
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-17-009
2017

On the ParameterizedComplexity of FindingSmall Unsatisfiable Subsetsof CNF Formulas and CSPInstances

Ronald de Haan, Iyad Kanj, and
Stefan Szeider

This is the authors’ copy of a paper that appears in the ACMTransactions on Compu-
tational Logic (TOCL).

www.ac.tuwien.ac.at/tr

1

On the Parameterized Complexity of Finding Small Unsatisfiable
Subsets of CNF Formulas and CSP Instances

Ronald de Haan, Algorithms and Complexity Group, TU Wien, Vienna, Austria
Iyad Kanj, School of Computing, DePaul University, Chicago, IL, United States
Stefan Szeider, Algorithms and Complexity Group, TU Wien, Vienna, Austria

In many practical settings it is useful to find a small unsatisfiable subset of a given unsatisfiable set of constraints. We study
this problem from a parameterized complexity perspective, taking the size of the unsatisfiable subset as the natural parameter
where the set of constraints is either (i) given as a set of clauses (i.e., a CNF formula), or (ii) as an instance of the constraint
satisfaction problem (CSP).

In general, the problem is fixed-parameter intractable. For SAT instances, it was known to be W[1]-complete. We establish
A[2]-completeness for CSP instances, where A[2]-hardness prevails already for the Boolean case.

With these fixed-parameter intractability results for the general case in mind, we consider various restricted classes of
inputs and draw a detailed complexity landscape. It turns out that often Boolean CSP and CNF formulas behave similarly,
but we also identify notable exceptions to this rule.

The main part of this paper is dedicated to classes of inputs that are induced by Boolean constraint languages that Schaefer
[1978] identified as the maximal constraint languages with a tractable satisfiability problem. We show that for the CSP setting,
the problem of finding small unsatisfiable subsets remains fixed-parameter intractable for all Schaefer languages for which
the problem is non-trivial. We show that this is also the case for CNF formulas with the exception of the class of bijunctive
(Krom) formulas, which allows for an identification of a small unsatisfiable subset in polynomial time.

In addition, we consider various restricted classes of inputs with bounds on the maximum number of times that a variable
occurs (the degree), bounds on the arity of constraints, and bounds on the domain size. For the case of CNF formulas, we
show that restricting the degree is enough to obtain fixed-parameter tractability, whereas for the case of CSP instances, one
needs to restrict the degree, the arity and the domain size simultaneously to establish fixed-parameter tractability.

Finally, we relate the problem of finding small unsatisfiable subsets of a set of constraints to the problem of identifying
whether a given variable-value assignment is entailed or forbidden already by a small subset of constraints. Moreover, we use
the connection between the two problems to establish similar parameterized complexity results also for the latter problem.

CCS Concepts: •Theory of computation→ Problems, reductions and completeness; Constraint and logic programming;

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Parameterized complexity, constraint satisfaction, unsatisfiable subsets, CNF formulas,
backbones

ACM Reference Format:
Ronald de Haan, Iyad Kanj, and Stefan Szeider, 2016. On the Parameterized Complexity of Finding Small Unsatisfiable
Subsets of CNF Formulas and CSP Instances.

1. INTRODUCTION
In the paradigm of constraint programming, one models a search problem by specifying constraints
that solutions must satisfy. Each of these constraints specifies a list of possible variable-value assign-
ments for a subset of variables, and thereby imposes restrictions on the set of solutions. Assignments
that simultaneously satisfy all constraints then form the solutions for the search problem. However,
when augmenting the set of constraints, one can reach the point where there are no solutions. A set
of constraints that has no solutions is called unsatisfiable. A fundamental computational task in the
area of constraint programming is to identify unsatisfiable subsets of constraints, if they exist. More-
over, in many settings, it is desirable to find unsatisfiable subsets that are as small as possible—for
instance, when refining or modifying an unsatisfiable set of constraints to ensure the existence of
solutions. In this paper, we study the problem of finding an unsatisfiable subset of a set of constraints
that is of a given maximum size k, from a parameterized complexity point of view.

For every constant k, we can clearly identify all unsatisfiable subsets of size at most k of a set I
of constraints in polynomial time by simply going over all subsets of I of size at most k. However,

This work is supported by the FWF Austrian Science Fund (Parameterized Compilation, P26200).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:2 R. de Haan, I. Kanj, S. Szeider

if I consists of m constraints, then this brute-force search requires us to consider mk subsets,
which is impractical already for small values of k (e.g., for k > 4). It would be desirable to have
an algorithm that finds unsatisfiable subsets of size k in time f(k) · ||I||d where f is a function, ||I||
denotes the bit-size of the set of constraints, and d is a constant. An algorithm with such a running
time would render the problem fixed-parameter tractable with respect to parameter k. In order to
carry out this multi-variate complexity analysis where we can measure the running time in terms
of the size k of the unsatisfiable subset in addition to the input size in bits, we use the framework
of parameterized complexity [Cygan et al. 2015; Downey and Fellows 1999; Downey and Fellows
2013; Flum and Grohe 2006; Niedermeier 2006], a field of research that is becoming increasingly
popular in the domain of artificial intelligence and constraint satisfaction; see, e.g., [Gaspers and
Szeider 2011; Gottlob and Szeider 2006; Samer and Szeider 2010]. Concretely, we consider the
following parameterized decision problem.

SMALL-UNSAT-SUBSET
Instance: A set I of constraints, and a positive integer k ≥ 1.
Parameter: k.
Question: Is there an unsatisfiable subset I ′ ⊆ I consisting of k constraints?

Fellows et al. [2006] showed that this problem is already W[1]-hard when the constraints are propo-
sitional clauses containing only three literals. The parameterized complexity class W[1] is com-
monly used to provide theoretical evidence that a problem is not fixed-parameter tractable. Un-
der a common complexity-theoretic assumption, W[1]-hard problems indeed do not admit fixed-
parameter tractable algorithms [Chen et al. 2005; Chen et al. 2006; Chen and Kanj 2012]. Thus, the
result by Fellows et al. shows that we cannot hope for fixed-parameter tractable algorithms to solve
this problem in general (even if we restrict to Boolean domains). Therefore, to develop and improve
practical algorithms, it would be useful to identify in what restricted cases the problem becomes
fixed-parameter tractable.

Mapping out the (parameterized) complexity landscape of various fragments of a problem can
be a valuable first step towards understanding the settings under which different algorithmic ap-
proaches could work well in practice. To illustrate this point, consider the work of Crampton, Gutin
and Karapetyan [2015], who investigate a problem related to multi-valued workflow satisfiability
from a parameterized complexity point of view. This problem is W[1]-hard in the general setting.
In [Crampton et al. 2015], they identify a restricted setting of this W[1]-hard problem under which
the problem admits a fixed-parameter tractable algorithm. Moreover, they develop an algorithm
based on this theoretical result, and show that their algorithm, on instances in this restricted setting,
outperforms state-of-the-art algorithmic methods that are based on mixed integer programming.
This example shows that obtaining a more detailed theoretical understanding of the computational
complexity of a problem can help identify more efficient algorithms for solving the problem.

There are plenty of other examples where theoretical fixed-parameter tractability results have
led to significant improvements in practical algorithmic methods. Some celebrated examples of
such problems have applications in bioinformatics [Abu-Khzam et al. 2006; Cheetham et al. 2003;
Hüffner et al. 2008; Langston et al. 2008; Song et al. 2006]. A noteworthy example is that of the
VERTEX COVER problem. A parameterized algorithm for VERTEX COVER was previously im-
plemented by the bioinformatics research group at ETH Zürich to find multiple sequence align-
ments [Roth-Korostensky 2000; Stege 2000]. Moreover, parameterized algorithms for VERTEX
COVER have been implemented—for use in bioinformatics applications—on parallel machines and
are quite practical for parameter values up to 400 [Abu-Khzam et al. 2006; Cheetham et al. 2003]. In
general, theoretical results establishing the parameterized intractability of a problem that has impor-
tant applications may lead to the identification of other meaningful parameterizations, with respect
to which the problem becomes fixed-parameter tractable. This, in turn, may lead to the design of

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:3

efficient fixed-parameter tractable algorithms for the problem with respect to the newly-identified
parameterizations (see, e.g., [Song et al. 2006]).

In this paper, we study the parameterized complexity of SMALL-UNSAT-SUBSET for various re-
stricted classes of constraints. In this investigation, we establish fixed-parameter tractability results
for several classes of constraints, as well as negative results indicating that fixed-parameter tractabil-
ity is not possible for several classes of constraints. These negative results consist of hardness (or
completeness) results for various parameterized intractability classes, such as W[1], co-W[1], W[2]
and A[2]. Whenever a parameterized problem is hard for any of these classes, it does not admit a
fixed-parameter tractable algorithm, unless 3SAT can be solved in subexponential time [Chen et al.
2005; Chen et al. 2006; Chen and Kanj 2012].

1.1. Contributions
Our main results consist of a parameterized complexity classification for the problem SMALL-
UNSAT-SUBSET for two general types of constraint formalisms: (1) CNF formulas and (2) CSP
instances. We denote the corresponding decision problems by SMALL-CNF-UNSAT-SUBSET and
SMALL-CSP-UNSAT-SUBSET, respectively. For both settings, we study various classes of in-
stances. For an overview of this parameterized complexity classification, see Tables I and II.

Firstly, for both settings, we consider the unrestricted case. The problem SMALL-CNF-UNSAT-
SUBSET was shown to be W[1]-complete by Fellows et al. [2006]. The problem SMALL-CSP-
UNSAT-SUBSET is harder.

— We show that SMALL-CSP-UNSAT-SUBSET is A[2]-complete (Theorem 3.10).
— Moreover, we show that it is A[2]-hard even when restricted to a Boolean domain (Corollary 3.8).

It is worth pointing out that this A[2]-completeness result is of independent interest, since to the best
of our knowledge, this is the first natural problem—that originates in a setting not directly related
to the structural development of the A-hierarchy—that is complete for A[2].

Then, both for CNF formulas and for Boolean CSP instances, we consider a number of constraint
languages. A constraint language is a set of constraints, and each constraint language naturally
induces a class of instances (namely those instances containing only constraints in the constraint
language). In particular, we consider Schaefer’s [1978] constraint languages, which are the maximal
constraint languages that admit a polynomial-time satisfiability check: (i) the language of all 0-valid
constraints, (ii) the language of all 1-valid constraints, (iii) the language of all Horn constraints,
(iv) the language of all anti-Horn constraints, (v) the language of all bijunctive constraints, and
(vi) the language of all affine constraints.

Interestingly, the problem of identifying small unsatisfiable subsets of CSP instances is fixed-
parameter intractable (W[1]-hard or harder) for all constraint languages that we consider—for which
the problem is non-trivial. Since we consider constraint languages for which deciding satisfiability
is tractable, this suggests that the selection of a small subset of constraints comprises a source
of complexity by itself. Moreover, in all cases, compared to the setting with CNF formulas, the
problem is at least as hard (and in many cases harder) when dealing with CSP instances. It is worth
mentioning that these increases in complexity are not due to the domain size, since in both cases the
domain is Boolean.

The problem of finding small unsatisfiable subsets is trivially tractable when restricted to 0-valid
or 1-valid constraint languages (Observation 4.1). For Horn and anti-Horn constraints, the problem
was already shown to be W[1]-hard by Fellows et al. [2006]. We show that W[1]-hardness holds
even for two more restricted fragments.

— We show that SMALL-CNF-UNSAT-SUBSET is W[1]-hard even when restricted to instances with
only Horn constraints of arity at most 3, where one constraint is a unit clause with a negative
literal, and all other constraints are definite Horn clauses (Proposition 4.4),

— We show that SMALL-CNF-UNSAT-SUBSET is W[1]-hard even when restricted to instances with
only Horn constraints of arity at most 3 and with only a single unit clause (Corollary 4.6).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:4 R. de Haan, I. Kanj, S. Szeider

These results directly give us W[1]-hardness for the case of CSP instances with bounded arity. In
the case of CSP instances of unbounded arity, we even get hardness for W[2].

— We show that SMALL-CSP-UNSAT-SUBSET is W[2]-hard when restricted to instances containing
only Horn constraints of arbitrary arity (Proposition 4.7).

The above hardness results (both for the case of CNF formulas and CSP instances) also extend
to analogous restrictions for anti-Horn constraints. For bijunctive constraints, we show that the
problem increases in complexity when moving from CNF formulas to CSP instances—in the former
case, the problem is polynomial-time solvable [Buresh-Oppenheim and Mitchell 2006].

— We show that SMALL-CSP-UNSAT-SUBSET is W[1]-hard when restricted to bijunctive Boolean
CSP instances of bounded arity (Proposition 4.9).

— We show that SMALL-CSP-UNSAT-SUBSET is W[2]-hard when restricted to bijunctive Boolean
CSP instances of unbounded arity (Corollary 4.10).

For affine constraints, the problem is W[1]-hard both in the setting of propositional formulas and in
the setting of CSP instances.

— We show that SMALL-CNF-UNSAT-SUBSET is W[1]-hard when restricted to affine formulas
(Proposition 4.12).

— We show that SMALL-CSP-UNSAT-SUBSET is W[1]-hard when restricted to affine Boolean CSP
instances (Corollary 4.11).

We further investigate various classes of instances with bounds on (combinations of) the fol-
lowing: (i) the maximum arity of constraints, (ii) the maximum number of times that any variable
occurs in the set of constraints (the degree), and (iii) the domain size. In the case of CNF formulas,
the problem of deciding whether an instance has an unsatisfiable subset of size k can be done in
fixed-parameter tractable time, when the degree of the instance is bounded by a function of k. This
result was already discovered by Fellows et al. [2006], using a meta-theorem.

— We give a direct algorithm to solve this problem in fixed-parameter linear time (Proposition 5.1).

For the case of CSP instances, we show that bounding only two of (i–iii) at a time does not lead to
fixed-parameter tractability. When restricted to instances with maximum arity 3 and domain size 2,
the problem is known to be W[1]-hard (Proposition 3.1, [Fellows et al. 2006]).

— We show that the problem SMALL-CSP-UNSAT-SUBSET is co-W[1]-hard when restricted to in-
stances with maximum arity 2 and degree 3 (Corollary 5.4).

— We show that the problem SMALL-CSP-UNSAT-SUBSET is W[1]-hard when restricted to in-
stances with degree 2 and domain size 2 (Proposition 5.2).

However, when the maximum arity, the degree, and the domain size are all bounded by a function
of the parameter value k, the problem of finding unsatisfiable subsets of size k becomes fixed-
parameter tractable (Proposition 5.5).

Since A[2] is a parameterized analogue of the classical complexity class Σp
2, the A[2]-

completeness result for the general case in the setting of CSP instances suggests that the unparam-
eterized variant of SMALL-CSP-UNSAT-SUBSET is Σp

2-complete. For the case of CNF formulas,
such a Σp

2-completeness result was already known (Proposition 3.12, [Liberatore 2005]).

— We show that for the case of CSP instances, the unparameterized variant of the problem is also
Σp

2-complete (Proposition 3.13).

Finally, we consider the closely related parameterized problem of deciding whether a small subset
of constraints already enforces a given variable-value assignment.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:5

re
st

ri
ct

io
n

S
M

A
L

L
-C

N
F-

U
N

S
A

T
-S

U
B

S
E

T
S

M
A

L
L

-C
S

P-
U

N
S

A
T-

S
U

B
S

E
T
[a

ri
ty

]
S

M
A

L
L

-C
S

P-
U

N
S

A
T-

S
U

B
S

E
T

un
re

st
ri

ct
ed

W
[1

]-
c

W
[2

]-
h,

co
-W

[1
]-

h,
in

A
[2

]
(P

ro
p

3.
2,

3.
9,

C
or

5.
4)

A
[2

]-
c

(T
hm

3.
10

)
B

oo
le

an
W

[1
]-

c
(P

ro
p

3.
1,

3.
16

)
A

[2
]-

c
(T

hm
3.

10
)

0
-v

al
id

,1
-v

al
id

tr
iv

ia
l

(O
bs

4.
1)

tr
iv

ia
l

(O
bs

4.
1)

tr
iv

ia
l

(O
bs

4.
1)

H
or

n,
an

ti-
H

or
n

W
[1

]-
c

W
[1

]-
c

(P
ro

p
3.

16
,C

or
4.

5)
W

[2
]-

h,
in

A
[2

]
(P

ro
p

3.
9,

4.
7)

bi
ju

nc
tiv

e
(K

ro
m

)
po

ly
no

m
ia

lt
im

e
W

[1
]-

c
(P

ro
p

3.
16

,4
.9

)
W

[2
]-

h,
in

A
[2

]
(P

ro
p

3.
9,

4.
10

)
af

fin
e

W
[1

]-
h

(P
ro

p
4.

12
)

W
[1

]-
c

(P
ro

p
3.

16
,C

or
4.

11
)

W
[1

]-
h,

in
A

[2
]

(P
ro

p
3.

9,
C

or
4.

11
)

Ta
bl

e
I:

M
ap

of
pa

ra
m

et
er

iz
ed

co
m

pl
ex

ity
re

su
lts

fo
r

th
e

pr
ob

le
m

s
S

M
A

L
L

-C
N

F-
U

N
S

A
T

-S
U

B
S

E
T

,S
M

A
L

L
-C

S
P-

U
N

S
A

T-
S

U
B

S
E

T
[a

ri
ty

]
an

d
S

M
A

L
L

-C
S

P-
U

N
S

A
T-

S
U

B
S

E
T

,f
or

va
ri

ou
sr

es
tr

ic
te

d
cl

as
se

so
f(

B
oo

le
an

)i
ns

ta
nc

es
.T

he
pr

ob
le

m
S

M
A

L
L

-C
S

P-
U

N
S

A
T-

S
U

B
S

E
T
[a

ri
ty

]i
st

he
va

ri
an

to
fS

M
A

L
L

-C
S

P-
U

N
S

A
T-

S
U

B
S

E
T

w
he

re
th

e
pr

ob
le

m
is

ad
di

tio
na

lly
pa

ra
m

et
er

iz
ed

by
th

e
m

ax
im

um
ar

ity
of

th
e

co
ns

tr
ai

nt
s

in
th

e
in

pu
t.

re
st

ri
ct

io
n

S
M

A
L

L
-C

N
F-

U
N

S
A

T
-S

U
B

S
E

T
S

M
A

L
L

-C
S

P-
U

N
S

A
T-

S
U

B
S

E
T

sm
al

la
ri

ty
&

do
m

ai
n

W
[1

]-
c

W
[1

]-
c

(P
ro

p
3.

