
Algorithms and Complexity Group | Institute of Logic and Computation | TUWien, Vienna, Austria

Technical Report AC-TR-18-006
July 2018

An SMTApproach to
Fractional Hypertree
Width

Johannes K. Fichte, Markus Hecher,
Neha Lodha, and Stefan Szeider

This is the authors’ copy of a paper that is to appear the proceedings of CP 2018,
the 24th International Conference on Principles and Practice of Constraint Program-
ming, Lille, France, August 27–31, 2018. LNCS 11008, Springer Verlag, 2018.
www.ac.tuwien.ac.at/tr

An SMT Approach to Fractional Hypertree Width?

Johannes K. Fichte1, Markus Hecher2, Neha Lodha3, and Stefan Szeider3

1 International Center of Computational Logic, TU Dresden, Dresden, Germany
fichte@tu-dresden.de

2 Database and Artificial Intelligence Group, TU Wien, Vienna, Austria
hecher@dbai.tuwien.ac.at

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{neha,sz}@ac.tuwien.ac.at

Abstract. Bounded fractional hypertree width (fhtw) is the most general known
structural property that guarantees polynomial-time solvability of the constraint
satisfaction problem. Bounded fhtw generalizes other structural properties like
bounded induced width and bounded hypertree width.
We propose, implement and test the first practical algorithm for computing the fhtw
and its associated structural decomposition. We provide an extensive empirical
evaluation of our method on a large class of benchmark instances which also
provides a comparison with known exact decomposition methods for hypertree
width. Our approach is based on an efficient encoding of the decomposition
problem to SMT (SAT modulo Theory) with Linear Arithmetic as implemented in
the SMT solver Z3. The encoding is further strengthened by preprocessing and
symmetry breaking methods. Our experiments show (i) that fhtw can indeed be
computed exactly for a wide range of benchmark instances, and (ii) that state-of-the
art SMT techniques can be successfully applied for structural decomposition.

1 Introduction

A prominent research question is the identification of structural restrictions that make the
constraint satisfaction problem (CSP) tractable [10]. Structural restrictions are concerned
only in the way how constraints and variables interact, in contrast to language restric-
tions that are only concerned with the relations that appear in the constraints. Hybrid
restrictions are concerned with both aspects.

In his seminal work, Freuder [21] showed that the CSP is tractable under structural
restrictions imposed in terms of bounded treewidth of the constraint graph. The following
decades brought a phalanx of results that identified more and more general structural
restrictions that still guarantee polynomial-time tractability of the CSP, some prominent
notions are spread-cut width [11] and hypertree width [24]. This line of research found
its culmination point in the work of Grohe and Marx [27,28], who introduced the notion
of fractional hypertree width, which generalizes all known structural restrictions that
guarantee polynomial-time tractability of the CSP.

? The work has been supported by the Austrian Science Fund (FWF), Grants Y698 and P26696,
and the German Science Fund (DFG), Grant HO 1294/11-1. Fichte and Hecher are also affiliated
with the University of Potsdam, Germany.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

2 Fichte et al.

So far, fractional hypertree width was mostly of theoretical interest, because of the
lack of practical algorithms for actually computing the associated decompositions. One
can approximate the fractional hypertree width in polynomial time with a cubic error
factor [37]. This is prohibitive for practical applications, since CSP algorithms that
exploit (fractional) hypertree decompositions are exponential in time and space in the
width of the decomposition [11,24,27,28]. It is unlikely that one could compute the exact
fractional hypertree width in polynomial time as checking whether a hypergraph has
fractional hypertree width ≤ w is already NP-hard for w = 2 [20].

Contributions. In this paper we propose, implement and test the first practical approach
to compute the fractional hypertree width. Our approach is based on an efficient SMT-
encoding of the problem, and utilizes preprocessing and symmetry breaking methods.
We establish an ordering-based characterization of fractional hypertree-width which
is similar to the well-known elimination order characterization of treewidth (see, e.g.,
[8,13]), which traces back to the work of Rose [39]. Ordering-based characterizations of
treewidth have been shown to be well-suited for SAT encodings of treewidth and related
width measures [4,7,36,42], hence it was promising to establish such a characterization
also for fractional hypertree width. This indeed turned out to be both feasible as well as
effective. In fact, to encode the linear ordering as well as the hyperedges induced by the
ordering, we could utilize the very same Boolean variables and constraints that have been
used for treewidth encodings. However, for treewidth one needs to bound the cardinalities
of certain sets of vertices, which in the existing encodings was accomplished by SAT-
based cardinality constraints or Max-SAT formulations. For fractional hypertree width,
however, we need to find certain real-valued weights of hyperedges and enforce lower
and upper bounds on the sums of weights of certain sets of hyperedges. We found that
these constraints can be handled well by the SAT modulo Theory (SMT) framework, in
particularly by SMT with Linear Arithmetic as implemented in the state-of-the-art SMT
solver Z3 [38]. On top of the SMT encoding we also developed various preprocessing
and symmetry breaking methods.

We would like to point out that for CSP instances of bounded fractional hypertree
width, one can not only decide satisfiability, but also count the number of satisfying
assignments in polynomial time, as observed by Duran and Mengel [15]. Hence also
from a complexity theoretic point of view it is justified to use an SMT solver which
operates in the class NP to facilitate the solution of a harder #P-complete counting
problem.

We implemented our methods creating the prototype tool FraSMT and performed
extensive experiments on benchmark instances which contain real-world instances from
various application domains. To the best of our knowledge, there have not been any
practical algorithms for fractional hypertree width reported in the literature. Thus we
took as a reference point the algorithm det-k-decomp of Gottlob and Samer [26] for
the related (but less general) parameter hypertree width, which in turn was shown to
outperform the algorithm opt-k-decomp proposed earlier by Gottlob et al. [25].

Our results show that on an extensive collection of benchmark instances the new
SMT approach clearly outperforms the known algorithm det-k-decomp, even without
preprocessing or symmetry breaking. Adding these techniques gives again a significant
performance boost.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 3

In summary, our findings are significant as they show (i) that fractional hypertree
width can indeed be computed for a wide range of benchmark instances, and (ii) that
SMT techniques can be successfully applied for structural decomposition and outperform
known methods.

