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The Particle Therapy Patient Scheduling Problem (PTPSP) arises in mod-
ern cancer treatment facilities that provide particle therapy and consists of
scheduling a set of therapies within a planning horizon of several months. A
particularity of PTPSP compared with classical radiotherapy scheduling is
that therapies need not only be assigned to days but also scheduled within
each day to account for the more complicated operational scenario. In an
earlier work we introduced this novel problem setting and provided first al-
gorithms including an Iterated Greedy (IG) metaheuristic. In this work we
consider an important extension to the PTPSP emerging from practice in
which the therapies should be provided on treatment days roughly at the
same time. To be more specific, the variation between the starting times
of the therapies’ individual treatments should not exceed given limits and
needs otherwise to be minimized. This additional request implies that the
sequencing parts within each day cannot be treated independently anymore.
To tackle this variant of PTPSP we revise our previous IG and exchange its
main components: the part of the applied construction heuristic for schedul-
ing within the days and the local search algorithm. The resulting metaheuris-
tic provides promising results for the proposed extension of the PTPSP and
further enhances the existing approach for the original problem.

Keywords. cancer treatment; particle therapy patient scheduling; iterated greedy meta-
heuristic; hybrid metaheuristic

1 Introduction

Particle therapy is a relatively novel and highly promising option to provide cancer
treatments. A proton or carbon beam is produced by either a cyclotron or a synchrotron
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and is directed into one of up to five treatment rooms, where patients are irradiated.
Since several tasks have to be completed in a treatment room before and after an actual
irradiation, the usually single available beam is switched between the available treatment
rooms to maximize the throughput of the facility. Consequently, the main challenge
is to arrange the individual treatments in such a way that idle times on the particle
beam are minimized. We consider here specifically the particle therapy treatment center
MedAustron in Wiener Neustadt, Austria, which offers three treatment rooms.

The Particle Therapy Patient Scheduling Problem (PTPSP) addresses the midterm
planning part of such a particle therapy treatment center and has been first introduced
in our recent work [Maschler et al., 2016]. In PTPSP an effective plan has to be found
for performing numerous therapies, each consisting of daily treatments (DTs) provided
on 8 to 35 subsequent days. Therapies have to start on Mondays or Tuesdays between
an earliest and a latest allowed starting day. After a therapy is started, the number
of DTs that are provided each week has to stay between a lower and an upper bound.
Moreover, there is a minimal and a maximal number of days that are allowed to pass
between two subsequent DTs, and there has to be a break from the treatment of at least
two consecutive days each week. The DTs have resource requirements that vary with
time, but each specific resource is required at most once for a consecutive time period.
These varying requirements originate from the different tasks involved in providing the
treatments. Each resource can only be used by one DT at a time. Amongst others the
considered resources involve the particle beam, treatment rooms, radio oncologists, and
an anesthetist. In terms of the resource-constrained project scheduling literature [see
for example Hartmann and Briskorn, 2010] DTs would be called activities with resource
requests varying with time. Typically, the facility is open from Mondays to Fridays,
but after recurring maintenance tasks DTs are also performed on Saturdays. Whenever
the treatment center is open, resources have a regular availability period followed by
an extended availability period in which they can be used, where the use of the latter
induces (additional) costs. Furthermore, the availability of resources can be interrupted
by so-called unavailability periods. The aim of the PTPSP is to schedule a given set
of therapies by determining days and times for all corresponding DTs while considering
all operational constraints. The objective is to minimize the use of extended availability
periods, while the therapies have to be completed as early as possible. In addition, the
DTs belonging to the same therapy should be planned roughly at the same time, in
order to provide a consistent schedule for the patients. Ideally, the starting times of
a therapy’s DTs should not differ more than a half hour within each week. Between
two weeks the starting times are allowed to differ by two hours. However, consistent
starting times for DTs are not of direct medical relevance and, consequently, should not
induce additional use of extended service periods or delay therapies. This consideration
of similar DT starting times is a practically highly relevant extension of the PTPSP as
introduced in Maschler et al. [2016].

The aim of this work is twofold. On the one hand, PTPSP is extended to cover the
aspect that the variation among the times at which therapies’ DTs are provided is min-
imized. On the other hand, we study an improved variant of the Iterated Greedy (IG)
metaheuristic from Maschler et al. [2016]. Preliminary results of this effort for the orig-
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inal problem formulation have been published in Maschler et al. [2017]. We propose
a novel construction heuristic that assigns DTs to days as the previous construction
heuristic but replaces the part for determining starting times with one that is more ap-
propriate for the extended problem variant. This new heuristic applied within the IG’s
construction phase is able to keep relative timing characteristics of untouched DTs to a
larger extent. Furthermore, we replace the so far rather simple local improvement oper-
ator by a local search method that alternately considers a DT exchange neighborhood
and solves a Linear Programming (LP) model for determining updated nominal starting
times. The IG is compared with our previous one and shows significant improvements on
all considered benchmark instances. Moreover, we assess the qualities of the individual
components of the metaheuristic by gradually transforming the previous approach into
the proposed one.

The remainder of this work is structured as follows: After giving an overview of related
literature in the next section, a formal problem definition is provided in Section 3. We
present the enhanced IG metaheuristic in Section 4. The conducted experiments are
then discussed in Section 5. Finally, Section 6 concludes this article with an outlook on
future work.

2 Related Work

Midterm planning for classical radiotherapy has attracted the focus of the scheduling
community starting with the works from Kapamara et al. [2006] and Petrovic et al. [2006].
Several further heuristic as well as exact approaches followed. Heuristic techniques range
from a Greedy Randomized Adaptive Search Procedure (GRASP) [Petrovic and Leite-
Rocha, 2008] and steepest hill climbing methods [Kapamara and Petrovic, 2009, Riff
et al., 2016] to more advanced techniques using Genetic Algorithms (GAs) [Petrovic
et al., 2009, 2011]. Exact methods are based on Mixed Integer Linear Programming
(MILP) models and consider different levels of granularity [Conforti et al., 2008, Burke
et al., 2011]. All these works have in common that they assign treatments only to
days, but do not sequence the treatments within each day. The reason is that in the
considered scenarios linear accelerators are used which serve single treatment rooms
exclusively. Hence, only a sequential processing of treatments is possible. This stands in
contrast to the PTPSP where the particle beam is shared between multiple treatment
rooms and a finer-grained scheduling is necessary to maximize the throughput of the
facility.

In Maschler et al. [2016] we formalized the PTPSP via a MILP model. However, even
solving a strongly simplified version of the model turned out to be practically intractable.
Therefore, we proposed the therapy-wise construction heuristic (TWCH), which acts in
two phases by assigning first all DTs to days (day assignment) and then scheduling the
DTs on each day (time assignment). Moreover, a GRASP and an IG metaheuristic that
are based on this construction heuristic were developed. Experiments indicated that the
IG yields superior results in comparison to the GRASP. This is mainly due to the fact
that the IG preserves substantial parts of the solution from one iteration to the next,

3

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
5



and consequently, poor decisions made especially in the first phase of TWCH can be
corrected in the course of the iterations. However, the IG proposed in Maschler et al.
[2016] does not exhaust its full potential: Moving DTs between days might require to
reevaluate the start times of all DTs, and this is done by simply dropping all start times
of the considered days. In addition, we used a local improvement operator within the IG
that is based on applying a randomized version of the time assignment phase of TWCH
iteratively many times. Even though this local improvement operator is able to enhance
solutions rather quickly this approach has the drawback that partly redundant work is
repeatedly done, still yielding relatively similar solutions for the time assignments.

