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Abstract. Quantified Boolean Formulas (QBFs) offer compact encod-
ings of problems arising in areas such as verification and synthesis. These
applications require that QBF solvers not only decide whether an input
formula is true or false but also output a witnessing certificate, i.e. a rep-
resentation of the winning strategy. State-of-the-art QBF solvers based
on Quantified Conflict-Driven Constraint Learning (QCDCL) can emit
Q-resolution proofs, from which in turn such certificates can be extracted.
The correctness of a certificate generated in this way is validated by sub-
stituting it into the matrix of the input QBF and using a SAT solver to
check that the resulting propositional formula (the validation formula)
is unsatisfiable. This final check is often the most time-consuming part
of the entire certification workflow. We propose a new validation method
that does not require a SAT call and provably runs in polynomial time.
It uses the Q-resolution proof from which the given certificate was ex-
tracted to directly generate a (propositional) proof of the validation for-
mula in the RUP format, which can be verified by a proof checker such
as DRAT-trim. Experiments with a prototype implementation show a
robust, albeit modest, increase in the number of successfully validated
certificates compared to validation with a SAT solver.

1 Introduction

Quantified Boolean Formulas (QBFs) offer succinct encodings for problems from
domains such as formal verification, synthesis, and planning [3, 5, 7, 15, 21, 22].
Even though SAT-based approaches to these problems are generally still supe-
rior, the evolution of QBF solvers in recent years is starting to tip the scales in
their favor [9]. In most of these applications, it is required that QBF solvers not
only output a simple true/false answer but also produce a strategy, or certificate,
that shows how this answer can be realized. For example, a certificate might en-
code a counterexample to the soundness of a software system, or a synthesized
program.

Most state-of-the-art QBF solvers have the ability to generate such certifi-
cates, and some recently developed solvers have been explicitly designed with
certification in mind [19, 20, 23]. Search-based solvers implementing Quantified
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Conflict-Driven Constraint Learning (QCDCL) [6, 26] can output Q-resolution
proofs [4, 17, 18], from which in turn certificates can be extracted in linear
time [1, 2].

QCDCL 
Solver

Certificate 
Extraction Substitution SAT SolverInput 

Formula
Q-resolution 

Proof Certificate Validation 
Formula

QRP2RUP Proof 
Checker

RAT/RUP 
Proof

Certificate Substitution Validation 
Formula

New Workflow

QCDCL 
Solver

Input 
Formula

Q-resolution 
Proof

Fig. 1. Certificate extraction and validation for QCDCL solvers.

Since QBF solvers and (to a lesser degree) certificate extraction tools are
complex pieces of software that may contain bugs, certificates obtained in this
way ought to be independently validated. This can be achieved by substituting
the certificate back into the matrix of the input QBF and using a SAT solver
to check that the resulting propositional formula (which we call the validation
formula) is unsatisfiable [17]. This certification workflow is illustrated in the
top half of Figure 1. Once a certificate is validated, we can essentially trust
its correctness as much as we trust in the correctness of the SAT solver used
for validation.1 However, since certificates tend to be large, the corresponding
SAT call frequently amounts to the most time-consuming step in the entire
certification workflow and even causes timeouts [17].

In this paper, we propose an alternative validation method for QCDCL that
avoids this SAT call. Instead, it uses the Q-resolution proof from which the
given certificate was extracted to generate a proof of the validation formula in
the RUP format [12], whose correctness can then be verified by a propositional
proof checker such as DRAT-trim [25]. This workflow is sketched in the lower half
of Figure 1. Since this RUP proof can be computed from the Q-resolution proof
in linear time and checked in polynomial time, we obtain a validation procedure
that provably runs in polynomial time.

We implemented this new validation method in a tool named QRP2RUP
and tested it on benchmark instances from several recent QBF evaluations. Our
experiments show a robust, albeit modest, increase in the number of successfully
validated certificates compared to validation with a SAT solver.

1 We still have to make sure that the validation formula is constructed correctly so
that it is not trivially unsatisfiable. We discuss this issue in Section 8.
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2 Preliminaries

A literal is a negated or unnegated variable. If x is a variable, we write x = ¬x
and ¬x = x, and let var(x) = var(¬x) = x. If X is a set of literals, we write X
for the set {x : x ∈ X } and let var(X) = { var(`) : ` ∈ X }. An assignment to
a set X of variables is a mapping τ : X → {true, false}. An assignment σ is an
extension of the assignment τ if σ assigns all variables that τ does, and to the
same polarity. We extend assignments τ : X → {true, false} to literals by letting
τ(¬x) = ¬τ(x) for x ∈ X.

We consider Boolean circuits over {¬, ∧, ∨, false, true} and write var(ϕ) for
the set of variables occurring in a circuit ϕ. If ϕ is a circuit and τ an assignment,
ϕ[τ ] denotes the circuit obtained by replacing each variable x ∈ X ∩ var(ϕ) by
τ(x) and propagating constants. A circuit ϕ is satisfiable if there is an assign-
ment τ such that ϕ[τ ] = true, otherwise it is unsatisfiable.

A clause (term) is a circuit consisting of a disjunction (conjunction) of liter-
als. We write ⊥ for the empty clause and > for the empty term. We call a clause
tautological (and a term contradictory) if it contains the same variable negated
as well as unnegated. A CNF formula (DNF formula) is a circuit consisting of a
conjunction (disjunction) of non-tautological clauses (non-contradictory terms).
Whenever convenient, we treat clauses and terms as sets of literals, and CNF
and DNF formulas as sets of sets of literals. Throughout the paper, we make
use of the fact that any circuit can be transformed into an equisatisfiable CNF
formula of size linear in the size of the circuit [24].

