈ V (H) the

pair (Tw, Sw). For a vertex w ∈ V (H) we define the simple graph Gw = (Vw, Ew) by Vw := ϕ′−1[V (Rw)]

and

Ew :=
{
rG(e) | e ∈ κ′−1[E(Rw)] ∨ ∃x ∈ V (Rw) : rG(e) ⊆ ϕ′−1[x]

}
.

We know that ϕ′−1[x] is connected in G for every x ∈ V (Rw), and for each edge f∗ ∈ E(Rw) with rH′(f∗) =

{x1, x2} the edge κ′−1(f∗) connects ϕ′−1[x1] with ϕ′−1[x2]. From that follows that Gw is connected. We

can now define C2
w to be a spanning tree of the vertex set ϕ′−1[w′] in Gw.

To define C1
w let V 1

w be the vertex set containing vw := π1(Tw) and ϕ′−1[w′n] if the vertex w′n exists

together with ϕ′−1[w′′n ] if the vertex w′′n exists. The vertex set V 1
w is connected in Gw since ϕ′−1[w′n] is

connected if existent, ϕ′−1[w′′n ] is connected if existent, the edge κ′−1(f ′w) connects vw with ϕ′−1[w′n] if

existent, and if ϕ′−1[w′′n ] exists it is connected to vw by κ′−1(f ′′w). We define now C1
w to be a spanning tree

of V 1
w in Gw. In case 3 of Definition 9 we require from C1

w w.l.o.g. that vw is a leaf vertex in C1
w connected

by rG(κ′−1(f ′w)). This is possible since V 1
w \ {vw} = ϕ′−1[w′n] is still connected.

Furthermore, for a vertex w ∈ V (H) in case 3 of Definition 9 we define θ(κ′−1(f ′′w)) = w if rG(κ′−1(f ′′w)) 6=
rG(κ′−1(f ′w)). If κ′−1(f ′′w) is a parallel edge to κ−1(f ′w) and in the other three cases of Definition 9 no edge

maps to w, i.e. θ−1[w] = ∅. By definition θ is injective since the edges κ−1(f ′′w) are incident to two vertices

in ϕ′−1[Rw] and the sets ϕ′−1[Rw] are disjoint for different vertices w. What remains is now to show that

the constraints (4)–(15) hold, which we will prove in the following.

(4) Constraints (4) are satisfied since C1
w and C2

w are subtrees of Gw and since E(Gw) = Ew ⊆ rG[E(G)]

by definition.

(5) Let e ∈ E(G) and f ∈ E(H) with κ(e) = f , i.e. κ′′(κ′(e)) = f . By definition of κ′′ we get κ′(e) = f ′

and by (1) we get r′H(f ′) = ϕ′[rG(e)]. Let f = w1w2 then we know by Definition 9 that f ′ connects
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the subgraphs Rw1 and Rw2 in H ′, i.e. f ′ = x1x2 with x1 ∈ V (Rw1) and x2 ∈ V (Rw2). By definition

of ϕ′′ we get ϕ′′(x1) = w1 and ϕ′′(x2) = w2 and plugging everything together we get

ϕ[rG(e)] = ϕ′′[ϕ′[rG(e)]] = ϕ′′[r′H(f ′)] = ϕ′′[{x1, x2}] = {w1, w2} = rH(f).

(6) By the definition of C1
w and C2

w we have

V (C1
w) ∪ V (C2

w) = V (Gw) = ϕ′−1[V (Rw)] = ϕ′−1[ϕ′′−1[w]] = ϕ−1[w].

(7) Let w ∈ V (H) then by definition of C1
w and C2

w we get (7) by the fact that ϕ′−1[w′n] and ϕ′−1[w′′n ] are

disjoint to ϕ′−1[w′] and because ϕ′(π1(Tw)) = w′ by definition of Tw.

(8) Let w ∈ V (H) and e ∈ π2(Tw). Then we know by the definition of Tw that κ′(e) = f∗ ∈ π2(S′w). In

all four cases in the Definition 9 the edges of π2(S′w) are either f ′i for some fi ∈ π2(Sw), f ′w, or f ′′w. If

f∗ = f ′i for some fi ∈ π2(Sw) we get e = κ−1(fi) ∈ κ−1[π2(Sw)].

Next we show that rG(κ−1(f ′w)) is in E(C1
w) in the cases 2 to 4 of Definition 9. In case 2 the only

edge between π1(Tw) and ϕ′−1[w′n] in C1
w is rG(κ−1(f ′w)) and therefore it must be part of C1

w since

C1
w is a spanning tree. In case 3 we directly forced rG(κ−1(f ′w)) to be a part of C1

w. Furthermore, in

case 4 both edges rG(κ−1(f ′w)) and rG(κ−1(f ′′w)) must be part of C1
w since otherwise the subgraphs

ϕ′−1[w′n] and ϕ′−1[w′′n ] would not be connected. Therefore, if f∗ = f ′w we directly get e ∈ E1
w. We

already proved for the case 4 that rG(κ′−1(f ′′w)) ∈ E(C1
w) and therefore also in case 4 if f∗ = f ′′w we

get e ∈ E1
w.

The only remaining case is case 3 and if f∗ = f ′′w. Then either κ′−1(f ′′w) is parallel to κ′−1(f ′w) which

would imply again rG(κ′−1(f ′′w)) ∈ E(C1
w) or θ(κ′−1(f ′′w)) = θ(e) = w and therefore e ∈ θ−1[w]. All in

all we just proved (8).

(9) Let w ∈ V (H) and e ∈ κ−1[π2(Sw)]∩E(π1(Tw)). Let f = κ(e) = κ′′(κ′(e)), then we know by definition

of κ′′ that κ′(e) = f ′. Since e is incident to π1(Tw), we get by (1) that f ′ is incident to ϕ′(π1(Tw)) = w′.

We know now that f ∈ π2(Sw) and that f ′ is incident to w′, which implies that f ′ ∈ π2(S′w). This

can easily be checked in all four cases of Definition 9. But since π2(S′w) = κ′[π2(Tw)] we get that

e ∈ κ′−1[π2(S′w)] = π2(Tw).

On the other hand, if e ∈ θ−1[w] this means that we are in case 3 of Definition 9 and e = κ′−1(f ′′w) ∈
κ′−1[π2(S′w)] = π2(Tw). All in all we proved (9).

(10) Let w ∈ V (H), e ∈ dom(κ), and f = κ(e) ∈ E(w). Then we know by definition of κ that κ′(e) = f ′

and since f is incident to w we get that f ′ is incident to a vertex in Rw. If f ∈ π2(Sw), this implies

by the notation of Definition 9 that f = fi with i ∈ {1, 2}. In all four cases f ′i is either in π2(S′w) or
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is incident to w′n or w′′n for i ∈ {1, 2}. If f ′i ∈ π2(S′w) we get e = κ′−1(f ′i) ∈ π2(T ′w), which implies

that e is incident to vw ∈ V (C1
w). On the other hand, if f ′i is incident to w′n or w′′n , we also get that

e = κ′−1(f ′i) is incident to a vertex in ϕ′−1[{w′n, w′′n}] ⊆ V (C1
w). With that we proved (10).

