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Abstract. Let (k, s)-SAT be the k-SAT problem restricted to formulas in which
each variable occurs in at most s clauses. It is well known that (3, 3)-SAT is trivial
and (3, 4)-SAT is NP-complete. Answering a question posed by Iwama and Takaki
(DMTCS 1997), Berman, Karpinski and Scott (DAM 2007) gave, for every fixed
t ≥ 0, a polynomial-time algorithm for (3, 4)-SAT restricted to formulas in which
the number of variables that occur in four clauses is t. Parameterized by t, their
algorithm runs in XP time. We extend their result by giving, for every k ≥ 3 and
s ≥ k, an FPT algorithm for (k, s)-SAT when parameterized by the number t of
variables occurring in more than k clauses.
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1 Introduction

In this note we consider some special variant of the Satisfiability problem from a
parameterized point of view. In order to define it we first give the necessary terminology.
A literal is a (propositional) variable x or a negated variable x. A set S of literals is
tautological if S ∩ S 6= ∅, where we write S = {x | x ∈ S}. A clause is a finite non-
tautological set of literals. A (CNF) formula is a finite set of clauses. For k ≥ 1, a
k-CNF formula is a formula in which each clause contains exactly k different literals. A
variable x occurs in a clause C if x ∈ C or x ∈ C. For k, s ≥ 1, a (k, s)-formula is a k-CNF
formula in which each variable occurs in at most s clauses. A variable is k-exceeding
if it occurs in more than k clauses. A truth assignment for a set X of variables is a
mapping τ : X → {0, 1}. In order to define τ on literals we set τ(x) = 1− τ(x). A truth
assignment τ satisfies a clause C if C contains at least one literal x with τ(x) = 1, and τ
satisfies a formula F if it satisfies every clause of F . In the latter case we call F satisfiable.

The Satisfiability problem (SAT) is to decide whether a given formula is satisfiable.
For k ≥ 3, the k-SAT problem is the restriction of SAT to k-CNF formulas. It is well
known and readily seen that 2-SAT is polynomial-time solvable, whereas 3-SAT is NP-
complete [10]. This led to numerous studies on further restrictions and variants of SAT.
We focus on the (k, s)-SAT problem, which is the restriction of k-SAT to (k, s)-formulas.
We say that (k, s)-SAT is satisfiable if every (k, s)-formula is satisfiable. Tovey proved the
following.

Theorem 1 ([14]). (3, 3)-SAT is satisfiable and (3, 4)-SAT is NP-complete.

Dubois [4] extended Theorem 1 by proving that if (k, s)-SAT is satisfiable, then (k′, s′)-
SAT is satisfiable for every k′ = k + ` and s′ ≤ s+ ` · [ sk ] (where [x] denotes the integral
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part of a number x). This result, combined with Theorem 1, implies that (k, k)-SAT
is satisfiable for every k ≥ 1. Kratochvíl, Savický and Tuza [11] extended Theorem 1
by proving that there exists a natural function f (that grows exponentially) such that
(k, s)-SAT is satisfiable if s ≤ f(k) and NP-complete if s ≥ f(k) + 1. Exact values of
f(k) are only known for very small values of k [1,7], but the asymptotic behaviour has
been settled as f(k) = Θ( 2

k

k ) by Gebauer [6]. Iwama and Takaki [9] proved that every
(3, 4)-formula with at most three 3-exceeding variables is satisfiable, and they also gave
an unsatisfiable (3, 4)-formula with nine 3-exceeding variables. Answering a question
of Iwama and Takaki [9], Berman, Karpinski and Scott proved the following result.

Theorem 2 ([2]). (3, 4)-SAT can be solved in 2
t
3n

t
3 poly(n) time on (3, 4)-formulas

with n variables, t of which are 3-exceeding.

In the terminology of Parameterized Complexity [3], Theorem 2 implies that (3, 4)-
SAT, when parameterized by the number of 3-exceeding variables, is in the complexity
class XP. Problems in this class are polynomial-time solvable if the parameter is a fixed
constant. However, the order of the polynomial may depend on the parameter. In the
viewpoint of Parameterized Complexity, the main question is now whether one can remove
this dependency and show fixed-parameter tractability (FPT), which refers to running
times of the form g(t)nO(1), where g is a computable (and possibly exponential) function
of the parameter t.

In Section 2 we extend Theorem 2 by proving that for every k ≥ 3 and s ≥ k, (k, s)-
SAT is fixed-parameter tractable when parameterized by the number t of k-exceeding
variables.

Theorem 3. For k ≥ 3 and s ≥ k, (k, s)-SAT can be solved in O(2
t(s−k)

k n3) time on
(k, s)-formulas with n variables, t of which are k-exceeding.

Recall that, when s ≤ f(k) for the function f defined by Kratochvíl, Savický and
Tuza [11], (k, s)-SAT is not only FPT but even polynomial-time solvable.