2 Preliminaries

A hypergraph is a pair H = (V (H), E(H)), consisting of a set V (H) of vertices and a
set E(H) of hyperedges, each hyperedge being a subset of V (H).

For a hypergraph H = (V,E) and a vertex v ∈ V , we write EH(v) = { e ∈ E | v ∈
e } and NH(v) = (∪EH(v))\{v}; the latter set is the neighborhood of v. If u ∈ NH(v)
we say that u and v are adjacent.

The hypergraph H − v is defined by H = (V \ {v}, {e \ {v} | e ∈ E}).
The primal graph (or 2-section) of a hypergraph H = (V,E) is the graph P (H) =

(V,EP (H)) with EP (H) = { {u, v} | u 6= v, there is some e ∈ E such that {u, v} ⊆ e }.
Consider a hypergraph H = (V,E) and a set S ⊆ V . An edge cover of S is a

set F ⊆ E such that for every v ∈ S there is some e ∈ F with v ∈ e. A fractional
edge cover of S (with respect to H) is a mapping γ : E → [0, 1] such that for every
v ∈ S we have

∑
e∈E, v∈e γ(e) ≥ 1. The weight of γ is defined as

∑
e∈E γ(e). The

fractional edge cover number of S with respect to a hypergraph H , denoted fnH(S), is
the minimum weight over all its fractional edge covers with respect to H .

A tree decomposition of a hypergraph H = (V,E) is a pair T = (T, χ) where
T = (V (T), E(T)) is a tree and χ is a mapping that assigns each t ∈ V (T) a set
χ(t) ⊆ V (called the bag at t) such that the following properties hold:

– for each v ∈ V there is some t ∈ V (T) with v ∈ χ(t) (“v is covered by t”),
– for each e ∈ E there is some t ∈ V (T) with e ⊆ χ(t) (“e is covered by t”),
– for any three t, t′, t′′ ∈ V (T) where t′ lies on the path between t and t′′, we have
χ(t′) ⊆ χ(t) ∩ χ(t′′) (“bags containing the same vertex are connected”).

The width of a tree decomposition T of H is the size of a largest bag of T minus 1.
The treewidth tw(H) of H is the smallest width over all its tree decompositions.

We will frequently use the following well-known fact (see, e.g. [9]).

Fact 1 Let (T, χ) be a tree decomposition of a graph G and K a clique in G, then there
exists a node t ∈ V (T) with V (K) ⊆ χ(t).

Using this fact it is easy to see that tw(H) = tw(P (H)) holds for every hypergraph H .
A generalized hypertree decomposition of H is a triple G = (T, χ, λ) where (T, χ)

is a tree decomposition of H and λ is a mapping that assigns each t ∈ V (T) an edge
cover λ(t) of χ(t). The width of G is the size of a largest edge cover λ(t) over all
t ∈ V (T). A hypertree decomposition is a generalized hypertree decomposition that
satisfies a certain additional property which was added in order to make the computation
of the decomposition tractable [24]. The generalized hypertree width ghtw(H) of H is
the smallest width over all generalized hypertree decompositions of H . The hypertree
width htw(H) is the smallest width over all hypertree decompositions of H .

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

4 Fichte et al.

A fractional hypertree decomposition of H is a triple F = (T, χ, γ) where (T, χ) is
a tree decomposition of H and γ is a mapping that assigns each t ∈ V (T) a fractional
edge cover λ(t) of χ(t) with respect to H . The width of F is the largest weight of the
fractional edge covers λ(t) over all t ∈ V (T). The fractional hypertree width fhtw(H)
of H is the smallest width over all fractional hypertree decompositions of H .

To avoid trivial cases, we consider only hypergraphs H = (V,E) where EH(v) 6= ∅
for all v ∈ V . Consequently, every considered hypergraph H has a (fractional) edge
cover and fhtw(H) is always defined. If |V | = 1 then fhtw(H) = 1.

Since an edge cover can be seen as the special case of a fractional edge cover, with
weights restricted to {0, 1}, it follows that for every hypergraph H we have fhtw(H) ≤
ghtw(H) ≤ htw(H) ≤ tw(P (H)).

3 Ordering-Based Characterization of Fractional Hypertree
Width

The first SAT encoding of treewidth was suggested by Samer and Veith [42], it uses
an ordering-based characterization of treewidth. Also more recent SAT encodings of
treewidth are ordering-based [4,7]. In view of the success of ordering-based charac-
terizations of treewidth, we developed an ordering-based characterization of fractional
hypertree width, and used it for our SMT encoding. The remainder of this section is
devoted to the definition of this characterization and a proof of its correctness. Kamis, et
al. [33] have suggested a similar characterization.

Let H = (V,E) be a hypergraph with n = |V | and L = (v1, . . . , vn) a linear
ordering of the vertices of H . We define the hypergraph induced by L as Hn

L = (V,En)
where En is obtained from E by adding hyperedges successively as follows. We let
E0 = E, and for 1 ≤ i ≤ nwe letEi = Ei−1∪{ei}where ei = { v ∈ {vi+1, . . . , vn} |
there is some e ∈ Ei−1 containing v and vi }. We consider the binary relation ArcL =
{ (vi, vj) ∈ V × V | i < j and vi and vj are adjacent in Hn

L }. We write ArcL(i) =
{vi} ∪ { vj | (vi, vj) ∈ ArcL }, hence ArcL(i) = {vi} ∪ ei.

The fractional hypertree width of H with respect to a linear ordering L, denoted
fhtwL(H), is the largest fractional edge cover number with respect to H over all the sets
ArcL(i), i.e.,

fhtwL(H) =
n

max
i=1

fnH(ArcL(i)).

We would like to emphasize that in this definition the fractional covers are consid-
ered with respect to the original hypergraph H , and not with respect to the induced
hypergraph Hn

L .
Figure 1 illustrates these concepts on a small example.

Theorem 1. The fractional hypertree width of a hypergraph H equals the smallest
fractional width over all its linear orderings, i.e., fhtw(H) = minL fhtwL(H).

We establish the theorem by means of two lemmas below. Before doing so, we
introduce some additional terminology.