Our subsequent work [Maschler et al., 2018] focuses on the decomposition of the
PTPSP into a day assignment part and a sequencing part. This decomposition makes
the problem computationally more manageable as it allows us to separate the allocation
of DTs to days with determining the DTs’ starting times. However, both levels are
dependent on a large degree. Especially, on the day assignment level we have to be
aware of the behavior of the time assignment part. Hence, we provide a surrogate model
that predicts the use of extended service windows given a set of DTs and a specific
day. Experiments showed that the application within our IG metaheuristic allowed us
to improve our previous results significantly.

Another scheduling problem related to particle therapy is considered in Vogl et al.
[2018]. Although their problem is from the setting similar to ours, it differs in many
details. While our emphasis is mainly on the throughput of the facility, i.e., on the
scheduling of DTs under limited resource availabilities, the authors shift the subject
more to the aspect of planning therapies including activities surrounding the core ther-
apy. In particular, they have additional appointments that need to be provided either
before or after a DT once a week. These appointments distinguish themselves from DTs
as they can be supplied by different resources. In comparison to the PTPSP as described
here, Vogl et al. assume that the resources are available on all days without any further
restrictions. Moreover, their objective function differs substantially from ours: the aim
is on minimizing the total idle time of the beam resource and the violations of time win-
dows. Vogl et al. propose a multi-encoded genetic algorithm and compare two solution
decoding approaches.

The works by Riedler et al. [2017] and by Horn et al. [2017] both deal with strongly
simplified variants of the time assignment part for a single day. Motivated by the fact
that irradiation times are known exactly beforehand Riedler et al. [2017] consider a
resource-constrained project scheduling problem for high time resolutions. Their solution
approach is to relax the problem by partitioning time into so-called time-buckets, which
are then iteratively refined until an optimal solution is found. The problem variant
considered by Horn et al. [2017] is even closer to our scenario. Each of their jobs requires
one common resource during a part of its processing time and one of several secondary
resources for the entire processing time. Such jobs model the essential aspect of our
DTs, where the common resource corresponds to the beam and the secondary resources
correlate with the rooms. They consider the minimization of the makespan as objective
and provide an exact A∗ algorithm, a heuristic beam search, and a hybrid thereof.
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3 Problem Definition

In the PTPSP a set of therapies T = {1, . . . , nT } has to be scheduled on consecutive
days D = {1, . . . , nD} considering a set of renewable resources R = {1, . . . , nR}.

Each therapy t ∈ T consists of a set of DTs Ut = {1, . . . , τt}. In the course of a therapy,
the number of DTs applied per week has to be in the range from ntwmin

t to ntwmax
t and

DTs have to be performed at most every δmin
t ≥ 1 and at least every δmax

t ≥ δmin
t

days. Between two weeks there have to be at least two days where no DT is performed.
In addition, the maximum intended time difference of the starting times of the DTs
within the same week and between two consecutive weeks is denoted with δintraw and
δinterw, respectively. The set of possible start days for each DT u ∈ Ut is given by the
subset {dmin

t,u , . . . , d
max
t,u } ⊆ D of days. For each DT u ∈ Ut we are given a processing time

pt,u ≥ 0 and a set of required resources Qt,u ⊆ R. In the execution of a DT each resource
r ∈ Qt,u is in general required during a part of the whole processing time specified by
the time interval Pt,u,r = [P start

t,u,r , P
end
t,u,r) ⊆ [0, pt,u).

The planning horizon is structured into a subset D′ ⊆ D of working days on which
the treatment center is actually open and DTs can be scheduled on. The weeks covered
by D are denoted by V = {1, . . . , nV }. Furthermore, let

⋃
v∈V D

′
v be the partitioning

of D′ into nV subsets corresponding to the weeks. For each working day d ∈ D′ we
have a fundamental opening time W̃d = [W̃ start

d , W̃ end
d ) that limits the availability of all

resources on the considered day.
Each resource r ∈ R is available on a subset Dres

r ⊆ D′ of the working days. On
such days the availability of each resource is defined by a regular service time window
Wr,d = [W start

r,d ,W end
r,d ) ⊆ W̃d that is immediately followed by an extended service time

window Ŵr,d = [W end
r,d , W̃

end
d ) ⊆ W̃d. Moreover, for each resource r ∈ R and each day

d ∈ Dres
r , the availability of resource r may be interrupted by a set of unavailability

intervals W r,d =
⋃
w=1,...,ωr,d

W r,d,w with W r,d,w = [W
start
r,d,w,W

end
r,d,w] ⊂Wr,d ∪ Ŵr,d.

We represent a solution for the PTPSP as a triple (Z, S, S̃), where Z = {Zt,u ∈ D′ |
t ∈ T, u ∈ Ut} denotes the days at which the DTs are planned, S = {St,u ≥ 0 | t ∈
T, u ∈ Ut} is the set of start times for all the DTs on the respective days, and S̃ = {S̃t,v |
∀t ∈ T, v ∈ V } corresponds to the set of nominal starting times of the therapies’ DTs
within the weeks. A solution is feasible if all resource availabilities, precedence relations,
and the remaining operational constraints are respected. The objective is to minimize
primarily the use of extended time over all resources R while finishing each therapy as
early as possible. In addition, the goal is to minimize the deviation of the DTs’ starting
times from the corresponding nominal starting times and to minimize the difference of
the nominal starting times between weeks. More formally, we aim at minimizing

γext
∑

r∈R

∑

d∈Dres
r

ηr,d + γfinish
∑

t∈T

(
Zt,τt − Zearliest

t,τt

)
+

γintraw
∑

t∈T

∑

u∈Ut\{1}
σintraw
t,u + γinterw

∑

t∈T

∑

v∈V \{1}
σinterw
t,v , (1)
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where γext, γfinish, γintraw, and γinterw are scalar weights. The first term of the objective
function gives the total time used of the extended service time windows, where ηr,d =
max({St,u+P end

t,u,r−W end
r,d | t ∈ T, u ∈ Ut, r ∈ Qt,u, Zt,u = d}∪{0}) for resource r and day

d. The second term computes for each therapy t the deviation of the last treatment day
from a lower bound Zearliest

t,τt [see Maschler et al., 2016]. The third objective term gives
the total excess of the allowed deviation of the DTs’ starting times to their respective
nominal starting times, where σintraw

t,u = max(|St,u − S̃t,v| − δintraw, 0) and Zt,u ∈ D′v.
Each therapy’s first DT is excluded from the above calculation since those are regarded
in the specific situation at MedAustron as special. Finally, the last term computes the
excess of the maximum intended time difference of the nominal starting times between
two weeks and is calculated by σinterw

t,v = max(|S̃t,v − S̃t,v−1| − δinterw, 0).
Note that the definition of DTs stated here differs from the one given in Maschler et al.

[2016], where DTs are composed of consecutively executed activities that are related with
minimum and maximum time lags. The simplification here is motivated by the fact that
in practice the possibility to have different minimum and maximum time lags between
two activities is not expected to be exploited in midterm planning. Consequently, time
lags may either be replaced by “dummy” activities of fixed length or, as we do here, the
subdivision of DTs into activities can be replaced by the time intervals Pt,u,r specifying
at which times which resources are needed.

4 Iterated Greedy Approach

Iterated Greedy (IG) algorithms [Jacobs and Brusco, 1995] usually start with an initial
solution and then repeatedly apply a destruction phase annulling part of the solution,
followed by a construction phase that completes the solution again, until a termina-
tion criterion is reached. The initial solution is usually obtained by applying a con-
struction heuristic. The destruction phase removes randomly selected components from
the incumbent solution, that are then reinserted by a greedy reconstruction method in
the construction phase. Afterwards, an acceptance criterion is evaluated to determine
whether the newly generated solution replaces the incumbent solution. Frequently, a
local search algorithm is applied to the initial solution and after the construction phase
to further boost the performance. In the following sections we discuss the components
of the proposed IG.