A unit clause is a clause containing a single literal. A CNF formula ψ is
derived from a CNF formula ϕ by the unit clause rule if (`) is a unit clause of ϕ
and ψ = ϕ[{` 7→ true}]. Unit propagation in a CNF formula consists in repeated
applictions of the unit clause rule. Unit propagation is said to derive the literal `
in a CNF formula ϕ if a CNF formula ψ with (`) ∈ ψ can be derived from ϕ by
unit propagation. We say that unit propagation causes a conflict if false can be
derived by unit propagation. If unit propagation does not cause a conflict the set
of literals that can be derived by unit propagation induces an assignment. The
closure of an assignment τ with respect to unit propagation (in ϕ) is τ combined
with the set of literals derivable by unit propagation in ϕ[τ ].

A clause C has the reverse unit propagation (RUP) property with respect to
a CNF formula ϕ if unit propagation in ϕ[{ ` 7→ false : ` ∈ C }] causes a conflict.
A RUP proof of unsatisfiability of a CNF formula ϕ is a sequence C1, . . . , Cm
of clauses such that Cm = ⊥ and each clause Ci has the RUP property with
respect to ϕ ∪ {C1, . . . , Ci−1}, for 1 ≤ i ≤ m.

A (prenex) Quantified Boolean Formula Φ = Q.ϕ consists of a quantifier
prefix Q and a circuit ϕ, called the matrix of Φ. A quantifier prefix is a sequence
Q = Q1x1 . . . Qnxn, where the xi are pairwise distinct variables and Qi ∈ {∀,∃}
for 1 ≤ i ≤ n. Relative to Φ, variable xi and its associated literals are called
existential (universal) if Qi = ∃ (Qi = ∀). We write E(Φ) and U(Φ) for the sets
of existential and universal variables of Φ, respectively. We assume that the set of
variables occurring in ϕ is precisely {x1, . . . , xn} (in particular, we only consider
closed QBFs) and let var(Φ) = {x1, . . . , xn}. We define a total order <Φ on the
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variables of Φ as xi <Φ xj ⇔ i < j and let DΦ(v) = {w ∈ var(Φ) : w <Φ v } for
v ∈ var(Φ). We drop the subscript from <Φ and DΦ whenever Φ is understood.

A model circuit of Φ for a variable v ∈ var(Φ) is a circuit fv with var(fv) ⊆
D(v). A model of Φ is an indexed family {fe}e∈E(Φ) of model circuits such that
ϕ[τ ] = true for every assignment τ : var(Φ)→ {true, false} that satisfies fe[τ ] =
τ(e) for e ∈ E(Φ). A countermodel of Φ is an indexed family {fu}u∈U(Φ) of model
circuits such that ϕ[τ ] = false for every assignment τ : var(Φ) → {true, false}
that satisfies fu[τ ] = τ(u) for u ∈ U(Φ). A QBF is true if it has a model, and
false if it has a countermodel.

A QBF is a PCNF (PDNF) formula if its matrix is a CNF (DNF) formula.
Q-resolution [14] and long-distance Q-resolution [1,27] are proof systems for false
PCNF formulas. Let Φ = Q.ϕ be a PCNF formula. A Q-resolution refutation
of Φ is a sequence P = C1, . . . , Cm of non-tautological clauses where Cm = ⊥
and each clause Ci is obtained in one of the following ways:

– Ci ∈ ϕ is an input clause.
– Ci = (Cj \ {p}) ∪ (Ck \ {¬p}) is the resolvent of clauses Cj and Ck on pivot

variable p ∈ E(Φ), where 1 ≤ j, k < i and p ∈ Cj , ¬p ∈ Ck.
– Ci = Cj \L is obtained from Cj with 1 ≤ j < i by universal reduction. This

requires that every literal ` ∈ L is universal and that there is no existential
variable e ∈ var(Ci) such that var(`) < e.

The size of P is defined as |P| := ∑m
i=1 |Ci|.

Long-distance Q-resolution [1] is a generalization of Q-resolution that permits
the derivation of tautological clauses by modifying the resolution rule in the
following way: if ` ∈ Cj , ` ∈ Ck, and var(`) 6= p, then ` must be universal and
p < var(`). In this case we say that the literals ` and ` are merged, and refer to
the pair `, ` as a merged literal of Ci.

Dual proof systems for true PDNF formulas operating on terms are known
as Q-consensus and long-distance Q-consensus. The dual of universal reduction
in these proof systems is called existential reduction.

3 Validation of Certificates

In this section, we will describe the setting of the problem of QBF certificate
validation. Then, in Sections 4 and 5, we present an algorithm that computes
a RUP proof that can be used to replace the final call to the SAT solver by
a simple proof check. For the sake of simplicity, we will only focus on false
PCNF formulas. The results generalize to true formulas by duality, which will
be discussed in Section 6.