(11) With the same notation as for constraints (10) if f ∈ E(w) \ π2(S) we get f ′ = f ′i with i ∈ {3, 4}
and in all four cases of Definition 9 those edges are incident to w′. This implies that e = κ′−1(f ′) is

incident to an edge in ϕ′−1[w′] = V (C2
w) and therefore we showed (11).

(12) Let w ∈ V (H), vw := π1(Tw), and v ∈ V (C1
w) \ {vw} with |EC1

w
(v)| = 1 and v /∈ ⋃ rG[θ−1[w]].

Now we use Lemma 4 and obtain that v ∈ V (C1
w) ⊆ Vw = ϕ′−1[V (Rw)] is either incident to an

edge e ∈ dom(κ′) or a cut vertex of ϕ′−1[ϕ′(v)]. Since v ∈ V (C1
w) \ {vw}, we know ϕ′(v) 6= w′

and therefore that ϕ′−1[ϕ′(v)] ⊆ C1
w. If v would be a cut vertex of ϕ′−1[ϕ′(v)] this would imply

that degC1
w

(v) ≥ 2, which is a contradiction to our assumption. Therefore, v is not a cut vertex of

ϕ′−1[ϕ′(v)] and we get that v is incident to an edge e ∈ dom(κ′). There are now two possibilities for

f ′ = κ′(e), either f ′ ∈ dom(κ′′) or f ′ ∈ {f ′w, f ′′w}. In the first case we know f ′ ∈ dom(κ′′) and that

f ′ is incident to ϕ′(v) ⊆ {w′n, w′′n}. We can check in all four cases of Definition 9 that this implies

either f ′ = f ′1 or f ′ = f ′2, which further implies f ∈ {f1, f2} = π2(Sw). In this case we are done since

e ∈ E(v) ∩ κ−1[π2(Sw)] 6= ∅.

On the other hand, the second case if f ′ ∈ {f ′w, f ′′w} implies e ∈ π2(Tw). Since v 6= vw we get that

v is the other incident vertex of e, i.e. e = vvw. Let x = ϕ′(v), then rH′(f ′) = ϕ′[rG(e)] = {x,w′}.
We know in the case f ′ = f ′w that f ′1 or in the case that f ′ = f ′′w that f ′2 is incident to x; let f ′i

denote this incident edge in both cases. From this we get that ei := κ′−1(f ′i) is incident to a vertex

in ϕ′−1[x]. By the definition of E(Gw) = Ew all edges in Gw that connect ϕ′−1[w′] with ϕ′−1[x] are

edges in rG[κ′−1[E(Rw)]]. Since vw ∈ ϕ′−1[w′] and v ∈ ϕ′−1[x] are vertices of the connected subtree

C1
w of Gw there must exist an edge ẽ ∈ κ′−1[E(Rw)] that connects ϕ′−1[w′] with ϕ′−1[x] such that

rG(ẽ) ∈ E(C1
w). In all four cases of the Definition 9 the only two possibilities for ẽ are κ′−1(f ′w) and

κ′−1(f ′′w). If κ′(ẽ) = f ′ we get by the injectivity of κ′ that ẽ = e and therefore rG(e) ∈ E(C1
w), but

then we know that there is no other edge in C1
w that is incident to v, which implies ϕ′−1[x] = {v} and

therefore that ei is incident to v, which implies ei ∈ E(v) ∩ κ−1[π2(Sw)].

The last case we need to check is if κ′(ẽ) 6= f ′i . Since rH′(κ′(ẽ)) = ϕ′[rG(ẽ)] = {w′, x} = rH′(f ′i) this

can only happen in case 3 of Definition 9 and if f ′ = f ′′w and ẽ = κ′−1[f ′w]. But in this case we ensured

that w = θ(κ′−1(f ′′w)) = θ(κ′−1(f ′)) = θ(e), which implies e ∈ θ−1[w], which is a contradiction since

v ∈ rG(e) =
⋃

[rG[θ−1[w]]]. All in all we showed that (12) holds.

(13) Let w ∈ V (H) and {vw, v} ∈ EC1
w

(π1(Tw)). By definition of C1
w this implies that there exists an

edge e ∈ E(G) with rG(e) = {vw, v}. By definition of Ew ⊇ EC1
w

(vw) either e ∈ κ′−1[E(Rw)] or
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rG(e) ⊆ ϕ′−1[x] for some x ∈ V (Rw). Since vw is the only vertex of ϕ′−1[w′] in C1
w we get that

ϕ′[v] 6= ϕ′[vw] and therefore that e ∈ κ′−1[E(Rw)]. Either κ′(e) = f ′w or κ′(e) = f ′′w but in both

cases we know that e ∈ π2(Tw). Therefore, we always get that {vw, v} = rG(e) ∈ rG[π2(Tw)], which

implies (13).

(14) Let w ∈ V (H), and e ∈ E(G) with θ(e) = w. By definition of θ this implies that the structure

of Rw equals the one of case 3 of Definition 9 and e = κ′−1(f ′′w), which implies e ∈ π2(Tw). Since

rH′(f ′′w) = {w′, w′′n}, we know that e is incident to a vertex in ϕ−1[w′′n ]. Since e is incident to vw and

ϕ−1[w′′n ] ⊆ V (C1
w) we get rG(e) ⊆ V (C1

w), which finishes the proof for (14).

(15) These constraints follow directly from our definition of θ. We only define it in case 3 and only if

rG(κ′−1(f ′′w)) 6= rG(κ′−1(f ′w)). Since we also define C1
w in this case in such a way that vw has degree

1 with the only incident edge rG(κ′−1(f ′w)), we know that rG(κ′−1(f ′′w)), which is also incident to vw,

is not in E(C1
w).

Proposition 2. If there exists a valid solution in the model given at the beginning of this section the instance

((G, T ), (H,S)) is a yes instance of EBSRTM.

Proof. Let

(ϕ, κ, θ, (Tw)w∈V (H), (Sw)w∈V (H), (C
1
w)w∈V (H), (C

2
w)w∈V (H))

be a valid solution of the model. The proof consists of the following steps. We define a transitioned graph

H ′, proof that H ′ is a minor of G, define a transition system S ′ on H ′ in such a way that (H ′,S ′) is a

reduced transition minor of (G, T ) and finally prove that (H ′,S ′) is a basic-sup-(H,S)-graph.

Before we define the graph H ′, we introduce some notation that we will use during the proof. For a

vertex w ∈ V (H) we define vw := π1(Tw) and denote a possible extension of E1
w by

E1
w := E1

w ∪ θ−1[w].

Lemma 5. For an edge e ∈ E1
w we get rG(e) ⊆ V (C1

w).

Proof. For e ∈ E1
w the lemma follows by definition of E1

w and for e ∈ θ−1[w] it follows from (14).

We describe now for each vertex w ∈ V (H) a graph Rw. These graphs will then be used to form the

graph H ′.

Definition 11 (Rw). To describe Rw we distinguish the following four cases.

1. degC1
w

(vw) = 0: In this case Rw consists only of one vertex w′ (see case 1 in Figure 4).

2. degC1
w

(vw) = 1 ∧ |κ[π2(Tw)]| = 1: In this case Rw consists of two vertices w′ and w′n and an edge f ′w

connecting them (see case 2 in Figure 4).
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3. degC1
w

(vw) = 1 ∧ |κ[π2(Tw)]| = 0: In this case Rw consists of two vertices w′ and w′n and two parallel

edges f ′w and f ′′w connecting them (see case 3 in Figure 4).