Berman, Karpinski and Scott [2] also proved that 3-SAT is NP-complete even if exactly
one variable is 3-exceeding. This result shows that Theorems 2 and 3 cannot be extended
to k-SAT.

2 Fixed-Parameter Tractability

To prove Theorem 3 we need to introduce some additional terminology. Let α be a truth
assignment defined on a set X of variables, and let F be a formula. Then α is autark
for F if each variable in X occurs in at least one clause of F and α satisfies all the clauses
of F in which the variables of X occur. The formula obtained from F by deleting all
clauses satisfied by α is denoted by F [α]. We make the following observation.

Observation 4 Let F be a k-CNF formula for some k ≥ 1, and let α be an autark truth
assignment for F . Then F [α] is also a k-CNF formula.

We also need the following lemma due to Monien and Speckenmeyer.

Lemma 1 ([12]). Let α be an autark truth assignment for F . Then F is satisfiable if
and only if F [α] is satisfiable.

Let F be a formula. The length of F is
∑
C∈F |C|. The incidence graph of F is the

bipartite graph I(F ) whose partition classes are the set of clauses of F and the set of
variables occurring in these clauses, such that there is an edge between a variable x and a
clause C if and only if x occurs in C.

A matching M in a graph G covers a vertex u of G if u incident with an edge of M .
We need the following known results.
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Theorem 5 ([8]). A maximum matching of a bipartite graph G = (V,E) can be computed
in O(

√
|V | · |E|) time.

Lemma 2 ([5,13]). Let F be a formula of length ` and M be a maximum match-
ing of I(F ). It is possible to find in O(`) time an autark truth assignment α for F such
that the edges of M in I(F [α]) form a maximum matching of I(F [α]) covering every
variable of F [α].

We say that the truth assignment α from Lemma 2 is an M -truth assignment of the
formula F .

Now let F be a formula with m clauses and n variables. The deficiency of F is
δ(F ) = m− n. The maximum deficiency of F is δ∗(F ) = maxF ′⊆F δ(F ′). The following
result shows that SAT is FPT when parameterized by the maximum deficiency.

Theorem 6 ([13]). Let F be a formula with n variables. It is possible to decide in
O(2δ

∗(F )n3) time whether F is satisfiable.

We also need the following lemma.

Lemma 3. For k ≥ 3 and s ≥ k, let F be a (k, s)-formula with t k-exceeding variables.
Let α be anM -truth assignment for some maximum matchingM of I(F ). Then δ∗(F [α]) ≤
t(s−k)
k .

Proof. By Lemma 2, the edges of M in I(F [α]) form a maximum matching M ′ of I(F [α])
that covers every variable of I(F [α]). Let S be the set of all clauses of I(F [α]) that
are not covered by M ′. We observe that δ∗(F [α]) ≤ |S|. Hence, it suffices to show that
|S| ≤ t(s−k)

k .
As F is a (k, s)-formula and thus a k-CNF formula, F [α] is a k-CNF formula as well

due to Observation 4. So, every clause of F [α] contains k literals. Hence, the sum of the
vertex degrees of the clauses in I(F [α]) is (|S| + |M ′|)k. Recall that M ′ covers every
variable of I(F [α]). Hence, the sum of the vertex degrees of the variables in I(F [α]) is at
most ts+ (|M ′| − t)k. This means that (|S|+ |M ′|)k ≤ ts+ (|M ′| − t)k, or equivalently,
|S| ≤ t(s−k)

k , as desired. ut
We are now ready to prove Theorem 3, which we restate below.

Theorem 3. For k ≥ 3 and s ≥ k, (k, s)-SAT can be solved in O(2
t(s−k)

k n3) time on
(k, s)-formulas with n variables, t of which are k-exceeding.

Proof. Let F be a (k, s)-formula with m clauses, n variables, t of which are k-exceeding,
and let ` be the length of F . We have ` ≤ ts + (n − t)k = t(s − k) + nk ≤ sn, as well
as ` = mk, and hence, m = `/k ≤ s

kn. We first compute a maximum matching M of
I(F ). As I(F ) has m+ n = O( skn) vertices and ` = O(sn) edges, this takes O( sk

√
sn

3
2 )

time by Theorem 5. We now apply Lemma 2. This takes O(sn) time and gives us an
M -truth assignment α. By Lemma 1 it suffices to decide whether F [α] is satisfiable. As
δ∗(F [α]) ≤ t(s−k)

k due to Lemma 3, the latter takes O(2
t(s−k)

k n3) time by Theorem 6.
Hence the total running time is O(2

t(s−k)
k n3 + s

k

√
sn

3
2 + sn). According to the statement

of the theorem, s and k are constants. Hence, the running time for deciding whether F [α]
is satisfiable dominates the time needed for computing M and α, respectively. ut
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