Let ϕ be a CNF formula, let C be a boolean circuit. The substitution of
C into ϕ, denoted by ϕ[C], is simply the CNF formula ϕ in conjunction with
a CNF encoding of C (which may contain additional auxiliary variables). Let
Φ = Q.ϕ be a false QBF in PCNF, let C be a boolean circuit whose inputs
are existential variables of Φ and whose outputs are universal variables of Φ.
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The task of verifying that C is a countermodel of Φ is to verify that ϕ[C] is
unsatisfiable.

Some QCDCL QBF solvers are capable of outputting a trace that contains
a (long-distance) Q-resolution refutation of the formula solved. From this refu-
tation, a countermodel circuit can be computed by the Balabanov-Jiang (BJ)
algorithm [1], or by the extended Balabanov-Jiang-Janota-Widl (BJJW) algo-
rithm [2] for long-distance Q-resolution. Let Φ = Q.ϕ be a QBF, let P be a
(long-distance) Q-resolution refutation of it, let CC(P) be the countermodel cir-
cuit computed by the appropriate version of BJ/BJJW. The CNF formula that
results from substitution of CC(P) into ϕ as described in the previous paragraph,
i.e., ϕ[CC(P)], is denoted by Φ[P], and is called the validation formula for the
QBF Φ and the proof P. This is the formula that must be checked for unsatis-
fiability in order to verify the correctness of the certificate CC(P). We will now
present a way how to directly compute a RUP proof for the validation formula
out of the proof P, thus obviating the need to use a SAT solver and making
validation checks solvable in polynomial time.

4 RUP Proofs from Ordinary Q-Resolution

We will begin by describing a countermodel, and in particular its CNF version
obtained by the Tseitin conversion, computed by BJ. For a full explanation of
the algorithm we refer to the original paper [1]. We illustrate the certificate
extraction process on this example formula

∃x1, x2 ∀y ∃z (x1 ∨ x2 ∨ y ∨ z) ∧ (x1 ∨ x2 ∨ z) ∧ (x1 ∨ x2)

∧ (x1 ∨ x2 ∨ y ∨ z) ∧ (x1 ∨ x2 ∨ z) ∧ (x1 ∨ x2)

along with its Q-resolution refutation:

(1) x1 ∨ x2 ∨ y ∨ z (input)

(2) x1 ∨ x2 ∨ y ∨ z (input)

(3) x1 ∨ x2 ∨ z (input)

(4) x1 ∨ x2 ∨ z (input)

(5) x1 ∨ x2 (input)

(6) x1 ∨ x2 (input)

(7) x1 ∨ x2 ∨ y (1, 3)

(8) x1 ∨ x2 (7)

(9) x1 ∨ x2 ∨ y (2, 4)

(10) x1 ∨ x2 (9)

(11) x1 (5, 8)

(12) x1 (6, 10)

(13) ⊥ (11, 12)

Let P be a Q-resolution refutation of a formula Φ = Q.ϕ. BJ processes the clauses
of P forward, and everytime a conclusion R of a reduction step R = R′ − L
(read the set of literals L is reduced from the clause R′ to obtain the clause R)
is encountered, for every literal ` from L either the clause R (if ` is positive) or
the term R (if ` is negative) is pushed to what is called the countermodel array
of var(`) (cf. [1]). At the end, the arrays represent the countermodel functions
for their respective variables, in the following way:
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Let u be a universal variable, and let its countermodel array have the entries
X1, . . . , Xn. This array is interpreted by constructing a set of partial circuits.
Let fun = Xn. Then we define

fuk =

{
Xk ∧ fuk+1 if Xk is a clause,

Xk ∨ fuk+1 if Xk is a term,

and finally fu = fu1 . The circuit fu represents the countermodel function for the
variable u. Intuitively, these circuits find the first reduction step whose conclusion
is falsified, and set all of the reduced literals in the premise so that they are
falsified too, which ensures that the falsified clause is implied by the conjunction
of input clauses and hence at least one of those is falsified too.

Fig. 2. Schematic depiction of a countermodel circuit extracted by BJ. Each fi is either
an “and” or an “or” gate, depending on the context.

Let us see what this means on the example formula and proof. There is only
one universal variable, so we will only build one countermodel array. Processing
the clauses forward, the first conclusion of a reduction step that we encounter
is (8), y is reduced in positive polarity, so we push the clause (x1 ∨ x2) to the
countermodel array. Next, we encounter the conclusion (10), here y is reduced in
negative polarity, so we push the negation of the conclusion (x1 ∨ x2), the term
(x1∧x2). There are no more reduction steps, so the final countermodel array for
y is [(x1 ∨ x2), (x1 ∧ x2)]. According to the interpretation above, this results in
the circuit y = ((x1 ∨ x2) ∧ (x1 ∧ x2)) = (x1 ∧ x2). It can be easily verified that
this is indeed a countermodel for the formula.

Let us now examine how the circuit fu can be translated into CNF for
substitution into Φ. We can observe that the circuit fu has a nested structure,
in which first the values of all of the Xk are evaluated, which are then further
processed by the circuit to obtain the value for u. Every Xk is either a clause or
a term corresponding to a conclusion of a reduction step in P. Let R1, . . . , RN
be all conclusions of reduction steps in P, in the same order as they appear in
the proof. Then for every Xk there is ik such that Xk = Rik or Xk = Rik . Let
us define variables gi = Ri for 1 ≤ i ≤ N using the set of clauses

G =
{
{(gi ∨Ri)} ∪ {(gi ∨ `) | ` ∈ Ri} | 1 ≤ i ≤ N

}
.