4. degC1
w

(vw) = 2: In this case Rw consists of three vertices w′, w′n, and w′′n and two edges f ′w connecting

w′ and w′n and f ′′w connecting w′ and w′′n (see case 4 in Figure 4).

Note that degC1
w

(vw) ≤ 2, which follows from (13) by

degC1
w

(vw) = |EC1
w

(vw)| ≤ |rG[π2(T )]| ≤ |π2(T )| = 2.

To conclude that the above cases cover all possible cases we need to show that κ[π2(Tw)] ≤ 1 holds when

degC1
w

(vw) = 1. In this case we know that there exists an edge e ∈ E1
w ∩E(vw), which implies by (13) that

rG(e) ∈ EC1
w

(vw) ⊆ rG[π2(Tw)]

and therefore there must exist an edge ẽ ∈ π2(Tw) with rG(ẽ) = rG(e) ⊆ V (C1
w). Furthermore, this implies

by (5), (6), and the fact that we have no loops in H that ẽ /∈ dom(κ). Since |π2(Tw)| = 2, this gives us

κ[π2(Tw)] ≤ 1.

We can now define the vertex set of the graph H ′ as the disjoint union of the vertex sets of all graphs Rw.

Formally this means

V (H ′) :=
⊎

w∈V (H)

V (Rw).

We define one more notation, which we will use in the rest of the proof. In case 4 of Definition 11 we

know that degC1
w

= 2 and therefore the tree C1
w decomposes after removing the vertex vw into two subtrees,

which we denote by C1,1
w and C1,2

w . Before we define edges between the subgraphs Rw we describe a partial

vertex mapping ϕ′ : V (G) 9 V (H ′).

Definition 12 (ϕ′ : V (G) 9 V (H ′)). For a vertex w ∈ V (H) we distinguish again the four cases (see

Definition 11).

1. ϕ′(v) := w′ ∀v ∈ V (C2
w).

2.+ 3. ϕ′(v) := w′ ∀v ∈ V (C2
w), ϕ′(v) := w′n ∀v ∈ V (C1

w) \ {vw}.

4. ϕ′(v) := w′ ∀v ∈ V (C2
w), ϕ′(v) := w′n ∀v ∈ V (C1,1

w ), ϕ′(v) := w′′n ∀v ∈ V (C1,2
w ).

To prove that ϕ′ is well-defined we need to show that no vertex maps to more than one vertex, that means

that all occurring sets in the universal quantifiers are disjoint. For two vertices w1, w2 ∈ V (H) with w1 6= w2

and i, j ∈ {1, 2} we get from (6) that

V (Ciw1
) ∩ V (Cjw2

) ⊆ ϕ−1[w1] ∩ ϕ−1[w2] = ∅.
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Therefore, it remains to check that the universal quantifiers are disjoint within the cases of one vertex

w ∈ V (H). In the case 1 there is only one universal quantifier. In the cases 2 and 3 the two sets V (C2
w)

and V (C1
w) \ {vw} are disjoint since V (C1

w) ∩ V (C2
w) = {vw} by (7). Furthermore, in case 4 we know by

definition of C1,1
w and C1,2

w that its vertex sets are disjoint. Since for i ∈ {1, 2} the tree C1,i
w is a subtree of

C1
w that does not contain vw, its vertex set is disjoint with V (C2

w) with the same argumentation as in the

cases 2 and 3.

Lemma 6. The above defined partial function ϕ′ is surjective.

Proof. We prove that for all w ∈ V (H) all vertices of Rw are in the image of ϕ′, this is enough since

V (H ′) =
⊎
w∈V (H) V (Rw). In all four cases w′ is in the image of ϕ′ since vw ∈ V (C2

w) by (7) and therefore

ϕ′(vw) = w′. In the cases 2 and 3 there exists a vertex in v ∈ V (C1
w) \ {vw} since the degree of vw in C1

w is

one and therefore ϕ′(v) = w′n. In case 4 both C1,1
w and C1,2

w are by construction non-empty and therefore

w′n and w′′n are both in the image of ϕ′.

Lemma 7. For each vertex x ∈ V (H ′) the vertex set ϕ′−1[x] is connected in G.

Proof. We distinguish again the four cases. In all four cases ϕ′−1[w′] = V (C2
w) is connected in G since C2

w

is a tree and (4) holds. In the cases 2 and 3 we have ϕ′−1[w′n] = V (C1
w) \ {vw}, which is connected since

C1
w is a tree, the vertex vw has degree one in C1

w, which implies that after removing the vertex the result is

still a tree, and (4). Furthermore, in case 4 we have ϕ′−1[w′n] = V (C1,1
w ) and ϕ′−1[w′′n ] = V (C1,2

w ), which are

both vertex sets of connected subtrees of C1
w. The connectedness in G follows again by (4).

Lemma 8. It holds that dom(ϕ′) = dom(ϕ) and for v1, v2 ∈ dom(ϕ) it holds that ϕ(v1) 6= ϕ(v2)⇒ ϕ′(v1) 6=
ϕ′(v2).

Proof. By the definition of ϕ′, (6), and (7) we get

dom(ϕ′) =
⋃

w∈V (H)

V (C1
w) ∪ V (C2

w)
(6)
=

⋃

w∈V (H)

ϕ−1[w] = ϕ−1[V (H)] = dom(ϕ).

The second statement follows from the fact that ϕ′[ϕ−1[w]] = V (Rw) for all w ∈ V (H) and that V (Rw1) ∩
V (Rw2

) = ∅ for two different vertices w1, w2 ∈ V (H).

Using ϕ′ we can now define edges that connect the subgraphs Rw. For each edge f ∈ E(H) we add an

edge f ′ to H ′ with

rH′(f ′) := ϕ′[rG(κ−1(f))].

First of all since κ is injective and surjective the inverse function κ−1 is well-defined. Furthermore, we

have to prove that |ϕ′[rG(κ−1(f))]| = 2. By using (5) we get ϕ[rG(κ−1(f))] = rH(f) and therefore
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rG(κ−1(f)) ⊆ dom(ϕ). By Lemma 8, we get rG(κ−1(f)) ⊆ dom(ϕ′). Since rG(κ−1(f)) has two elements

and ϕ[rG(κ−1(f))] = rH(f) has still two elements we get by Lemma 8 that ϕ′[rG(κ−1(f))] has also two

elements.

All in all we can define now the edge set of H ′ by

E(H ′) := {f ′ | f ∈ E(H)} ∪̇
⊎

w∈V (H)

E(Rw).

The graph H ′ is therefore fully defined. To prove that H ′ is a minor of G we will use the vertex mapping

ϕ′ and a surjective edge mapping κ′ : E(G) 9 E(H ′), which we will define in the following.

Definition 13 (κ′ : E(G) 9 E(H ′)). To define the preimages of edges in Rw we distinguish for each vertex

w ∈ V (H) the four cases of Definition 11.

1. There are no edges in Rw.

2. From (13) we know EC1
w

(vw) ⊆ rG(π2(Tw)). Since EC1
w

(vw) has one element if follows that there exists

an edge e ∈ π2(Tw) such that rG(e) ∈ EC1
w

(vw), which implies e ∈ E1
w ∩ π2(Tw). Using this edge e we

define κ′(e) := f ′w.