4.1 Initial Solution

We presented in Maschler et al. [2016] the therapy-wise construction heuristic (TWCH)
for the PTPSP without the extension that the starting times should be close to their
weekly nominal starting times and that the nominal starting times belonging to the
same therapy should not differ too much. Basically, this construction heuristic acts in
two phases, first assigning all DTs to days (day assignment) and afterwards determining
the actual starting times of the DTs (time assignment). While the day assignment phase
can be adopted unchanged, the time assignment phase has to be altered s.t. also the two
new objective terms regarding the variation of the starting times are considered.
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TWCH starts with the day assignment phase in which therapies are processed in the
order of the latest possible starting day of their first DT. For a selected therapy the
corresponding DTs are then allocated sequentially to days, starting with the first DT.
To this end, for the current DT all feasible days between the earliest and latest starting
day w.r.t. the constraints imposed by the DT’s predecessors are evaluated. The DT is
assigned to the candidate day that minimizes on the one hand, the expected additional
use of extended service windows by the current DT and all subsequent DTs and on the
other hand the day at which the therapy is completed. A crucial aspect for the overall
performance of TWCH is the estimation of the total time required from extended service
windows. While an underestimation yields in general overfull days with avoidable use
of extended service windows, an overestimation results in underused days and delayed
ends of therapies. We studied the impact of this estimation in Maschler et al. [2018]
and provide a surrogate model that exploits the structure of DTs and further problem
knowledge. Experiments show that the surrogate model predicts the use of extended
service windows quite accurately and improves our IG approach from Maschler et al.
[2017] substantially. Consequently, we adopt this scheme here.

During the time assignment phase the scheduling within the days has to be done. In
other words we have to find for all DTs starting times with as little use of extended
service windows as possible that allow in addition nominal starting times that minimize
the respective intra-week and inter-week objective terms. In contrast to our earlier work,
the schedules for the individual days cannot be regarded as independent but are coupled
through the nominal starting times. A further changed property resulting from the
extension of the PTPSP is that scheduling DTs in close succession might be suboptimal
w.r.t. the two new objective terms. In fact, it might be necessary to have breaks between
two consecutive DTs. In principle, our approach to consider the DTs in a certain order
and schedule each DT as early as possible has to change to the one where we have
to decide in addition the duration of an optional gap between each pair of successive
DTs. However, in practice the facility should be used at full capacity and, thus, it
can be assumed that in general adding significant gaps between DTs immediately yields
additional use of extended service time windows which results in a worse objective value.
Therefore, we restrict the construction heuristic and our overall approach to solutions
without gaps that are not induced by resource availabilities.

Our approach for the time assignment part consists of two components executed in
an interleaved way, one for scheduling the DTs on a considered day and one for setting
and adapting the nominal starting times. To this end, the working days are processed in
chronological order, starting with scheduling the DTs assigned to the first working day.
After all starting times for a day have been determined the nominal starting times of
every considered therapy t in the current week v are updated as follows. Therapies’ first
DTs are ignored as they are excluded in the intra-week objective term. For each therapy’s
second DT we set S̃t,v to St,2. For subsequent DTs u′ assigned to the therapy’s first week,

the nominal starting time is set to the value that minimizes
∑u′

u=2 σ
intraw
t,u . Determining

this value corresponds to finding the minimal value of a continuous piecewise linear
function where the slope of the segments are multiples of γintraw. For DTs u′ belonging
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to a therapy’s second week and onward the nominal starting time S̃t,v of the current
week v is set to arg min

S̃t,v
(
∑

u∈{D′
v |u≤u′} σ

intraw
t,u + σinterw

t,v ). To this end, the nominal

starting time of the previous week is considered as fixed. Note that for this reason the
determined nominal starting times might not be optimal.

TWCH’s component for scheduling DTs within a day as presented in Maschler et al.
[2016] repeatedly places a not yet scheduled DT, selected using a priority function, as
early as possible in the schedule until all DTs have been planned. The priority of the
DTs is determined by a lexicographic combination of three criteria that consider the idle
time that emerges on the beam resource, the earliest end of a regular service window
from a required resource, and the ratio between the time the beam is required and the
total processing time of the respective DT. These greedy criteria provide in practice
reasonable performance w.r.t. minimizing the use of extended service windows, while
yielding short processing times. Extending this lexicographic combination of criteria to
respect also the intra-week and inter-week objective terms is, however, not promising.
The main difficulty is to balance between generating a tight schedule and prioritizing
DTs that are close to their nominal starting time. While concentrating too much on the
former aspect causes many deviations to the respective nominal starting times, focusing
too much on the latter results often in extensive use of extended service windows.

To obtain a heuristic for scheduling DTs within a day that performs well on the
extended problem formulation we shift the focus from which DT to schedule next to
inserting DTs within the order of already scheduled DTs. A straightforward way to
this would be to process the DTs assigned to a day in a particular order and test for
each DT all positions of the already scheduled DTs. Finally, the DT is inserted in
the position yielding the smallest objective value. This technique is analogous to the
classic NEH algorithm by Nawaz et al. [1983] for the Permutation Flow Shop Problem
(PFSP). However, preliminary experiments have shown that the performance of this
simple insertion heuristic is worse compared to our original approach. The main reason
is that the insertion of DTs postpones already inserted DTs which might end up at a quite
different time they have been originally inserted. Hence, it makes sense to reevaluate
the positions of already inserted DTs. In the PFSP literature several heuristics have
been proposed that extend NEH with reinsertions. We adapt here the FRB3 heuristic
from Rad et al. [2009], which reevaluates and possibly reinserts after each insertion all
already scheduled jobs.

Algorithm 1 shows FRB3 adapted for scheduling DTs on a considered day d. It starts
with an empty sequence π and considers then the DTs assigned to day d in the order of
the largest processing times. We use here the same ordering as Rad et al. [2009] applied
for FRB3 on the PFSP with the Cmax (makespan) objective. Although our objective is
quite different, preliminary experiments have shown that sorting according to the largest
processing times is indeed effective. At Line 4, we test scheduling the current DT before
each already scheduled DT and after the last one. The current DT is then inserted in
the most promising position. In general, inserting a DT at position l < i delays the
starting times of the DTs πl+1, . . . , πi, while the starting times of the DTs π1, . . . , πl−1

remain unchanged. Afterwards, the position of all already scheduled DTs within π are
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Input: A day d
1 π ← ();
2 let (β1, . . . , βn) be the DTs to schedule in decreasing order of pt,u with

βi ∈ {(t, u) | t ∈ T, u ∈ Ut, Zt,u = d} for all i = 1, . . . , n;
3 for i← 1 to n do
4 insert DT βi in π resulting in the smallest objective value and in case of ties

the smallest makespan;
5 for j ← 1 to i do
6 extract and reinsert DT πj at the position that results in the smallest

objective value and in case of ties in the smallest makespan;

7 end

8 end
Algorithm 1: FRB3 for the PTPSP

reevaluated and possibly reinserted to accommodate the newly inserted DT in a better
way.