Rather than encoding each countermodel circuit using its Xk members, we will
leverage the fact that Xk is either equivalent to gik or to gik and replace it by
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the suitable polarity. This way, the recursive definitions of fuk boil down to

fun =

{
gin if Xn is a clause,

gin if Xn is a term,

and for 1 ≤ k < n

fuk =

{
gik ∧ fuk+1 if Xk is a clause,

gik ∨ fuk+1 if Xk is a term.

At this point, since the countermodel arrays are populated in the order of the
proof, we can observe the following:

Observation 1 Whenever gik and gik′ appear in the same circuit and k < k′,
i.e., gik comes before gik′ in the corresponding countermodel array, then also
ik < ik′ , i.e., the reduction step corresponding to gik also comes before the one
corresponding to gik′ .

Using the simplified circuits with the variables gi, we can finally produce an
encoding into CNF. By using the Tseitin conversion, we get the clauses

Fun =

{
(fun ∨ gin) ∧ (fun ∨ gin) if Xn is a clause,

(fun ∨ gin)︸ ︷︷ ︸
Fu

n,1

∧ (fun ∨ gin)︸ ︷︷ ︸
Fu

n,2

if Xn is a term,

and for 1 ≤ k < n

Fuk =

{
(fuk ∨ gik ∨ fuk+1) ∧ (fuk ∨ gik) ∧ (fuk ∨ fuk+1) if Xk is a clause,

(fuk ∨ gik ∨ fuk+1)︸ ︷︷ ︸
Fu

k,1

∧ (fuk ∨ gik)︸ ︷︷ ︸
Fu

k,2

∧ (fuk ∨ fuk+1)
︸ ︷︷ ︸

Fu
k,3

if Xk is a term.

In our running example, we have two reduction steps, there are therefore two
definitions of g-variables, namely g1 = (x1∨x2) and g2 = (x1∨x2). If we replace
the actual entries in the countermodel array by the g-variables, we get the array
[g1, g2] and the corresponding circuit y = g1 ∧ g2. Its CNF encoding is

(y ∨ g1 ∨ g2) ∧ (y ∨ g1) ∧ (y ∨ g2).

Starting from a formula Φ = Q.ϕ and its Q-resolution refutation P, G will
denote the set of clauses defining the gi and F will denote the set of clauses Fuk
(for all universals u and appropriate k) defining the countermodel. The validation
formula Φ[P] is then ϕ ∧G ∧ F and we will now present a RUP proof for it.

We will need the following notation. Let x, y be variables of a propositional
formula ϕ, let τ be an assignment to variables of ϕ. We write x ∼=ϕ

τ y if, for
every extension σ of τ that defines x or y, either unit propagation in ϕ[σ] causes
a conflict or σ′(x) = σ′(y), where σ′ is the closure of σ with respect to unit
propagation. If ϕ is understood from the context, we may drop the superscript,
likewise, if τ is the empty assignment, we may drop the subscript.
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Lemma 1. Let u be a universal variable of Φ whose countermodel array has n
entries and the corresponding g-variables are gi1 , . . . , gin . For 1 ≤ k ≤ n let τk
be a partial assignment (to variables of Φ[P]) which sets gi1 , . . . , gik−1

to true.
Then fu ∼=τk f

u
k .

Proof. We can see that the clauses Fuj,2[τk] are satisfied by gik and gik disappears
from Fuj,1[τk] for 1 ≤ j < k. The clauses Fuj,1[τk] and Fuj,3[τk] we are left with
encode precisely fuj

∼= fuj+1. Together, we have that under the assignment τk,
fu = fu1

∼= fuk , or in other words fu ∼=τk f
u
k . ut

The following lemma asserts that the intuition about how countermodel circuits
find the first falsified conclusion and set the variable accordingly is indeed true.

Lemma 2. For 1 ≤ i ≤ N let τi be a partial assignment (to variables of Φ[P])
which sets g1, . . . , gi−1 to true and gi to false. Let ` be a universal literal that
is reduced in the reduction step leading to Ri. Under the assignment τi unit
propagation (in Φ[P]) causes a conflict or derives `.

Proof. Let us assume unit propagation does not cause a conflict. Let u = var(`),
gi occurs in the countermodel array of u as some gik . If ` is positive, Fuk,2 together

with gik propagate fuk . If ` is negative, Fuk,2 together with gik propagate fuk . We
can use Observation 1 to see that all gik′ with k′ < k are set to true and Lemma 1
applies, so that fu ∼= fuk and the value for u propagated is false if ` is negative
and true if ` is positive. Either way, this means that ` is propagated. ut
With Lemma 2, we can describe how to construct a RUP proof for Φ[P] from P.

Theorem 1. Let P be a Q-resolution refutation of the formula Φ = Q.ϕ. Then
there exists a RUP proof of unsatisfiability of the validation formula Φ[P] of size
O(|P|), and this proof can be computed in O(|P|) time.