3. In this case we have |κ[π2(Tw)]| = 0, which is equivalent to κ−1[E(H)] ∩ π2(Tw) = ∅. This implies

κ−1[π2(Sw)] ∩ π2(Tw) = ∅. Using (8) we can derive

(8)⇒π2(Tw) ⊆ κ−1[π2(S)] ∪ θ−1[w] ∪ (E(vw) ∩ E1
w)

⇒π2(Tw) ⊆
(
κ−1[π2(S)] ∩ π2(Tw)

)
︸ ︷︷ ︸

∅

∪θ−1[w] ∪ (E(vw) ∩ E1
w) = θ−1[w] ∪ (E(vw) ∩ E1

w).

Since θ is injective θ−1[w] contains at most one edge and therefore we can write π2(Tw) = {e1, e2}
with e1 ∈ E1

w and e2 is either in θ−1[w] or in E1
w. We define now κ′(e1) := f ′w and κ′(e2) := f ′′w.

4. Again by (13) we know EC1
w

(vw) ⊆ rG(π2(Tw)). Since EC1
w

(vw) has in this case two elements it follows

that EC1
w

(vw) = rG(π2(Tw)). Let π2(Tw) = {e1, e2}. Since rG(π2(Tw)) = EC1
w

(vw) contains two edges

where one is connecting vw to C1,1
w and the other is connecting vw to C1,2

w we can say w.l.o.g. that

ei connects vw and a vertex in V (C1,i
w ) for i ∈ {1, 2}. Using this notation we define κ′(e1) := f ′w and

κ′(e2) := f ′′w.

Furthermore, for an edge f ∈ E(H) we define κ′(κ−1(f)) := f ′, which is well-defined since κ is injective

and surjective.

We have to prove now that κ′ is well-defined, i.e. that no edge in E(G) has more than one image under

κ′. First of all we note that in all four cases only edges from E1
w := E1

w ∪ θ−1[w] get mapped to an edge f ′w

or f ′′w.

By Lemma 5 an edge e ∈ E1
w always has rG(e) ⊆ V (C1

w). For two different vertices w1, w2 ∈ V (H), w1 6=
w2 we always have E1

w1
∩ E1

w2
= ∅ since by (6) we get V (C1

w1
) ∩ V (C1

w2
) ⊆ ϕ−1[w1] ∩ ϕ−1[w2] = ∅.
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Furthermore, by the definition of κ′ an edge never gets mapped to both f ′w and f ′′w for a vertex w. It

remains to show that an edge in dom(κ) gets not mapped to any edges f ′w or f ′′w for any w ∈ V (H). By (5)

we get for an edge e ∈ dom(κ) that ϕ[rG(e)] = rH(κ(e)) and therefore e is not in E1
w since all edges in E1

w

are incident to two vertices in V (C1
w) ⊆ ϕ−1[w], which would imply ϕ[rG(e)] = {w} 6= rH(κ(e)), which is

a contradiction. Therefore, we get E1
w ∩ dom(κ) = ∅ for all w ∈ V (H). This finishes the proof that κ′ is

well-defined.

Lemma 9. κ′ is injective and surjective

Proof. In the definition of κ′ we defined in all cases for each edge in E(H ′) exactly one preimage that

maps under κ′ to this edge. This implies directly both, that κ′ is injective and surjective.

Lemma 10. The graph H ′ is a minor of G.

Proof. We already defined a partial vertex mapping ϕ′ : V (G) 9 V (H ′) and a partial edge mapping

κ′ : E(G) 9 E(H ′). In Lemma 6 we showed that ϕ′ is surjective, in Lemma 7 we showed that all preimages

ϕ′−1[x] are connected in G for all x ∈ V (H ′), and in Lemma 9 we showed that κ′ is injective and surjective.

The only remaining condition of H ′ being a minor of G is (1). To prove this we distinguish again the four

cases as we did in Definition 13.

1. E1
w is empty

2. Let e = κ′−1(f ′w), then e ∈ E1
w ∩ π2(Tw), which implies rG(e) = {vw, v} for some v ∈ V (C1

w) \ {vw}.
Therefore, we get

ϕ′[rG(e)] = {ϕ′(vw), ϕ′(v)} = {w′, w′n} = rH′(f ′w) = rH′(κ′(e)).

3. Let e1 and e2 be as in case 3 of the definition of κ′. For i ∈ {1, 2} we have by Lemma 5 rG(ei) = {vw, v}
with v ∈ V (C1

w) and v 6= vw . This implies

ϕ′[rG(ei)] = {ϕ′(vw), ϕ′(v)} = {w′, w′n} = rH′(f ′w) = rH′(f ′′w) = rH(κ′(ei)) ∀i ∈ {1, 2} .

4. Let e1 and e2 be as in case 4 of the definition of κ′ . Then we get rG(ei) = {vw, vi} with vi ∈ V (C1,i
w )

and vi 6= vw for i ∈ {1, 2}. With that we can follow (1) for i = 1, 2.

ϕ′[rG(e1)] = {ϕ′(vw), ϕ′(v1)} = {w′, w′n} = rH′(f ′w) = rH(κ′(e1))

ϕ′[rG(e2)] = {ϕ′(vw), ϕ′(v2)} = {w′, w′′n} = rH′(f ′′w) = rH(κ′(e2))

Finally for e ∈ dom(κ) with κ(e) = f we get

rH′(κ′(e)) = rH′(f ′) = ϕ′[rG(κ−1(f))] = ϕ′[rG(e)].

All in all we proved (1) for all e ∈ dom(κ′).

27

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
00

9



To get a reduced transition minor of (G, T ) we define S ′ as in (2) using ϕ′ and κ′. Therefore, we get by

definition that (H ′,S ′) is a reduced transition minor of (G, T ).

In the second part we want to prove that (H ′,S ′) is a basic-sup-(H,S)-graph. We already defined the

connected subgraphs Rw for each w ∈ V (H), they are by definition all vertex disjoint. We also defined the

edges f ′ ∈ E(H ′) for each f ∈ E(H).

Lemma 11. For each edge f ∈ E(H) with rH(f) = {w1, w2} the edge f ′ connects the subgraphs Rw1
and

Rw2
of H ′.

Proof. Let e = κ−1(f) ∈ E(G) and rG(e) = {v1, v2} then by definition we get

rH′(f ′) = ϕ′[rG(κ−1(f))] = ϕ′[{v1, v2}].

By using (5) we get ϕ[{v1, v2}] = rH(f) = {w1, w2} and therefore w.l.o.g. vi ∈ ϕ−1[wi], which implies by

definition of ϕ′ that ϕ′(vi) is defined and in Rwi
. Therefore, f ′ connects the vertices ϕ′(v1) ∈ V (Rw1

) and

ϕ′(v2) ∈ V (Rw2).

For the rest of the proof let w ∈ V (H) be fixed. Furthermore, let {f1, f2} = π2(Sw) and let {f3, f4} =

EH(w) \ {f1, f2} be the remaining edges (note, that w has degree four, since H is 4-regular). Since H is

completely transitioned we get that (w, {f3, f4}) is also a transition in S(w). Let ei = κ−1(fi), which is

well-defined since κ is surjective. By definition of κ′ we get κ′(ei) = f ′i . Before we prove the final lemma,

we need the following lemmas.