16
)

sm
al

la
ri

ty
&

de
gr

ee
FP

T
(P

ro
p

5.
1)

co
-W

[1
]-

h,
in

A
[2

]
(P

ro
p

3.
9,

C
or

5.
4)

sm
al

ld
eg

re
e

&
do

m
ai

n
FP

T
(P

ro
p

5.
1)

W
[1

]-
h,

in
A

[2
]

(P
ro

p
3.

9,
5.

2)
sm

al
la

ri
ty

,d
eg

re
e

&
do

m
ai

n
FP

T
(P

ro
p

5.
1)

FP
T

(P
ro

p
5.

5)

Ta
bl

e
II

:M
ap

of
pa

ra
m

et
er

iz
ed

co
m

pl
ex

ity
re

su
lts

fo
r

th
e

pr
ob

le
m

s
S

M
A

L
L

-C
N

F-
U

N
S

A
T

-S
U

B
S

E
T

an
d

S
M

A
L

L
-C

S
P-

U
N

S
A

T-
S

U
B

S
E

T
,f

or
va

ri
ou

s
co

m
bi

na
-

tio
ns

of
re

st
ri

ct
io

ns
on

th
e

ar
ity

,d
eg

re
e

an
d

do
m

ai
n

si
ze

.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:6 R. de Haan, I. Kanj, S. Szeider

— We show that both for the case of CNF formulas and for the case of CSP instances, this problem
is fpt-reducible to the problem of finding small unsatisfiable subsets (Lemmas 6.2 and 6.8), and
vice versa (Lemmas 6.1 and 6.7).

Moreover, this interreducibility holds for almost all of the restricted classes of instances that we con-
sider. The only exceptions are the classes of 0-valid and 1-valid CNF formulas and CSP instances.
The problem of finding small unsatisfiable subsets is trivial for 0-valid and 1-valid CNF formulas
and CSP instances.

— We show that the problem of identifying local backbones is in fact W[1]-complete for CNF for-
mulas (Proposition 6.3) and A[2]-complete for CSP instances (Proposition 6.9).

1.2. Case Study: Simplifying Formulas
To highlight the relevance of the computational task of identifying small unsatisfiable subsets, we
consider one scenario where efficient algorithms for this task would be very beneficial. In this sce-
nario, we simplify propositional CNF formulas by identifying backbones. A backbone is a variable
whose truth value is the same for all satisfying assignments. If a backbone variable and its corre-
sponding truth value are known, then we can assign this value to the variable, and thereby simplify
the formula without changing its satisfiability or the set of satisfying assignments for this formula.
Unfortunately, the problem of identifying backbones is as hard as finding unsatisfiable subsets (a
co-NP-complete problem)—that is, identifying backbones is co-NP-complete as well—and there-
fore, cannot be solved efficiently in general.

However, a variable can be a backbone because of local properties of the formula, that is, it is
a backbone of a small subset of the constraints. Such backbones we call local backbones. As an
extreme example consider a CNF formula that contains a unit clause. In this case we know that the
variable appearing in the unit clause is a backbone of the formula. The problems of finding local
backbones and finding small unsatisfiable subsets are closely related. In particular, we can employ
algorithms that identify small unsatisfiable subsets to find local backbones (and their corresponding
truth value)—we refer to Section 6 for more details.

The motivation for studying local backbones is that local backbones are a particular type of
backbones that—in some cases—can be identified more efficiently. To give a concrete example,
we preview a result that we will establish in Sections 5 and 6, and we consider the setting of CNF
formulas of degree 3—i.e., each variable occurs at most three times. In this setting, the satisfiability
problem remains NP-complete, and as a result, deciding whether a given variable is a backbone
remains co-NP-complete. However, as we will show, in this setting local backbones can be computed
in fixed-parameter tractable time with respect to the order k of the local backbone (Lemma 6.2 and
Proposition 5.1).

After instantiating a local backbone variable with its corresponding truth value, there might be
new local backbone variables. Such backbone variables that can be identified by repeatedly finding
local backbones and simplifying the set of constraints we call iterative local backbones.

To quantify to what extent local backbones and iterative local backbones are really local, we
consider the following notion of (iterative) order for backbones. Let x be a backbone of a CNF
formula ϕ. We say that the order of x is the cardinality of a smallest subset ϕ′ ⊆ ϕ such that x is a
backbone of ϕ′. Similarly, we say that the iterative order of x is the smallest number k such that x
can be identified as a backbone of ϕ by repeatedly finding backbones of order k, instantiating them
with their corresponding truth value and thusly simplifying the formula ϕ.

As an indication of the potential of the technique for finding backbones iteratively in this way,
by finding and instantiating local backbones, we provide some experimental results in Appendix A,
which show the low (iterative) order of many backbones in several SAT instances from various
domains. These results thus illustrate that efficient algorithms for identifying small unsatisfiable
subsets could be very useful for simplifying constraint instances from various practical domains.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:7

1.3. Related Work
There has been much research on the topic of developing fast algorithms to find minimal
(subset-minimal) or minimum (cardinality-minimal) unsatisfiable subsets for propositional formu-
las, e.g., [Bacchus and Katsirelos 2015; Belov et al. 2012; Ignatiev et al. 2015; Lynce and Silva 2004;
Marques-Silva 2012], possibly over an underlying theory (SMT) [Cimatti et al. 2011], as well as for
instances of the Constraint Satisfaction Problem (CSP) [Hemery et al. 2006]. The problem of iden-
tifying unsatisfiable subsets of size k has been considered from a parameterized complexity point of
view by Fellows, Szeider and Wrightson [2006], who proved that this problem (parameterized by k)
is W[1]-complete. Furthermore, they showed by the same reduction that finding a k-step resolution
refutation for a given formula is W[1]-complete as well.

The notion of backbones has initially been studied in the context of optimization problems in
computational physics [Schneider et al. 1996]. Backbones have also been considered in other con-
texts, such as knowledge compilation [Darwiche and Marquis 2002], and for other combinatorial
problems [Slaney and Walsh 2001], including SAT. The relation between backbones and the diffi-
culty of finding a solution for SAT has been studied before [Kilby et al. 2005; Parkes 1997; Slaney
and Walsh 2001]. Moreover, the notion of backbones has been used for improving SAT solving al-
gorithms [Dubois and Dequen 2001; Hertli et al. 2011]. Related notions of locally enforced literals
have also been studied, including a notion of generalized unit-refutation [Gwynne and Kullmann
2013; Kullmann 1999].

This paper directly extends the research of Fellows et al. [2006]. Preliminary results have ap-
peared in conference proceedings [De Haan et al. 2013a; De Haan et al. 2014] and in a technical
report [De Haan et al. 2013b].

1.4. Roadmap
We begin in Section 2 with reviewing relevant definitions from (parameterized) complexity theory,
propositional satisfiability and constraint satisfaction. Then, in Section 3, we consider the parame-
terized complexity of the problem of finding small unsatisfiable subsets, in the general case and for
the case of Boolean constraints, both for CNF formulas and CSP instances. In Section 4, we inves-
tigate the problem for several classes of Boolean constraints for which the satisfiability problem is
polynomial-time solvable. Then, in Section 5, we consider various classes of instances where each
variable can occur only a bounded number of times. In Section 6, we relate the problem of finding
small unsatisfiable subsets to the problem of identifying local backbones. Finally, we conclude in
Section 7.

2. PRELIMINARIES
Before we can begin our parameterized complexity analysis of the problem of finding small unsat-
isfiable subsets, we briefly review the relevant concepts and tools from (parameterized) complexity
theory, propositional satisfiability and constraint satisfaction. Moreover, we formally define the pa-
rameterized problems SMALL-CNF-UNSAT-SUBSET and SMALL-CSP-UNSAT-SUBSET.

2.1. (Parameterized) Complexity
We begin with introducing the relevant concepts of parameterized complexity theory. For more de-
tails, we refer to textbooks on the topic [Cygan et al. 2015; Downey and Fellows 1999; Downey and
Fellows 2013; Flum and Grohe 2006; Niedermeier 2006]. An instance of a parameterized problem
is a pair (I, k) where I is the main part of the instance, and k is the parameter. A parameterized
problem is fixed-parameter tractable if instances (I, k) of the problem can be solved by a determin-
istic algorithm that runs in time f(k) · ||I||c, where f is a computable function of k, c is a constant,
and ||I|| denotes the bit-size of the instance I (algorithms running within such time bounds are called
fpt-algorithms). If c = 1, we say the problem is fixed-parameter linear. FPT denotes the class of
all fixed-parameter tractable problems. Using fixed-parameter tractability, many problems that are

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:8 R. de Haan, I. Kanj, S. Szeider

classified as intractable in the classical setting (i.e., NP-hard) can be shown to be tractable for small
values of the parameter.

Parameterized complexity also offers a completeness theory, similar to the theory of NP-
completeness, that provides a way to obtain strong theoretical evidence that a parameterized prob-
lem is not fixed-parameter tractable by showing that a parameterized problem is hard (or com-
plete) for one of various parameterized intractability classes. Hardness for parameterized complex-
ity classes is based on fpt-reductions, which are many-one reductions where the parameter of one
problem maps into the parameter for the other. More specifically, a parameterized problem L is
fpt-reducible to another parameterized problem L′ if there is a mapping R that maps instances of L
to instances of L′ such that (i) (I, k) ∈ L if and only if R(I, k) = (I ′, k′) ∈ L′, (ii) k′ ≤ g(k) for a
computable function g, and (iii) R can be computed in time f(k) · ||I||c for a computable function f
and a constant c.

The intractability class XP includes all xp-solvable parameterized problems, which are those
parameterized problems that can be solved by an xp-algorithm, i.e., an algorithm with running
time O(nf(k)), for some computable function f , where n is the input size and k is the parameter
value.

Central to the completeness theory is the W-hierarchy consisting of the intractability classes W[t]:
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP. The parameterized complexity classes W[t] for t ≥
1 and W[P] are based on the weighted satisfiability problems for Boolean circuits. We consider
Boolean circuits with a single output gate. Boolean circuits are directed acyclic graphs, where each
node with no ingoing edges is called an input node (or a variable), and where all other nodes are
labelled with a Boolean operator (and are called gates). If there is an edge from a node r to a node r′,
we say that r is an input (or a parent) of r′. Gates that are labelled with a negation have exactly one
input, and gates that are labelled with conjunction or negation can have more inputs. The number
of inputs of a gate is called the fan-in of that gate. Similarly, the fan-out of a gate is the number of
gates that have that gate as input. We distinguish between small gates, with fan-in at most 2, and
large gates, with fan-in greater than 2. The depth of a circuit is the length of a longest path from
any variable to the output gate. The weft of a circuit is the largest number of large gates on any path
from a variable to the output gate. We adopt the usual notions of truth assignments and satisfiability
of a Boolean circuit. We say that a truth assignment for a Boolean circuit has weight k if it sets
exactly k of the variables of the circuit to true. We denote the class of Boolean circuits with depth u
and weft t by CIRCt,u, and we denote the class of all Boolean circuits by CIRC. For any class C of
Boolean circuits, we define the following parameterized problem.

WSAT[C]
Instance: A Boolean circuit C ∈ C, and an integer k.
Parameter: k.
Question: Does there exist an assignment of weight k that satisfies C?

For each t ≥ 1, the parameterized complexity class W[t] consists of all parameterized problems
that are fpt-reducible to WSAT[CIRCt,u], for some fixed u ≥ 1. Similarly, the class W[P] consists
of all parameterized problems that are fpt-reducible to WSAT[CIRC].

In addition, the completeness theory of parameterized complexity contains the A-hierarchy, con-
taining the intractability classes A[t], for t ≥ 1. These classes are based on model checking prob-
lems for first-order logic. A signature τ is a set of relation symbols R, each associated with an
arity aR. A structure over the signature τ consists of a set A called the universe, and an interpreta-
tion RA ⊆ AaR of each relation symbol R of τ . A first-order logic formula is a formula built using
existential quantification (∃x), universal quantification (∀x), atoms (R(x1, . . . , xaR)), and Boolean
connectives (∧,∨,¬). For more details, we refer to textbooks (see, e.g., [Flum and Grohe 2006, Sec-
tion 4.2]). A first-order logic sentence is a first-order logic formula that contains no free variables,

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:9

i.e., where each variable is bound by a quantifier. A first-order logic sentence is positive if it contains
only existential quantification and uses only the Boolean operators ∧ and ∨. For each t ≥ 1, the
class A[t] is defined as the class of all parameterized problems that are fpt-reducible to the following
parameterized problem MC(Σt).

MC(Σt)
Instance: A structure A (over a signature τ), and a first-order logic sentence ϕ =
∃x1,1, . . . , x1,`1 .∀x2,1, . . . , xx,`2 . . . Qtxt,1, . . . , xt,`t .ψ (over τ), where Qt = ∃ if t is odd
and Qt = ∀ if t is even, and where ψ is quantifier-free.
Parameter: |ϕ|.
Question: A |= ϕ?

The class A[1] coincides with W[1], and for each t ≥ 2 it holds that W[t] ⊆ A[t] ⊆ A[t+ 1] ⊆
· · · ⊆ XP. For the case of A[2], the problem MC(Σ2) remains hard when (1) `1 = `2, (2) τ is
a fixed signature containing only binary predicates, and (3) ψ is a disjunction of atoms [Flum and
Grohe 2006, Lemma 8.10].

The fixed-parameter tractability of a problem that is hard for any of these parameterized in-
tractability classes is unlikely, as it would violate commonly-believed assumptions in complexity
theory, such as the Exponential Time Hypothesis (i.e., the existence of a 2o(n)-time algorithm for
n-variable 3SAT) [Chen et al. 2005; Chen et al. 2006; Chen and Kanj 2012; Impagliazzo et al.
2001].

In this paper, we will use the following problems to prove fixed-parameter intractability re-
sults. CLIQUE is a W[1]-complete problem [Downey and Fellows 1995b]. The instances are tuples
(V,E, k), where (V,E) is a simple graph, and k ≥ 1 is a positive integer. The parameter is k. The
question is whether there exists a k-clique in (V,E).

MULTI-COLORED-CLIQUE is a W[1]-complete problem [Fellows et al. 2009]. The instances are
tuples (V,E, k), where V is a finite set of vertices partitioned into k subsets V1, . . . , Vk, (V,E) is a
simple graph, and k is a positive integer. The parameter is k. The question is whether there exists a
k-clique in (V,E) that contains a vertex in each Vi.

HITTING-SET is a W[2]-complete problem [Downey and Fellows 1995a]. The instances are tu-
ples (U, T , k), where U is a finite universe, T is a collection of subsets of U , and 1 ≤ k ≤ |U | is a
positive integer. The parameter is k. The question is whether there exists a hitting set H ⊆ U such
that |H| ≤ k and H ∩ T 6= ∅ for all T ∈ T .

The problem MC(positive) is W[1]-complete [Papadimitriou and Yannakakis 1999]. Instances
of this problem consist of a first-order structure A (over a signature τ), and a positive first-order
logic sentence ϕ (over the same signature τ). The parameter is |ϕ|, and the question is to decide
whether A |= ϕ.

2.1.1. The Polynomial Hierarchy. In addition, we need to introduce a few notions from classical
complexity theory. We assume that the reader is familiar with the complexity classes P and NP (for
an introduction to these classes, we refer to textbooks, e.g., [Arora and Barak 2009]). There are
many natural decision problems that are not contained in the classes P and NP. The Polynomial Hi-
erarchy (PH) [Meyer and Stockmeyer 1972; Papadimitriou 1994; Stockmeyer 1976; Wrathall 1976]
contains a hierarchy of increasing complexity classes Σp

i , for all i ≥ 0. We give a characterization of
these classes based on the satisfiability problem of various classes of quantified Boolean formulas.
A quantified Boolean formula is a formula of the form Q1X1Q2X2 . . . QmXmψ, where each Qi is
either ∀ or ∃, the Xi are disjoint sets of propositional variables, and ψ is a Boolean formula over the
variables in

⋃m
i=1Xi. The quantifier-free part of such formulas is called the matrix of the formula.

Truth of such formulas is defined in the usual way. For each i ≥ 1 we define the following decision
problem.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:10 R. de Haan, I. Kanj, S. Szeider

QSATi
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QiXi ψ, whereQi is a universal
quantifier if i is even and an existential quantifier if i is odd.
Question: Is ϕ true?

For each nonnegative integer i ≤ 0, the complexity class Σp
i can be characterized as the closure of

the problem QSATi under polynomial-time reductions [Stockmeyer 1976; Wrathall 1976]. The Σp
i -

hardness of QSATi holds already when the matrix of the input formula is restricted to 3CNF for
odd i, and restricted to 3DNF for even i. The class Σp

0 coincides with P, and the class Σp
1 coincides

with NP.

2.2. Propositional Logic
A literal is a propositional variable x or a negated variable ¬x. A clause is a finite set of literals,
not containing a complementary pair x, ¬x, and unless stated otherwise, it is interpreted as the
disjunction of these literals. A CNF formula is a finite set of clauses, and is interpreted as the
conjunction of these clauses.

A CNF formula ϕ is a k-CNF formula if the size of each of its clauses is at most k. A 2-CNF
formula is also called a Krom formula, or a bijunctive formula. A clause is a Horn clause if it con-
tains at most one positive literal. A clause is a definite Horn clause if it contains exactly one positive
literal. CNF formulas containing only Horn clauses are called Horn formulas. CNF formulas con-
taining only definite Horn clauses are called definite Horn formulas. A clause is an anti-Horn clause
if it contains at most one negative literal. CNF formulas containing only anti-Horn clauses are called
anti-Horn formulas. A CNF formula is 0-valid if each clause contains at least one negative literal,
and 1-valid if each clause contains at least one positive literal.

The degree of a propositional variable x in CNF formula ϕ is the number of clauses of ϕ in which
it occurs (positively or negatively). The degree of ϕ is the maximum degree of any variable that
occurs in ϕ. We say that a class of CNF formulas has bounded degree if there exists a constant d ≥ 1
such that each formula in the class has degree at most d.

A CNF formula ϕ is satisfiable if there exists a truth assignment τ : Var(ϕ) → {0, 1} such that
every clause c ∈ ϕ contains some literal l such that τ(l) = 1 (we say that such an assigment τ
satisfies ϕ); otherwise, ϕ is unsatisfiable.