Proof. Let P ′ be P with each conclusion Ri replaced by the unit clause (gi), and
with the input clauses omitted. We claim that P ′ is a RUP proof of unsatisfia-
bility of Φ[P]. Since resolvents are always RUP with respect to their premises we
only need to verify that all (gi) are RUP too. Let Ri = R′i−L be a reduction step,
let ` ∈ L be one of the universal literals reduced to obtain Ri, let u = var(l).
We need to prove that setting (gi) to false causes a conflict by unit propagation.
At the time when (gi) is inserted into the proof, all (gj) with j < i have already
been inserted and since they are unit clauses, all gj with j < i are set to true by
unit propagation. Adding to that the assignment gi, the conditions of Lemma 2
are satisfied and so either unit propagation causes a conflict (in which case we
are done), or ` is propagated. Since ` was chosen without loss of generality, all
literals in L are propagated to false, and since gi trivially propagates all literals
of Ri to false, R′i is falsified and a conflict is reached as required. Clearly, the
size of P ′ is bounded by the size of P, and it can be computed in time O(|P|)
as the amount of work per each clause of P is proportional to its size. ut
For example, the RUP proof constructed according to Theorem 1 from the ex-
ample Q-resolution proof would consist in the following sequence of clauses:

(x1 ∨ x2 ∨ y), (g1), (x1 ∨ x2 ∨ y), (g2), (x1), (x1), ⊥
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5 RUP Proofs from Long-Distance Q-Resolution

With long-distance Q-resolution, we cannot directly use the clauses of the refuta-
tion in the RUP proof as we did in the proof of Theorem 1, because these clauses
may be tautological. Instead, we adopt the approach that was used in the paper
of Balabanov et al. [2] in order to generalize BJ to long-distance Q-resolution
proofs. The following definition is taken from the paper of Balabanov et al. [2],
with a slight change of notation.

Definition 1. Let P be a long-distance Q-resolution refutation of the QBF Φ =
Q.ϕ. Let C ∈ P be a clause, ` ∈ C a literal and u = var(`). The phase function
of the variable u in the clause C, denoted by uφ(C), is a boolean function defined
recursively as follows:

– if C is an input clause, then uφ(C) = 1 if ` = u, otherwise uφ(C) = 0
– if C is the result of application of universal reduction on the clause C ′,
uφ(C) = uφ(C ′)

– if C is the resolvent of C1 and C2 on the pivot literal p, p ∈ C1, p ∈ C2, then
if u 6∈ var(C1), then uφ(C) = uφ(C2), if u 6∈ var(C2) or uφ(C1) = uφ(C2),
then uφ(C) = uφ(C1), otherwise uφ(C) = (p ∧ uφ(C2)) ∨ (p ∧ uφ(C1))

The effective literal of ` in C, denoted by `ε(C), is a literal that satisfies `ε(C)⇔
(u⇔ uφ(C)). The shadow clause of C is the clause Cσ =

∨
`∈C `

ε(C).

The phase function intuitively tells us, under a given assignment to previous
variables in the quantifier prefix, what is the phase in which a given universal
variable would have appeared in a given clause, had we restricted the proof using
that assignment. The effective literal is a literal which, based on an assignment to
previous existential variables, is equivalent to the polarity of its variable indicated
by the phase function. Note that in the case when the phase function is constant,
i.e. 0 or 1, the effective literal of any literal is simply the literal itself. In such
cases we say that the literal is unmerged. Literals that are not unmerged are
merged.

We will now present a description of the countermodel computed by BJJW
from a long-distance Q-resolution refutation. In order to do that, we adapt the
notation from Section 4. Let P be a long-distance Q-resolution refutation of a
formula Φ = Q.ϕ. The conclusions of reduction steps in P, in the same order
as they appear, are denoted by R1, . . . , RN . The variables gi, 1 ≤ i ≤ N , are
now equivalent to the shadow clauses Ri

σ instead of Ri themselves. Since BJJW
keeps track of the phase function of every universal variable in every clause, we
will use a variable uφ(C) to denote the output of the phase function. We will also
have variables `ε(C) for the effective literals. In the case of unmerged literals,
this will simply be `. By H we will denote the conjunction of all clauses that
encode the circuits which define phase variables and effective literals.

The partial countermodel circuits fuk from the previous section are slightly
more complicated now. Let Ri = R′i − L be a reduction step, let ` ∈ L be a
literal that is being reduced, let u = var(`). If ` is unmerged, Ri

σ is pushed into
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the countermodel array of u, similarly as in the case of ordinary Q-resolution.
However, if ` is merged, we first require that both ` and ` be reduced at the same
time (merged literals arise from merges, so they are always in both polarities in
a clause), and as such two entries are pushed into the countermodel array of

u, namely Ri
σ ∨ uφ(R′i) and right afterwards Ri

σ ∧ uφ(R′i). The intuition for
why these entries are added is the following: if the phase uφ(R′i) of ` in R′i is
positive, and the (shadow clause of the) conclusion is falsified, set u to false,
otherwise if the phase is negative and the conclusion is falsified, set u to true,
each time falsifying the effective literal `ε(R′i). This is analogous to the ordinary
case, where when the conclusion is falsified, the reduced literal is set so that it
is falsified, only in this case we falsify the effective literal.

Now, for the sake of simplicity of presentation, we will treat unmerged literals
the same way as merged ones. This means that even for unmerged reduced literals
we push two entries into the countermodel array, Ri ∨ uφ(R′i) and Ri ∧ uφ(R′i).
It is easy to see that if uφ(R′i) = 1, the term becomes falsified and the clause
reduces to just Ri, while if uφ(R′i) = 0, the clause becomes satisfied and the
term reduces to just Ri. In each case, the circuit is equivalent to what we would
have produced by pushing just the one entry as previously.