Lemma 12. The only edges in H ′ that are incident to at least one vertex in Rw are the edges f ′1, f
′
2, f
′
3, f
′
4

and the edges f ′w and f ′′w if they exist. Furthermore, for i ∈ {1, 2, 3, 4} the edges f ′i are incident to exactly

one vertex xi in Rw and xi = w′ if i ∈ {3, 4}.

Proof. Let E′w be the set of all edges that are incident to at least one vertex in Rw. Since f ′w and f ′′w are by

definition incident to two vertices of Rw if they exist and since V (Rw1
) and V (Rw2

) are disjoint for w1 6= w2

we know that f ′w and f ′′w are in E′w if they exist and f ′w1
and f ′′w1

are not in E′w if w1 6= w. Furthermore,

from Lemma 11 follows that f ′ is incident to a vertex of Rw if and only if w ∈ rH(f). Therefore, we get

E′w ∩ {f ′ | f ∈ E(H)} = {f ′ | f ∈ EH(w)} = {f ′1, f ′2, f ′3, f ′4} .

Lemma 11 also gives us that the edges fi are incident to exactly one vertex in Rw, since the other vertex

must be in another subgraph Rw2
with w2 6= w since we do not allow loops in H. Let xi ∈ Rw be the

unique incident vertex of f ′i . By (11) we get rG(ei) ∩ V (C2
w) 6= ∅ for i ∈ {3, 4}. Let vi ∈ rG(ei) ∩ V (C2

w) for

i ∈ {3, 4}, which implies ϕ′(vi) = w′ and all in all we get

rH′(f ′i) = ϕ′[rG(κ−1(fi))] = ϕ′[rG(ei)] 3 ϕ′(vi) = w′.
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Therefore, we know that w′ is incident to f ′i and since there exists exactly one vertex in Rw that is incident

to f ′i we get xi = w′ for i ∈ {3, 4}.

Lemma 13. The edges f ′i are incident to w′ if and only if ei ∈ π2(Tw) for i ∈ {1, 2}.

Proof. If ei ∈ π2(Tw) we get

rH′(f ′i) = ϕ′[rG(κ−1(fi))] = ϕ′[rG(ei)] 3 ϕ′(vw) = w′.

For the other direction we first note that by (10) we get that ei is incident to a vertex in V (C1
w) for

i ∈ {1, 2}. If f ′i is incident to w′ we get

w′ ∈ rH′(f ′i) = ϕ′[rG(κ−1(fi))] = ϕ′[rG(ei)],

which implies that ei is incident to a vertex v that is in ϕ′−1[w′] = V (C2
w). By (4) we get that ei is only

incident to one vertex in ϕ−1[w] = V (C1
w)∪V (C2

w). Therefore, we know that ei is incident to a vertex that is

in V (C1
w) and in V (C2

w), which can only be vw by (7). All in all we get ei ∈ κ−1[π2(Sw)]∩E(π1(Tw)) ⊆ π2(Tw)

by (9).

What remains to prove that (H ′,S ′) is a sup-(H,S)-graph is the following lemma.

Lemma 14. There exists a transition S′w in S ′ such that the form of Rw and the transition S′w satisfy one

of the four possibilities (see Figure 4):

1. Rw is only one vertex w′ and S′w = (w′, {f ′1, f ′2}) ∈ S ′(w′).

2. Rw is a K2 with two vertices w′ and w′n, where w′n is of degree two with two incident edges f ′1 and f ′w.

Moreover, S′w = (w′, {f ′w, f ′2}) ∈ S ′(w′).

3. Rw is a cycle of length two, i.e. two vertices w′ and w′n and two parallel edges f ′w and f ′′w connecting

them. Furthermore, w′n has degree four and is incident to f ′1 and f ′2 and S′w = (w′, {f ′w, f ′′w}) ∈ S ′(w′).
4. Rw consists of a vertex w′ and two vertices w′n and w′′n and two edges f ′w and f ′′w connecting w′ with

w′n and w′ with w′′n. Furthermore, w′n is incident to f ′1, w′′n is incident to f ′2, w′ is incident to f ′3 and

f ′4, and S′w = (w′, {f ′w, f ′′w}) ∈ S ′(w′).

Proof. First we define the transition S′w by S′w := (w′, κ′[π2(Tw)]). In the next step we prove that S′w is

in S ′. By (7), which implies vw ∈ V (C2
w), and the definition of ϕ′ in all four cases we get vw ∈ dom(ϕ′) and

ϕ′(vw) = w′. By definition of S ′ it only remains to show

π2(Tw) ⊆ dom(κ′). (16)

to imply that S′w ∈ S ′. We will show (16) together with the rest of the lemma by case distinction of the

four cases of Definition 11.
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1. In this case E1
w is empty. By Lemma 12, we get that f ′i is incident to w′ for i ∈ {1, 2} and by Lemma 13

this implies that ei ∈ π2(Tw) for i ∈ {1, 2}. Since π2(Tw) has two elements, we get π2(Tw) = {e1, e2} ⊆
dom(κ′). By definition of κ′ this implies π2(S′w) = κ′[π2(Tw)] = {κ′(e1), κ′(e2)} = {f ′1, f ′2}. With that

we proved the lemma for case 1.

2. Let e be the only edge in π2(Tw)∩dom(κ). Since e ∈ dom(κ) we get |ϕ(rG(e))| (5)= |rH(κ(e))| = 2, and

therefore rG(e) * V (C1
w). This implies by (14) that e /∈ θ−1[w] and that e /∈ E1

w. From (8) we then

get e ∈ κ−1[π2(Sw)]. Therefore, κ(e) ∈ π2(Sw) = {f1, f2} and by exchanging f1 and f2 if needed we

get κ(e) = f2, which implies e = e2.

Let now ẽ := κ′−1(f ′w). By definition of κ′ this implies ẽ ∈ π2(Tw). Furthermore, by definition of κ′

we know ẽ ∈ E1
w, which implies ẽ 6= e2. Therefore, we found the two edges of π2(Tw) = {ẽ, e2} and

both of them are in dom(κ′) (note that e2 ∈ dom(κ) ⊆ dom(κ′)), which implies (16).

For the edges of S′w we get π2(S′w) = κ′[π2(Tw)] = κ′[{ẽ, e2}] =
{
κ′(ẽ), κ′(κ−1(f2))

}
= {f ′w, f ′2}. It

remains to show that w′n has degree two and is incident to f ′1 and f ′w. By definition of f ′w it is incident

to w′n, so we have to show that the only other incident edge to w′n is f ′1. By Lemma 12, we get that

the only possible other incident edges are f ′1 and f ′2 and by Lemma 13 we get that f ′2 is incident to w′

and therefore not to w′n.

Assume f ′1 would not be incident to w′n. By Lemma 12, we get that f ′1 is incident to w′ and by

Lemma 13 that e1 ∈ π2(Tw). But then f1 = κ(e1) ∈ κ[π2(T )] 3 κ(e2) = f2, which is a contradiction

to the fact that |κ[π2(T )]| = 1 and that κ is injective.

3. By definition of κ′ in this case we get directly (16) and also κ′[π2(Tw)] = {f ′w, f ′′w}. By definition of

Rw in this case it is a cycle of length two consisting of two parallel edges f ′w and f ′′w connecting two

nodes w′ and w′n. Therefore, it only remains to show that w′n has degree four and is connected by f ′1

and f ′2. By Lemma 12, we get that the only other possible incident edges to w′n are f ′1 and f ′2.