Let H = (V,E) be a hypergraph and E′ ⊆ E an edge cover of H . An E′-fractional
hypertree decomposition of H is a fractional hypertree decomposition F = (T, χ, γ)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 5

hypergraph � fractional hypertree decomposition

a

b

c

d
g

e f

e� = �c, gg

e2 = �g, fg

e3 = �c, fg

e4 = �cg

e5 = �b, fg

e6 = �bg

e7 = �g

v� = a

v2 = e

v3 = g

v4 = d

v5 = c

v6 = f

v7 = b

�c, g, fg, 2
ac = 1, egf = 1

�c, dg, 1
cd = 1

�e, g, fg, 1
egf = 1

�a, c, gg, 2
ac = 1, ag = 1

�b, c, fg, 2
bc = 0.5, bf = 0.5

ac = 0.5, efg = 0.5

Fig. 1. An example illustrating a fractional hypertree decomposition of width 2 as well as the
hyperedges ei for 1 ≤ i ≤ 7.

of H where each fractional cover γ(t) assigns edges e ∈ E \ E′ the value 0. Similarly,
the E′-fractional hypertree width of H with respect to a linear ordering L, denoted
fhtwL(E

′, H), is computed by using only fractional edge covers that assign edges
e ∈ E \ E′ the value 0, i.e.,

fhtwL(E
′, H) =

n
max
i=1

fn(V,E′)(ArcL(i)).

The proof of the following lemma provides a decoding algorithm that efficiently
computes a fractional hypertree decomposition from a given ordering.

Lemma 1. Let H = (V,E) be a hypergraph, L = (v1, . . . , vn) a linear ordering of V ,
and E′ ⊆ E an edge cover of H . Then H has an E′-fractional hypertree decomposition
of width ≤ fhtwL(E

′, H).

Proof. We proceed by induction on n. If n = 1 the statement is trivially true. Now
assume n > 0 and that the statement holds for all smaller n. Let w = fhtwL(E

′, H).
Let e1, . . . , en and S1, . . . , Sn as in the definition of a fractional hypertree width of H
with respect to the linear ordering L.

We obtain from H the hypergraph H2 by deleting v1 and adding the hyperedge e1.
Furthermore, we obtain from E′ the edge cover E′2 ⊆ E(H2) of H2 by removing v1
from every edge in E′.

Now L2 = (v2, . . . , vn) is a linear ordering of H2, and we observe that its width
cannot be larger than the width of L, since the sequence of sets ArcL2

(i) for 1 ≤ i ≤
n − 1 is exactly the same as the sequence of sets ArcL(i) for 2 ≤ i ≤ n. Hence
fhtwL2

(E′2, H2) ≤ fhtwL(E
′, H) = w.

By induction hypothesis, it follows that H2 has an E′2-fractional hypertree decom-
position F2 = (T2, χ2, γ2) of width ≤ w. By definition of a tree decomposition, there
must be a node t2 ∈ V (T2) such that e1 ⊆ χ2(t2). We define an E′-fractional hypertree
decomposition F = (T, χ, γ) of H as follows.

1. We obtain T by adding a new node t1 to T2 and making it adjacent with t2.
2. We set χ(t1) = {v1} ∪ e1 = S1 and χ(t) = χ2(t) for all other tree nodes t.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

6 Fichte et al.

3. We choose for γ(t1) an E′-fractional edge cover of S1 of smallest weight, which
must be ≤ w since L was assumed to have weight w, and we set γ(t) = γ2(t) for
all other tree nodes t.

We observe that (T, χ) satisfies all conditions of a tree decomposition, and conclude
that F is indeed an E′-fractional hypertree decomposition of H of width ≤ w. ut

Lemma 2. Let H = (V,E) be a hypergraph, E′ ⊆ E an edge cover of H and F =
(T, χ, γ) an E′-fractional hypertree decomposition of H of width w. Then there is a
linear ordering L = (v1, . . . , vn) of V such that fhtwL(E

′, H) ≤ w.

Proof. As above we proceed by induction on n. We observe that the statement is trivially
true if n = 1 or |V (T)| = 1. Now assume n > 0, |V (T)| > 1, and that the statement
holds for all smaller n.

W.l.o.g., we may assume that for each leaf t of T there is some v ∈ χ(t) that does
not belong to χ(t′) for any other node t′ ∈ V (T) \ {t}. Namely, if such a v ∈ χ(t) does
not exist, then the properties of a tree decomposition imply that χ(t) ⊆ χ(t′′) for the
unique neighbor t′′ of t in T , and so all vertices and hyperedges covered at node t are
also covered at node t′′, and t can be omitted.

Based on the above assumption, we conclude that there must be some v1 ∈ V which
belongs to χ(t) for a leaf t of T , but v1 does not belong to χ(t′) for any other node
t′ ∈ V (T) \ {t}.

Let e1 = { v ∈ {v2, . . . , vn} | there is some e ∈ E containing v and vi } and
S1 = {v1} ∪ e1 (as in the definition of fractional hypertree width of H with respect
to the linear ordering). Since S1 ⊆ χ(t), γ(t) gives an E′-fractional cover of S1 with
respect to H of weight ≤ w, hence fn(V,E′)(S1) ≤ w.

We obtain the hypergraphH2 = (V2, E2) where V2 = V \{v1} andE2 = { e\{v1} |
e ∈ E }∪{e1}. We also define E′2 = { e\{v1} | e ∈ E′ } which is an edge cover of H2.
It is easy to see that from F we can obtain an E′2-fractional hypertree decomposition
F2 = (T, χ2, γ2) of H2 of width ≤ w as follows.

1. We define χ2(t) = χ(t) \ {v1}, and χ2(t
′) = χ(t′) for all other tree nodes t.

2. For every a hyperedge e2 ∈ E′2 we let γ2(t)[e2] = max{ γ(t)[e1 ∪ {v1}] | e1 ∪
{v1} ∈ E′ } ∪ { γ(t)[e1] | e1 ∈ E′ }.

The induction hypothesis applies and hence we can conclude that there exists a linear
ordering L2 = (v2, . . . , vn) of V (H2) such that fhtwL2(E

′
2, H2) ≤ w. We now extend

L2 by adding v1 at the first position and obtain the ordering L = (v1, . . . , vn). We have
already observed above that fn(V,E′)(S1) ≤ w, hence fhtwL(E

′, H) ≤ w. ut
Theorem 1 now follows by Lemmas 1 and 2 by taking E′ = E.