DTs are inserted at the best position w.r.t. our objective function. However, as func-
tion (1) assumes a complete solution, we evaluate an objective function tailored for the
time assignment part, which is

γext
∑

r∈R
max

(
{St,u + P end

t,u,r −W end
r,d | i ∈ {1, . . . , n}, (t, u) = πi, r ∈ Qt,u, } ∪ {0}

)
+

∑

i∈{1,...,n},
(t,u)=πi, u>2

γintraw · σintraw
t,u . (2)

This function determines for the current sequence π the use of extended service windows
and the excess of the allowed deviation from the nominal starting times. While the
former term is analogous to (1), the latter term requires further considerations. As
mentioned earlier, the nominal starting times are updated after all starting times have
been determined for a considered day. Consequently, for a therapy’s second DT (i.e.,
the first for which the time difference to the nominal starting time is relevant) and every
therapy’s subsequent first DT of a week we have not yet determined the corresponding
nominal starting time. In the case where a DT is a therapy’s second we can set σintraw

t,u

to 0, as the respective nominal starting time can be set to the same value as the starting
time of the current DT without inducing any cost. For a therapy’s first DT within
a week, we suppose that the nominal starting time will not differ more than δinterw

compared with the nominal starting time of the previous week. Hence, we regard in
such cases starting times that differ more as δinterw + δintraw to their respective nominal
starting time of the previous week as excess. For all other cases, σintraw

t,u is computed as
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in the problem definition. To summarize, we calculate σintraw
t,u by

σintraw
t,u =





0 if u = 2

max(|St,u − S̃t,v−1| − δinterw − δintraw, 0) if Zt,u ∈ D′v ∧ Zt,u−1 ∈ D′v−1

max(|St,u − S̃t,v| − δintraw, 0) otherwise.

(3)

In case more than one position evaluate to the same value by (2), we insert the DT
that has the smaller makespan. The rationale behind the latter criterion is that in
particular at the beginning of the algorithm many insertion points allow scheduling
the sequence without use of extended service windows. Preferring a smaller makespan
typically results in a tighter packed schedule and hopefully retains better options for the
still to be inserted DTs.

4.2 Local Search

The design of the neighborhood used within the IG’s local search component depends
on several factors. As real world instances are expected to be quite large, the main
challenge is to find neighborhoods that can be searched rather fast, still allowing to
complete a reasonable number of iterations of the IG, while improving the solution
significantly in most cases. Due to typically small flexibility within the therapy process,
assigning one DT to another day usually entails that also the therapy’s preceding and
succeeding DTs have to be reassigned to new days. Consequently, changing the day
assignment of DTs affects the time assignment of several days, which results in a local
search operator that is computationally too expensive to be applied within an iterated
approach. Therefore, we restrict ourselves to a local search method that focuses on the
time assignment part, i.e., the allocation of the therapies’ DTs on days is assumed to
be fixed. In Maschler et al. [2017] this restriction allowed us to apply the local search
for each day independently. The much smaller neighborhoods have shown to be crucial
to receive adequate computation times for the local search component to be integrated
within the IG. The presence of the therapies’ nominal starting times and the extended
objective function, however, links the starting times of the therapies’ DTs: If we find
a better starting time for a DT on a certain day, then we might also find a better
nominal starting time, which again induces improvements on days that have been at a
local optimum. To obtain a fast local search component we consider first the nominal
starting times as fixed and optimize the DTs’ starting times until a local optimum w.r.t.
a neighborhood for each individual day is reached. Afterwards, we update the nominal
starting times and repeat the first step until no further improvements are achieved. In
the following we explain both components in more detail.

In our scenario the DTs are heterogeneous regarding their time and resource require-
ments. Thus, moving DTs or exchanging the starting times of two DTs in a tightly
scheduled day will lead in most cases to an infeasible solution. However, we can exploit
the fact that each DT requires the beam resource exactly once to define a unique se-
quence of the DTs scheduled on a particular day. A solution is encoded by the sequence
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Input: A day d and a sequence of DTs (π1, . . . , πn)
1 Cr ←W start

r,d ∀r ∈ R, d ∈ Dres
r ;

2 for (t, u)← π1 to πn do
3 St,u ← maxr∈Qt,u(Cr − P start

t,u,r );

4 while ∃r ∈ Qt,u ∃W r,d,w ∈W r,d([St,u + P start
t,u,r , St,u + P end

t,u,r) ∩W r,d,w 6= ∅) do

5 St,u := W
end
r,d,w − P start

t,u,r ;

6 end

7 Cr ← St,u + P end
t,u,r ∀r ∈ Qt,u;

8 end
Algorithm 2: Procedure for determining starting times for a given sequence of DTs.

(π1, . . . , πn) resulting from sorting the DTs assigned to the currently considered day d,
given by the set {(t, u) | t ∈ T, u ∈ Ut, Zt,u = d}, in ascending order of the times from
which on they use the beam resource B, i.e., according to St,u + P start

t,u,B. On the encoded
days we can then define classical neighborhoods for sequencing problems. To evaluate
neighbors we have to decode the corresponding sequences of DTs to obtain actual start-
ing times. Algorithm 2 shows this decoding for a given sequence (π1, . . . , πn) of DTs
and a working day d ∈ D′. The procedure starts by initializing each time marker Cr to
the time the corresponding resource r becomes available. In the main loop each DT is
assigned in the order of the given sequence to the earliest possible start time at which
all resources are available. First, at Line 3 the DT’s start time St,u is set to the earliest
possible time s.t. all required resources are used after their corresponding time marker.
At this time, the considered DT might still overlap with unavailability periods. If this
is the case, the DT is delayed in the inner while loop until all required resources become
available. At Line 7 the time markers Cr are set to the times when the corresponding
resources become free after the just scheduled DT.

To obtain an effective neighborhood we have to take the problem structure into ac-
count. A fundamental property is that all DTs require the beam and one of the room
resources. Moreover, the beam resource is used only during a part of the time the respec-
tive room resources are required. In a tight schedule the beam usually cycles between
the three treatment rooms as in this way the emerging idle time on the beam resource
is minimal and the throughput of the facility is maximized. If we interrupt this inter-
leaved execution of DTs by removing a single DT from the sequence, then in general the
resulting gap on beam resource cannot be fully closed by decoding the remaining DTs.
Consequently, classic insertion moves in which a single DTs is removed and reinserted
in another position of the encoded sequence will rarely improve already tight schedules.
Exchanging the position of two DTs, however, circumvents this situation. Therefore, we
consider a neighborhood structure based on such exchanges.

The DT exchange neighborhood is defined for a day d on a sequence (π1, . . . , πn) of
DTs by considering all pairs of DTs πi and πj , where 1 ≤ i < j ≤ n. A move in this
neighborhood results in a new sequence (π1, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn)
and is accepted if the decoded time assignment has a better objective value. The size of
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the neighborhood is n(n− 1)/2.
The examination of the neighborhood is computationally costly due to the fact that

decoding sequences of DTs as well as evaluating the objective function are both expen-
sive operations. Hence, we exploit several aspects in order to accelerate the search for
improvements. The first speed-up is based on the observation that the starting times
of the DTs (π1, . . . , πi−1) are not affected from the move w.r.t. the original sequence.
Consequently, Algorithm 2 is modified to consider for each move only the DTs following
πi−1. This requires, however, to store all possible states of the time markers Cr for
each position of the original sequence. The next acceleration aborts the decoding of a
neighbor within Algorithm 2 if the considered move yields no improvement with a high
probability. In particular, this is the case if a move worsens the interleaving of the DTs
or forces a DT to be placed after an unavailability period. The resulting delay produces
as a consequence usually an additional use of extended service periods and in general
an increased objective value. Therefore, we prematurely terminate the main loop at
Line 2 after processing DT πj+k if its newly determined starting time is larger than in
the original sequence. To this end, offset k is chosen s.t. the corresponding DT is the
first that requires the same room resources as πi, thus, k ∈ {1, 2, 3}. We use this offset
to assess whether DT πi interleaves well with its successors. As in the FRB3 algorithm
for the initial solution, it suffices also here to consider an objective function tailored to
the considered day. Thus, we evaluate equation (2), where σintraw

t,u can now be calcu-
lated as described in Section 3. Computing equation (2) from scratch can be done in
O(nR + n · nQ + n) time, where nQ is the maximal number of required resources by a
DT. However, if we reuse the time markers Cr from Algorithm 2 the number of required
steps decreases to O(nR + n).