To show that f ′i is incident to w′n for i ∈ {1, 2} we show that it is not incident to w′, which is enough by

Lemma 12. This is equivalent to showing that ei /∈ π2(Tw) for i ∈ {1, 2} by Lemma 13. For i ∈ {1, 2}
the fact ei /∈ π2(Tw) follows directly from the fact that ei ∈ dom(κ) and |κ[π2(Tw)]| = 0 in this case.

All in all we showed that the incident edges of w′n are exactly f ′w, f ′′w, f ′1, and f ′2.

4. By definition of κ′ in this case we get directly (16) and also κ′[π2(Tw)] = {f ′w, f ′′w}. By definition of Rw

in this case it consists of a vertex w′ and two vertices w′n and w′′n and two edges f ′w and f ′′w connecting

w′ with w′n and w′ with w′′n . By Lemma 12, we get that f ′3 and f ′4 are incident to w′ and therefore it

only remains to show that f ′1 is incident to w′n and f ′2 is incident to w′′n .

As shown in case 4 of the definition of κ′ we know that the edges of π2(Tw) are in E1
w and therefore

ei /∈ π2(Tw) for i ∈ {1, 2}. By Lemma 13, we get that f ′i is not incident to w′ and therefore that f ′i is

incident to w′n or to w′′n for i ∈ {1, 2}.
We know in this case that the two trees C1,i

w are both nonempty subtrees of C1
w for i ∈ {1, 2}. If
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C1,i
w consists only of one vertex, we know that this vertex has degree 1 in C1

w. On the other hand,

if C1,i
w has more than one vertex we know that C1,i

w has at least two leaf vertices of degree 1 and at

least one of them has also degree 1 in C1
w. Therefore, we know that in any case there exists a vertex

vi ∈ V (C1,i
w ) that has degree 1 in C1

w for i ∈ {1, 2}.
Assume that there exists an edge e ∈ θ−1[w] then by (9) we know e ∈ π2(Tw) but we already know

that both edges of π2(Tw) are in E1
w, which is a contradiction to (15). Therefore, we know θ−1[w] = ∅

in this case.

Putting everything together we get

vi ∈ V (C1
w) \ {π1(Tw)} ∧ degC1

w
(vi) = 1 ∧ v /∈

⋃
rG[θ−1[w]],

which implies by (12) that E(vi) ∩ κ−1[π2(Sw)] 6= ∅. Since E(v1) ∩ E(v2) ∩ dom(κ) = ∅ and the fact

that κ−1[π2(Sw)] = {e1, e2} we get by exchanging e1 with e2 if needed that ei ∈ E(vi) ∩ κ−1[π2(Sw)]

for i ∈ {1, 2}. But this implies

rH′(f ′i) = ϕ′[rG(κ−1(fi))] = ϕ′[rG(ei)] 3 ϕ′(vi) ∀i ∈ {1, 2}

and therefore f ′1 is incident to ϕ′(v1) = w′n and f ′2 is incident to ϕ′(v2) = w′′n .

With Lemma 14 we finished the proof that (H ′,S ′) is a sup-(H,S)-graph and all together that (G, T )

has a basic-sup-(H,S)-reduced-transition-minor.

5. Mixed Integer Linear Programming Model

In this section we derive a mixed integer linear programming model (MIP) from the mathematical model

described in Section 4.2 in order to practically solve it. Let ES
G denote the set of simple edges rG[E(G)].

To model the partial functions ϕ, κ, and λ we use boolean variables xwv for v ∈ V (G) and w ∈ V (H),

which are true if and only if ϕ(v) = w, boolean variables yfe for e ∈ E(G) and f ∈ E(H), which are true if

and only if κ(e) = f , and boolean variables zwe for e ∈ E(G) and w ∈ V (H), which are true if and only if

θ(e) = w. Furthermore, to describe the transitions Tw and Sw we use boolean variables awT for w ∈ V (H)

and T ∈ T representing Tw = T and boolean variables bwS for w ∈ V (H) and S ∈ S(w) representing Sw = S.

To describe the trees Ciw we use boolean variables hi,wv for v ∈ V (G), i ∈ {1, 2}, and w ∈ V (H) that

encode v ∈ V (Ciw) and boolean variables ti,wv1,v2 for {v1, v2} ∈ rG[E(G)], i ∈ {1, 2}, and w ∈ V (H) that

encode that the simple edge {v1, v2} is in E(Ciw). Note that the variables ti,wv1,v2 are directed, i.e. for

{v1, v2} ∈ rG[E(G)] there exist two variables ti,wv1,v2 and ti,wv2,v1 . To eliminate subtours in the trees Ciw, which

form together a forest, we use a Miller-Tucker-Zemlin (MTZ) formulation using continuous variables uv for

v ∈ V (G) [8].
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The following first part of the constraints is concerned with ensuring the properties of the mappings ϕ,

κ, λ, and θ, and the tree structure of the trees Ciw.

∑

w∈V (H)

xwv ≤ 1 ∀v ∈ V (G) (17)

∑

v∈V (G)

xwv ≥ 1 ∀w ∈ V (H) (18)

∑

f∈E(H)

yfe ≤ 1 ∀e ∈ E(G) (19)

∑

e∈E(G)

yfe = 1 ∀f ∈ E(H) (20)

∑

w∈V (H)

zwe ≤ 1 ∀e ∈ E(G) (21)

∑

e∈E(G)

zwe ≤ 1 ∀w ∈ V (H) (22)

∑

T∈T
awT = 1 ∀w ∈ V (H) (23)

∑

S∈S(w)

bwS = 1 ∀w ∈ V (H) (24)

ti,wv1,v2 + ti,wv2,v1 ≤ hi,wvj ∀ {v1, v2} ∈ ES
G,∀w ∈ V (H),∀i, j ∈ {1, 2} (25)

∑

v1∈NG(v)

ti,wv1,v = hi,wv −
∑

T∈T (v)

awT ∀v ∈ V (G),∀i ∈ {1, 2} ,∀w ∈ V (H) (26)

uv ≤ (|VG| − |VH |)(1−
∑

T∈T (v)
w∈V (H)

awT ) ∀v ∈ V (G) (27)

uv1 − uv2 + 1 ≤ (|VG| − |VH |+ 1)(1−
∑

w∈V (H)
i∈{1,2}

ti,wv1,v2) ∀ {v1, v2} ∈ ES
G (28)

Constraints (17), (19), and (21) ensure that ϕ, κ, and θ are partial functions. Furthermore, constraints (18)

guarantee that ϕ is surjective, (20) ensure that κ is injective and surjective, and (22) guarantee that θ is

injective. The fact that there should be exactly one transition Tw ∈ T and Sw ∈ S(w) for each w ∈ V (H) is

ensured by constraints (23) and (24). Note the difference that Tw can be any transition in T but Sw must

be a transition at the vertex w, i.e. in S(w).