Let X1, . . . , X2n be the entries in the countermodel array of a universal vari-
able u. Each X2k−1 is Rik

σ∨uφ(R′ik) and X2k is Rik
σ∧uφ(R′ik). We have already

defined gi = Ri
σ, but since each entry in the countermodel array still contains

two variables even after replacing Rik
σ with gik , we will define the auxiliary

variables f
′u
2k−1 = gik ∨ uφ(R′ik) and f

′u
2k = gik ∧ uφ(R′ik) using the following sets

of clauses (for 1 ≤ k ≤ n):

F
′u
2k−1 =

F
′u
2k−1,1︷ ︸︸ ︷(

f
′u
2k−1 ∨ gik ∨ uφ(R′ik)

)
∧

F
′u
2k−1,2︷ ︸︸ ︷(

f
′u
2k−1 ∨ gik

)
∧

F
′u
2k−1,3︷ ︸︸ ︷(

f
′u
2k−1 ∨ uφ(R′ik)

)

F
′u
2k =

(
f
′u
2k ∨ gik ∨ uφ(R′ik)

)
︸ ︷︷ ︸

F
′u
2k,1

∧
(
f
′u
2k ∨ gik

)
︸ ︷︷ ︸

F
′u
2k,2

∧
(
f
′u
2k ∨ uφ(R′ik)

)
︸ ︷︷ ︸

F
′u
2k,3

Let F ′ be the conjunction of all F
′u
k for all universal variables u and all appro-

priate k. The following is immediate from the clauses F ′.

Observation 2 Setting gik to true causes unit propagation to set f
′u
2k−1 and f

′u
2k.

Finally, we are ready to present the set F of clauses which encode the counter-
model circuit:

Fu2n,1 = (fu2n ∨ f
′u
2n), Fu2n,2 = (fu2n, f

′u
2n),

and for 1 ≤ k < 2n

Fuk =

{
(fuk ∨ f

′u
k ∨ fuk+1) ∧ (fuk , f

′u
k ) ∧ (fuk , f

u
k+1) if k is odd,

(fuk ∨ f
′u
k ∨ fuk+1)︸ ︷︷ ︸
Fu

k,1

∧ (fuk , f
′u
k )︸ ︷︷ ︸

Fu
k,2

∧ (fuk , f
u
k+1)

︸ ︷︷ ︸
Fu

k,3

if k is even.
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Similarly as before, let F be the conjunction of all Fuk for all appropriate u and k,
and let G be the conjunction of the clauses defining the equivalences gi ⇔ Ri

σ.
Then, the validation formula for Φ and P is Φ[P] = ϕ ∧ F ∧ F ′ ∧G ∧H.

The following are analogues of Lemmas 1 and 2.

Lemma 3. Let u be a universal variable of Φ whose countermodel array has 2n
entries and the corresponding g-variables are gi1 , . . . , gi2n . For 1 ≤ k ≤ 2n let τk
be a partial assignment (to variables of Φ[P]) which sets gi1 , . . . , gik−1

to true.
Then fu ∼=τk f

u
2k−1.

Proof. Let 1 ≤ j < k. Applying Observation 2, we see that f
′u
2j−1 and f

′u
2j are

propagated, in each case, inspecting the restricted clauses that remain, we see
that fu2j−1 ∼=τk f

u
2j and fu2j

∼=τk f
u
2j+1. Altogether, we get fu ∼=τk f

u
k . ut

Lemma 4. For 1 ≤ i ≤ N let τi be a partial assignment (to variables of Φ[P])
which sets g1, . . . , gi−1 to true and gi to false. Let u be a universal variable of Φ in
whose countermodel gi appears as some gik . Let Ri be the corresponding reduction
step, obtained from R′i. Then, under either of the assignments τi ∪ uφ(R′i) and

τi ∪ uφ(R′i), unit propagation (in Φ[P]) causes a conflict or derives uε(R′i).

Proof. Assume unit propagation not cause a conflict. Let us assume uφ(R′i) first.

Since we have gik ∧ uφ(R′i), the clause F
′u
2k−1,1 propagates f

′u
2k−1, which in turn

propagates fu2k−1. Since g1, . . . , gi−1 are set to true, Lemma 3 applies and the
value of fu2k−1 is propagated for the value of u, meaning u is propagated. Together

with the assumption uφ(R′i), we have that the effective literal uε(R′i) is set to
false by unit propagation.

If on the other hand we assume uφ(R′i), f
′u
2k−1 is propagated from F

′u
2k−1,3,

which means that the restricted clauses Fu2k−1 now encode fu2k−1
∼= fu2k. Also,

F
′u
2k,1 propagates f

′u
2k, which in turn propagates fu2k. Since g1, . . . , gi−1 are set

to true, Lemma 3 applies and the value of fu2k is propagated for the value of u,

meaning u is propagated. Together with the assumption uφ(R′i), we have that
the effective literal uε(R′i) is set to false by unit propagation. ut

While in the case of ordinary Q-resolution, the resolvent of two clauses is always
RUP with respect to those clauses, this is not true in the case of long-distance
Q-resolution. This is due to the fact that if a merge occurs, a fresh effective
literal is introduced in the resolvent, and just falsifying this new fresh literal
without the knowledge of the value of the corresponding phase variable does
not cause the effective literals in the premises of the resolution step to become
falsified. Therefore, we first prove that a set of extra clauses can be derived from
the definitions of phase functions and effective literals. These clauses will then
empower unit propagation to deal with merged effective literals the same way
as with unmerged ones.