After we reached a local optimum w.r.t. the considered neighborhood on each day, it
might be that better suiting nominal starting times exist. Therefore, we assume now
the set of all starting times S to be fixed and solve the following LP model to obtain
new optimal nominal starting times. In the model, we use S̃t,v variables for the nominal

starting times in S̃ and nonnegative variables σintraw
t,u and σinterw

t,v to state the intra-week
and inter-week objective terms.

min γintraw
∑

t∈T

∑

u∈Ut\{1}
σintraw
t,u +

γinterw
∑

t∈T

∑

v∈V \{1}
σinterw
t,v (4)

|St,u − S̃t,v| − δintraw ≤ σintraw
t,u ∀t ∈ T, ∀u ∈ Ut \ {1}, ∀v ∈ V : Zt,u ∈ D′v (5)

|S̃t,v − S̃t,v−1| − δinterw ≤ σinterw
t,v ∀t ∈ T, ∀v ∈ V \ {1} : ∃u ∈ Ut(Zt,u ∈ D′v) (6)

σintraw
t,u ≥ 0 ∀t ∈ T, ∀u ∈ Ut (7)

σinterw
t,v ≥ 0 ∀t ∈ T, ∀v ∈ V (8)

S̃t,v ∈ R ∀t ∈ T, ∀v ∈ V (9)

The model’s objective function (4) corresponds to the objective function of the overall
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problem (1) restricted to the terms directly affected by the nominal starting times.
Inequalities (5) enforce that the σintraw

t,u variables are set to the excess of the maximum
intended difference of the DTs’ starting times to their respective nominal starting times.
Finally, constraints (6) ensure that the σinterw

t,v variables attain the time difference that
exceed the maximum intended time difference of the nominal starting times between
consecutive weeks.

4.3 Destruction and Construction

In the destruction phase the DTs of randomly selected therapies are removed from the
schedule. In the subsequent construction phase the DTs of the removed therapies are first
assigned to days and afterwards suitable starting times are determined. To this end, we
used in Maschler et al. [2016] the proposed TWCH, which involved the time assignment
part to be applied from scratch, completely ignoring the existing starting times of the
kept DTs. In particular, w.r.t. the local search algorithm from Section 4.2 discarding
the whole time assignment during destruction and construction is disadvantageous since
much previous effort is wasted. Instead, we should try to transfer meaningful starting
times as far as possible. To overcome this drawback we adopt in Maschler et al. [2017] the
NEH insertion heuristic of Nawaz et al. [1983] which preserves the sequence of unchanged
DTs and inserts the removed ones greedily. Here we incorporate the extensions for NEH
presented by Rad et al. [2009].

In principle there are many options for the destruction phase. Since we keep the
assignment of DTs to days fixed within the local search, it is especially important to
allow such modifications during the destruction and construction phase. Due to the
in general tight constraints on the day assignment level it can be expected that the
therapies’ DTs are planned in close succession. Consequently, removing the assignments
of single DTs within a therapy will have in general only limited effect as their assignments
are usually determined by the remaining ones. In contrast, removing all assignments of
some therapy allows much more flexibility like moving the therapy’s start to another
week. A further aspect is the greedy behavior of the TWCH’s day assignment phase
that acts like a first fit heuristic until it detects that another first fit assignment will
induce use of extended service windows. At this point TWCH starts to actively delay
and stretch the day assignments of the whole therapy as long it is beneficial w.r.t.
the objective function. Thus, the destruction of the assignments of entire therapies
allows TWCH revising poor decisions. Although one could think of different goal-driven
selection strategies for therapies to remove, we choose to select random ones, since the
destruction phase is our main source of diversification. To summarize, the deconstruction
phase invalidates the day and time assignments of nig-dest randomly selected therapies.
To increase the robustness of the algorithm we do not keep nig-dest fixed for all iterations,
but sample a new value for nig-dest from a discrete uniform distribution βig-dest at the
beginning of every destruction phase.

The construction phase starts with an application of TWCH’s day assignment on the
destroyed therapies. Afterwards the respective DTs are inserted in a randomized order
into the schedule. In the time assignment phase for the initial solution we use FRB3
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for scheduling the DTs. After each insertion, all already scheduled DTs are reevaluated
and possibly reinserted. In contrast to the initial solution the construction phase is
executed for many times. Hence, the IG’s construction phase is much more time critical
and compared to FRB3 a less exhaustive approach is needed. Rad et al. [2009] proposed
among others the FRB4k algorithm which is conceptually between NEH and FRB3 in
that it reconsiders only the k DTs around each inserted DT. FRB4k is based on the
assumption that reevaluating the immediate neighbors has the largest effect. To be
precise, we receive FRB4k if we modify the inner loop of Algorithm 1 s.t. it reevaluates
the DTs at the positions max(1, l − k) to min(n, l + k), where l is the position of the
previously inserted DT at Line 4. Moreover, unlike Algorithm 1 we start FRB4k within
the construction phase not with an empty sequence π, but with the sequence resulting
from sorting the not removed DTs according to the first time they use the beam resource
(see Section 4.2). The nominal starting times are set as described in Section 4.1, followed
by solving the model (4)–(9) after all starting times have been determined.

5 Computational Study

In this section we perform an experimental evaluation of the proposed enhanced IG
approach, which we call from here on EIG. As reference method we use a variant of the
IG from Maschler et al. [2016], denoted as IG-LI, for the extended problem formulation.
In the experiments we start with IG-LI and replace its components step-by-step with the
ones from EIG. The aim is to investigate on the properties and impacts of the individual
proposed enhancements and to demonstrate that their combination yields indeed an
improved metaheuristic.

The used artificial benchmark instances are related to the expected situation at
MedAustron and are available at http://www.ac.tuwien.ac.at/research/problem-instances.
We consider instances with 50, 70, 100, 150, 200, and 300 therapies. The used naming
schema encodes first the number of therapies followed by a consecutive number. The
length of the planning horizon is derived from the number of therapies considered in the
instance by roughly estimating the number days required to perform all DTs. After-
wards, windows of 14 days are sampled from the planning horizon in which the therapies
have to start. A characteristic of the instances is that there is a ramp-up phase of a few
weeks after which the facility is used at full capacity followed by a wind-down phase near
the end of the planning horizon. Our central resources are the beam and the rooms as
they are required by each DT. They have regular service time windows on each weekday
of 14 hours starting from W̃ start

d followed by extended service time windows of another 10
hours. There are further resources, like the personnel, that are regularly available only
for a part of these 14 hours. All of those further resources are sufficiently dimensioned to
be not the primary source of substantial use of extended service time. At full capacity
the facility is able to perform around 60 DTs on each working day. To keep the instances
with 50 and 70 therapies challenging we halve the working days, i.e., the extended service
time windows starts for the resources at latest 7 hours after W̃ start

d . For more details
on the instance generation see Maschler et al. [2016]. We use here the benchmark in-
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stances generated for Maschler et al. [2017], which we created for two reasons. On the
one hand, Maschler et al. [2016] considered DTs composed of activities associated with
minimum and maximum time lags. However, as already mentioned this feature is not
considered as relevant in our real world midterm planning application. On the other
hand, many of the instances from Maschler et al. [2016] had rather unrealistically strict
constraints concerning the starting days of therapies, which made an extensive use of
extended service time windows unavoidable.