4 SMT Encoding

In this section we describe an SMT encoding for the characterization of fractional
hypertree decompositions as given in the previous section. The encoding is an adaptation
of the Samer-Veith encoding of treewidth [42]. Given a hypergraph H = (V,E) with

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 7

V = {v1, . . . , vn}, we produce a formula F (H,w) which is satisfiable if and only if the
hypergraph V has a linear ordering L of V such that fhtwL(H) ≤ w.

The relation ArcL can be computed in exactly the same way as Samer and Veith
compute the “graph induced by the ordering.” We therefore use the same notation and
introduce Boolean ordering variables oi,j for 1 ≤ i < j ≤ n and Boolean arc variables
ai,j for 1 ≤ i, j ≤ n.

An ordering variable oi,j is true if and only if i < j and vi precedes vj in L.
Consequently, to enforce that L is indeed a linear ordering, we must ensure transitivity,
which can be accomplished with the following clauses (here o∗(i, j) stands for o(i, j) if
i < j and ¬o(j, i) otherwise):

[¬o∗(i, j) ∨ ¬o∗(j, k) ∨ o∗(i, k)] for 1 ≤ i, j, k ≤ n and i, j, k are distinct.

The arc variables are used to represent the relation ArcL for the ordering L repre-
sented by the ordering variables, where a(i, j) is true if and only if (vi, vj) ∈ ArcL, i.e.,
if vj ∈ ArcL(i).

A straightforward encoding of the definitions of ArcL gives rise to the following
clauses:

[¬o(i, j) ∨ a(i, j)] ∧ [o(i, j) ∨ a(j, i)] for {vi, vj} ∈ E(P (H)) and i < j,

[¬a(i, j) ∨ ¬a(i, l) ∨ ¬o(j, l) ∨ a(j, l)] ∧ [¬a(i, j) ∨ ¬a(i, l) ∨ o(j, l) ∨ a(l, j)]
for 1 ≤ i, j, l ≤ n, i 6= j, i 6= l, and j < l,

[¬a(i, j) ∨ ¬a(i, l) ∨ a(j, l) ∨ a(l, j)] for 1 ≤ i, j, k ≤ n, i 6= j, i 6= k and j < k,

[¬a(i, i)] for 1 ≤ i ≤ n.

Now, instead of cardinality constraints as used for treewidth, we use here real-valued
weight variables representing the fractional covers. In fact, this makes the overall SMT
encoding for fractional hypertree width even simpler and more compact than the SAT
encoding for treewidth.

More precisely, we introduce a weight variable w(i, e) for each 1 ≤ i ≤ n and
e ∈ E, representing the weight of e in a fractional edge cover γL(i) of the set ArcL(i),
where L is the ordering represented by the ordering variables.

To ensure that γL(i) is indeed a fractional edge cover of ArcL(i), we add the
following two constraints; the first checks that all the vertices in ArcL(i) \ {vi} are
covered by γL(i), the second checks that vi is covered by γL(i):

[¬a(i, j) ∨∑
e∈EH(vj)

w(i, e) ≥ 1] for 1 ≤ i 6= j ≤ n,

[
∑

e∈EH(vi)
w(i, e) ≥ 1] for 1 ≤ i ≤ n.

Finally, we ensure that the weights of the fractional covers γL(i) are at most w, 1 ≤ i ≤
n, by means of the following constraints:

[
∑

e∈E w(i, e) ≤ w] for 1 ≤ i ≤ n.

This completes the construction of the formula F (H,w). The formula F (H,w)
has O(n(n +m)) variables where O(n2) are Boolean variables and O(nm) are real
variables, and O(n3) clauses, where only O(n2) are used for restricting the width.

In view of the construction of the formula and by Theorem 1 we obtain the following
result.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

8 Fichte et al.

Theorem 2. A hypergraphH has fractional hypertree width≤ w if and only if F (H,w)
is satisfiable.

In view of the remark from the end of Section 2, we conclude that by replacing the
real variables with integer variables yields an encoding for generalized hypertree width.

5 Preprocessing

In this section, we formulate several preprocessing methods. Some of them originate in
the context of treewidth [4] and we adapted them for our purposes. It turned out that in
some cases the preprocessing techniques decrease the encoding size significantly. This
not only speeds up the solving process but also extends the scope of our method to larger
instances.

We exhaustively apply the following preprocessing rules R1–R4 in their order of occur-
rence.

R1: Contained Hyperedges A hyperedge that is a subset of another hyperedge can be
safely removed.

Proposition 1. Let H = (V,E) be a hypergraph, e, f ∈ E be hyperedges such that e (
f , then fhtw(H) = fhtw((V,E \ {e})).

Proof. Consider a fractional hypertree decomposition F = (T, χ, λ) of H with
λ(e) > 0. We define a fractional hypertree decomposition F ′ = (T, χ, λ′) of the same
width by setting λ′(e′) = λ(e′) for e′ ∈ E \ {e, f} and λ′(f) = λ(f) + λ(e). ut

R2: Biconnected Components A hypergraph H is connected if for any two vertices
u, v ∈ V there exist vertices v1, . . . , vk ∈ V such that u = v1, v = vk and vi and
vi+1 are adjacent in H for 1 ≤ i ≤ k − 1. H is biconnected if H − v is connected for
every v ∈ V . A biconnected component of H is a maximal biconnected hypergraph
H ′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Observe that two biconnected components of
H can have at most one vertex in common.

We can split any hypergraph into biconnected components and compute the fractional
hypertree width of each component separately.

Proposition 2. Let H be a hypergraph and H1, . . . ,H` its biconnected components.
Then fhtw(H) = maxki=1 fhtw(Hi).

We omit the easy proof due to space restrictions.

R3: Deletion of Vertices of Degree 1 A vertex of degree 1 (i.e., a vertex occurring in
only one hyperedge) can be safely deleted.

Proposition 3. Let H = (V,E) be a hypergraph and v ∈ V be a vertex of degree one,
i.e., |EH(v)| = 1, and fhtw(H − v) ≥ 1. Then fhtw(H) = fhtw(H − v).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 9

Proof. We know that fhtw(H) ≥ fhtw(H − v). For showing fhtw(H) ≤ fhtw(H − v),
we take a fractional hypertree decomposition F = (T, χ, λ) of H − v and modify F
to obtain a fractional hypertree decomposition F ′ = (T ′, χ′, λ′) of H . In particular,
there has to exist node t in T with χ(t) = e \ {v}, where e ∈ E such that v ∈ e. Then,
we construct F ′ by taking F , adding a fresh node t′ as a child node of t to T ′, and
assigning χ(t′) = e and λ′(t′) = 1. Since fhtw(H) ≥ 1, the claim sustains. ut

R4: Simplicial Vertices Let H = (V,E) be a hypergraph. A vertex v ∈ V is a
simplicial vertex of H if the neighborhood of v forms a clique in the primal graph of H .