An affine clause is a finite set of literals, not containing a complementary pair x, ¬x, and is
interpreted as the exclusive disjunction (denoted by the symbol ⊕) of these literals. That is, an
affine clause is true if and only if an odd number of literals appearing in the clause are true. An
affine formula is a finite set of affine clauses, and is interpreted as the conjunction of these clauses.
An affine formula ϕ is a k-affine formula if the size of each of its affine clauses is at most k.

We say that a CNF or affine formula ϕ containing variables x1, . . . , xn is equivalent to a Boolean
relation R ⊆ {0, 1}n if the set of assignments to the variables x1, . . . , xn that satisfy ϕ corresponds
exactly to the tuples in R.

It is well-known that any minimal unsatisfiable CNF formula has more clauses than variables
(this is known as Tarsi’s Lemma [Aharoni and Linial 1986; Kullmann 2000a]).

For two formulas ϕ,ψ, whenever all assignments satisfying ϕ also satisfy ψ, we write ϕ |= ψ.
The reduct ϕ|L of a formula ϕ with respect to a set of literals L ⊆ Lit(ϕ) is the set of clauses of ϕ
that do not contain any l ∈ Lwith all occurrences of l for all l ∈ L removed. For singletonsL = {l},
we also write ϕ|l. We say that a class C of formulas is closed under variable instantiation if for every
ϕ ∈ C and every l ∈ Lit(ϕ) we have that ϕ|l ∈ C. For an integer k, a variable x is a k-backbone
of ϕ, if there exists a ϕ′ ⊆ ϕ such that |ϕ′| ≤ k and either ϕ′ |= x or ϕ′ |= ¬x. A variable x
is a backbone of a formula ϕ if it is a |ϕ|-backbone. Note that the definition of the backbone of a
formula ϕ that is used in some of the literature includes all literals l ∈ Lit(ϕ) such that ϕ |= l. For
an integer k, a variable x is an iterative k-backbone of ϕ if either (i) x is a k-backbone of ϕ, or (ii)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:11

there exists y ∈ Var(ϕ) such that y is a k-backbone of ϕ, and for some l ∈ {y,¬y}, ϕ |= l and x is
an iterative k-backbone of ϕ|l.

For a Krom formula ϕ, we let impl(ϕ) be the implication graph (V,E) of ϕ, where V =
{x,¬x : x ∈ Var(ϕ) } and E = { (a, b), (b, a) : {a, b} ∈ ϕ }. We say that a path p in this
graph uses a clause {a, b} of ϕ if either one of the edges (a, b) and (b, a) occurs in p; we say that p
doubly uses this clause if both edges occur in p.

The parameterized problem of deciding whether a given formula has an unsatisfiable subset of
size k we denote by SMALL-CNF-UNSAT-SUBSET. When considering affine formulas (instead of
CNF formulas), we slightly abuse notation, and denote the analogous problem where the input is an
affine formula also by SMALL-CNF-UNSAT-SUBSET.

SMALL-CNF-UNSAT-SUBSET
Instance: A CNF formula ϕ, and a positive integer k ≥ 1.
Parameter: k.
Question: Is there an unsatisfiable subset ϕ′ ⊆ ϕ consisting of k clauses?

2.3. Constraint Satisfaction
Let D be a finite set of values (called the domain). An n-ary relation on D is a set of n-tuples of
elements from D; we use RD to denote the set of all relations on D with finite arity. A constraint
language is a subset of RD.

Let V be an infinite set of variables. A constraint (over a constraint language Γ ⊆ RD) of arity n
is a pair (S,R) where S = (v1, . . . , vn) is a sequence of variables from V and R ∈ Γ is a relation
in the constraint language Γ (called the constraint relation). The set Var(C) = {v1, . . . , vn} is
called the scope of C. An assignment α : V → D is a mapping defined on a set V ⊆ V of
variables. An assigment α : V → D satisfies a constraint C = ((v1, . . . , vn), R) if Var(C) ⊆ V
and (α(v1), . . . , α(vn)) ∈ R. For a set I of constraints, we write Var(I) =

⋃
C∈I Var(C), and we

write Rel(I) = {R : (S,R) ∈ C,C ∈ I }. If the domain D is not explicitly given, we can derive
it from any set I of constraints by taking the set of all values occurring in the constraint relation of
any constraint in I.

For any variable v ∈ Var(I), we define the degree of v to be the number of constraints C ∈ I for
which v ∈ Var(C). Moreover, we let the degree of I be the maximum degree of any variable v ∈
Var(I).

An assignment α : Var(I) → D is a solution for a finite set I of constraints if it simultaneously
satisfies all the constraints in I. A finite set I of constraints is satisfiable if there exists a solution
for it. The Constraint Satisfaction Problem (CSP, for short) asks, given a finite set I of constraints,
whether I is satisfiable. By CSP(Γ) we denote the CSP restricted to instances I with Rel(I) ⊆ Γ.
A constraint language is tractable if for every finite subset Γ′ ⊆ Γ, the problem CSP(Γ) can be
solved in polynomial time.

We call a constraint language Γ Boolean if its underlying domain is {0, 1}, i.e., if it is a subset
of R{0,1}. We consider the following properties of Boolean constraint languages. Let R be an n-ary
relation. We say that R is:

— 0-valid if (0, . . . , 0) ∈ R;
— 1-valid if (1, . . . , 1) ∈ R;
— Horn if R is equivalent to a CNF formula that is Horn;
— definite Horn if R is equivalent to a CNF formula that is definite Horn;
— anti-Horn if R is equivalent to a CNF formula that is anti-Horn;
— bijunctive if R is equivalent to a CNF formula that is Krom;
— affine if R is equivalent to an affine formula; and
— 2-affine if R is equivalent to a 2-affine formula.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:12 R. de Haan, I. Kanj, S. Szeider

We say that a constraint language Γ is 0-valid, 1-valid, Horn, definite Horn, anti-Horn, bijunctive,
affine or 2-affine, respectively, if all relations R ∈ Γ have this property.

In his seminal paper, Schaefer [1978] showed that for all constraint languages Γ over the Boolean
domain {0, 1}, the CSP restricted to Γ is either NP-complete or solvable in polynomial time. In fact,
he showed that a Boolean constraint language Γ is tractable if and only if it is 0-valid, 1-valid, Horn,
anti-Horn, bijunctive or affine. A Boolean language that satisfies any of these six properties is called
a Schaefer language.

We define what it means for a constraint language to be closed under partial assignment. Let α :
X → D be an assignment. For an n-ary constraint C = (S,R) with S = (x1, . . . , xn) we denote
by C|α the constraint (S′, R′) obtained from C as follows. R′ is obtained from R by (i) deleting
all tuples (d1, . . . , dn) from R for which there is some 1 ≤ i ≤ n with α(xi) 6= di, and removing
from all remaining tuples all coordinates di with xi ∈ X . S′ is obtained from S by deleting all
variables xi with xi ∈ X . For a set I of constraints we define I|α as {C|α : C ∈ I }. We say that
a constraint language Γ is closed under partial assignment if for any constraint C over Γ and any
assignment α : X → D it holds that C|α is also a constraint over Γ.

The parameterized problem of deciding whether a given CSP instance has an unsatisfiable subset
of size k we denote by SMALL-CSP-UNSAT-SUBSET:

SMALL-CSP-UNSAT-SUBSET
Instance: A CSP instance I, and a positive integer k ≥ 1.
Parameter: k.
Question: Is there an unsatisfiable subset I ′ ⊆ I of size k?

We also consider the following variant of SMALL-CSP-UNSAT-SUBSET, where the parameter ad-
ditionally includes the maximum arity of the constraints in the CSP instance.

SMALL-CSP-UNSAT-SUBSET[arity]
Instance: A CSP instance I, and a positive integer k ≥ 1.
Parameter: k + a, where a is the maximum arity of any constraint in I.
Question: Is there an unsatisfiable subset I ′ ⊆ I of size k?

3. GENERAL CASE
The problem of deciding whether a set of constraints contains a small unsatisfiable subset has al-
ready been investigated from a parameterized complexity perspective for the case of CNF formulas
by Fellows et al. [2006]. They proved that the problem SMALL-CNF-UNSAT-SUBSET is W[1]-
complete in general. Moreover, their proof shows that hardness holds already for the case where
each clause is of size at most 3. Since 3CNF formulas can be transformed to equivalent Boolean
CSP instances in polynomial time, this implies that the problem SMALL-CSP-UNSAT-SUBSET is
W[1]-hard, even when restricted to Boolean domains.

PROPOSITION 3.1 ([FELLOWS ET AL. 2006]). SMALL-CNF-UNSAT-SUBSET and SMALL-
CSP-UNSAT-SUBSET are W[1]-hard, even when restricted to ternary constraints on a Boolean
domain.

3.1. Hardness for W[2]

In the general case, we can strengthen this W[1]-hardness result for SMALL-CSP-UNSAT-SUBSET.
The following result shows that the problem of identifying a small unsatisfiable subset of a CSP
instance is W[2]-hard already when restricted to unary constraints.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:13

PROPOSITION 3.2. SMALL-CSP-UNSAT-SUBSET restricted to CSP instances with maximum
arity 1 is W[2]-hard.

PROOF. We give an fpt-reduction from HITTING-SET. Let (U, T , k) be an instance of HITTING-
SET, where T = {T1, . . . , Tm} is a family of subsets of the universe U = {u1, . . . , un}. The idea
behind this reduction is the following. We introduce a single variable v, and we introduce one
domain element dj for each subset Tj ∈ T . Moreover, we introduce a single constraint Ci for each
element ui in the universe U . Intuitively, the constraint Ci rules out that the variable v is assigned
values dj corresponding to subsets Tj that are hit by the element u. Then, any set of constraints that
rules out all assignments of the variable corresponds to a hitting set.

Formally, we construct a CSP instance I over a domain D as follows. We let Var(I) = {v}
consist of a single variable, and we let its domain D = {d1, . . . , dm} consist of one value dj for
each set Tj . We construct the set I of constraints as follows. The scope of all constraints contains
only the variable v. Next, for each element ui ∈ U we introduce a constraint Ci that ensures
that v ∈ { dj : 1 ≤ j ≤ m,ui 6∈ Tj }. This constraint Ci rules out the values dj corresponding
to the sets Tj that contain ui. Ruling out all sets Tj with k of these constraints then corresponds
exactly to finding a hitting set of size k. We claim that (I, k) ∈ SMALL-CSP-UNSAT-SUBSET if
and only if (U, T , k) ∈ HITTING-SET.

(⇒) Assume that there exists an unsatisfiable subset I ′ ⊆ I that contains k constraints. Then
there is some ` ≤ k and some 1 ≤ i1 < · · · < i` ≤ n such that Cij ∈ I ′ for all 1 ≤ j ≤ `.
We claim that U ′ = {ui1 , . . . , ui`} is a hitting set of T of size ` ≤ k. We proceed indirectly, and
assume that there is a set Tj ∈ T such that U ′ ∩ Tj = ∅. Then the assignment α with α(v) = dj is
a solution for I ′, which is a contradiction.

(⇐) Conversely, assume that there exists some ` ≤ k and some 1 ≤ i1 < · · · < i` ≤ n such
that U ′ = {ui1 , . . . , ui`} is a hitting set of T . We claim that the subset I ′ ⊆ I with I ′ = {Cij : 1 ≤
j ≤ ` }, containing at most k constraints, is unsatisfiable. We proceed indirectly and assume that
there is a solution α for I ′. Then, α(v) = dj for some 1 ≤ j ≤ m. From this we can conclude
that Tj ∩ U ′ = ∅, which contradicts the assumption that U ′ is a hitting set of T .

Moreover, hardness for the class W[2] even holds when the domain is restricted to be Boolean.

PROPOSITION 3.3. Given a CSP instance I = {C1, . . . , Cm}, in polynomial time we can
construct a Boolean CSP instance I ′ = {C ′1, . . . , C ′m} such that each subset Is ⊆ I is satisfiable
if and only if the corresponding subset I ′s = {C ′i : Ci ∈ Is } is satisfiable.

PROOF. Suppose that the domain D of I is non-Boolean, and let Var(I) = {x1, . . . , xn}. We
let the Boolean CSP instance I ′ contain the variables Var(I ′) = {xi,d : 1 ≤ i ≤ n, d ∈ D }.
Intuitively, a variable xi,d will represent whether xi is assigned to value d.

We now specify how to construct the constraints C ′j . Take an arbitrary Cj , for some 1 ≤ j ≤ m.
We let Var(C ′j) = {xi,d : xi ∈ Var(Cj), d ∈ D }. Moreover, we construct the constraint relation
of C ′j as follows. For each tuple r in the constraint relation of Cj , we add a tuple r′ to the constraint
relation of C ′j . For each variable xi,d ∈ Var(C ′j), the tuple r′ sets xi,d to 1 if the tuple r sets xi to d,
and it sets xi,d to 0 otherwise.

Any assignment α : Var(I) → D then naturally corresponds to the assignment α′ : Var(I ′) →
{0, 1} that sets a variable xi,d to 1 if and only if α sets xi to d. Using this correspondence, it
is straightforward to verify that any subset Is ⊆ I is satisfiable if and only if the corresponding
subset I ′s ⊆ I ′ is satisfiable.

COROLLARY 3.4. SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances is W[2]-
hard.

PROOF. The fpt-reduction used in the proof of Proposition 3.3 is an fpt-reduction from SMALL-
CSP-UNSAT-SUBSET to the problem SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP in-

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:14 R. de Haan, I. Kanj, S. Szeider

stances. By Proposition 3.2, we know that the former problem is W[2] hard. Therefore, we also
know that SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances is W[2]-hard.

3.2. Hardness for co-W[1]

A natural question to ask is whether the above W[2]-hardness results are tight, that is, whether
they can be extended to W[2]-completeness results. We provide evidence that, even for Boolean
instances, this is not the case. Concretely, we show that SMALL-CSP-UNSAT-SUBSET restricted to
Boolean CSP instances is co-W[1]-hard. In order to do so, we consider the following parameterized
problem.

SMALL-CSP-UNSAT
Instance: A CSP instance I.
Parameter: The number k of constraints in I.
Question: Is I unsatisfiable?

We show that SMALL-CSP-UNSAT is co-W[1]-complete, and co-W[1]-hard even when restricted
to Boolean CSP instances. This has the consequence that SMALL-CSP-UNSAT-SUBSET is also
co-W[1]-hard, even when restricted to Boolean CSP instances, because the identity mapping can
be used to construct an fpt-reduction from SMALL-CSP-UNSAT to SMALL-CSP-UNSAT-SUBSET.
Therefore, SMALL-CSP-UNSAT-SUBSET is not in W[2], unless W[2] ⊆ co-W[1], which would
imply that W[1] = co-W[1].

PROPOSITION 3.5. SMALL-CSP-UNSAT is co-W[1]-complete. Moreover, co-W[1]-hardness
holds even when the problem is restricted to Boolean CSP instances.

PROOF. To show co-W[1]-hardness, we give an fpt-reduction from co-MULTI-COLORED-
CLIQUE to SMALL-CSP-UNSAT. Let (V,E, k) be an instance of MULTI-COLORED-CLIQUE,
where V is partitioned into the sets V1, . . . , Vk. We assume without loss of generality that |Vi| = n,
for each 1 ≤ i ≤ k. Let Vi = {vi1, . . . , vin}, for each 1 ≤ i ≤ k. We construct a CSP instance I
over the domain D = {0, 1} with k′ =

(
k
2

)
constraints, that is satisfiable if and only if there is a

k-clique in (V,E) that contains one vertex in each Vi.
We let Var(I) = {xij : 1 ≤ i ≤ k, 1 ≤ j ≤ n }. Then, we introduce a constraint Ci,j for

each 1 ≤ i < j ≤ k. For each such constraint Ci,j = (Si,j , Ri,j), we let:

Si,j = (xi1, . . . , x
i
n, x

j
1, . . . , x

j
n).

We let the constraint relation Ri,j consist of all (binary) tuples that (1) assign exactly one xi`1 to 1,
that (2) assign exactly one xj`2 to 1, and for which (3) {vi`1 , v

j
`2
} ∈ E. Note that the number of tuples

in Ri,j is upper bounded by n2.
We now show that I 6∈ SMALL-CSP-UNSAT if and only if (V,E, k) ∈ MULTI-COLORED-

CLIQUE.
(⇒) Assume that there is an assignment α : Var(I)→ {0, 1} that satisfies I. Then by construc-

tion of the constraintsCi,j , we know that for each 1 ≤ i ≤ k, α assigns exactly one xi` to 1. Consider
the set V ′ = { vi`i : 1 ≤ i ≤ k, α(xi`i) = 1 }. By definition, |V ′ ∩ Vi| = 1 for each 1 ≤ i ≤ k,
and thus |V ′| = k. We show that V ′ is a clique. Take arbitrary 1 ≤ i < j ≤ k. Because α satisfies
constraint Ci,j , we know that {vi`i , v

j
`j
} ∈ E. Since i and j were arbitrary, we can conclude that V ′

is a clique, and thus that (V,E, k) ∈ MULTI-COLORED-CLIQUE.
(⇐) Conversely, suppose that there is a clique V ′ ⊆ V such that |V ′∩Vi| = 1 for each 1 ≤ i ≤ k.

Consider the assignment α : Var(I) → {0, 1}, where α(xi`) = 1 if and only if vi` ∈ V ′, for
each 1 ≤ i ≤ k and each 1 ≤ ` ≤ n. It is readily verified that α satisfies each constraint Ci,j .
Thus, I 6∈ SMALL-CSP-UNSAT.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:15

Next, to show membership in co-W[1], we give an fpt-reduction from SMALL-CSP-UNSAT to
CLIQUE. Let I be an instance of SMALL-CSP-UNSAT, where I = {C1, . . . , Ck}. Moreover, for
each 1 ≤ i ≤ k, let Ci = (Si, Ri) and let Ri = {ri1, . . . , ri`i} consist of `i tuples rij . We construct
an instance (V,E, k) of CLIQUE such that (V,E) contains a k-clique if and only if I is satisfiable.