All algorithms have been implemented in C++14 and compiled with G++ 6.3.0,
and all experiments were carried out using a single core of an Intel Xeon E5-2640 v4
CPU with 2.40GHz. The LP models for determining the nominal starting times have
been solved with Gurobi 7.5. We adopt the acceptance criterion and the termination
condition from Maschler et al. [2016]: The incumbent solution is replaced by a current
new solution iff the latter has a smaller objective value, and the total CPU-time is limited
to 20 minutes, respectively. In the objective function we use the weights γext = 1/60,
γfinish = 1/100, γintraw = 1/600, and γinterw = 1/600. The intuition behind these values
is as follows. The time resolution of the instances is in minutes. Weight γext is set
s.t. the use of one hour from an extended service time window corresponds to one unit
in the objective function (1). The weight for the second objective term γfinish reflects
the fact that the completion of a therapy should usually be delayed if performing a
DT entirely within extended time can be avoided. As already mentioned, providing the
therapies’ DTs within the allowed variance is not of medical relevance and is consequently
a subordinate goal. Therefore, we set both γintraw and γinterw to a tenth of γext. A used
hour of extended service windows is defined to be equally bad as to ten hours of excess
from the allowed variance between the starting times of the therapies.

To use IG-LI as reference algorithm we have to provide an extension that determines
in addition the nominal starting times. This can be done by solving the LP model pre-
sented in Section 4.2 for the initial solution provided by TWCH and at the end of each
construction phase. Moreover, like in the local search procedure presented in Section 4.2
we repeatedly apply the local improvement method followed by a recalculation of the
nominal starting times until no improvements can be found. As already stated in Sec-
tion 4.1, it is not straightforward how to extend the time assignment part of TWCH
s.t. it explicitly respects the additional objective terms. However, due to the behavior
of the time assignment to prioritize DTs with certain properties we can observe quite
frequently that DTs belonging to the same therapy are scheduled roughly at the same
time anyway.

To show that the IG approach presented in this work indeed enhances IG-LI we will
gradually exchange components of IG-LI with the ones presented here. In this way we
assess the properties of the individual components and their interplay. We start by
exchanging in IG-LI the local improvement component with the local search procedure
from Section 4.2. We call the resulting algorithm IG-LS. Afterwards we interchange in
addition the destruction and construction phase, which is named IG-DRLS. Finally, we
swap in IG-DRLS the construction heuristic for the initial solution and obtain the final
EIG. Note that we receive all meaningful variants between IG-LI and EIG by exchang-
ing the metaheuristic’s components in this order. Starting with applying the proposed
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local search method instead of the local improvement makes sense since it is performed
last within each iteration. In contrast, starting with replacing the destruction and con-
struction component with the one from Section 4.3 yields a conceptually flawed variant.
While the construction phase aims at keeping relative timing characteristics of not re-
moved DTs, the local improvement operator ignores the time assignment provided by
the construction phase. Hence, either the construction phase or the local improvement
becomes dominant and ignores the influence of the other. Exchanging the construction
heuristic for the initial solution after the construction phase is also reasonable for the
same argument: In an IG variant using the newly assembled construction heuristic com-
bined with the construction phase of IG-LI the first successful iteration would completely
revoke the time assignment for the initial solution.

In a preliminary study we experimented with several neighborhoods in place of the
exchange neighborhood within the EIG. We considered two variants of insertion neigh-
borhoods. The moves of the first consist of removing and reinserting a DT in another
position in the sequence obtained by decoding a considered day. Besides of being larger
than the exchange neighborhood, insertion moves are less likely to improve the solution
due to the interleaving of DTs w.r.t. the used rooms in good solutions. The second consid-
ered insertion neighborhood removes and reinserts DTs but changes only the positions of
the DTs requiring the same room resource. The exchange neighborhood performs better
for two reasons. One the one hand, DTs have in general different timing characteristics
and resource requirements. Thus, keeping the positions of the DTs requiring other room
resources fixed can cause disruptions in the schedule as well. On the other hand, if we
only modify the positions of the DTs requiring the same room, then the starting times
of the affected DTs change typically to larger degree. This may cause frequently an
increase on the objective terms regarding the nominal starting times. Moreover, we also
tried a neighborhood based on inversions of parts of the DT sequence on a considered
day. Clearly, inversions of sequences of two or three subsequent DTs are already covered
by exchanges. Inversion of very long sequences of DTs are very likely to accumulate large
costs from the deviations of nominal starting times. Therefore, we considered inverting
sequences up to a given maximal length. Although being smaller than the exchange
neighborhood and, hence, allowing more iterations of the IG, it turned out that the
overall performance is weaker compared to the presented approach. Most likely many
improving exchanges of more distant DTs w.r.t. the job sequence cannot be replicated
by inversions. Finally, we observed for the presented local search method that a next
improvement strategy converges, in general, significantly faster than a best improvement
strategy, while yielding similarly good solutions.

The preliminary results of this work presented in Maschler et al. [2017] focused on
the first two steps. The experiments indicate that exchanging just the local improve-
ment operator of the IG-LI with the local search component does not yield a substantial
improvement. If, however, both the local search and the new construction phase are
used together then the resulting approach clearly dominates IG-LI. The main reason
for this performance improvement is the interplay between the construction phase and
the local search procedure. On the one hand, the local search operator is, in general,
able to provide better results than IG-LI’s local improvement operator. However, en-
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Table 1: Parameter settings for IG-LI, IG-DRLS, and EIG determined by irace.

instance size IG-LI IG-DRLS EIG

nT βig-dest nrta-noimp krta-rand βig-dest kfrb4 βig-dest kfrb4

50 U{2, 18} 1.881 2 U{2, 2} 67 U{2, 4} 24
70 U{6, 7} 2.300 2 U{2, 3} 46 U{2, 9} 16
100 U{6, 10} 0.513 7 U{3, 3} 2 U{3, 3} 1
150 U{3, 8} 0.660 9 U{2, 2} 12 U{2, 2} 12
200 U{6, 9} 0.598 6 U{2, 3} 17 U{2, 2} 14
300 U{29, 45} 2.420 2 U{2, 5} 25 U{2, 2} 44

coding, decoding, and evaluating the solution is computationally demanding and, hence,
converging to a local optimum is time-consuming, especially on strongly perturbed so-
lutions. On the other hand, the construction phase is designed in such a way that large
parts of the sequence of the DTs are preserved while introducing the removed DTs in a
sensible but randomized way. Starting with a solution close to a local optimum w.r.t. the
DT exchange neighborhood allows to reduce the time spent in the local search procedure
and, consequently, increases the total number of iterations. Although these experiments
have been conducted on the original version of the PTPSP and with a slightly simplified
algorithm, these results can be replicated also for the problem at hand. Therefore, we
consider here only IG-DRLS further.