We can remove a simplicial vertex v as long we maintain fnH(NH [v] ∪ {v}) as a
lower bound for the fractional hypertree width.

Proposition 4. Let H = (V,E) be a hypergraph and v a simplicial vertex of H . Then,
fhtw(H) = max(fhtw(H − v), fnH(NH [v] ∪ {v})).

Proof. We proceed similarly to the proof of Proposition 3, where we modified a fractional
hypertree decomposition F for H − v in order to obtain one for H . Here, however, the
fresh decomposition node t′ contains NH [v] ∪ {v} in its bag. ut

6 Symmetry Breaking and Lower Bounds with Cliques

In this section we present the utilization of cliques in the primal graph for two purposes.
First, we can choose any clique (i.e., a complete subgraph) in the primal graph and put
the vertices of the clique at the end of the ordering. This can be seen as a symmetry
breaking method that decreases the search space. In particular, it helps to speed up the
optimality check (i.e., the F (H,w) call when w = fhtw(H)− 1), as here the full search
space needs to be explored. A similar technique has previously been used for a SAT
encoding of treewidth [4].

For a hypergraph H = (V,E) we call a set S ⊆ V a hyperclique if S is a complete
subgraph of the primal graph P (H).

The next proposition ensures that we can indeed force a hyperclique to be the last in
the ordering without effecting the fractional hypertree width.

Proposition 5. Let H = (V,E) and be a hypergraph and S = {v1, . . . , v`} a hyper-
clique in H . Then, there is an ordering L = (. . . , v1, . . . , v`) in which the vertices of S
appear at the end, such that fhtwL(H) = fhtw(H).

Proof. Let F = (T, χ, λ) be a fractional hypertree decomposition of H of
width fhtw(H). By Fact 1 there is a node t in T with S ⊆ χ(t). We consider T to
be rooted in t and construct a linear ordering L according to the proof of Lemma 2. Since
we always pick vertices from bags from leaves of T , we will be left with t as the last
tree node, and hence the vertices from χ(t) will be picked last. As a result, we obtain an
ordering L, where vertices V ′ appear at the end and fhtwL(H) = fhtw(H). ut

Hypercliques can also be used to obtain a lower bound on the fractional hypertree
width. If we want to compute the treewidth of a graph, and we know that the graph
contains a clique on k vertices, then by Fact 1 we immediately know that the treewidth of

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

10 Fichte et al.

the graph must be at least k−1. However, in the context of hypergraphs and fractional hy-
pertree width, we need to take the fractional edge cover number of the clique into account.
Consider for instance a hypergraph H = (V, {V }). It is easy to see that fhtw(H) = 1,
although V forms a hyperclique. However, we still can show the following:

Proposition 6. Let H = (V,E) be a hypergraph and S a hyperclique of H . Then,
fhtw(H) ≥ fnH(S).

Proof. Assume any fractional hypertree decomposition F = (T, χ, λ) of H . Since S is
a hyperclique, Fact 1 provides us a node t in F whose bag contains S, i.e., χ(t) ⊇ S.
Then, by definition of fractional hypertree decompositions, every vertex of S is covered
in t. As a result, the weight λ(t) is at least fnH(S), and fhtw(H) ≥ fnH(S). ut
We performed some experiments that suggest that the symmetry breaking works better
with a hyperclique S with large fnH(S) than with a hyperclique S′ where this number is
small (e.g., a clique that is contained in a single hyperedge), even when S′ is larger than
S. Hence a hyperclique S with large fnH(S) serves two purposes: it facilitates symmetry
breaking and provides us with a lower bound on the fractional hypertree width. However,
the computation of a hyperclique S where fnH(S) is maximal is a very hard problem,
hence we propose the notion of a k-hyperclique as a compromise.

A hyperclique S of a hypergraph H = (V,E) is a k-hyperclique if no hyperedge
ofH intersects with S in more than k vertices. Intuitively, small values of k prevent large
hyperedges, whereas bigger values provides us with flexibility, resulting in potentially
larger cliques.

As already discussed, for symmetry breaking we rely on appropriate cliques. We
aim to (i) fix parts of the ordering L of all the vertices of the clique (preferably large),
(ii) to influence other bags as much as possible. The chances of L influencing other bags
increase when we do not have large hyperedges, i.e., one hyperedge does not cover all
the vertices of a large clique. Therefore, there is a tradeoff between finding large cliques,
and avoiding large hyperedges.

In order to address this tradeoff we compute maximum cardinality k-hyperclique.
We can detect a k-hyperclique of size at least ` for given hypergraph H = (V,E) by
means of a SAT encoding. Here k is assumed to be a small constant. For each vertex v
we introduce a Boolean variable xv , which is true if v belongs to the k-hyperclique. We
then add the following constraints:

[¬xv1 ∨ ¬xv2
] for any two vertices v1, v2 ∈ V with v2 6∈ N [v1];

[¬xv1 ∨ · · · ∨ ¬xvk] for any k vertices v1, . . . , vk belonging to hyperedge e ∈ E;

[
∑

v∈V xv ≥ `] cardinality constraint for enforcing clique size at least `.

In the next section we will provide more details on how we have implemented the search
for k-hypercliques.

7 Experimental Work

We performed a series of experiments on various publicly available benchmark sets, in
order to obtain the fractional hypertreewidth of these instances, to evaluate whether our

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 11

SMT-based approach fits well to obtain exact values on the width, and to investigate how
well our approach scales. The source code of our SMT-based decomposer4, benchmarks,
and detailed results5 are publicly available.

7.1 Implementation

We implemented our encoding into our prototypical decomposer FraSMT. We used
Python 2.7.14 [40] based on an Anaconda6 distribution, which includes dependency
handling for binaries packages. We used the graph library networkX 2.1 [30], the answer-
set programming solver clingo 5.2.2 (gringo 5.2.2 and clasp 3.3.3) [22], and the SMT
solver Z3 4.6.2 [38]. Our implementation consists of two separate tools: a validator and
a decomposer.