Constraints (25) couple the vertex variables h with the directed edge variables t for each tree Ciw. To

enforce the tree structure of all Ciw we ensure that each vertex in the tree has exactly one incoming arc

except the root vertex, which has no incoming arc and that there are no cycles. Together, this is enough to

guarantee the tree structure. As root vertex for each tree Ciw we use the vertex vw = π1(Tw), which must be

part of both trees by (7). Constraints (26) specify that each vertex in a tree except the root has exactly one

incoming arc and that the root has no incoming arcs. To enforce connectivity we use the MTZ formulation,
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which is realized by the constraints (27) and (28). The second part of the MIP is concerned with ensuring

constraints (4)–(15).

yfe ≤ xw1
v + xw2

v

∀e ∈ E(G),∀v ∈ rG(e),

∀f ∈ E(H), rH(f) = {w1, w2}
(29)

yfe ≤ xwv1 + xwv2

∀e ∈ E(G), rG(e) = {v1, v2} ,

∀f ∈ E(H),∀w ∈ rH(f)
(30)

h1,wv + h2,wv = xwv +
∑

T∈T (v)

awT ∀v ∈ V (G),∀w ∈ V (H) (31)

∑

T∈T (v)

awT ≤ xwv ∀v ∈ V (G),∀w ∈ V (H) (32)

awT + bwS − 1 ≤
∑

f∈π2(S)

yfe + zwe + t1,wv1,v2 + t1,wv2,v1

∀T ∈ T ,∀e = v1v2 ∈ π2(T )

∀w ∈ V (H),∀S ∈ S(w),
(33)

awT + bwS − 1 ≤ 1−
∑

e∈E(π1(T ))\π2(T )

yfe ∀T ∈ T ,∀w ∈ V (H),∀S ∈ S(w),∀f ∈ π2(S) (34)

awT ≤ 1−
∑

e∈E(G)\π2(T )

zwe ∀T ∈ T ,∀w ∈ V (H) (35)

bwS +
∑

f∈π2(S)

yfe − 1 ≤
∑

v∈rG(e)

h1,wv ∀w ∈ V (H),∀S ∈ S(w),∀e ∈ E(G) (36)

bwS +
∑

f∈E(w)\π2(S)

yfe − 1 ≤
∑

v∈rG(e)

h2,wv ∀w ∈ V (H),∀S ∈ S(w),∀e ∈ E(G) (37)

bwS + h1,wv − 1−
∑

T∈T (v)

awT ≤
1

2

∑

v2∈NG(v)

t1,wv,v2 + t1,wv2,v+

∑

e∈E(v)

zwe +
∑

e∈EG(v)
f∈π2(S)

yfe
∀w ∈ V (H),∀S ∈ S(w),∀v ∈ V (G) (38)

awT ≤ 1− t1,wv,π1(T ) − t
1,w
π1(T ),v

∀T ∈ T ,∀w ∈ V (H),

∀v ∈ N(π1(T )) \
⋃
rG[π2(T )]

(39)

zwe ≤
1

2

∑

v∈rG(e)

h1,wv ∀e ∈ E(G),∀w ∈ V (H) (40)

zwe ≤ 1− tv1,v2 − tv2,v1 ∀e = v1v2 ∈ E(G),∀w ∈ V (H) (41)

xwv ∈ {0, 1} ∀v ∈ V (G),∀w ∈ V (H) (42)

yfe ∈ {0, 1} ∀e ∈ E(G),∀f ∈ E(H) (43)

zwe ∈ {0, 1} ∀e ∈ E(G),∀w ∈ V (H) (44)

awT ∈ {0, 1} ∀T ∈ T ,∀w ∈ V (H) (45)

bwS ∈ {0, 1} ∀w ∈ V (H),∀S ∈ S(w) (46)
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hi,wv ∈ {0, 1} ∀v ∈ V (G),∀i ∈ {1, 2} ,∀w ∈ V (H) (47)

ti,wv1,v2 ∈ {0, 1} ∀ {v1, v2} ∈ r[E(G)],∀i ∈ {1, 2} ,∀w ∈ V (H) (48)

0 ≤ uv ≤ |VG| − |VH | ∀v ∈ V (G) (49)

By the index range of the variables ti,wv1,v2 constraints (4) are implicitly satisfied. Constraints (29) and (30)

ensure constraints (5). Furthermore, constraints (31) and (32) together enforce (6) and (7). Constraint (8)

are realized by (33) and constraints (9) by (34) and (35). Moreover, (36) ensure (10) and (37) ensures (11).

Furthermore, (12) are guaranteed by (38) and (13) by (39). Last but not least (40) ensure (14) and (41)

ensure (15).

6. Computational Results

To test the MIP model from Section 5 computationally we implemented it in Python 35̇ using Gurobi

7.0.1 [5]. All tests were performed on a single core of an Intel Xeon E5-2640 v4 processor with 2.40GHz and

8GB RAM.

6.1. Instance Sets

We consider three different instance sets S1, S2, and G1, two of them represent graph theoretic use cases

and one represents the most general case. As discussed in Section 1 there are two correlations between

the CCD and CDC, one via the line graph of a 3-regular graph and the other via contractions of a perfect

pseudo-matching of a 3-regular graph. The first correlation is not interesting for us, since the line graph of

a 3-regular graph is larger than the original graph, the second correlation, however, gives us in general a

graph with at most half the number of vertices and is therefore the use case we test in S1 and S2. Note that

we can restrict our instances to contractions of perfect pseudo-matchings of snarks as discussed in Section 1.

For both sets S1 and S2 we use a snark together with a perfect pseudo-matching of the snark to build a

transitioned graph as described already in Section 1. We contract all components of the matching and add

then a transition between the two remaining edges of each original vertex of the snark, which gives us a

4-regular completely transitioned graph.

To generate instance set S1 we use all snarks with up to 26 vertices plus 1000 snarks with 28 vertices and

compute for each of them three random perfect matchings. For each snark and each of its perfect matchings

we build the resulting transitioned graph as described above and use it as (G, T ), and as transitioned graph

(H,S) we use the graph UD-K5 as defined in Example 1. As source for the snarks with up to 28 vertices

we used the lists published by Brinkmann et al. [1].

For instance set S2 we consider all possible perfect pseudo-matchings of each snark with up to 22 vertices.

Again we construct the transitioned graph (G, T ) as described above. Note that by the cyclically 4-edge
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Table 1: Computation results for instance set S1.

Output Types

|V | instances time[s] infeasible feasible time limit

10 4 0.18 0 4 0

18 8 7.33 0 8 0

20 24 4.20 0 24 0

22 124 14.42 2 121 1

24 620 16.02 12 604 4

26 5188 20.73 22 5124 42

28 4004 34.77 11 3973 20

connectedness and the 3-regularity of a snark it follows that a snark contains no cycles of length three and

therefore that after contracting a K2 or a claw there will be no loop. As (H,S) we use again the UD-K5

from Example 1. When we construct all possible perfect pseudo-matchings of a snark we first compute its

automorphism group using the nauty tool from McKay et al. [7], which we then also apply to filter out all

perfect pseudo-matchings that lead after contraction to isomorphic transitioned graphs.

The instances of the first two instance sets always used for (H,S) the graph UD-K5. To also test the

more general problem for a general (H,S) we created the third instance set G1. There we use a randomly

generated completely transitioned 4-regular (multi-)graph with n vertices as (G, T ) and a random completely

transitioned 4-regular (multi-)graph with k vertices as (H,S). To randomly generate a 4-regular graph with

l vertices we start with l vertices and no edges and add random edges until the graph is 4-regular. Then

we randomly partition the four edges incident to each vertex into two partitions of size two to define the

two transitions. For our tests we computed 30 instances for all combinations of 9 ≤ n ≤ 15 and 5 ≤ k ≤ 7,

which gives us 630 instances.