The metaheuristics’ strategy parameters were tuned using the automatic parameter
configuration tool irace [López-Ibáñez et al., 2016] in version 2.4. In detail, irace was
applied in two rounds for each instance size separately. To this end, we used an in-
dependent set of instances designated for tuning and a computational budget of 2000
experiments for each application of irace. In the first round we used irace with a larger
amount of parameters for determining an effective design of the algorithm. During this
configuration phase we employed FRB4k instead of FRB3 within the construction heuris-
tic for the initial solution. The values obtained for parameter k for the initial solution
corresponded with the number of DTs assigned to a fully utilized day, i.e., k ≈ n, and
thus FRB4k degenerates to FRB3. This suggests that the comprehensiveness and the
implied computational costs of FRB3 are justified and beneficial for the overall approach.
For the local search method we tested randomizing the order in which the local search
examines the neighboring solutions. It turned out that this randomization is favorable
over considering moves in the order of the starting times of respective DTs. From a the-
oretical point of view, the randomization of the order of the considered moves removes
a bias towards exchanges at the beginning of days. Moreover, we raced whether to ac-
tivate the accelerations in the local search that prematurely terminate the evaluation
of a neighbor. While the technique described in Section 4.2 has been activated on all
instance sizes, a complementary method considering increased variations to the nominal
starting times has been rejected. In the second round of the algorithm configuration
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we kept the assessed design choices fixed to focus on the central parameters: βig-dest,
nrta-noimp, krta-rand for IG-LI and βig-dest, kfrb4 for IG-DRLS and EIG. As described in
Section 4.3, βig-dest specifies a discrete uniform distribution U(a, a + b) from which in
each iteration a random number of therapies to destroy is sampled. The parameter con-
figuration determined values for a and b, where a ∈ {1, . . . , 40} and b ∈ {0, . . . , 40}. For
nrta-noimp and krta-rand we used the value ranges [0.5, 2.5] and {1, . . . , 10}, respectively.
We denote with kfrb4 the parameter k of the FRB4k algorithm used in the construction
phase and consider values from {0, . . . , 70}. The resulting parameter configurations are
shown in Table 1.

Table 2 depicts for IG-LI, IG-DRLS, and EIG averages of the final objective values
obj and the corresponding standard deviation σ(obj) over 30 runs for each of the 30
benchmark instances. Moreover, Table 2 gives the probability values obtained by an
application of an one-tailed Wilcoxon rank sum test on the objective values of two
methods at a time. We start by comparing IG-LI with IG-DRLS. The average objective
values of IG-DRLS are on 29 out of 30 benchmark instances smaller than those obtained
by IG-LI. The Wilcoxon rank sum test indicated with a confidence level of 95% that IG-
DRLS yields significantly better solutions than IG-LI on 29 benchmark instances, the
only exception is instance 050-05. In fact, on 21 instances the average objective values are
halved compared with the ones from IG-LI, and on eight instances the average objective
values of IG-DRLS are even 75% smaller compared with those of IG-LI. These results
confirm the outcome of the experiments conducted for the original variant of the PTPSP
in Maschler et al. [2017], which showed the advantage of applying the new construction
and local search components. In fact, the superiority of IG-DRLS over IG-LS is here
even more predominant. This can be explained by the fact that we use here in contrast
to Maschler et al. [2017] FRB4k instead of NEH (i.e., FRB40). Moreover, the new
construction operator as well as the local search operator are able to handle the more
complicated objective much better than their counterparts within IG-LI.

We continue by taking our main approach into consideration. Table 2 clearly shows
that EIG outperforms the two other metaheuristics, and provides the best average ob-
jective values on 26 out of 30 benchmark instances. As before we applied a Wilcoxon
rank sum test on the objective values with a confidence level of 95% for each instance
to compare EIG with IG-LI and EIG with IG-DRLS. The former tests showed that EIG
performs significantly better on all benchmark instances. The latter series of statistical
tests evinced that the EIG outperforms IG-DRLS on 18 benchmark instances signifi-
cantly, while the observed better average objective values of IG-DRLS have been two
times significant. Furthermore, there is clear tendency that EIG significantly performs
better than IG-DRLS on larger benchmark instances. This indicates that exchanging
the construction heuristic for the initial solution with the one described in Section 4.1
becomes of greater importance with the increasing size of the instances. The reason for
this is that with larger instance sizes also the computational cost for each iteration of
the IG increases and, consequently, the number of executed iterations decreases. Hence,
quality of the initial solution becomes with larger instance sizes more and more impor-
tant. This argument is further supported by the fact that the construction heuristic
presented here requires substantially more of the total time budget of 20 CPU minutes
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Table 2: Comparison of IG-LI, IG-DRLS, and EIG. We consider for each instance and

every approach average objective values obj of 30 runs and corresponding stan-
dard deviations σ(obj). Moreover, the p-values originating from an application
of the Wilcoxon rank sum test on pairs of algorithms are given. To this end,
we denote with pA≤B the p-values under the null hypothesis that approach A
performs better than or equal to method B. We mark for each instance the
best average objective value and p-values smaller than 0.05.

Instance IG-LI (1) IG-DRLS (2) EIG (3) Wilcoxon rank sum test

obj σ(obj) obj σ(obj) obj σ(obj) p1≤2 p1≤3 p2≤3

050-01 8.570 1.323 2.784 0.562 2.608 0.215 0.000 0.000 0.027
050-02 52.830 2.228 40.005 3.006 39.812 2.398 0.000 0.000 0.339
050-03 47.600 2.022 37.281 3.821 37.660 3.252 0.000 0.000 0.733
050-04 29.561 1.564 26.419 3.743 25.795 3.152 0.000 0.000 0.261
050-05 53.363 1.996 54.089 2.761 49.848 2.725 0.893 0.000 0.000
070-01 28.600 2.826 13.242 1.742 14.015 1.787 0.000 0.000 0.945
070-02 48.346 2.861 44.871 5.588 41.540 4.556 0.003 0.000 0.007
070-03 74.141 3.957 70.376 4.897 70.227 5.833 0.000 0.001 0.524
070-04 13.826 1.794 7.710 1.907 7.313 1.556 0.000 0.000 0.282
070-05 56.838 4.016 49.328 4.593 49.316 3.518 0.000 0.000 0.371
100-01 81.405 5.025 18.383 2.296 17.840 2.524 0.000 0.000 0.075
100-02 108.194 5.006 24.366 2.041 23.552 2.179 0.000 0.000 0.099
100-03 53.978 3.251 15.564 1.592 15.306 1.457 0.000 0.000 0.275
100-04 88.931 5.892 19.703 1.478 20.865 1.694 0.000 0.000 0.992
100-05 77.063 3.895 14.762 1.256 16.089 1.235 0.000 0.000 1.000
150-01 128.564 7.308 40.590 5.421 35.605 5.399 0.000 0.000 0.001
150-02 273.450 10.896 80.328 4.877 72.008 5.785 0.000 0.000 0.000
150-03 127.236 5.736 72.212 6.622 62.368 5.999 0.000 0.000 0.000
150-04 116.294 5.290 32.255 2.126 27.787 1.744 0.000 0.000 0.000
150-05 96.049 6.785 22.889 2.019 20.093 1.619 0.000 0.000 0.000
200-01 194.440 9.204 76.943 5.658 61.244 5.783 0.000 0.000 0.000
200-02 223.821 7.241 88.747 5.988 78.073 6.780 0.000 0.000 0.000
200-03 165.977 8.092 57.843 4.214 49.197 3.277 0.000 0.000 0.000
200-04 212.980 9.355 63.085 7.408 51.859 6.435 0.000 0.000 0.000
200-05 188.749 7.701 44.143 3.253 33.294 2.572 0.000 0.000 0.000
300-01 239.586 5.072 52.349 4.503 35.082 3.149 0.000 0.000 0.000
300-02 344.637 9.689 133.092 7.858 128.118 10.560 0.000 0.000 0.028
300-03 249.621 10.444 64.612 5.839 48.084 3.599 0.000 0.000 0.000
300-04 370.461 9.514 162.315 8.896 115.586 8.354 0.000 0.000 0.000
300-05 251.234 7.381 48.194 2.936 35.885 2.312 0.000 0.000 0.000
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Table 3: The breakdown of the average objective values of 30 runs for IG-LI, IG-DRLS,
and EIG presented in Table 2 into the first two and the last two terms of our
objective function (1) denoted as ext+fin and iaw+iew, respectively.