Validator. The first part is a reusable validator that validates computed fractional hyper-
tree decompositions or related decompositions such as tree decompositions and hypertree
decompositions. The validator takes as input an extended version of the format used for
the treewidth track of the Parameterized Algorithms and Computational Experiments
Challenge (PACE) [14]. Since the graph library networkX does not support hypergraphs,
we implemented hypergraph classes and classes that allow for a primal graph view on
such a hypergraph. Both classes implement a networkX-like hypergraph API. Although
it suffices to use rational numbers to compute the fractional hypertree width [27,28], we
still represent the maximum width by a real value since Z3 does neither support rationals
nor reals of arbitrary precision. As we may have a precision loss due to the internal
representation of the reals [12], we check for width w + ε for some small ε ≥ 0. By
default we set ε to 0.001.

Decomposer and its Configurations. The second and main part is the decomposer
FraSMT, which implements the preprocessing techniques, the SMT encoding, invoking
the SMT solver, as well as reconstructing a decomposition from the solver assignments
and outputting a decomposition (if possible; for details see below). Our decomposer
always reduces contained hyperedges and splits a hypergraph into biconnected compo-
nents and computes the width of each component separately. We optionally run finding
and deleting degree 1 vertices as well as simplicial vertices. We refer to configurations
that include this preprocessing with a string that contains “P”, whereas “p” indicates that
this preprocessing technique is disabled (see Table 1). Further, our decomposer computes
as a preprocessing step large k-hypercliques for symmetry breaking and for obtaining
lower bounds, as discussed above. For this task we employ the answer-set programming
(ASP) solver clingo, which supports (implicit) incremental solving and unsatisfiable core
shrinking [1]. We use this to aim at a k-hyperclique of maximum cardinality. However,
we limited the solving time (ten seconds) to determine such a clique. Still, at any time
during the optimization (as long as at least one k-hyperclique has been computed),
the solver is able to provide a large k-hyperclique. The ASP solver supports a natural

4 See: github.com/daajoe/frasmt
5 See: Benchmark repository [16] and results/raw data [17].
6 See: https://conda.io/docs/user-guide/install/download.html

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

12 Fichte et al.

encoding of cardinality constraints, and allows for incrementally computing maximum
cardinality cliques among all k-hypercliques for 3 ≤ k ≤ ` for some fixed `. We thereby
start with k = ` and then proceed (aiming at better lower bounds) by incrementally
decreasing k by adding the necessary constraints to the ASP solver in multiple shots [22].
We then use such a resulting large hyperclique to apply symmetry breaking in our en-
coding as described in Proposition 5 and we use hypercliques to obtain additional lower
bounds for the encoding. Moreover, we take the maximum width over the previously
computed components and feed this value into the next computation. In that way we
might obtain unsatisfiability and cannot output a decomposition, however, we cut the
search space for the SMT solver as the solver does not necessarily need to find an exact
solution in order to avoid an easy-hard-easy behavior. In the following configurations we
use symmetry breaking as well as lower bounds. Finally, we implemented the encoding
via a direct Python interface to the solver using additional features of Z3.

Other Solvers. In order to obtain results for hypertree width of our instances, we used
a backtracking-based implementation det-k-decomp by Gottlob and Samer [26]. Since
this implementation can only check for hypertree width of size at most k of an instance,
we added a simple progression step on top7, which for every iteration reduces the result
of det-k-decomp by 1 to check optimality.

7.2 Benchmark Instances

We considered a selection of 2191 instances, which contain hypergraphs that origi-
nate from CSP instances and conjunctive database queries from various sources. The
hypergraphs contain up to 2993 vertices and 2958 hyperedges. The first set Daimler-
Chrysler consists of 15 instances, the second set Grid2D consists of 12 instances,
and the third set ISCAS’89 consists of 24 instances on circuits [26]. Moreover, the
benchmarks contain 35 instances in the set MaxSAT [6] and two sets (csp appli-
cation and csp random) of instances from the well known XCSP benchmarks [3]
with less than 100 constraints such that all constraints are extensional. The set csp ap-
plication contains 1090 instances and the set csp random contains 863 instances.
Further, the set csp other contains 82 instances, which have been collected for works
on hypertree decompositions8. The set CQ consists of 156 instances from various con-
junctive queries [2,5,23,29,34,43]. About a quarter of the instances are graphs. Although
fhtw and tw coincide on graphs, these instances are still well-suited as benchmarks as
they provide a challenge for the decomposer. All instances have been collected by Fis-
chl et al. [19] (publicly available at [16]). We gratefully acknowledge him for providing
this large collection of instances.

7.3 Benchmark Setting

Hardware. Our results were gathered on Ubuntu 16.04 LTS Linux machines ker-
nel 4.13.0-3 on GCC 5.4.1, both post-Spectre and post-Meltdown kernels9. We ran

7 github.com/daajoe/detkdecomp
8 https://www.dbai.tuwien.ac.at/proj/hypertree/benchmarks.zip
9 See: spectreattack.com

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 13

config N t[s] median avg std

FraSMT (C6P) 1449 1189 3124 3299
FraSMT (C4P) 1434 1187 3192 3326
FraSMT (C4p) 1282 1760 3461 3432
FraSMT (c0p) 1106 7200 4019 3398
det-k-decomp 838 7200 4672 3357

Table 1. Overview on the number N of instances for which the respective decomposer configu-
ration outputted the exact (fractional) hypertree width of the instance within the given timeout.
Configuration: c/C represents disabled or enabled symmetry breaking and lower bound techniques,
respectively. p/P represents disabled or enabled preprocessing techniques. 0 represents that finding
cliques was disabled. 4 and 6 represent that we used the ASP solver to search for a k-hyperclique
of maximum cardinality with k ∈ {4, 6}. However, due to the imposed timeout, the solver might
also just use an `-hyperclique where 3 ≤ ` ≤ k. t median (avg, std) represents the median
(average, standard deviation) of the runtime in seconds of the decomposer over all instances of our
benchmark instances, including the timeouts.

fhtw 1 (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 9]

N 145 123 198 255 308 273 65 81 1

Table 2. Distribution of the fractional hypertree width over the solved instances.

the experiments on a cluster of 16 nodes. Each node is equipped with two Intel Xeon
E5-2640v4 CPUs consisting of 10 physical cores each at 2.4 GHz clock speed and 160
GB RAM. Hyper threading was disabled.