We let the set V = { vij : 1 ≤ i ≤ k, 1 ≤ j ≤ `i } of vertices contain a vertex for each tuple rij in
the constraint relation Ri of each constraint Ci. Then, we construct the edge set E as follows. For
each two vertices vij and vi

′
j′ , we let {vij , vi

′
j′} ∈ E if and only if (1) i 6= i′, and (2) the tuples rij

and ri
′
j′ are not conflicting, i.e., it is not the case that there is a variable x ∈ Var(I) such that the truth

assignments αij : Var(Ci)→ D and αi
′
j′ : Var(Ci′)→ D corresponding to rij and ri

′
j′ , respectively,

assign different values to x.
We show that I 6∈ SMALL-CSP-UNSAT if and only if (V,E, k) ∈ CLIQUE.
(⇒) Assume that there is some assignment α : Var(I) → D that satisfies I. Consider the

set V ′ ⊂ V defined as follows. For each 1 ≤ i ≤ k and each 1 ≤ j ≤ `i, the set V ′ contains the
unique vertex vij such that (the assignment corresponding to) the tuple rij agrees with α. Since for
each i there is a unique tuple rij that agrees with α, we get that |V ′| = k.

We show that V ′ is a clique. Take two arbitrary vertices vij , v
i′
j′ ∈ V ′. By definition of V ′, the

tuples rij and ri
′
j′ both agree with α. Therefore, they cannot be conflicting. Then, by definition of E,

we get that {vij , vi
′
j′} ∈ E. Since vij and vi

′
j′ were arbitrary, we can conclude that V ′ is a clique.

Thus, (V,E, k) ∈ CLIQUE.
(⇐) Conversely, suppose that there is a k-clique V ′ ⊆ V of (V,E). We show that I is satisfiable.

By construction ofE, no two vertices vij and vi
′
j′ with i = i′ are connected by an edge. Therefore, V ′

contains exactly one vertex viji for each 1 ≤ i ≤ k. We show that the assignments corresponding to
the tuples riji can be combined into one single assignment α : Var(I)→ D that satisfies I. All we
have to show is that for each two 1 ≤ i < i′ ≤ k, the tuples riji and ri

′
ji′

are not conflicting. By our
assumption that viji and vi

′
ji′

are connected by an edge, and by construction of E, this is the case.
Therefore, I 6∈ SMALL-CSP-UNSAT.

COROLLARY 3.6. SMALL-CSP-UNSAT-SUBSET is not in W[2], unless W[1] = co-W[1].

3.3. Completeness for A[2]

In this section, we show that the problem SMALL-CSP-UNSAT-SUBSET, in its unrestricted form, is
A[2]-complete. Moreover, we show that hardness for A[2] holds even when we restrict the problem
to Boolean CSP instances.

For the case where the arity of the constraints is bounded, the strongest intractability result for
SMALL-CSP-UNSAT-SUBSET that we establish remains the W[2]-hardness result from Section 3.1
(Proposition 3.2). The A[2]-hardness proof that we give in this section does not work for the case
where the arity of constraints is bounded. It remains open to establish a completeness result for the
problem SMALL-CSP-UNSAT-SUBSET restricted to constraints of bounded arity—interestingly, the
co-W[1]-hardness result from Section 3.2 suggests that the problem is not complete for W[2].

We now turn our attention to establishing the A[2]-completeness of SMALL-CSP-UNSAT-
SUBSET. First, we show that the problem SMALL-CSP-UNSAT-SUBSET is A[2]-hard, even when
restricted to Boolean CSP instances. Second, we show its membership in A[2].

PROPOSITION 3.7. SMALL-CSP-UNSAT-SUBSET is A[2]-hard.

PROOF. We show A[2]-hardness by means of an fpt-reduction from MC(Σ2). Take an arbitrary
instance of MC(Σ2), consisting of a structureA with universeA (over the fixed binary signature τ),
and a first-order formula ϕ = ∃x1, . . . , xk∀y1, . . . , yk ψ, where ψ is a disjunction of atoms. We

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:16 R. de Haan, I. Kanj, S. Szeider

construct a CSP instance I and an integer k′, such that (I, k′) ∈ SMALL-CSP-UNSAT-SUBSET if
and only if A |= ϕ.

We define k′ =
(
k
2

)
+ k + 1. We let the domain of I be D = A ∪ {0, 1, . . . , k}. We may assume

without loss of generality that A ∩ {0, 1, . . . , k} = ∅. We introduce the following variables:

Var(I) = V ∪W ∪X ∪ Z, where
V = {v},
W = {wi : 1 ≤ i ≤ k },
X = {xi,a : 1 ≤ i ≤ k, a ∈ A },
Y = { yi : 1 ≤ i ≤ k }, and
Z = { zi,j : 1 ≤ i < j ≤ k }.

The constraints in I are defined as follows. For each 1 ≤ i < j ≤ k and each a1, a2 ∈ A,
we introduce a constraint Ci,j,a1,a2 for which Var(Ci,j,a1,a2) = {v, xi,a1 , xj,a2 , yi, yj , zi,j}. The
constraint relation has the following k2|A|2 + 1 tuples. For each 0 ≤ i′ ≤ k such that i 6= i′, for
each 0 ≤ j′ ≤ k such that j 6= j′, and for each a3, a4 ∈ A, there is a tuple ri′,j′,a3,a4 . Each such
tuple ri′,j′,a3,a4 sets xi,a1 to j′, sets xj,a2 to i′, sets yi to a3, sets yj to a4, and sets v to 1. Moreover,
it sets zi,j to 1 if at least one atom in ψ containing only variables among xi, xj , yi, yj is satisfied by
the partial assignment α = {xi 7→ a1, xj 7→ a2, yi 7→ a3, yj 7→ a4}; otherwise it sets zi,j to 0. In
addition, there is a tuple that sets all variables in Var(Ci,j,a1,a2) to 0. In particular, this constraint
rules out that xi,a1 is set to j and that xj,a2 is set to i.

Then, for each 1 ≤ i ≤ k and each a ∈ A, we introduce a constraint Ci,a for which Var(Ci,a) =
{xi,a, wi}. The constraint relation has 2k + 1 tuples. For each 1 ≤ j ≤ k and each 0 ≤ b ≤ 1,
there is a tuple that sets xi,a to j and wi to b. In addition, there is a tuple that sets xi,a to 0 and that
sets wi to 1. In other words, this constraint enforces that wi is set to 1 if xi,a cannot be set to any
value j > 0.

Finally, we introduce a constraint C0 for which Var(C0) = V ∪W ∪ Z. The constraint relation
has (2k − 1) · 2k′′ + 1 tuples, where k′′ =

(
k
2

)
. For each assignment ρ : W ∪ Z → {0, 1} such that

at for at least one 1 ≤ i ≤ k it holds that ρ(wi) = 1, there is a tuple that sets all variables according
to ρ, and that sets v to 0. Moreover, there is an additional tuple that sets all variables wi ∈ W to 1,
that sets all variables zi,j ∈ Z to 0, and that sets v to 1. In other words, C0 is satisfied if and only if
either (1) at least one wi is set to 0, or (2) all wi are set to 1 and all zi,j are set to 1.

Before we show the correctness of this reduction, we argue that each unsatisfiable subset I ′ ⊆ I
must include C0. Suppose that this is not the case. Then the assignment that sets all variables wi ∈
W to 1 and that sets all other variables to 0 satisfies I ′.

Also, we argue that each unsatisfiable subset I ′ ⊆ I must include some constraint Ci,ai for
each 1 ≤ i ≤ k, and some ai ∈ A. Suppose that this is not the case. Moreover, let 1 ≤ i1 <
· · · < im ≤ k be the indices for which I ′ does contain some constraint Ci`,ai` . We know that
there is some 1 ≤ i0 ≤ k such that I ′ contains no constraint Ci0,a (for a ∈ A). Then consider the
assignment α : Var(I)→ D that sets wi` to 1 for each 1 ≤ ` ≤ m, and that sets all other variables
to 0. Then α satisfies all constraints Ci,j,a1,a2 and Ci,a in I ′. Since α sets at least one variable wi
to 1, we also know that α satisfies C0. Therefore, α must satisfy all constraints in I ′, which is a
contradiction with our assumption that I ′ is unsatisfiable.

Finally, we argue that for each unsatisfiable subset I ′ ⊆ I of size k′ there must be some as-
signment α : {1, . . . , k} → A such that I ′ contains the constraints Ci,α(i) for each 1 ≤ i ≤ k,
and the constraints Ci,j,α(i),α(j) for each 1 ≤ i < j ≤ k. Suppose that this is not the case. By a
straightforward counting argument, we then know that it must be the case that for some 1 ≤ i0 ≤ k,
and some 1 ≤ j0 ≤ k such that i0 6= j0, there is some Ci0,ai0 ∈ I ′ but for no aj0 the con-
straint Ci0,j0,ai0 ,aj0 is in I ′. (We implicitly assume that j0 > i0; the case where j0 < i0 is
entirely analogous.) Then consider the assignment α : Var(I) → D that sets xi0,ai0 to j0, that

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:17

sets wi0 to 0, and sets all other variables in Var(I) to 0. The only constraints that are conflicting
with α(xi0,ai0) = j0 are constraints Ci0,j0,ai0 ,aj0 , which by assumption are not contained in I ′.
Therefore, it is readily verified that α satisfies all constraints in I ′. This is a contradiction with our
assumption that I ′ is unsatisfiable.

We are now ready to prove that I has an unsatisfiable subset I ′ of size k′ if and only if A |= ϕ,
i.e., that (I, k′) ∈ SMALL-CSP-UNSAT-SUBSET if and only if (A, ϕ) ∈ MC(Σ2).

(⇒) Suppose that there is an unsatisfiable subset I ′ ⊆ I of k′ constraints. As we showed above,
then C0 ∈ I ′. Moreover there exists some assignment α : {1, . . . , k} → A such that I ′ contains
the constraints Ci,α(i) for each 1 ≤ i ≤ k, and the constraints Ci,j,α(i),α(j) for each 1 ≤ i < j ≤ k.
Now consider the assignment α′ : X → A defined by letting α′(xi) = α(i), for each 1 ≤ i ≤ k.
We claim that A, α′ |= ∀y1, . . . , yk ψ. Take an arbitrary assignment β′ : Y → A. We show
thatA, α′∪β′ |= ψ. Consider the assignment β : Var(I)→ D defined by letting β(yi) = β′(yi) for
all yi ∈ Y , letting β(xi,a) = 0 for all xi,a ∈ X , letting β(v) = 1, letting β(zi,j) = 0 for all zi,j ∈ Z,
and letting β(wi) = 1 for all wi ∈ W . Since I ′ is unsatisfiable, we know that β cannot satisfy all
constraints in I ′. The only possible contradiction is that some constraint Ci0,j0,α(i0),α(j0) ∈ I ′ does
not allow zi0,j0 to be set to 0. By construction of Ci0,j0,α(i0),α(j0), this is only the case if α′ ∪ β′
satisfies some atom in ψ. Therefore, we can conclude that A, α′ ∪ β′ |= ψ. Since β′ was arbitrary,
we know that A, α′ |= ∀y1, . . . , yk ψ. Therefore, A |= ϕ, and thus (A, ϕ) ∈ MC(Σ2).

(⇐) Conversely, suppose that A |= ϕ, that is, that there exists some assignment α :
{x1, . . . , xk} → A such that A, α |= ∀y1, . . . , yk ψ. Consider the following subset I ′ ⊆ I of
constraints:

I ′ = {C0} ∪ {Ci,α(xi) : 1 ≤ i ≤ k } ∪ {Ci,j,α(xi),α(xj) : 1 ≤ i < j ≤ k }.

Clearly, |I ′| = k′. We claim that I ′ is unsatisfiable. To derive a contradiction, suppose that I ′ is
satisfiable, i.e., that there is an assignment β′ : Var(I)→ D that satisfies all constraints in I ′. Take
an arbitrary 1 ≤ i ≤ k. Since I ′ contains the constraints Ci,j,α(xi),α(xj) for all j > i, and the
constraints Cj,i,α(xj),α(xi) for all j < i, we know that β′ must set xi,α(xi) to 0, and thus since I ′
contains the constraint Ci,α(xi), we know that β′ must set wi to 1. Then, since I ′ contains C0,
we know that β′ sets all zi,j ∈ Z to 0, and that β′ sets v to 1. Moreover, since I ′ contains the
constraints Ci,j,α(xi),α(xj) for all 1 ≤ i < j ≤ k, we know that β′(yi) ∈ A, for all yi ∈ Y . Then,
consider the restriction β : {y1, . . . , yk} → A of β′ to the variables in Y , i.e., β(yi) = β′(yi) for
all yi ∈ Y . Since A, α |= ∀y1, . . . , yk ψ, we know that A, α ∪ β |= ψ, that is, there must be some
atom R in ψ that is satisfied by α ∪ β. Let 1 ≤ i0 < j0 ≤ k be indices such that the variables in R
are among {xi0 , xj0 , yi0 , yj0} (we know such i0, j0 exist, because R is unary or binary). Then by
construction ofCi0,j0,α(xi0),α(xj0)

, we know that β′ is forced to set zi0,j0 to 1. This is a contradiction
with our previous conclusion that β′(zi,j) = 0 for all zi,j ∈ Z. Therefore, we can conclude that I ′
is unsatisfiable, and that (I, k′) ∈ SMALL-CSP-UNSAT-SUBSET.

COROLLARY 3.8. SMALL-CSP-UNSAT-SUBSET is A[2]-hard, even when restricted to
Boolean CSP instances.

PROOF. Proposition 3.3 directly gives us an fpt-reduction to the problem SMALL-CSP-UNSAT-
SUBSET restricted to Boolean CSP instances.

PROPOSITION 3.9. SMALL-CSP-UNSAT-SUBSET is in A[2].

PROOF. We show membership in A[2] by fpt-reducing the problem to MC(Σ2). Let (I, k) be
an instance of SMALL-CSP-UNSAT-SUBSET, with I = {C1, . . . , Cm}, and Ci = (Si, Ri) for
each 1 ≤ i ≤ m. Moreover, let u be the maximum number of tuples in any of the constraint
relations Ri.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:18 R. de Haan, I. Kanj, S. Szeider

We construct an instance (A, ϕ) of MC(Σ2) (over a fixed signature τ) as follows. We define the
universe A of A as follows:

A = {c1, . . . , cm} ∪ {t1, . . . , tu}.
Intuitively, the elements ci represent the constraints Ci, and the elements tj represent tuples in
constraint relations Ri.

We introduce unary relations C and T to τ . Intuitively, C encodes whether an element represents
a constraint, and T encodes whether an element represents a tuple. We let:

CA = {c1, . . . , cm} and TA = {t1, . . . , tu}.
We introduce a binary relation I to τ that intuitively encodes whether a constraint Ci has at least j
tuples. We let:

IA = { (ci, tj) : |Ri| ≥ j }.
Finally, we introduce a 4-ary relation N to τ , that intuitively represents whether a tuple tj1 in the
constraint relation Ri1 and a tuple tj2 in the constraint relation Ri2 are non-conflicting. (Moreover,
it ensures that there is a j1-th tuple in Ri1 and a j2-th tuple in Ri2 .) We let:

NA = { (ci1 , tj1 , ci2 , tj2) : 1 ≤ i1 ≤ m, 1 ≤ j1 ≤ |Ri1 |, 1 ≤ i2 ≤ m, 1 ≤ j2 ≤ |Ri2 |,
the j1-th tuple in Ri1 and the j2-th tuple in Ri2 are not conflicting }.

Then, we define the first-order logic sentence ϕ as follows:

ϕ = ∃x1, . . . , xk∀y1, . . . , yk
∧

1≤i≤k
C(xi) ∧

(
∧

1≤i≤k
(T (yi) ∧ I(xi, yi))

)
→
(

∨
1≤i<j≤k

¬N(xi, yi, xj , yj)

)
.

Clearly |ϕ| ≤ f(k) for some function f .
Any assignment α : {x1, . . . , xk} → {c1, . . . , cm} then naturally corresponds to a subset I ′ ⊆ I

of size k. Also, any subsequent assignment β : {y1, . . . , yk} → {t1, . . . , tu} that for each 1 ≤ i ≤ k
assigns yi to a sufficiently small value tj (that is, 1 ≤ j ≤ |R`| where α(xi) = c`) naturally
corresponds to a choice of a tuple tj in the constraint relation Ri of each constraint Ci ∈ I ′. Using
these correspondences, it is straightforward to verify that (I, k) ∈ SMALL-CSP-UNSAT-SUBSET if
and only if A |= ϕ.

THEOREM 3.10. Both SMALL-CSP-UNSAT-SUBSET and SMALL-CSP-UNSAT-SUBSET re-
stricted to Boolean CSP instances are A[2]-complete.

3.3.1. Completeness for Σp
2. The A[2]-completeness result for SMALL-CSP-UNSAT-SUBSET

suggests that the unparameterized variant of the problem is complete for Σp
2, as A[2] is a parameter-

ized analogue of Σp
2. For the case of CNF formulas, this is known to be the case [Liberatore 2005].

We show that this Σp
2-completeness result can be extended to the case of CSP instances.

Formally, we consider the (non-parameterized) problem CSP-UNSAT-SUBSET, where instances
consist of a CSP instance I and a positive integer m ≥ 1. The question is whether there exists an
unsatisfiable subset I ′ ⊆ I of size m. The (non-parameterized) problem CNF-UNSAT-SUBSET is
defined analogously for the case of CNF formulas. We use the following convention to denote the
non-parameterized problems that we discuss in this section:

Remark 3.11. We indicate non-parameterized variants of the problem SMALL-UNSAT-SUBSET
by a lack of the prefix SMALL- in the name of the problem.

For these problems, membership in Σp
2 follows by an encoding in QSAT2. For the case of CNF

formulas, this has been shown by Liberatore [2005], and for the case of CSP instances, the known
encoding can be extended straightforwardly. Hardness for Σp

2 has also been shown by Liberatore
[2005, Theorem 2], for the case of CNF formulas.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:19

PROPOSITION 3.12 ([LIBERATORE 2005]). CNF-UNSAT-SUBSET is Σp
2-complete.

We show how to extend this result to the case of CSP instances. The most obvious way to show
this would be to give a direct reduction from the problem CNF-UNSAT-SUBSET to CSP-UNSAT-
SUBSET, by expressing each clause as a CSP constraint. However, if no bound on the clause size is
known, this might result in an exponential blow-up in the size of the constraint relations needed to
express clauses. Therefore, we show that the Σp

2-hardness of CNF-UNSAT-SUBSET even holds for
the case where all clauses have bounded size.

PROPOSITION 3.13. CNF-UNSAT-SUBSET is Σp
2-hard, even when restricted to CNF formulas

containing only clauses of size at most 3.