Instance IG-LI IG-DRLS EIG

ext+fin iaw+iew ext+fin iaw+iew ext+fin iaw+iew

050-01 2.834 5.735 2.770 0.014 2.602 0.006
050-02 37.729 15.100 37.613 2.392 36.908 2.903
050-03 33.642 13.958 34.373 2.908 34.533 3.127
050-04 20.834 8.726 24.393 2.026 23.694 2.100
050-05 40.899 12.464 50.447 3.642 46.279 3.569
070-01 16.812 11.788 12.934 0.308 13.615 0.400
070-02 32.592 15.754 42.868 2.003 38.572 2.968
070-03 55.566 18.574 67.096 3.280 65.863 4.364
070-04 6.325 7.501 7.461 0.249 6.769 0.544
070-05 41.663 15.175 47.482 1.846 46.451 2.866
100-01 23.018 58.387 13.869 4.514 13.422 4.418
100-02 31.548 76.646 17.166 7.199 16.142 7.410
100-03 10.263 43.715 10.894 4.670 10.413 4.893
100-04 26.416 62.514 13.340 6.364 14.018 6.847
100-05 24.704 52.359 9.398 5.364 11.085 5.004
150-01 34.650 93.914 28.387 12.203 26.102 9.504
150-02 134.003 139.447 59.588 20.740 52.431 19.577
150-03 51.618 75.619 59.815 12.396 48.742 13.626
150-04 24.568 91.727 20.950 11.305 17.758 10.028
150-05 24.652 71.396 14.471 8.417 13.901 6.192
200-01 66.198 128.243 52.634 24.309 39.416 21.828
200-02 86.416 137.405 67.024 21.723 56.513 21.561
200-03 36.428 129.549 35.604 22.239 29.719 19.478
200-04 67.216 145.764 45.907 17.178 34.686 17.174
200-05 46.356 142.393 28.765 15.378 20.421 12.873
300-01 34.580 205.006 29.479 22.870 20.496 14.586
300-02 131.749 212.888 96.046 37.046 90.977 37.141
300-03 42.013 207.609 39.849 24.764 30.603 17.481
300-04 120.678 249.783 115.095 47.220 76.253 39.334
300-05 32.446 218.789 24.558 23.636 21.373 14.512
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than the application of TWCH: The average computation time for the construction
heuristic based on FRB3 is on the largest instances 29.8 seconds, while the computation
of the initial solution for IG-LI and IG-DRLS takes on average only 0.25 seconds. On
this account it becomes more evident that the combination of TWCH with FRB3 is
indeed advantageous and that the large processing time is well spent.

Table 3 gives a more detailed breakdown of the average objective values presented in
Table 2. To this end, we denote with ext+fin the part of the average objective values
originating from the use of extended service time windows and from the delayed com-
pletion of therapies. The sum of these two objective terms correspond to the objective
function used in the original variant of the PTPSP. Moreover, iaw+iew stands for the
part of the average objective values that arise from the intra-week and inter-week objec-
tive terms. For a well-performing method it is clearly not sufficient to focus on only one
part of the objective function while neglecting the other aspects of the problem. This
is especially visible for the smaller benchmark instances. On the instances with 50 and
70 therapies IG-LI frequently provides solutions with the smallest costs w.r.t. the first
two terms of objective function (1). This comes, however, with a much higher cost on
the intra-week and inter-week objective terms compared with the other two approaches.
Furthermore, IG-DRLS is on several occasions able to provide solutions with less excess
on the allowed variations of the DTs’ starting times. Nevertheless, EIG outperforms
the other two approaches on almost all cases due to the better balance between the
objective parts. On the larger benchmark instances the superiority of EIG over IG-LI
and IG-DRLS becomes more evident. For most benchmark instances with more than
100 therapies the EIG metaheuristic is able to provide the best results on both parts of
the objective function.

6 Conclusions

In this paper, we presented an extended version of the PTPSP in which the starting
time variations of DTs belonging to the same therapy should not exceed specified thresh-
olds. To this end we introduced nominal starting times that serve as reference point for
computing the variation within and between weeks. From a practical viewpoint this
extension increases the difficulty of the problem substantially since on the one hand the
calculation of the nominal starting times requires the DTs’ starting times while on the
other hand finding good starting times involves knowing the nominal starting times.
Moreover, minimizing the variation of starting times is frequently contrary to our main
objective which is to minimize the use of extended service time windows. Consequently,
also the design of an effective metaheuristic is more involved as it requires to balance
the different aspects of the objective function.

To tackle the problem at hand we provide an IG metaheuristic for the PTPSP that
enhances the IG from our previous work [Maschler et al., 2016]. The approach features
a construction heuristic that combines parts of the TWCHs from Maschler et al. [2016]
and the FRB heuristics from Rad et al. [2009]. Moreover, a local search technique is
applied that alternately examines an exchange neighborhood to improve the DTs starting
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times and solves an LP model that computes nominal starting times. In contrast to our
previous IG, the presented approach is able to preserve the order of the not removed
DTs on the individual days. The resulting advantage is that far more information from
the incumbent solution is retrieved.

To evaluate the performance of the proposed IG we started by extending the IG
from our previous work to cover the new PTPSP variant. Afterwards, we replaced
components of this reference algorithm step-by-step with the newly described ones to
assess their properties. The enhancements are twofold. Firstly, the interplay between
its construction phase and the applied local search method: The local search procedure
yields, in general, better results than applying TWCH’s randomized time assignment
iterated for many times. However, due to the required encoding and decoding steps,
evaluating neighbors is time consuming. Hence, to ensure that the metaheuristic is able
to perform sufficiently many iterations it is required that the neighborhood requires on
average only a few steps until it reaches a local optimum. To this end, we apply in
the construction phase an insertion heuristic based on FRB4k that iteratively places
the removed DTs into the permutation resulting from sorting the DTs according to the
times at which they use the beam. Secondly, although being computationally expensive,
the newly presented construction heuristic for the initial solution based on TWCH and
FRB3 gives the IG a superior starting point. The resulting approach outperforms our
reference method on all benchmark instances significantly.

A remaining challenge is to determine suitable parameter configurations for real world
instances. Although the considered benchmark instances aim at modeling the expected
situation at MedAustron, they contain assumptions and simplifications which might
differ in the future practice. The main characteristic of the used benchmark instances
is the number of therapies which have to be scheduled. Our experiments showed that
the values of some parameters are highly dependent on the instance size. For real world
instances it is likely that also other aspects which have to be considered for obtaining
good parameter configurations. Hence, a next step to improve the applicability of the
presented approach is to define a parameter model which determines values for the IG’s
strategy parameters on the basis of the observed instance characteristics.

PTPSP, as defined here, still simplifies the midterm planning part arising in practice.
In particular, therapies are restricted here to consist only of DTs. In the general case,
however, there is a treatment planning phase preceding all DTs in which the DTs are
prepared. Since other constraints have to be enforced for these tasks, they cannot be
modeled as DTs. There are further activities (e.g., control examinations) complementing
the core therapies that have to be provided once a week before or after one of the DTs.
However, from a practical viewpoint these additional activities should never influence
the throughput of the facility and can be sufficiently well handled in a post-processing
step.

We use in this work an acceptance criterion that accepts a current solution if it has a
better objective value. An obvious next step is to also consider acceptance criteria that
allow selecting suboptimal solutions, e.g., in a simulated annealing like fashion [see Ruiz
and Stützle, 2007]. Moreover, the proposed local search procedure exchanges the DTs
only within days. Neighborhoods that can alter the days on which a therapy is applied
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seem promising. The main challenge here is to design and restrict the neighborhoods s.t.
the resulting local search method is still fast enough to allow a sufficiently large number
of IG iterations. We formulated PTPSPs as a single-objective optimization problem by
using a linear combination of the objective goals. A further natural next step would be
to consider PTPSP as a multi-objective optimization problem.
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