Setup and Limits. In order to draw conclusions about the efficiency of FraSMT, we
mainly inspected the wall clock time. We set a timeout of 7200 seconds and limited
available RAM to 8 GB per instance. Resource limits where enforced by runsolver [41].
Due to hardware resource limitations we conducted only one run per instance and con-
figuration. However, we benchmarked a few instances with multiple runs and observed
no significant difference.

7.4 Results

We used a tool to gather data and control the benchmark generation, evaluation, and
cluster setting [31]. We publicly provide all experimental data [17], including raw data
such as all command line flags used, system sampling (RAM/sysload), standard output
and standard error during the run.

Solved Instances/Runtime. Table 1 provides basic statistics on the benchmarks. The
table contains the tested configurations of our decomposer and the number of solved
instances for which we obtained the (fractional) hypertree width and present total

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

14 Fichte et al.

0 500 1000 1500 2000

0

1000

2000

3000

4000

5000

6000

7000

vbest
FraSMT-C6P
FraSMT-C4P
FraSMT-C4p
FraSMT-c0p
detkdecomp

Fig. 2. Runtime in seconds on the considered benchmark instance. vbest refers to the virtual best
solver. The x-axis labels consecutive integers that identify instances. The instances are ordered by
running time, individually for each solver.

(average, minimum) runtime of the decomposer. We include timeouts of 7200 seconds
into the average and median. Figure 2 illustrates runtime results for the tested decomposer
configurations as cactus plot. We solved instances that have up to 1453 vertices, up to 891
hyperedges, and up to hyperedges of size 16. The best configuration, namely FraSMT
(C6P), was capable of decomposing 1451 out of the total number of 2191 instances.
Using k-hypercliques with k = 4 instead of k = 6 for symmetry breaking solved 1435
instances. Without preprocessing, FraSMT was able to solve 1283 instances. Without
preprocessing or symmetry breaking, FraSMT could obtain 1107 fractional hypertree
decompositions of exact width. Solver det-k-decomp was able to solve 838 instances,
although both underlying methods are exact and det-k-decomp computes the less general
parameter hypertree width in the same time. We further observe that by analyzing the
virtual best solver (vbest), there are few instances a single best configuration cannot
solve but can be solved by different configurations.

(Fractional) Hypertree Width. We computed the fractional hypertree width for our
benchmarks using FraSMT and the hypertree width using det-k-decomp. The sets contain
a few identical instances that occur in multiple sets. Even though we provide here only
an overview on all instances, we decided to keep the duplicate instances to analyze
the benchmark sets as provided from the original source for easier comparability. We
provide detailed statistics online [17]. Using det-k-decomp we obtained the hypertree
width for 838 instances. Table 2 provides the distribution of the number of instances and
their respective fractional hypertree width. Considering all sets, 33% of the instances
have fractional hypertree width below 4, 60% of the instances have fractional hypertree
width below 6. Overall we were able to obtain the exact width for 66% of the instances.

Fractional Hypertree Width vs. Hypertree Width. When considering the obtained frac-
tional hypertree width and hypertree width for these instances in our benchmark set that
have been solved by both methods, the best FraSMT configuration and det-k-decomp,

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 15

we observed a difference between the two width measures on 221 instances. The maxi-
mum difference was 2, and among these 221 instances the median difference was 0.6.
However, since det-k-decomp could decompose significantly fewer instances and by
construction works better on instances of small width, we expect the difference between
fhtw and htw to be significantly higher on the remaining instances.

8 Discussion and Conclusions

Our SMT-based encoding for fractional hypertree width, in combination with preprocess-
ing and symmetry breaking methods, and its implementation, enable us to compute the
exact fractional hypertree width for many realistic instances. This provides a significant
step for making the theoretical notion of bounded fractional hypertree width, the most
general known structural restriction for CSP that guarantees tractability, accessible for a
practical use.

Our results show that a large majority of our considered benchmarked instances have
low fractional hypertree width (below 10). However, we were unable to compute the
exact width for about 33% of the instances. Consequently, we think that upper bound
computations either using heuristics for hypertree width or modifying our encoding to
obtain only upper bounds are of interest for future investigations.

Interestingly, we obtained the exact fractional hypertree width for more instances
using our decomposer FraSMT than the exact hypertree width using det-k-decomp,
although our decomposer determined the more general parameter. An important factor
is the extensive preprocessing and symmetry breaking methods, which are not present
in det-k-decomp, as these methods resulted in 16% more solved instances for our
decomposition technique. However, even without preprocessing or symmetry breaking
our approach solved more instances than det-k-decomp.

Since our results are limited to small and medium-sized hypergraphs up to about 1400
vertices, 900 hyperedges, and hyperedges of small size, heuristics or combinations of
heuristics and exact methods might be interesting for practical purposes. Our techniques
can be very helpful to evaluate the accuracy of heuristics. Efficient and precise heuristics
would enable us to obtain a broad picture about available instances in CSP which might
lead to a usage of fractional hypertree decompositions for solving actual CSP instances,
in particular, for problems such as model counting in CSP. We believe that our methods
can be extended to compute the “fractional FAQ-width” which, when bounded, renders
the Functional Aggregate Query (FAQ) problem tractable [33].

The focus of this paper was the exact computation of fractional hypertree width.
However, we would like to point out that with our approach one can also compute good
upper bounds on the fractional hypertree width by just skipping the expensive optimality
check. We have reasons to believe that this will scale to significantly larger instances,
since a similar behaviour has been observed in related work [18,35]. We are interested
to address this potential of our method systematically in future work.

References
1. Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core shrinking.