6.2. Results

Each run has three different output states: infeasible, feasible, or time limit reached. The time limit for

all our runs is 12 hours. In Table 1 we list the results of our algorithm for instance set S1 grouped by the

number of vertices |V | of the snark from which the instance was constructed. Column |V | gives the number

of vertices of the snarks and column instances states the number of instances originating from a snark of

this vertex size. Furthermore, column time[s] states the median computation times in seconds, and columns

infeasible, feasible and time limit list the number of instances with the corresponding output states.

As we can see most instances of set S1 are feasible, which shows us that at least for small graphs a

snark together with a random perfect matching leads with high probability to a contracted graph containing
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Table 2: Computation results for instance set S2.

Output Types

|V | instances time[s] infeasible feasible

18 98 186.78 83 15

20 1116 255.68 700 416

22 10694 355.58 5821 4873

SUD-K5 minors. This implies that to prove that a snark has a cycle double cover one has to test many

perfect matchings until one finds one whose contraction leads to a SUD-K5 minor free graph.

In total, we found 31 SUD-K5 minor free graphs, which we further tested if they contain a K5-minor.

We found several examples in them that are SUD-K5 minor free and contain a K5-minor. As mentioned in

the introduction such a graph resulting from a contraction of a perfect matching of a snark was not known

before and proves that the theorem by Fleischner et al. [4] is indeed stronger than the older theorem by Fan

and Zhang [2].

Since instance set S2 contains also perfect pseudo-matchings, we hope that this leads to more infeasible

graphs, i.e. to more SUD-K5 minor free graphs. Table 2 lists the results for instances set S2.

For this instance set the algorithm terminated for all instances before the time limit of 12 hours was

reached. All other columns are the same as in Table 1. We can see that when using perfect pseudo-

matchings more contracted graphs are SUD-K5 minor free than when we only use perfect matchings. In

fact our results prove that for every snark with up to 22 vertices there exists a perfect pseudo-matching such

that the contracted graph is SUD-K5-minor free, which implies the already known fact that all snarks with

up to 22 vertices have a cycle double cover.

This raises the question if it is possible to find for every snark a perfect pseudo-matching that leads to

a SUD-K5-minor free graph, which would imply the cycle double cover. Interestingly there are some snarks

with up to 22 vertices for which for every perfect matching the contraction of the graph is not SUD-K5-minor

free, which shows us that we really need perfect pseudo-matchings.

For our third instance set G1 results are listed in Table 3. Since we do not construct the instances based

on snarks, we do not have column |V | in this table but have two new columns |VG| and |VH |, which list the

numbers of vertices of the input graphs G and H, respectively. All other columns have the same meaning

as in Table 1.

We can see that the computation times depend heavily on the size of graph H. Furthermore, if H is

much smaller than G the probability for finding a sup-(H,S) transition minor in G is high, which also leads

to fast computation times. This effect leads to the result that the median computation time of the instances
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Table 3: Computation results for instance set G1.

Output Types

|VG| |VH | instances time[s] infeasible feasible time limit

9 5 30 232.29 15 15 0

9 6 30 3448.82 26 4 0

9 7 30 8233.49 30 0 0

10 5 30 210.95 11 19 0

10 6 30 7492.30 26 4 0

10 7 30 33104.28 21 0 9

11 5 30 147.85 5 25 0

11 6 30 15633.03 14 9 7

11 7 30 43200.00 5 1 24

12 5 30 113.21 2 28 0

12 6 30 1643.45 1 21 8

12 7 30 43200.00 0 1 29

13 5 30 118.06 0 28 2

13 6 30 2182.05 0 20 10

13 7 30 43200.00 0 3 27

14 5 30 43.39 0 30 0

14 6 30 753.11 0 27 3

14 7 30 43200.00 0 5 25

15 5 30 43.93 0 30 0

15 6 30 654.87 0 28 2

15 7 30 43200.00 0 14 16
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with |VG| = 15 and |VH | = 5 was smaller than the median computation time of the instances with |VG| = 14

and |VH | = 5. In both cases all instances were feasible, i.e. (G, T ) contained a sup-(H,S) transition minor.

For |VH | = 7 and |VG| ≥ 11 most of the instances run into the time limit of 12 hours.

7. Conclusion and Future Work

In this work we formulated the new problem ESTM for checking if a transitioned graph contains a

sup-(H,S) transition minor, which is a generalization of sup-K5-minors defined by Fleischner et al [4].

A complexity analysis of the problem showed that it is NP-complete, even if restricted to simple graphs.

Furthermore, it is fixed-parameter tractable with the size of graph H as parameter. We also formulated an

equivalent problem EBSRTM, which is used as base problem for our models.

In the next step we formulated a mathematical model, which uses simple mathematical objects such as

partial functions and trees together with a set of constraints in logical form. It does not directly model the

intermediate graph, which needs to be a transition minor of the input graph (G, T ) and a sup-(H,S) graph,

but ensures with its constraints on the two input graphs the existence of such an intermediate graph. Since

it is not trivial that this model solves the problem EBSRTM we provided a thorough proof of the equivalence

in Section 3.

From the mathematical model we derived in a more or less straight forward manner a mixed integer

linear program with which we can solve the problem EBSRTM in practice. We tested the MIP model on

three different instance sets. Two of them are motivated by the cycle double cover problem and are based on

contractions of perfect pseudo-matchings of snarks. The instances of the third set are randomly generated

to consider the whole scope of the problem.

Results show that the algorithm can solve the problem for small instances in reasonable time. The tested

instances consisted of a graph G with up to 15 vertices and a graph H with up to 7 vertices, but for the

larger graphs some instances could not get solved within the time limit of 12 hours.

Through our tests we were able to find graphs that are contractions of perfect matchings of snarks and

contain a K5-minor but no SUD-K5-minor. Such graphs were not known before and show that the theorem

about the existence of compatible circuit decompositions by Fleischner et al. [4] is really stronger than the

theorem by Fan and Zhang [2]. Furthermore, we could verify that there exists a perfect pseudo-matching

whose contraction leads to a SUD-K5-minor free graph for all snarks with up to 22 vertices. This motivates

the question whether there exists such a perfect pseudo-matching for all snarks. If we ask the same question

for perfect matchings we were able to find counter examples for this.

In future work the presented mathematical model may be used to develop other algorithms for this

problem, which may be able to solve the problem faster. Since the mathematical model is not MIP specific

constraint programming or SAT-based approaches might be promising. If we want to test large graphs,
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also a heuristic approach for finding SUD-(H,S) transition minors in reasonable time would be interesting,

although such an algorithm would not be able to prove that there does not exist such a transition minor.

In the context of snarks, in this work we only considered solving the problem for a given snark and a

given perfect pseudo-matching by contracting the snark and using the resulting graph as input graph G. Of

course a desirable extension would be to effectively search for a perfect pseudo-matching in a given snark

such that the resulting contracted graph is SUD-K5 transition minor free. Adding this additional level of

searching for a perfect pseudo-matching adds a new dimension of complexity, especially since we want to

find a perfect pseudo-matching for which our model is infeasible.
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