PROOF. Let (ϕ,m) be an instance of CNF-UNSAT-SUBSET. We show how to transform (ϕ,m)
into an equivalent instance (ϕ3,m3) in polynomial time, where ϕ3 contains only clauses of size at
most 3.

Let u be the maximum size of any clause appearing in ϕ. We firstly transform ϕ into a formula ϕ1

that contains an unsatisfiable subset of size m1 = m + 1 if and only if ϕ contains an unsatisfiable
subset of sizem. Moreover, each unsatisfiable subset of ϕ1 must contain one particular (unit) clause.
Let z 6∈ Var(ϕ) be a fresh variable. We let ϕ1 = {{z}} ∪ { c ∪ {z} : c ∈ ϕ }. It is straightforward
to show that each unsatisfiable subset of ϕ1 must contain the clause {z}, and that there exists a
natural correspondence between unsatisfiable subset of ϕ (of size m) and unsatisfiable subset of ϕ1

(of size m1).
Next, we transform ϕ1 into a formula ϕ2 that has only clauses that are either unit clauses, or

clauses of size u+1. We introduce u fresh variables z1, . . . , zu 6∈ Var(ϕ1). Then, for each clause c ∈
ϕ1 of size 1 ≤ ` ≤ u + 1, we add the clause c′ = c ∪ {z`, z`+1, . . . , zu} to ϕ2. Moreover, we add
the unit clauses c1, . . . , cu, where ci = {zi} for each 1 ≤ i ≤ u. to ϕ2.

Firstly, we show that each unsatisfiable subset ψ of ϕ2 must contain the unit clauses c1, . . . , cu.
To derive a contradiction, suppose that this is not the case, that is, there is some 1 ≤ i ≤ u such
that ci 6∈ ψ. We know that ψ must contain the clause {z, z1, . . . , zu}. Moreover, we know that all
other clauses in ψ contain the literal z. Then any truth assignment that sets z to 0 and that sets zi
to 0 satisfies ψ, which is a contradiction with our assumption that ψ is unsatisfiable. Therefore, we
can conclude that each unsatisfiable subset of ϕ2 contains all of the clauses c1, . . . , cu.

Moreover, there exists a natural correspondence between unsatisfiable subsets of ϕ1 of size m1

and unsatisfiable subsets of ϕ2 of size m2 = m1 +u. Therefore, (ϕ1,m1) and (ϕ2,m2) are equiva-
lent instances of CNF-UNSAT-SUBSET. Moreover, we know that each unsatisfiable subset ψ ⊆ ϕ2

of size m2 contains exactly u unit clauses and m1 clauses of size exactly u+ 1.
We can now transform (ϕ2,m2) into an equivalent instance (ϕ3,m3) as follows. Each clause c =
{l1, . . . , lu+1} ∈ ϕ2 of size u + 1, we replace by the clauses {l1, yc1}, {yc1, l2, yc2}, . . . ,
{ycu−1, lu, ycu}, and {ycu, lu+1}, where the variables yc1, . . . , y

c
u are fresh variables. Clearly, ϕ3

contains only clauses of size at most 3. Moreover, it is straightforward to verify that ϕ2 con-
tains an unsatisfiable subset of size m2 if and only if ϕ3 contains an unsatisfiable subset of
size m3 = (u + 1)m1 + u = (u + 1)(m + 1) + u. Therefore, ϕ contains an unsatisfiable sub-
set of size m if and only if ϕ3 contains an unsatisfiable subset of size m3.

This result allows us to give a polynomial-time reduction to the problem CSP-UNSAT-SUBSET,
by expressing each clause of size 3 as a constraint over 3 variables and with a constraint relation
containing 7 tuples.

COROLLARY 3.14. The problem CSP-UNSAT-SUBSET is Σp
2-complete.

3.4. W[1]-Membership for Small Arity and Domain Size
The fpt-reductions in the W[2]-hardness and A[2]-hardness proofs above all use CSP instances
either with a large domain, or with constraints of large arity. We show that with bounds on both the
domain size and the maximum arity of constraints, the problem SMALL-CSP-UNSAT-SUBSET is

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:20 R. de Haan, I. Kanj, S. Szeider

contained in W[1]. The general proof strategy will be the same as the W[1]-membership proof for
SMALL-CNF-UNSAT-SUBSET by Fellows et al. [2006].

Their general proof strategy goes as follows. They use the result by Papadimitriou and Yannakakis
[1999] that the model checking problem for first-order logic, parameterized by the size of the for-
mula, is W[1]-complete for positive formulas. They then continue to show that for each parameter
value k, the problem SMALL-CNF-UNSAT-SUBSET can be expressed as an instance of the first-
order model checking problem, where the first-order formula is positive and depends only on the set
of minimal unsatisfiable formulas (of size at most k) on variables y1, . . . , yk−1. They thus give an
fpt-reduction from SMALL-CNF-UNSAT-SUBSET to the problem MC(positive), thereby showing
W[1]-membership.

In this argument, they use the underlying assumption that, for CNF formulas, any minimal unsat-
isfiable subset of size at most k contains at most k − 1 variables. This is known as Tarsi’s Lemma
[Aharoni and Linial 1986; Kullmann 2000b]. For the case of CSP instances, we will need a similar
lemma that bounds the size and the number of possible sets of constraints whose arity and domain
size depend only on the parameter value.

LEMMA 3.15. Let C be a class of CSP constraints on the domain D = {d1, . . . , dk1}, for
some k1 ∈ N, where each constraint C ∈ C has arity at most k2 ∈ N. Moreover, let k0 ∈ N. Then,
the number of unsatisfiable sets I of size at most k0, containing only constraints in C and con-
taining only the variables x1, . . . , xk0·k2 , is bounded above by f(k0, k1, k2), for some computable
function f : N3 → N. Moreover, these sets can be enumerated in time g(k0, k1, k2), for some
computable function g : N3 → N.

PROOF. Since each constraint in C contains at most k2 variables, we know that any set of k0
constraints contains at most u = k0·k2 variables. Take some unsatisfiable subset I of size at most k0,
containing only constraints in C, and containing only the variables x1, . . . , xu. By a straightforward
counting argument we get that the constraints in C contain at most µ1 many different constraint
relations, where:

µ1 =

k2∑

`=1

k`1.

Then, using only the variables x1, . . . , xk0·k2 , one can construct at most µ2 different constraints,
where µ2 = (k0 · k2)k2 · µ1. Therefore, there are at most µ3 many different sets I of size
at most k0, containing only constraints in C and containing only the variables x1, . . . , xk0·k2 ,
where µ3 = (µ2)k0 . Then µ3 is also an upper bound on the number of such sets I that are un-
satisfiable.

Enumerating all such sets I that are unsatisfiable can be done by simply going over all such
possible sets I, and for each set checking whether it is unsatisfiable. Since each I contains at
most k0 · k2 many variables, and has domain size k1, this (un)satisfiability check can be done in
time O((k0 · k2)k1).

Using this lemma, we can now prove W[1]-membership for SMALL-CSP-UNSAT-SUBSET when
the arity and the domain size are bounded.

PROPOSITION 3.16. SMALL-CSP-UNSAT-SUBSET is in W[1] when restricted to constraints
of arity at most f1(k) over a domain of size at most f2(k), where k is the parameter value, and f1, f2
are computable functions.

PROOF. We give an fpt-reduction to the problem MC(positive). Take an instance (I, k) of
SMALL-CSP-UNSAT-SUBSET, where the arity of all constraints in I is at most a = f1(k), and
where the domain size of I is at most d = f2(k). Let the domain of I be D = {d1, . . . , dm1

}, for
some m1 ≤ f2(k). Also, let Var(I) = {x1, . . . , xu1

}, and I = {C1, . . . , Cu2
}. We construct a pos-

itive first-order logic sentence ϕ and a relational structure A (with universe A) over the signature τ .
The sentence ϕ depends only on k, and contains some constants a ∈ A.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:21

By Lemma 3.15, we know that the number m2 of possible unsatisfiable sets I ′ over the
variables x1, . . . , xk·a and the domain D, containing only constraints of arity at most a, is at
most g1(k), for some computable function g1. Moreover, we can enumerate all such unsatisfi-
able sets I1, . . . , Im2

in time g2(k), for some computable function g2. (Without loss of generality,
we only consider such sets Ii that are minimally unsatisfiable and that involve exactly the vari-
ables x1, . . . , xb for some 1 ≤ b ≤ k · a.) Also, the number m3 of different constraint relations
that occur in the constraints in I is bounded by g3(k), for some computable function g3. Moreover,
all such constraint relations R1, . . . , Rm3 can be enumerated in time g4(k), for some computable
function g4.

We firstly construct the structure A. We let the universe of A be A = { vi : 1 ≤ i ≤ u1 } ∪
{1, . . . ,m3} ∪ { ci : 1 ≤ i ≤ u2 }. Then, we introduce unary predicates V,C,N to τ , and we
let V A = { vi : 1 ≤ i ≤ u1 }, CA = { ci : 1 ≤ i ≤ u2 }, and NA = {1, . . . ,m3}. Moreover,
we introduce a binary predicate T to τ , and we let TA consist of all tuples (ci, `), where 1 ≤ i ≤
u2, 1 ≤ ` ≤ m3, and the constraint relation of Ci ∈ I is R`. Finally, we introduce a ternary
predicate O to τ , and we let OA consist of all tuples (ci, j, v`), where 1 ≤ i ≤ u2, 1 ≤ j ≤
arity(Ci), 1 ≤ ` ≤ u1, and the j-th variable in the scope of Ci is v`.

Next, we construct ϕ. For each such Ii, for 1 ≤ i ≤ m2, we construct a positive first-order logic
sentence ϕi, and we let:

ϕ =
∨

1≤i≤m2

ϕi.

Take 1 ≤ i ≤ m2, and let Ii = {C ′1, . . . , C ′µ1
}, where µ1 ≤ k. Moreover, let Var(Ii) =

{x1, . . . , xµ2
}. Also, for each 1 ≤ j ≤ µ1, let C ′j = (S′j , R

′
j), where S′j = (xνj,1 , . . . , xνj,bj),

and where R′j = Rν′j . Then we define:

ϕi = ∃z1, . . . , zµ2
∃y1, . . . , yµ1

∧

1≤i≤µ2

V (zi) ∧
∧

1≤j≤µ1


C(yj) ∧ T (yj , ν

′
j) ∧

∧

1≤j′≤bj
O(yj , j

′, zνj,j′)


 .

It is readily verified that |ϕ| depends only on k, and that ϕ is a positive first-order logic sentence.
We claim that (I, k) ∈ SMALL-CSP-UNSAT-SUBSET if and only if A |= ϕ.

(⇒) Take a minimally unsatisfiable subset I ′ ⊆ I of size k′ ≤ k. We know that there ex-
ists a bijection ρ : Var(I) → {x1, . . . , x|Var(I)|} such that applying ρ to I ′ yields the set Ii for
some 1 ≤ i ≤ m2. Let Ii = {C ′1, . . . , C ′k′} and let Var(Ii) = {x1, . . . , xµ2

}. Now, consider
the assignment α : {z1, . . . , zµ2} ∪ {y1, . . . , yk′} → A, defined by letting α(zj) = ρ−1(xj) for
all 1 ≤ j ≤ µ2, and letting α(yj) = cj′ where 1 ≤ j ≤ k′ and where 1 ≤ j′ ≤ u2 is the unique
index so that applying ρ−1 to C ′j yields Cj′ . It is then straightforward to verify that α witnesses
that A |= ϕi. Therefore, A |= ϕ.

(⇐) Conversely, suppose that A |= ϕ. Then there must be some 1 ≤ i ≤ m2 such that A |= ϕi.
Suppose that ϕi is of the form ∃z1, . . . , zµ2

∃y1, . . . , yµ1
ψ. Then there must be an assignment α :

{z1, . . . , zµ2
} ∪ {y1, . . . , yµ1

} → A that witnesses that A |= ϕi. Then, by construction of ϕi, we
know that α(zi) ∈ { vj : 1 ≤ j ≤ u1 } for all 1 ≤ i ≤ µ2 and that α(yi) ∈ { cj : 1 ≤ j ≤ u2 } for
all 1 ≤ i ≤ µ1. Then, consider the function ι : {z1, . . . , zµ2} → Var(I), defined by letting ι(zi) =
xj where j is the unique index such that α(zi) = vj . Because |Var(Ii)| = µ2, ι must be a bijection.
Also, for each 1 ≤ j ≤ µ1, let (x`j,1 , . . . , x`j,nj

) be the scope of constraint α(yj). Now, consider
the set I ′ = {C ′1, . . . , C ′µ1

} of constraints, where for each 1 ≤ i ≤ µ1 the constraint C ′i has
scope S′i = (ι(z`j,1), . . . , ι(z`j,nj

))), and has as constraint relation R′i = R`, where 1 ≤ ` ≤ m3

is the unique index such that the atom T (yi, `) occurs in ϕi. By construction of ϕi and A, and by
the choice of α, we get that C ′i ∈ I for each 1 ≤ i ≤ µ1, and thus that I ′ ⊆ I. Moreover, the
construction of I ′ gives us a mapping ρ : Var(I ′) → {x1, . . . , xµ2

} such that applying ρ to I ′
yields Ii. (Namely, for each x ∈ Var(I ′), we let ρ(x) = xj where 1 ≤ j ≤ µ2 is the unique index

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:22 R. de Haan, I. Kanj, S. Szeider

such that ι−1(x) = zj .) Therefore, I ′ is unsatisfiable, and we can conclude that (I, k) ∈ SMALL-
CSP-UNSAT-SUBSET.

4. BOOLEAN CONSTRAINT LANGUAGES
With the aim of identifying fragments for which finding small unsatisfiable subsets of a set of con-
straints, we turn our attention towards several fragments of Boolean constraints. By Proposition 3.1,
Corollary 3.4 and Theorem 3.10, we know that merely restricting the domain to be Boolean does not
lead to fixed-parameter tractability. There are, however, further restrictions on Boolean constraints
that allow the satisfiability problem to be solved in polynomial time. Therefore, these are natural
restrictions to investigate for our problem.

In his seminal paper, Schaefer [1978] identified the restrictions that need to be put on the indi-
vidual constraints to result in a tractable satisfiability problem. These constraint-based restrictions
are often characterized by the constraints (over a certain domain) that are allowed: the constraint
language. In this section, we consider the problem of finding small unsatisfiable subsets for the
six Schaefer languages: the Boolean constraint languages that Schaefer identified as the maximal
languages that admit a polynomial-time satisfiability problem.

For these constraint languages, we study both the setting where constraints are specified as propo-
sitional formulas and the setting where constraints are specified as CSP instances. That is, we an-
alyze the parameterized complexity of both problems SMALL-CNF-UNSAT-SUBSET and SMALL-
CSP-UNSAT-SUBSET.

4.1. 0-Valid and 1-Valid Instances
We begin with 0-valid and 1-valid constraints. Since 0-valid and 1-valid constraints are always satis-
fiable (namely by the all-zeroes and the all-ones assignment, respectively), there are no unsatisfiable
subsets when dealing with 0-valid or 1-valid constraints. This trivializes the problem of finding a
small unsatisfiable subset.

OBSERVATION 4.1. SMALL-CSP-UNSAT-SUBSET can be solved (trivially) in polynomial time
when restricted to Boolean CSP instances that are 0-valid or 1-valid. SMALL-CNF-UNSAT-
SUBSET can be solved (trivially) in polynomial time when restricted to CNF formulas that are 0-
valid or 1-valid.

4.2. Horn Instances
Next, we consider Horn and anti-Horn constraints. In this section, we work out results for Horn
constraints, but all these results also hold for anti-Horn constraints: one can simply swap the domain
values 0 and 1, or in terms of propositional formulas, negate all literals.

The reduction that Fellows et al. [2006, Section 4] use to show W[1]-hardness for SMALL-CNF-
UNSAT-SUBSET in fact only uses clauses that are anti-Horn (that is, clauses that contain at most one
negative literal). Therefore, this shows that the problem SMALL-CNF-UNSAT-SUBSET is W[1]-
hard already when restricted to anti-Horn clauses (and thus is W[1]-hard also when restricted to
Horn clauses).

PROPOSITION 4.2 ([FELLOWS ET AL. 2006]). SMALL-CNF-UNSAT-SUBSET is W[1]-hard,
even when restricted to Horn formulas.

Fellows et al. also show hardness for SMALL-CNF-UNSAT-SUBSET when restricted to 3CNF
formulas that are Horn, that is, Horn formulas where each clause has size at most 3. We revisit
and slightly extend their result. We do this by relating the problem to the problem of finding small
(directed) hyperpaths, with the aim of providing a bit more intuition behind the hardness result. In
particular, we define the parameterized problem SHORT-HYPERPATH, show that it is W[1]-hard,
and then provide an fpt-reduction from SHORT-HYPERPATH to the problem SMALL-CNF-UNSAT-
SUBSET restricted to CNF formulas containing only Horn clauses of size at most 3.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:23

For a Horn formula ϕ and s, t ∈ Var(ϕ), we say that a subformula ϕ′ ⊆ ϕ is a hyperpath from s
to t if (i) t = s or (ii) c = {x1, . . . , xn, t} ∈ ϕ′ and ϕ′\c is a hyperpath from s to xi for each 1 ≤
i ≤ n. If |ϕ′| ≤ k then ϕ′ is called a k-hyperpath. The parameterized problem SHORT-HYPERPATH
takes as input a Horn formula ϕ, two variables s, t ∈ Var(ϕ) and an integer k. The problem is
parameterized by k. The question is whether there exists a k-hyperpath from s to t. For a more
detailed discussion on the relation between (backward) hyperpaths in hypergraphs and hyperpaths as
defined above, we refer to a survey article by Gallo et al. [1993]. For the hardness proof of SHORT-
HYPERPATH, we reduce from the W[1]-complete problem MULTI-COLORED-CLIQUE [Fellows
et al. 2009].

LEMMA 4.3. SHORT-HYPERPATH is W[1]-hard, even for instances (ϕ, s, t, k) where ϕ con-
tains only clauses of size at most 3.

PROOF. We give a reduction from MULTI-COLORED-CLIQUE. Let (V,E, k) be an instance of
MULTI-COLORED-CLIQUE, whereG = (V,E) is a simple graph and V1, . . . , Vk are the given parti-
tions of V . We construct an instance (ϕ, s, t, k′) of SHORT-HYPERPATH, where k′ = k+

(
k
2

)
+1 and

Var(ϕ) = {s, t} ∪ V ∪ { pi,j : 1 ≤ i < j ≤ k };
ϕ = ϕV ∪ ϕp ∪ ϕt;

ϕV = { {¬s, v} : v ∈ V };
ϕp = { {¬vi,¬vj , pi,j} : 1 ≤ i < j ≤ k, vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈ E };
ϕt = {{¬pi,j : 1 ≤ i < j ≤ k } ∪ {t}}.