Let C be the resolvent of C1 and C2 on the pivot literal p ∈ C1 (and p ∈ C2).
Let ` ∈ C1, ` ∈ C2, u = var(`) be a universal literal such that uφ(C1) 6= uφ(C2),
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i.e. u is being merged in this resolution step. Then the clauses EuC,C1
and EuC,C2

are defined as follows:

EuC,C1
= (uε(C) ∨ p ∨ uε(C1)), EuC,C2

= (uε(C) ∨ p ∨ uε(C2)).

We will denote by E the set of all EuC,D for appropriate premise D, resolvent C,
and merged literal u. The clauses of E will provide us with a direct relationship
between successive effective literals of one variable. They express one direction
of the conditional dependence of an effective literal on the previous effective
literals—if an effective literal is false, then based on the value of the pivot vari-
able, the corresponding previous effective literal must be false too.

Lemma 5. All clauses of E are derivable by RUP from H. The combined size
of the RUP proofs is O(|P|) and they are computable in O(|P|) time.

Proof. Let EuC,D ∈ E, let p ∈ D be the pivot literal. It can be easily verified by
unit propagation on the definitions of phase functions and effective literals that
the following is the required RUP proof:

(uε(C) ∨ p ∨ uε(D) ∨ uφ(C)), (EuC,D)

Clearly, per each resolution step, these proofs only take up constant space and
are computable in constant time, resulting in an overall linear bound. ut

We now state the main result of this section (we omit the proof due to space
constraints).

Theorem 2. Let P be a long-distance Q-resolution refutation of the formula
Φ = Q.ϕ. Then there exists a RUP proof of unsatisfiability of the validation
formula Φ[P] of size O(|P|), and this proof can be computed in O(|P|) time.

Finally, let us point out that even though we presented concrete CNF encodings
for many of the circuits, other encodings can work as well. Namely, it is sufficient
if the encodings contain the g-variables (because these are present in the RUP
proof) and satisfy the unit-propagation properties of the lemmas.

6 True Formulas

In this section we show how to derive analogues of Theorems 1 and 2 for true
formulas. Let us start with the case of a (long-distance) Q-consensus proof P
of a true PDNF formula Φ = Q.ϕ. In this case the validation formula Φ[P] for
the model CC(P) is the DNF ϕ in disjunction with DNF(CC(P)). The task of
validation of the model CC(P) is to check that Φ[P] is valid, and checking the
validity of Φ[P] is equivalent to checking that the CNF Φ[P] is unsatisfiable.

Theorem 3. Let P be a long-distance Q-consensus proof of the PDNF formula
Φ = Q.ϕ. Then there exists a RUP proof of unsatisfiability of the negated vali-
dation formula Φ[P] of size O(|P|), and it can be computed in O(|P|) time.
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Proof. We observe that the countermodels extracted by BJ/BJJW from P and
from its negation P are in fact the same (we have not discussed the variants
of BJ/BJJW for true formulas here, but check the definitions in [1, 2] to see
that this trivially holds), which means that their CNF and DNF encodings are
negations of one another. This means that

Φ[P] = ϕ ∨ DNF(CC(P)) = ϕ ∧ DNF(CC(P)) = ϕ ∧ CNF(CC(P)) = Φ[P],

and we can apply Theorem 2 on Φ and P. ut

For a Q-consensus proof P of a true PCNF formula Φ = Q.ϕ let us first clarify
what the validation formula looks like. We would need to check the validity of
ϕ ∨ DNF(CC(P)), but ϕ is a CNF and CC(P) must be encoded as a DNF for
validity checking. Therefore, we need to first transform ϕ to DNF using the
Tseitin transformation as follows. Suppose ϕ = C1 ∧ · · · ∧Cn. We will define the
clause variables ci = Ci and represent DNF(ϕ) as follows:

DNF(ϕ) =

n∨

i=1

[
(ci ∧ Ci) ∨

∨

`∈Ci

(ci ∧ `)
]
∨ (c1 ∧ · · · ∧ cn).

The validation formula Φ[P] is then DNF(ϕ)∨DNF(CC(P)). As before, instead of
checking the validity of Φ[P], we will check the unsatisfiability of Φ[P].

Theorem 4. Let P be a long-distance Q-consensus proof of the PCNF formula
Φ = Q.ϕ with the set of initial terms µ. If every clause from µ is RUP with
respect to DNF(ϕ), then there exists a RUP proof of unsatisfiability of the negated
validation formula Φ[P] of size O(|P|), and it can be computed in O(|P|) time.

Proof. Let M = Q.µ be the PDNF consisting of the initial terms. Using The-
orem 3, we obtain a RUP proof for the negated validation formula M [P] =
M [P] = µ∧CNF(CC(P)). By prepending µ to this proof, we obtain a RUP proof
of DNF(ϕ) ∧ CNF(CC(P)) = Φ[P] of size O(|P|+ |µ|) = O(|P|). ut

There are two common ways of obtaining initial terms. One is to transform the
CNF ϕ to DNF [13], in which case there is nothing to prove, because the negated
initial terms are directly members of DNF(ϕ) and therefore RUP. The other way
is to produce hitting sets of the clauses of ϕ. In this case, since every initial term
is a hitting set of the clauses C1, . . . , Cn, we have that for every initial term I
and for every clause Ci, there is always a clause of CNF(ϕ) of the form (ci ∨ `),
such that ` ∈ I. Therefore, by assuming the negation of a negated initial term,
i.e. the term itself, unit propagation will propagate ci for all i, which in turn
causes a conflict with the clause (c1 ∨ · · · ∨ cn). Therefore, every clause in ¬µ is
indeed RUP with respect to DNF(ϕ) and Theorem 4 applies.