Theory Pract. Log. Program. 16(5-6), 533–551 (2016)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

16 Fichte et al.

2. Arocena, P.C., Glavic, B., Ciucanu, R., Miller, R.J.: The ibench integration metadata generator.
In: Li, C., Markl, V. (eds.) Proceedings of Very Large Data Bases (VLDB) Endowment.
vol. 9:3, pp. 108–119. VLDB Endowment (Nov 2015), https://github.com/RJMillerLab/ibench

3. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an XML-based format
designed to represent combinatorial constrained problems. http://xcsp.org (2016)

4. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: A modular library for computing tree decom-
positions. In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.) 16th International
Symposium on Experimental Algorithms, SEA 2017, June 21-23, 2017, London, UK. LIPIcs,
vol. 75, pp. 28:1–28:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

5. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D., Tsamoura, E.:
Benchmarking the chase. In: Geerts, F. (ed.) Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS’17). pp. 37–52. Assoc. Comput.
Mach., New York, Chicago, Illinois, USA (2017), https://github.com/dbunibas/chasebench

6. Berg, J., Lodha, N., Järvisalo, M., Szeider., S.: MaxSAT benchmarks based on determining
generalized hypertree-width. Tech. rep., MaxSAT Evaluation 2017 (2017)

7. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: An evaluation.
In: 26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2014,
Limassol, Cyprus, November 10-12, 2014. pp. 328–335. IEEE Computer Society (2014)

8. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science 209(1-2), 1–45 (1998)

9. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Discrete
Math. 6(2), 181–188 (1993)

10. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a survey. Con-
straints 21(2), 115–144 (2016)

11. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint
satisfaction problems. J. of Computer and System Sciences 74(5), 721–743 (2008)

12. Committee, M.S.: IEEE standard for floating-point arithmetic. IEEE Std 754-2008 pp. 1–70
(Aug 2008)

13. Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek,
P., Walsh, T. (eds.) Handbook of Constraint Programming, vol. I, chap. 7, pp. 209–244.
Elsevier (2006)

14. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameterized algo-
rithms and computational experiments challenge: The second iteration. In: Lokshtanov, D.,
Nishimura, N. (eds.) Proceedings of the 12th International Symposium on Parameterized and
Exact Computation (IPEC’17). pp. 30:1—30:13. LIPIcs (2017)

15. Durand, A., Mengel, S.: Structural tractability of counting of solutions to conjunctive queries.
Theoretical Computer Science 57(4), 1202–1249 (2015)

16. Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: A Benchmark Collection of Hypergraphs
(Jun 2018). https://doi.org/10.5281/zenodo.1289383

17. Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: Analyzed benchmarks and raw data on
experiments for FraSMT (Jun 2018). https://doi.org/10.5281/zenodo.1289429

18. Fichte, J.K., Lodha, N., Szeider, S.: SAT-based local improvement for finding tree decomposi-
tions of small width. In: Gaspers, S., Walsh, T. (eds.) Theory and Applications of Satisfiability
Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August
28 - September 1, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10491, pp.
401–411. Springer (2017)

19. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: HyperBench: a benchmark of hypergraphs.
http://hyperbench.dbai.tuwien.ac.at (2017)

20. Fischl, W., Gottlob, G., Pichler, R.: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
symposium on principles of database systems, houston, tx, usa, june 10-15, 2018. In: den

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

An SMT Approach to Fractional Hypertree Width 17

Bussche, J.V., Arenas, M. (eds.) Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018. pp.
17–32. ACM (2018)

21. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. of the ACM 29(1),
24–32 (1982)

22. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
CoRR abs/1705.09811 (2017), http://arxiv.org/abs/1705.09811

23. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Mapping and cleaning. In: Cruz, I., Ferrari, E.,
Tao, Y. (eds.) Proceedings of the IEEE 30th International Conference on Data Engineering
(ICDE’14). pp. 232–243 (March 2014)

24. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. of
Computer and System Sciences 64(3), 579–627 (2002)

25. Gottlob, G., Leone, N., Scarcello, F.: On tractable queries and constraints. In: Database and
Expert Systems Applications, 10th International Conference, DEXA ’99, Florence, Italy,
August 30 - September 3, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1677,
pp. 1–15 (1999)

26. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposition. J. Exp.
Algorithmics 13, 1:1.1–1:1.19 (Feb 2009)

27. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proceedings of the of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006). pp. 289–298.
ACM Press (2006)

28. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Transactions on
Algorithms 11(1), Art. 4, 20 (2014)

29. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Web
Semantics: Science, Services and Agents on the World Wide Web 3(2), 158–182 (2005)

30. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function
using networkx. In: Gäel Varoquaux, T.V., Millman, J. (eds.) Proceedings of the 7th Python in
Science Conference (SciPy’08). pp. 11–15. Pasadena, CA, USA (Aug 2008)

31. Kaminski, R., Schneider, M., Rabener, T., et al.: benchmark-tool (2017), https://github.com/
potassco/benchmark-tool

32. Khamis, M.A., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. In: Milo, T., Tan, W.
(eds.) Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016. pp. 13–28.
Assoc. Comput. Mach., New York (2016)

33. Khamis, M.A., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. CoRR
abs/1504.04044 (2017), http://arxiv.org/abs/1504.04044v6, full version of [32]

34. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How good are
query optimizers, really? Proceedings of Very Large Data Bases (VLDB) Endowment 9(3),
204–215 (Nov 2015)

35. Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In: Creignou, N., Berre,
D.L. (eds.) Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9710, pp. 179–195. Springer Verlag (2016)

36. Lodha, N., Ordyniak, S., Szeider, S.: SAT-encodings for special treewidth and pathwidth. In:
Gaspers, S., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing - SAT 2017 -
20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10491, pp. 429–445. Springer Verlag
(2017)

37. Marx, D.: Approximating fractional hypertree width. TALG 6(2), Art. 29, 17 (2010)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

18 Fichte et al.

38. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) Proceedings of the International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems Tools (TACS’08). Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer Verlag (2008)

39. Rose, D.J.: On simple characterizations of k-trees. Discrete Math. 7, 317–322 (1974)
40. van Rossum, G.: Python tutorial. Cs-r9526, Centrum voor Wiskunde en Informatica (CWI),

Amsterdam (May 1995)
41. Roussel, O.: Controlling a solver execution with the runsolver tool. J on Satisfiability, Boolean

Modeling and Computation 7, 139–144 (2011)
42. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Theory and Applications of Satisfi-

ability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June
30 - July 3, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5584, pp. 45–50.
Springer Verlag (2009)

43. Transaction Processing Performance Council (TPC): TPC-H decision support benchmark.
Tech. rep., TPC (2014), http://www.tpc.org/tpch/default.asp

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
6