This construction is illustrated for an example with k = 3 in Figure 1. We claim that (G, k, c) ∈
MULTI-COLORED-CLIQUE if and only if (ϕ, s, t, k′) ∈ SHORT-HYPERPATH.

(⇒) Assume (G, k, c) ∈ MULTI-COLORED-CLIQUE. Then there exists a clique V ′ of G with
|V ∩ Vi| = 1 for all 1 ≤ i ≤ k. We construct a k′-hyperpath ϕ′ from s to t. We define:

ϕV ′ = { {¬s, v} : v ∈ V ′ } ∪ ϕt ∪
{ {¬vi,¬vj , pi,j} : 1 ≤ i < j ≤ k, vi ∈ Vi ∩ V ′, vj ∈ Vj ∩ V ′, {vi, vj} ∈ E }

It is straightforward to verify that ϕV ′ is a k′-hyperpath from s to t.
(⇐) Assume that (ϕ, s, t, k′) ∈ SHORT-HYPERPATH. Then there exists a k′-hyperpath ϕ′ from s

to t. We know that ϕt ⊆ ϕ′, since ϕt contains the unique clause in ϕ with t occurring positively.
Since |ϕ′| ≤ k′, we know that in order for ϕ′ to be a hyperpath from s to t, we have |ϕV ∩ ϕ′| = k

and |ϕp ∩ ϕ′| =
(
k
2

)
. It is then straightforward to verify that the set V ′ = { v ∈ V : {¬s, v} ∈ ϕ′ }

witnesses that G has a k-clique containing one node in each Vi.
To see that clauses of size at most 3 in the hyperpath suffice, we slightly adapt the reduction.

The only clause we need to change is the single clause e ∈ ϕt. This clause e is of the form
{¬p1, . . . ,¬pm, t}, form =

(
k
2

)
. We introduce new variables z1, . . . , zm and replace e by them+1

many clauses {¬p1, z1}, {¬zi−1,¬pi, zi} for all 1 < i ≤ m and {¬zm, t}. Clearly, the resulting
Horn formula only has clauses of size at most 3. This adapted reduction works with the exact same
line of reasoning as the reduction described above, with the only change that k′ = k + 2

(
k
2

)
+ 1.

Note that even the slightly stronger claim holds thatG has a properly colored k-clique if and only
if there exists a (subset) minimal k′-hyperpath ϕ′ ⊆ ϕ for which we have |ϕ′| = k′.

We are now in a position to describe the proof that finding small unsatisfiable subsets in Horn
formulas with clauses of size at most 3 is W[1]-hard. In fact, this proof shows that SMALL-CNF-
UNSAT-SUBSET is W[1]-hard already when restricted to instances that contain only Horn clauses of
size at most 3, where one clause is a unit clause containing a negative literal, and all other clauses are
definite Horn (i.e., clauses that contain exactly one positive literal). Note that this hardness crucially
depends on allowing one clause in the formula that is not definite Horn, since for definite Horn
formulas the problem is trivial (definite Horn formulas are always satisfied by the truth assignment
that sets all variables to 1). This hardness result for the case of Horn formulas containing clauses of

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:24 R. de Haan, I. Kanj, S. Szeider

1

2

3

·
·
·
·
·

· · · · ·

· · · · ·

(a) A 3-partite graph G with a
clique of size 3 (in black).

·
·
·
·
·

· · · · ·

· · · · ·

s
p1,2

p2,3

p1,3

t

(b) The hyperpath in H of size k′ = 3 +
(
3
2

)
+ 1 from s to t

corresponding to the clique.

Fig. 1: Illustration of the reduction in the proof of Lemma 4.3 for the case of a 3-colored clique.

size at most 3 was already shown by Fellows et al. [2006]. In fact, the fpt-reduction that they use
to show this hardness result also only involves Horn formulas containing one clause c that is not
definite Horn, but this clause c in their reduction is not a unit clause.

PROPOSITION 4.4. SMALL-CNF-UNSAT-SUBSET is W[1]-hard even when restricted to the
case where the input formula consists of Horn clauses of size at most 3, and contains only one
clause that is not definite Horn.

PROOF. We show W[1]-hardness by reducing from SHORT-HYPERPATH. Let (ϕ, s, t, k) be an
instance of SHORT-HYPERPATH. By Lemma 4.3, we may assume without loss of generality that ϕ
contains only definite Horn clauses of size at most 3. We construct an instance (ψϕ, k

′) of SMALL-
CNF-UNSAT-SUBSET. Here k′ = k + 2. For each ϕ′ ⊆ ϕ we define a formula ψϕ′ , by letting
Var(ψϕ′) = Var(ϕ′) and:

ψϕ′ = {{s}, {¬t}} ∪ ϕ′.
Clearly ψϕ contains only Horn clauses of size at most 3, and only the clause {¬t} is not definite
Horn. We claim that (ψϕ, k

′) ∈ SMALL-CNF-UNSAT-SUBSET if and only if (ϕ, s, t, k) ∈ SHORT-
HYPERPATH.

(⇒) Assume that there is some ψ′ ⊆ ψϕ of size at most k that is unsatisfiable. Then {¬t} ∈
ψ′, since otherwise setting all variables to 1 would satisfy ψ′. Similarly, also {s} ∈ ψ′, because
otherwise setting all variables to 0 would satisfy ψ′. Now let ϕ′ ⊆ ϕ be the unique subset of clauses
such that ψ′ = ψϕ′ . We know that |ϕ′| ≤ k. Now, since ψ′ |= s and ψ′ |= ¬t, and because ψ′ is
unsatisfiable, we get that ϕ′ |= s→ t. It is then easy to verify with an inductive argument that ϕ′ is
a k-hyperpath from s to t. In other words, (ϕ, s, t, k) ∈ SHORT-HYPERPATH.

(⇐) Assume that there exists a k-hyperpath ϕ′ ⊆ ϕ from s to t. By definition, |ϕ′| ≤ k. It is
readily verified with an inductive argument that this implies that ϕ′ |= s → t. Therefore, ψϕ′ =
ϕ′ ∪ {{s}, {¬t}} is unsatisfiable. Since |ψϕ′ | ≤ k′, this means that (ψϕ, k

′) ∈ SMALL-CNF-
UNSAT-SUBSET.

The above results directly give us W[1]-hardness for SMALL-CSP-UNSAT-SUBSET restricted to
Horn constraints, because CNF formulas with bounded clause size can be expressed as equivalent
CSP instances in polynomial time (this argument is similar to the one behind Corollary 3.14).

COROLLARY 4.5. SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances contain-
ing only Horn constraints (that are equivalent to a single Horn clause) is W[1]-hard.

Alternatively, we can use the proof of Proposition 4.4 to show W[1]-hard for the problem SMALL-
CNF-UNSAT-SUBSET restricted to Horn formulas containing only clauses of size at most 3 and

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:25

containing only a single unit clause. Note that the problem is trivial for Horn formulas without unit
clauses, since such formulas are always satisfiable (each clause then contains at least one negative
literal, so setting all variables to 0 satisfies the formula).

COROLLARY 4.6. SMALL-CNF-UNSAT-SUBSET is W[1]-hard even when restricted to in-
stances (ϕ, k) where ϕ consists of Horn clauses of size at most 3, and contains only one unit clause.

PROOF. We can modify the proof of Proposition 4.4 as follows. Instead of adding the unit
clause {¬t}, in the construction of the formulas ψϕ′ we instantiate the formulas ϕ′ with the lit-
eral ¬t (and simplify the formula accordingly). Correspondingly, the new parameter value be-
comes k′ = k + 1 (instead of k + 2). It is readily verified that this results in a correct fpt-reduction
from SHORT-HYPERPATH to the problem SMALL-CNF-UNSAT-SUBSET, where each produced
CNF formula satisfies the required constraints.

For the case of CSP instances that are Horn, we can strengthen the W[1]-hardness results of
Corollary 4.5 to a W[2]-hardness result by giving an fpt-reduction from HITTING-SET.

PROPOSITION 4.7. SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances con-
taining only Horn constraints is W[2]-hard.

PROOF. We show W[2]-hardness by reducing from HITTING-SET. Let (U, T , k) be an instance
of HITTING-SET, where T = {T1, . . . , Tm} is a family of subsets of the universe U . The idea
behind this reduction is the following. We introduce a variable xj for each subset Tj ∈ T , plus
an additional variable x0. Then, we introduce a constraint C0 that ensures that x0 is assigned the
value 1, and xm is assigned the value 0. Moreover, for each element u ∈ U , we introduce a con-
straint Cu that entails the conjunction of the implications (xj−1 → xj), for each Tj that u appears
in. Any hitting set H ⊆ U then entails to a conjunction of implications that together entail the im-
plication (x0 → xm), which is inconsistent with the constraint C0. Additionally, to ensure that for
each constraint Cu the constraint relation Ru only contains a polynomial number of tuples, we add
several Horn clauses to the CNF formula that is equivalent to the constraint Cu.

Formally, we construct the CSP instance I over the domain D = {0, 1} as follows. We
let Var(I) = {x0, . . . , xm}. Then, we add the Horn constraint C0 to I, where:

C0 ≡ x0 ∧ xm.
Then, for each u ∈ U we add a constraint Cu to I. Take some u ∈ U , and let Tj1 , . . . , Tj` be the
subsets Tj ∈ T that contain u, with j1 < · · · < j`. Then:

Cu ≡
∧

1≤i≤`
(xji−1 ↔ xji) ∧

∧

1≤i<i′≤`
(xji ← xji′).

Clearly, the constraint C0 and all constraints Cu are Horn constraints. Also, the constraint re-
lation R0 (for the constraint C0) and all constraint relations Ru (for the constraints Cu) con-
tain a polynomial number of tuples. For the constraint C0 this is clear. Consider some con-
straint Cu = (Su, Ru). Assuming that the order of the variables in the scope Su = (xi1 , . . . , xi`)
is increasing (i.e., i1 < · · · < i`), the constraint relation Ru contains only tuples consisting of a
number of ones (possibly zero of them) followed by a number of zeroes (possibly zero of them).
These are only linearly many.

Finally, we let k′ = k + 1. We claim that (U, T , k) ∈ HITTING-SET if and only if (I, k) ∈
SMALL-CSP-UNSAT-SUBSET.

(⇒) Assume that there is a hitting set H ⊆ U of T of size at most k. Take the set I ′ = {C0} ∪
{Cu : u ∈ H } ⊆ I of constraints. Clearly, |I ′| ≤ k′. We show that I ′ is unsatisfiable, by showing
that I ′ |= (xj−1 → xj) for each 1 ≤ j ≤ m. Then, by transitivity, I ′ |= (x0 → xm), and
since C0 ∈ I ′, we get that I ′ is unsatisfiable.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:26 R. de Haan, I. Kanj, S. Szeider

Take an arbitrary 1 ≤ j ≤ m. Because H is a hitting set of T , we know that there is some u ∈
H ∩ Tj . By definition of Cu we know that Cu |= (xj−1 → xj). Then, since Cu ∈ I ′, we know
that I ′ |= (xj−1 → xj).

Therefore, we can conclude that I contains an unsatisfiable subset of size at most k′.
(⇐) Conversely, assume that I contains an unsatisfiable subset I ′ ⊆ I of size at most k′. We

know that C0 ∈ I ′, because the assignment that sets all variables to 1 satisfies each constraint Cu.
Let I ′′ = I ′ \{C0}. We know that |I ′′| ≤ k. Now, consider the setH = {u ∈ U : Cu ∈ I ′′ } ⊆ U .
We show that H is a hitting set of T .

Take an arbitrary subset Tj ∈ T . To derive a contradiction, suppose that H ∩ Tj = ∅. We
show that I ′ is then satisfiable. Consider the assignment α that sets the variables x0, x1, . . . , xj−1
to 1, and all variables xj , . . . , xm to 0. Clearly, α satisfies C0. Moreover, since H ∩ Tj = ∅ we
know that I ′ contains no constraint Cu for which it holds that Cu |= (xj−1 → xj). Therefore, α
also satisfies all constraints Cu ∈ I ′. Thus, I ′ is satisfiable, which is a contradiction, and we can
conclude that H ∩ Tj 6= ∅. Since Tj was arbitrary, we conclude that H is a hitting set of T (of size
at most k).

4.3. Bijunctive Instances
We now turn our attention to bijunctive constraints. For the case of bijunctive CNF formulas (that is,
2CNF or Krom formulas), Buresh-Oppenheim and Mitchell showed that a dynamic programming
algorithm can be used to find a smallest unsatisfiable subset in polynomial time [Buresh-Oppenheim
and Mitchell 2006, Section 4]. Therefore, this algorithm can be used to solve the problem SMALL-
CNF-UNSAT-SUBSET in polynomial time for bijunctive CNF formulas.

PROPOSITION 4.8 ([BURESH-OPPENHEIM AND MITCHELL 2006]). SMALL-CNF-UNSAT-
SUBSET restricted to bijunctive formulas can be solved in polynomial time.

Their algorithm critically uses the fact that a bijunctive clause {l1, l2} corresponds to exactly
two implications: ¬l1 → l2 and ¬l2 → l1. For the case of bijunctive Boolean CSP instances,
this is not the case. To see this, consider a bijunctive constraint that is equivalent to the bijunctive
CNF formula consisting of the two clauses {a, b}, {c, d}. Then this constraint corresponds to four
implications: ¬a → b, ¬b → a, ¬c → d, and ¬d → c. As a result, the polynomial-time algorithm
by Buresh-Oppenheim and Mitchell does not work for the case of CSP instances.

In fact, the problem SMALL-CSP-UNSAT-SUBSET restricted to bijunctive Boolean CSP instances
is W[1]-hard, even when the constraints have arity at most 4. By using the fact that a single bijunctive
constraint can encode multiple implications, we are able to give an fpt-reduction from MULTI-
COLORED-CLIQUE.

PROPOSITION 4.9. SMALL-CSP-UNSAT-SUBSET restricted to bijunctive Boolean CSP in-
stances, where each constraint is equivalent to at most 4 bijunctive clauses, is W[1]-hard.

PROOF. We provide an fpt-reduction from MULTI-COLORED-CLIQUE. Let (G, k) be an
instance of MULTI-COLORED-CLIQUE, where G = (V,E) and where V is partitioned
into V1, . . . , Vk. We construct a bijunctive Boolean CSP instance I, and an integer k′. We let Var(I)
consist of variables xv,j for each v ∈ V , each 1 ≤ j ≤ k + 1, plus a variable z0. We then let I
consist of the following constraints. For each e = (v, v′) ∈ (Vi × Vj) ∩ E, for i < j, we introduce
the constraint Ce = (Se, Re), where Se = (xv,j , xv,j+1, xv′,i, xv′,i+1) and where Re is equivalent
to the following Krom formula:

Re ≡ (xv,j ↔ xv,j+1) ∧ (xv′,i ↔ xv′,i+1)
≡ (xv,j → xv,j+1) ∧ (xv,j+1 → xv,j) ∧

(xv′,i → xv′,i+1) ∧ (xv′,i+1 → xv′,i).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:27

For each 1 ≤ i ≤ k, and each v ∈ Vi, we introduce the constraint Cv = (Sv, Rv), where Sv =
(xv,i, xv,i+1) and where Rv is equivalent to the following Krom formula:

Rv ≡ (xv,i ↔ xv,i+1)
≡ (xv,i → xv,i+1) ∧ (xv,i+1 → xv,i).

Then, for each 1 ≤ i < k, each v ∈ Vi and each v′ ∈ Vi+1, we introduce the constraint Cv,v′ =
(Sv,v′ , Rv,v′), where Sv,v′ = (xv,k+1, xv′,1) and where Rv,v′ is equivalent to the following Krom
formula:

Rv,v′ ≡ (xv,k+1 ↔ xv′,1)
≡ (xv,k+1 → xv′,1) ∧ (xv′,1 → xv,k+1).

Finally, for each v ∈ V1 and each v′ ∈ Vk, we introduce the constraint Cv,v′ = (Sv,v′ , Rv,v′),
where Sv,v′ = (z0, xv,1, xv′,k+1) and where Rv,v′ is equivalent to the following Krom formula:

Rv,v′ ≡ (z0 ↔ xv,1) ∧ (xv′,k+1 ↔ z0)
≡ (z0 → xv,1) ∧ (xv,1 → z0) ∧

(xv′,k+1 → z0) ∧ (z0 → xv′,k+1).

Note that the scope of each constraint is of constant size, so the constraints are all of constant size
when spelled out. Finally, we let k′ =

(
k
2

)
+ 2k.

We claim that (G, k) ∈ MULTI-COLORED-CLIQUE if and only if there exists some subset I ′ ⊆ I
of k′ many constraints that is unsatisfiable. The intuition behind this construction is the following.
Any unsatisfiable subset needs to force z0 to be true and false at the same time. This can only be
done with a chain of equivalences. Any chain of equivalences with this property that is represented
by at most k′ many constraints corresponds to a multi-colored k-clique in G.

(⇒) Assume that G has a multi-colored k-clique, i.e., there exists some set {v`1 , . . . , v`k} ⊆ V
of vertices such that for each 1 ≤ i ≤ k, v`i ∈ Vi, and for each 1 ≤ i < j ≤ k, (v`i , v`j) ∈ E.
Consider the subset I ′ ⊆ I consisting of the following constraints:

I ′ = {Ce : 1 ≤ i < j ≤ k, e = (v`i , v`j) } ∪
{Cv`i : 1 ≤ i ≤ k } ∪
{Cv`i ,v`j : 1 ≤ i ≤ k, j = i+ 1 (mod k) }.

It is easy to verify that I ′ consists of k′ many constraints. Moreover, it is straightforward to verify
that any solutionα of I ′ must satisfy thatα(z0) = α(z0). Thus, I ∈ SMALL-CSP-UNSAT-SUBSET.