Finally, in the paragraph above we mentioned that initial terms are hitting
sets of the clauses of ϕ (in one of the cases). In fact, this need not always be
true, since the hitting sets might have existential reduction applied to them first
according to the model generation rule [10]. Since it is no problem for the QBF
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solver to output the original hitting set without applying existential reduction,
but very difficult (NP-hard in general) for the proof-checker to recover it, we
suggest to strengthen the conditions on the QRP proof format by requiring that
the initial terms be full hitting sets. If this condition is not met our algorithm
may fail to produce valid RUP proofs for true PCNF formulas. Fortunately
DepQBF always generated terms that happened to be full hitting sets in our
experiments.

7 Experiments

We implemented the algorithm of Theorem 2, which generalizes Theorem 1, in
a tool called qrp2rup (https://www.ac.tuwien.ac.at/research/certificates/) and
evaluated the performance compared to various other approaches to certificate
validation. In particular, since our tool is also capable of emitting deletion in-
formation for DRAT-trim, we evaluated the following six configurations of cer-
tificate extractors and validators:

– qrp2rup with deletion information
and validation by DRAT-trim,

– qrp2rup without deletion infor-
mation (plain) and validation by
DRAT-trim,

– qrp2rup and validation by Lin-
geling (ignoring the RUP proof),

– qrp2rup and validation by Glucose
(ignoring the RUP proof),

– QBFcert and validation by Lin-
geling,

– QBFcert and validation by Glu-
cose.

We also experimented with configurations of DRAT-trim that used forward
checking (instead of the default backward checking), but excluded the results
due to systematically inferior performance. Note that since QBFcert cannot
handle long-distance Q-resolution, only the first four configurations were used
for the experiments with long-distance proofs. To produce both ordinary and
long-distance Q-resolution proofs, we used DepQBF 6.03 in a configuration that
allowed tracing (i.e., with most of the advanced techniques off) with a cut-off
time of 900 CPU seconds and a memory limit of 4GB. The validation process
was limited to 1800 CPU seconds and 7GB of memory. The experiments were
run on a cluster of heterogeneous machines running 64-bit Ubuntu 16.04.3 LTS
(GNU/Linux 4.10.0-42). We evaluated the tools on the PCNF benchmark sets
from the QBF Evaluations 2017, 2016, and 2010. The numbers of true and false
validated instances for each configuration and benchmark set are reported in the
tables below. The column “total” reports the total number of proofs for true and
false formulas produced by DepQBF.

The results indicate that our approach is beneficial mainly on true formulas,
but performs well across the board. Interestingly, even though QBFcert tends
to produce smaller certificates than qrp2rup, Glucose performs worse on them.
QBFcert internally uses AIG-based optimizations to shrink the certificates, and
it is conceivable that these optimizations hurt Glucose’s performance.
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QBFcert+SAT-solver qrp2rup+SAT-solver qrp2rup+DRAT-trim

year total Lingeling Glucose Lingeling Glucose deletion plain

2010 162+230 88+215 88+216 88+225 92+228 99+224 99+223

2016 157+206 124+196 123+197 116+202 128+203 136+202 136+200

2017 18+62 12+58 12+58 11+62 12+63 12+63 12+62

Table 1. Ordinary Q-resolution proofs: number of true+false formulas validated.

qrp2rup+SAT-solver qrp2rup+DRAT-trim

year total Lingeling Glucose deletion plain

2010 149+222 93+215 95+217 100+215 100+215

2016 160+250 120+197 131+200 137+196 137+196

2017 17+59 12+59 13+59 13+59 13+59

Table 2. Long-distance Q-resolution proofs: number of true+false formulas validated.

8 Concluding Remarks

We have presented a way of using (long-distance) Q-resolution/Q-consensus
proofs in the process of validating QBF certificates. Our approach does not
require a SAT call and comes with a polynomial runtime guarantee. Since it
allows us to generate proofs in a format that is routinely used to verify the
answers produced by SAT solvers and that has prompted the development of
formally verified checkers [8, 11, 16], we can have a high degree of confidence in
the correctness of certificates validated in this manner.

However, one subtle challenge remains. When constructing the validation
formula Φ[P], we take the matrix of Φ and append a CNF encoding of the coun-
termodel. In principle, if we instead appended a small unsatisfiable CNF formula
such as (x) ∧ (x), we could be led to believe that it represents a countermodel
when in reality it is much more restrictive than a countermodel is allowed to
be (a formula that does not encode a set of functions). It would be desirable to
have a way of checking that what we appended to the original matrix is indeed
a set of functions (with the correct dependencies) for universal variables. This
may require formal verification of parts of the certificate extraction algorithm.

A potential limitation of our approach is that it is sensitive to certain aspects
of the CNF encoding of the countermodel to be validated, and therefore does not
necessarily work with certificates extracted by other tools. However, our method
ought to be compatible with simple circuit-level simplifications of certificates.
Moreover, we hope to improve performance by generating GRAT [16] proofs of
validation formulas as part of future work.
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