(⇐) Conversely, assume that there is some inconsistent subset I ′ ⊆ I of at most k′ many con-
straints. We show that (G, k) ∈ MULTI-COLORED-CLIQUE. We know that I ′ must include the
constraint Cv,v′ , for some v`1 ∈ V1 and some v`k ∈ Vk. Otherwise, the assignment setting all vari-
ables to 1 would satisfy I ′. Moreover, we know that I ′ must include a sequence of constraints that
together enforce the equivalence (xv`1 ,1 ↔ xv`k ,k+1); otherwise I ′ would be satisfiable. Then we
also know that there exist vertices v`2 , . . . , v`k−1

such that for each 2 ≤ j < k, v`j ∈ Vj and such
that I ′ includes, for each 1 ≤ i < k, the constraint Cv`i ,v`i+1

; otherwise, the equivalence (xv`1 ,1 ↔
xv`k ,k+1) would not be enforced. Finally, I ′ must enforce the equivalences (xv`i ,1 ↔ xv`i ,k+1), for
each 1 ≤ i ≤ k. It is straightforward to verify that the only way to do this with k +

(
k
2

)
additional

constraints, is to choose Cv`i for each 1 ≤ i ≤ k, and the constraints Ceij for each eij = (v`i , v`j),
for 1 ≤ i < j ≤ k. If such constraints Ceij are present, then clearly, by construction of the set I,
the set {v`1 , . . . , v`k} is a multi-colored k-clique of G. Therefore, (G, k) ∈ MULTI-COLORED-
CLIQUE.

In the proof of the above W[1]-hardness result, only constraint of arity at most 4 are used. In
the more general case where (bijunctive) constraints of unbounded arity are allowed, the problem is
even W[2]-hard.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:28 R. de Haan, I. Kanj, S. Szeider

COROLLARY 4.10. SMALL-CSP-UNSAT-SUBSET restricted to bijunctive Boolean CSP in-
stances is W[2]-hard.

PROOF. In the reduction in the proof of Proposition 4.7, all contraints are bijunctive. There-
fore, this is also an fpt-reduction from HITTING-SET to SMALL-CSP-UNSAT-SUBSET restricted to
bijunctive instances.

4.4. Affine Instances
In the proof of Proposition 4.9, when showing W[1]-hardness for SMALL-CSP-UNSAT-SUBSET
restricted to bijunctive constraints, we only used bijunctive constraints that are equivalent to con-
junctions of equivalences. Since such conjunctions of equivalences can also be expressed as 2-affine
constraints, we can straightforwardly transfer the W[1]-hardness result to the case of affine con-
straints.

COROLLARY 4.11. SMALL-CSP-UNSAT-SUBSET restricted to 2-affine Boolean CSP in-
stances is W[1]-hard.

PROOF. The result follows from the fpt-reduction in the proof of Proposition 4.9. All propo-
sitional formulas used to define the constraints of the resulting CSP instance are conjunctions
of equivalences of the form (l1 ↔ l2). Each such equivalence can be expressed by the affine
clause ¬(l1 ⊕ l2) ≡ (l1 ⊕ l2), containing only two literals. Therefore the resulting CSP instance is
also a 2-affine Boolean CSP instance.

The above result does not suffice to indicate whether or not SMALL-CNF-UNSAT-SUBSET is
fixed-parameter tractable when the input formulas are affine, because the proofs of Proposition 4.9
and Corollary 4.11 depend on constraints that are equivalent to a conjunction of more than one
(affine) clauses. The next result shows that SMALL-CSP-UNSAT-SUBSET is even W[1]-hard when
restricted to affine constraints that are equivalent to a single affine clause. This will allow us to
transfer the hardness result to the case of affine formulas.

PROPOSITION 4.12. SMALL-CSP-UNSAT-SUBSET is W[1]-hard when restricted to Boolean
CSP instances where each constraint is equivalent to a single affine clause.

PROOF. We provide an fpt-reduction from MULTI-COLORED-CLIQUE. This reduction is sim-
ilar to the reduction given in the proof of Proposition 4.9. Let (G, k) be an instance of MULTI-
COLORED-CLIQUE, where G = (V,E) and where V is partitioned into V1, . . . , Vk. We construct
a bijunctive Boolean CSP instance I, and an integer k′. We let Var(I) consist of variables xv,j for
each v ∈ V , each 1 ≤ j ≤ k + 1, and variables z0, z1. We then let I consist of the following
constraints. For each e = (v, v′) ∈ (Vi × Vj) ∩ E, for 1 ≤ i < j ≤ k, we introduce the con-
straint Ce = (Se, Re), where Se = (xv,j , xv,j+1, xv′,i, xv′,i+1) and where Re is equivalent to the
following affine clause:

Re ≡ ¬(xv,j ⊕ xv,j+1 ⊕ xv′,i ⊕ xv′,i+1)
≡ (xv,j ⊕ xv,j+1 ⊕ xv′,i ⊕ xv′,i+1).

For each 1 ≤ i ≤ k, and each v ∈ Vi, we introduce the constraint Cv = (Sv, Rv), where Sv =
(xv,i, xv,i+1) and where Rv is equivalent to the following affine clause:

Rv ≡ ¬(xv,i ⊕ xv,i+1) ≡ (xv,i ⊕ xv,i+1).

Then, for each 1 ≤ i < k, each v ∈ Vi and each v′ ∈ Vi+1, we introduce the constraint Cv,v′ =
(Sv,v′ , Rv,v′), where Sv,v′ = (xv,k+1, xv′,1) and where Rv,v′ is equivalent to the following affine
clause:

Rv,v′ ≡ ¬(xv,k+1 ⊕ xv′,1) ≡ (xv,k+1 ⊕ xv′,1).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:29

Finally, for each v ∈ V1 and each v′ ∈ Vk, we introduce the constraint Cv,v′ = (Sv,v′ , Rv,v′),
where Sv,v′ = (z0, xv,1, xv′,k+1) and where Rv,v′ is equivalent to the following affine clause:

Rv,v′ ≡ ¬(z0 ⊕ xv,1 ⊕ xv′,k+1 ⊕ z1)
≡ (z0 ⊕ xv,1 ⊕ xv′,k+1 ⊕ z1).

Finally, we add the constraint C0 = (S0, R0), where S0 = (z0, z1) and where R0 is equivalent to
the affine clause R0 ≡ (z0 ⊕ z1). Note that the scope of each constraint is of constant size, so the
constraints are all of constant size when spelled out. Finally, we let k′ =

(
k
2

)
+ 2k + 1.

The intuition behind this construction is the following. Any unsatisfiable subset needs to force z0
to be assigned the same value as z1, which then leads to unsatisfiability due to the constraintC0. This
can only be done with a path from z0 to z1 in the incidence graph of the instance. The incidence
graph of an instance I is the graph GI = (Var(I ′), EI′), where {x, x′} ∈ EI′ if and only if x
and x′ occur together in some clause C ∈ I ′. Any such path corresponding to at most k′ many
constraints corresponds to a multi-colored k-clique in G.

We claim that (G, k) ∈ MULTI-COLORED-CLIQUE if and only if there exists some subset I ′ ⊆ I
of k′ many constraints that is unsatisfiable.

(⇒) Assume that G has a multi-colored k-clique, i.e., there exists some set {v`1 , . . . , v`k} ⊆ V
of vertices such that for each 1 ≤ i ≤ k, v`i ∈ Vi, and for each 1 ≤ i < j ≤ k, (v`i , v`j) ∈ E.
Consider the subset I ′ ⊆ I consisting of the following constraints:

I ′ = {Ce : 1 ≤ i < j ≤ k, e = (v`i , v`j) } ∪
{Cv`i : 1 ≤ i ≤ k } ∪ {C0} ∪
{Cv`i ,v`j : 1 ≤ i ≤ k, j = i+ 1 (mod k) }.

It is easy to verify that I ′ consists of k′ many constraints. Moreover, consider the following sequence
of literals over variables in Var(I ′).

σ = (l1, . . . , lm)
= (z0, xv`1 ,1, . . . , xv`1 ,k+1, xv`2 ,1, . . . , xv`k ,k+1, z1).

The reader can easily verify that (i) each pair (li, li+1) of literals, for 1 ≤ i < m, occurs in exactly
one constraint in I ′\{C0}, (ii) that each literal li, for 1 < i < m, occurs in exactly two constraints
in I ′\{C0}, and (iii) that the literals l1 and lm each occur in exactly one constraint in I ′\{C0}. Due
to these properties, the constraints in I ′\{C0} together enforce that for any solution α of I ′ there
must be an even number of indices 1 ≤ i < m such that α(li) 6= α(li+1). This entails that for any
solution α of I ′ it must hold that α(z0) = α(z1). However, since C0 ∈ I ′, we get that I ∈ SMALL-
CSP-UNSAT-SUBSET.

(⇐) Conversely, assume that there is some inconsistent subset I ′ ⊆ I of at most k′ many con-
straints. We show that (G, k) ∈ MULTI-COLORED-CLIQUE. We know that I ′ must include the
constraint C0. Otherwise, the assignment setting all variables to 1 would satisfy I ′.

Next, we consider the incidence graph GI′ of I ′. We then know that there must be a path in GI′
from z0 to z1. Otherwise I ′ would be satisfiable; a solution for I ′ would be the assignment that sets
all variables connected in GI′ to z0 to the value 0, and all other variables to the value 1.

By an argument similar to the one in the proof of Proposition 4.9, we then know that if such a
path can be constructed with k′ − 1 many constraints (in addition to C0), then G must contain a
multi-colored k-clique, and thus (G, k) ∈ MULTI-COLORED-CLIQUE.

As a corollary, we get W[1]-hardness for the problem SMALL-CNF-UNSAT-SUBSET restricted
to affine formulas, that is, conjunctions of affine clauses.

COROLLARY 4.13. SMALL-CNF-UNSAT-SUBSET is W[1]-hard when input formulas are
affine formulas.

PROOF. The instances constructed in the fpt-reduction in the proof of Proposition 4.12 only
contain affine constraints that are equivalent to a single affine clause. Therefore, we can readily

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:30 R. de Haan, I. Kanj, S. Szeider

rephrase it as an fpt-reduction from MULTI-COLORED-CLIQUE to SMALL-CNF-UNSAT-SUBSET
with affine formulas as input.

5. INSTANCES WITH BOUNDED VARIABLE OCCURRENCE
In this section, we consider another restriction for the problems SMALL-CNF-UNSAT-SUBSET and
SMALL-CSP-UNSAT-SUBSET. Namely, we bound the maximum number of times that any variable
occurs in instances. In the case of SMALL-CNF-UNSAT-SUBSET, this restriction directly leads to
fixed-parameter tractability. For the case of SMALL-CSP-UNSAT-SUBSET, it turns out that we only
get fixed-parameter tractability when further restrictions are made in addition (bounding the arity of
constraints and the domain size).

5.1. CNF Formulas
The fixed-parameter tractability result for the case of CNF formulas with bounded degree is in fact
already implied by the result that SMALL-CNF-UNSAT-SUBSET is fixed-parameter tractable for
instances restricted to classes of formulas that have locally bounded treewidth [Fellows et al. 2006].
Fellows et al. used a meta theorem to prove this. We give a direct (bounded search tree) algorithm
to solve SMALL-CNF-UNSAT-SUBSET in fixed-parameter linear time for instances with bounded
degree.

We describe the algorithm as a non-deterministic algorithm, and then argue that simulating all
non-deterministic choices can be done in fixed-parameter linear time. Let (ϕ, k) be an instance
of SMALL-CNF-UNSAT-SUBSET with degree d. The following procedure decides whether there
exists an unsatisfiable subset ϕ′ ⊆ ϕ of size at most k, and computes such a subset if it exists.
We let ϕ? = { c ∈ ϕ : |c| < k }. It suffices to consider subsets of ϕ?, since any unsatisfiable
subset ϕ′ ⊆ ϕ contains a minimally unsatisfiable subset ϕ′′ ⊆ ϕ′, and by Tarsi’s Lemma we know
that ϕ′′ contains only clauses of size smaller than k.

Without loss of generality, we assume that the incidence graph of ϕ? is connected. Otherwise, we
can solve the problem by running the algorithm on each of (the subsets induced by) the connected
components. We guess a clause c ∈ ϕ?, we let F1 := {c}, and we let all variables be unmarked
initially. We compute Fi+1 for 1 ≤ i < k by means of the following (non-deterministic) rule:

(1) take an unmarked variable z ∈ Var(Fi);
(2) guess a non-empty subset G′z ⊆ Gz for Gz = { c ∈ ϕ? : z ∈ Var(c) };
(3) let Fi+1 := Fi ∪G′z;
(4) mark z.

If at any point all variables in Fi are marked, we stop computing Fi+1. For any Fi, if |Fi| > k, we
fail. For each Fi, we check whether Fi is unsatisfiable. If it is unsatisfiable, we return with ϕ′ =
Fi. If it is satisfiable and if it contains no unmarked variables, we fail. Otherwise (that is, if it is
satisfiable and contains unmarked variables), we continue with computing Fi+1.

It is easy to see that this algorithm is sound. If some ϕ′ ⊆ ϕ? is returned, then ϕ′ is unsatisfiable
and |ϕ′| ≤ k. In order to see that the algorithm is complete, assume that there exists some unsatis-
fiable ϕ′ ⊆ ϕ? with |ϕ′| ≤ k. Then, since we know that the incidence graph of ϕ′ is connected, we
know that ϕ′ can be constructed as one of the Fi in the algorithm.

To see that this algorithm witnesses fixed-parameter linearity, we bound its running time. We have
to execute the search process at most once for each clause of ϕ?. At each point in the execution of
the algorithm, Fi contains at most k variables. Therefore, there are at most k choices to take an
unmarked variable z. Since each variable occurs in at most d clauses, for each Gz used in the
rule we know |Gz| ≤ d. Thus, there are at most 2d possible guesses for G′z in each execution of
the rule. Since we iterate the rule at most k times, we consider at most (k2d)k sets Fi, each of
size O(k2). Since each set Fi contains at most k variables, each (un)satisfiability check can be done
in time O(2k). Therefore, the total running time of the algorithm is O(kk2dkn), where n is the size
of the instance.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:31

PROPOSITION 5.1. SMALL-CNF-UNSAT-SUBSET is fixed-parameter linear when restricted
to CNF formulas of degree at most f1(k), where f1 is a computable function and k is the parameter
value.

PROOF. The result follows directly by using the above algorithm, where we let d = f1(k).

5.2. CSP Instances
We consider a similar restriction for CSP instances (instances with bounded degree). Remember
that the degree of a CSP instance I is defined as the maximum number of constraints C ∈ I that
any variable x ∈ Var(I) appears in. For the problem SMALL-CSP-UNSAT-SUBSET, bounding only
the degree does not lead to fixed-parameter tractability.

Only bounding the degree of CSP instances yields fixed-parameter intractability. In particular,
for any constant d ≥ 2, the problem SMALL-CSP-UNSAT-SUBSET is already W[1]-hard when re-
stricted to Boolean CSP instances whose degree is bounded by d. (For CSP instances with degree 1,
the problem SMALL-CSP-UNSAT-SUBSET is trivial, since different constraints cannot share vari-
ables.) This result implies that the problem is also fixed-parameter intractable when both the degree
and the domain size of the CSP instances are bounded.

PROPOSITION 5.2. SMALL-CSP-UNSAT-SUBSET is W[1]-hard, even when restricted to
Boolean CSP instances with degree 2.

PROOF. We know that the problem of finding an unsatisfiable subset of a 3CNF formula of
size at most k is W[1]-hard. We give an fpt-reduction from this problem to SMALL-CSP-UNSAT-
SUBSET. The idea behind this reduction is to introduce many copies of each variable (one copy for
each occurrence) and to introduce for each variable a single constraint that ensures that all copies of
this variable are assigned the same value.

Let ϕ = {c1, . . . , cm} be a propositional formula in 3CNF, and let k be a positive integer.
By Lemma 4.3 and Proposition 4.4, we may assume without loss of generality that ϕ contains no
unsatisfiable subsets of size strictly less than k, and that any unsatisfiable subset of ϕ of size k
contains exactly ` = k − 1 variables.

We now construct an instance (I, k′) of SMALL-CSP-UNSAT-SUBSET as follows. We
let Var(I) = { vx,c : x ∈ Var(ϕ), c ∈ ϕ }, and we let D = {0, 1}. Then, for each c ∈ ϕ, we
add a constraint Cc = (Sc, Rc) to I. Let c = (lx ∨ ly ∨ lz), where lx is a literal over variable x, ly
a literal over y and lz a literal over z. We let Sc = (vx,c, vy,c, vz,c), and we define Rc to be set of
3-tuples s ∈ {0, 1}3 satisfying c. Next, for each variable x ∈ Var(ϕ), we add a constraint Cx =
(Sx, Rx) to I. We let Sx = (vx,c1 , . . . , vx,cm), and we let Rx = {(0, . . . , 0), (1, . . . , 1)}. Finally,
we define k′ = k+ `. It is straightforward to verify that I has degree 2. We now show that ϕ has an
unsatisfiable subset of size k if and only if I has an unsatisfiable subset of size k′.

(⇒) Assume that ϕ has an unsatisfiable subset of size k. Let ϕ′ = {c′1, . . . , c′k} be such a subset.
We know that exactly ` variables appear in ϕ′. Now consider the set I ′ = {Cc′i : 1 ≤ i ≤
k } ∪ {Cx : x ∈ Var(ϕ′) } of constraints. It is straightforward to verify that I ′ is an unsatisfiable
subset of I containing k′ many constraints.

(⇐) Conversely, assume that I has an unsatisfiable subset of size at most k′. Let I ′ be such a
subset, and let I ′ be minimal. Then, let I ′1 = I ′ ∩ {Cc : c ∈ ϕ } and let I ′2 = I ′ ∩ {Cx : x ∈
Var(ϕ) }. Then let k1 = |I ′1| and let k2 = |I ′2|. We show that k1 = k and k2 = `. We proceed
indirectly. Firstly, suppose that k1 < k. It is then straightforward to verify that ϕ′ = { c ∈ ϕ : Cc ∈
I ′1 } is an unsatisfiable subset of ϕ of size < k, which is a contradiction. Thus, k1 ≥ k. Next,
suppose that k2 < `. We know that ϕ′ is an unsatisfiable subset of ϕ. However, by minimality of I ′,
we then know that ϕ′ contains k2 < ` many variables, which is a contradiction. Now, since k′ =
k + ` ≥ k1 + k2, we can conclude that k1 = k and k2 = `. Therefore, ϕ′ is an unsatisfiable subset
of ϕ of size k.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:32 R. de Haan, I. Kanj, S. Szeider

Similarly, bounding the degree of the CSP instance and the arity of constraints (but allowing
unbounded domain size) leads to hardness. We show that the problem SMALL-CSP-UNSAT is
co-W[1]-hard, even when restricted to CSP instances with degree 3 and maximum arity 2. This
directly gives us co-W[1]-hardness also for SMALL-CSP-UNSAT-SUBSET.

PROPOSITION 5.3. SMALL-CSP-UNSAT is co-W[1]-hard, even when restricted to CSP in-
stances with degree 3 and maximum arity 2.

PROOF. We provide an fpt-reduction from co-CLIQUE Let (G, k) be an instance of co-CLIQUE,
where G = (V,E) is a graph. We construct a CSP instance I containing k′ = k(k − 1) +

(
k
2

)
constraints, such that I is satisfiable if and only if G has a k-clique.

We let Var(I) = {xij : 1 ≤ i ≤ k, 1 ≤ j ≤ k }, and we let the domain of I be D = V . Then, for
each 1 ≤ i ≤ k and each 1 ≤ j < k we introduce a constraint Csucc

i,j , with Var(Csucc
i,j) = {xji , xj+1

i }.
The constraint relation encodes equality on V , that is, Rsucc

i,j = { (v, v) : v ∈ V }.
Also, for each 1 ≤ i < j ≤ k, we introduce a constraint CEi,j , with Var(CEi,j) = {xji , xij}. The

constraint relation encodes the edge set E. We let REi,j = { (v, w) : v, w ∈ V, {v, w} ∈ E }.
Clearly, I contains k′ many constraints. Also, the maximum arity of I is 2. To see that the degree

of I is 3, take an arbitrary variable xji . The only constraints that xji can appear in are either (1) of
the form Csucc

i,j (if j < k), or (2) of the form Csucc
i,j−1 (if j > 1), or (3) of the form CEi,j (if i < j) or

(4) of the form CEj,i (if i > j).
To show that this reduction is correct, we show that (G, k) ∈ CLIQUE if and only if I is satisfi-

able.
(⇒) Take a k-clique V ′ = {v1, . . . , vk} ⊆ V . We construct the following assignment α :

Var(I) → D. We let α(xji) = vi, for each 1 ≤ i ≤ k and each 1 ≤ j ≤ k. Using the fact
that V ′ is a clique, it is readily verified that α satisfies all constraints in I.

(⇐) Conversely, take an assignment α : Var(I) → D that satisfies all constraints in I. We
construct a clique V ′ ⊆ V of size k as follows. Since Csucc

i,j ∈ I for each 1 ≤ i ≤ k and for

each 1 ≤ j < k, we know that α(xji) = α(xj
′

i), for each 1 ≤ i ≤ k and each 1 ≤ j < j′ ≤ k.
Now, let V ′ = {v1, . . . , vk} ⊆ V , where vi = α(x1i) for each 1 ≤ i ≤ k. We show that V ′ is
a clique. Take arbitrary vi, vj ∈ V ′ with 1 ≤ i < j ≤ k. Since α satisfies CEi,j ∈ I, we know
that {vi, vj} ∈ E. In particular, since for each e ∈ E it holds that |e| = 2, we know that vi 6= vj .
Therefore, V ′ is a k-clique in G.

COROLLARY 5.4. SMALL-CSP-UNSAT-SUBSET is co-W[1]-hard, even when restricted to
CSP instances with degree 3 and maximum arity 2.

Considering all these restrictions simultaneously (bounding the degree, the maximum arity and
the domain size of CSP instances) leads to fixed-parameter tractability. In order to show this, we
use a bounded search tree algorithm that is essentially the same as the algorithm used to show
Proposition 5.1, applied to the setting of CSP instances. For the sake of completeness, we describe
it in full.

Again, we describe the algorithm as a non-deterministic algorithm, and then argue that simulating
all non-deterministic choices can be done in fixed-parameter linear time. Let (I, k) be an instance
of SMALL-CSP-UNSAT-SUBSET with degree d, maximum arity a, and domain size s. The follow-
ing procedure decides whether there exists an unsatisfiable subset I ′ ⊆ I of size at most k, and
computes such a subset if it exists.

The incidence graph of I has as vertices the set Var(I) ∪ I, and a variable x ∈ Var(I) and a
constraint C ∈ I are connected with an edge if and only if x ∈ Var(C). Without loss of generality,
we assume that the incidence graph of I is connected. Otherwise, we can solve the problem by
running the algorithm on each of (the subsets induced by) the connected components.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:33

We guess a constraint C ∈ I, we let F1 := {C}, and we let all variables be unmarked initially.
We compute Fi+1 for 1 ≤ i < k by means of the following (non-deterministic) rule:

(1) take an unmarked variable z ∈ Var(Fi);
(2) guess a non-empty subset F ′z ⊆ Fz for Fz = {C ∈ I : z ∈ Var(C) };
(3) let Fi+1 := Fi ∪ F ′z;
(4) mark z.

If at any point all variables in Fi are marked, we stop computing Fi+1. For any Fi, if |Fi| > k, we
fail. For each Fi, we check whether Fi is unsatisfiable. If it is unsatisfiable, we return with I ′ =
Fi. If it is satisfiable and if it contains no unmarked variables, we fail. Otherwise (that is, if it is
satisfiable and contains unmarked variables), we continue with computing Fi+1.

It is easy to see that this algorithm is sound. If some I ′ ⊆ I is returned, then I ′ is unsatisfiable and
|I ′| ≤ k. In order to see that the algorithm is complete, assume that there exists some unsatisfiable
subset I ′ ⊆ I with |I ′| ≤ k. Then, since we know that the incidence graph of I ′ is connected, we
know that I ′ can be constructed as one of the Fi in the algorithm.

To see that this algorithm witnesses fixed-parameter linearity, we bound its running time. We have
to execute the search process at most once for each constraint of I. At each point in the execution
of the algorithm, Fi contains at most kda variables, because in each Fi+1 there are at most da vari-
ables more than in the corresponding Fi (at most d constraints are introduced, each with at most a
variables). Therefore, there are at most kda choices to take an unmarked variable z. Since each
variable occurs in at most d clauses, for each Fz used in the rule, we know |Fz| ≤ d. Thus, there are
at most 2d possible guesses for F ′z in each execution of the rule. Since we iterate the rule at most k
times, we consider at most (kda2d)k sets Fi, each containing at most k constraints and containing
at most kda variables. Because the domain size is s, we know that each (un)satisfiability check can
be done in time O(skda). Therefore, the total running time of the algorithm is O((kda2d)kskdan),
where n is the size of the instance.

PROPOSITION 5.5. SMALL-CSP-UNSAT-SUBSET is fixed-parameter linear when restricted
to CSP instances with degree f1(k), with maximum arity f2(k), and domain size f3(k),
where f1, f2, f3 are computable functions, and k is the parameter value.

PROOF. The result follows directly by using the above algorithm, where we let d = f1(k), a =
f2(k) and s = f3(k).

6. LOCAL BACKBONES
In the introduction, we considered the case study of finding variable assignments that are already
forced by a small subset of constraints (we call these local backbones). In this section, we consider
the parameterized complexity of identifying such local backbones. We consider both the setting of
CNF formulas and the setting of CSP instances. In particular, in the setting of CNF formulas, we
consider the following parameterized decision problem.

LOCAL-CNF-BACKBONE
Instance: A CNF formula ϕ, a literal l over some variable x ∈ Var(ϕ), and a positive integer k.
Parameter: k.
Question: Is there a subset ϕ′ ⊆ ϕ of size k such that ϕ′ |= l?

For the case of CSP instances, we consider the following parameterized decision problem.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:34 R. de Haan, I. Kanj, S. Szeider

LOCAL-CSP-BACKBONE
Instance: A CSP instance I over a domain D, a variable x ∈ Var(I), a value d ∈ D and a
positive integer k.
Parameter: k.
Question: Is there a subset I ′ ⊆ I of size k such that all solutions α of I ′ satisfy that α(x) = d?

For the case of CSP instances, we can also consider a dual problem, where the question is whether
a small set of constraints already rules out that a variable x is assigned to a given value d (in this
case, we speak of local anti-backbones). In the case of Boolean domains, this directly reduces to
the problem of identifying whether a small set of constraints already enforces that the variable x is
assigned to the complementary value d′ ∈ {0, 1}\{d}. However, if the domain D possibly has size
more than 2, such a direct reduction does not work. Therefore, for the case of CSP instances, we
also consider the following parameterized decision problem.

LOCAL-CSP-ANTI-BACKBONE
Instance: A CSP instance I over a domain D, a variable x ∈ Var(I), a value d ∈ D and a
positive integer k.
Parameter: k.
Question: Is there a subset I ′ ⊆ I of size k such that all solutions α of I ′ satisfy that α(x) 6= d?

In the following, we will show that both in the case of CNF formulas and in the case of CSP
instances, the problem of identifying local (anti-)backbones is as hard as identifying small unsatis-
fiable subsets. In fact, for almost all of the fragments that we considered, the parameterized com-
plexity of both problems is the same. Only for the cases of 0-valid and 1-valid CNF formulas and
CSP instances (where the problem of finding unsatisfiable subsets is trivial), the problem of finding
local (anti-)backbones is as hard as identifying unsatisfiable subsets in the general case.

6.1. CNF Formulas
Firstly, we show that the problem LOCAL-CNF-BACKBONE is as hard as SMALL-CNF-UNSAT-
SUBSET, by providing an fpt-reduction. Moreover, for each class C of CNF formulas that we con-
sidered, applying this reduction to an instance where the formula is in C results in an instance where
the formula is also in C.

LEMMA 6.1. SMALL-CNF-UNSAT-SUBSET is fpt-reducible to LOCAL-CNF-BACKBONE.

PROOF. Let (ϕ, k) be an instance of SMALL-CNF-UNSAT-SUBSET. We construct an in-
stance (ψ, z, k) of LOCAL-CNF-BACKBONE such that (ϕ, k) ∈ SMALL-CNF-UNSAT-SUBSET
if and only if (ψ, z, k) ∈ LOCAL-CNF-BACKBONE. Take two fresh variables z, z′ 6∈ Var(ϕ). We
then let ψ = ϕ∪ {{z, z′}}. We show that ϕ contains an unsatisfiable subset ϕ′ ⊆ ϕ of size k if and
only if ψ contains a subset ψ′ ⊆ ψ of size k such that ψ′ |= z.

(⇒) Suppose that there is an unsatisfiable subset ϕ′ ⊆ ϕ of size k. Then clearly ϕ′ |= z. Also,
since ϕ ⊆ ψ, we get that ϕ′ ⊆ ψ. Thus, (ψ, z, k) ∈ LOCAL-CNF-BACKBONE.

(⇐) Conversely, suppose that there is a subset ψ′ ⊆ ψ of size k such that ψ′ |= z. Since z occurs
only negatively in the clause {z, z′}, we know that for ψ′′ = ψ′\{{z, z′}} it holds that ψ′′ |= z.
Moreover, ψ′′ ⊆ ϕ and |ψ′′| ≤ k. Then, since ϕ does not contain any occurrence of the variable z,
we know that ψ′′ is unsatisfiable. Thus (ϕ, k) ∈ SMALL-CNF-UNSAT-SUBSET.

Next, we show that we can also construct an fpt-reduction in the other direction. For each class C
of CNF formulas that is closed under instantiation, applying this reduction to an instance where the
formula is in C results in an instance where the formula is also in C. This is the case for all classes
of CNF formulas that we considered, except for the cases of 0-valid and 1-valid CNF formulas.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:35

LEMMA 6.2. LOCAL-CNF-BACKBONE is fpt-reducible to SMALL-CNF-UNSAT-SUBSET.

PROOF. Let (ϕ, l, k) be an instance of LOCAL-CNF-BACKBONE. We construct an instance
(ψ, k) of SMALL-CNF-UNSAT-SUBSET. We let ψ = ϕ|l.

We may assume without loss of generality that the clause {l} does not appear in ϕ (if this is the
case, the instance is a trivial yes-instance for every k ≥ 1). Therefore, ψ does not contain the empty
clause.

We claim that (ϕ, l, k) ∈ LOCAL-CNF-BACKBONE if and only if (ψ, k) ∈ SMALL-CNF-
UNSAT-SUBSET.

(⇒) Assume that there is a subset ϕ′ ⊆ ϕ of size k such that ϕ′ |= l. Now consider the
set ψ′ = ϕ′|l. Clearly, |ψ′| ≤ k, and ψ′ ⊆ ψ. Also, since ϕ′ |= l, we know that ψ′ is unsatis-
fiable. Therefore, (ψ, k) ∈ SMALL-CNF-UNSAT-SUBSET.

(⇐) Conversely, suppose that there is an unsatisfiable subset ψ′ ⊆ ψ of size k. By construction
of ψ, we know that then there must be a subset ϕ′ ⊆ ϕ such that ψ′ = ϕ′|l. Moreover, |ϕ′| = k. To
show that ϕ′ |= l, suppose that there is a truth assignment α that satisfies ϕ′ and for which α(l) = 0.
Then, α would also satisfy ψ′. This is a contradiction with our assumption that ψ′ is unsatisfiable,
and therefore we can conclude that ϕ′ |= l. Thus, (ϕ, l, k) ∈ LOCAL-CNF-BACKBONE.

Lemmas 6.1 and 6.2 directly give us the following result about the relation between the parame-
terized complexity of the problems SMALL-CNF-UNSAT-SUBSET and LOCAL-CNF-BACKBONE.

PROPOSITION 6.3. For all classes of CNF formulas that we considered, with the exception of
0-valid and 1-valid CNF formulas, the problems SMALL-CNF-UNSAT-SUBSET and LOCAL-CNF-
BACKBONE have the same parameterized complexity (modulo fpt-reductions).

In addition, the proof of Lemma 6.1 can straightforwardly be modified to work also for the case
of affine formulas (by replacing the new clause {z, z′} by the affine clause (z ⊕ z′), for instance).
The proof of Lemma 6.2 also works for the case of affine formulas. This gives us the following
result.

PROPOSITION 6.4. The problems SMALL-CNF-UNSAT-SUBSET and LOCAL-CNF-
BACKBONE have the same parameterized complexity (modulo fpt-reductions) also for the
case where the input formulas are affine. In particular, in this setting, the problem LOCAL-CNF-
BACKBONE is W[1]-hard.

For the case of 0-valid and 1-valid CNF formulas, the problem LOCAL-CNF-BACKBONE turns
out to be harder than SMALL-CNF-UNSAT-SUBSET.

LEMMA 6.5. LOCAL-CNF-BACKBONE is W[1]-hard when restricted to 0-valid CNF formu-
las.

PROOF. We show this by means of a reduction from SMALL-CNF-UNSAT-SUBSET. Let (ϕ, k)
be an instance of SMALL-CNF-UNSAT-SUBSET. We construct an instance (ψ, z, k) of LOCAL-
CNF-BACKBONE, where ψ is 0-valid. Take a fresh variable z 6∈ Var(ϕ). Then, let ψ = { c ∪
{z} : c ∈ ϕ }. Clearly, ψ is 0-valid, because each clause of ψ contains the negative literal z.
We show that (ϕ, k) ∈ SMALL-CNF-UNSAT-SUBSET if and only if (ψ, z, k) ∈ LOCAL-CNF-
BACKBONE.

(⇒) Suppose there exists an unsatisfiable subset ϕ′ ⊆ ϕ of size k. Consider the set ψ′ = { c ∪
{z} : c ∈ ϕ′ }. Clearly, ψ′ ⊆ ψ and |ψ′| = k. To show that ψ′ |= z, suppose that there exists
a truth assignment α : Var(ψ) → {0, 1} with α(z) = 1 that satisfies ψ′. It is straightforward to
verify that α then satisfies ϕ′, which is a contradiction with our assumption that ϕ′ is unsatisfiable.
Therefore, we can conclude that ψ′ |= z, and thus (ψ, z, k) ∈ LOCAL-CNF-BACKBONE.

(⇐) Conversely, assume that there exists a subset ψ′ ⊆ ψ of size k such that ψ′ |= z. Then
consider the set ϕ′ = { c\{z} : c ∈ ψ′ }. Clearly, ϕ′ ⊆ ϕ and |ϕ′| = k. To show that ϕ′ is
unsatisfiable, suppose that there exists a truth assignment α : Var(ϕ) → {0, 1} that satisfies ϕ′.
Consider the truth assignment α′ : Var(ψ) → {0, 1} that is defined by letting α′(z) = 1 and

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:36 R. de Haan, I. Kanj, S. Szeider

letting α′(x) = α(x) for all x ∈ Var(ϕ). Then α′ simultaneously satisfies ψ′ and z, which is a
contradiction with our assumption that ψ′ |= z. Therefore, we can conclude that ϕ′ is unsatisfiable,
and thus that (ϕ, k) ∈ SMALL-CNF-UNSAT-SUBSET.

By Lemmas 6.2 and 6.5 (and by the straightforward extension of the latter to the case of 1-valid
CNF formulas), we then get the following result.

PROPOSITION 6.6. LOCAL-CNF-BACKBONE is W[1]-complete when restricted to 0-valid for-
mulas or when restricted to 1-valid formulas.

6.2. CSP Instances
Next, we turn our attention to the case of CSP instances. We firstly show by means of an fpt-
reduction that the problems LOCAL-CSP-BACKBONE and LOCAL-CSP-ANTI-BACKBONE are at
least as hard as the problem SMALL-CSP-UNSAT-SUBSET. This reduction has the property that for
each class C of CSP instances that we considered, applying this reduction to an instance where the
CSP instance is in C results in an instance where the CSP instance is also in C.

LEMMA 6.7. The problem SMALL-CSP-UNSAT-SUBSET is fpt-reducible to the problems
LOCAL-CSP-BACKBONE and LOCAL-CSP-ANTI-BACKBONE.

PROOF. We first give an fpt-reduction to LOCAL-CSP-BACKBONE. The main idea behind this
reduction is similar to the idea of the proof of Lemma 6.1. Namely, if a CSP instance I has a small
unsatisfiable subset, then any variable of I is a local backbone. Let (I, k) be an instance of SMALL-
CSP-UNSAT-SUBSET. We construct an equivalent instance I ′ of LOCAL-CSP-BACKBONE by in-
troducing an additional fresh variable z to I (for instance, by adding an additional constraint C
with Var(C) = {z}). We may assume that the variable z is unconstrained and can get any
value d ∈ D in any solution. Since there is no constraint in I ′ that directly enforces variable v
to take any particular value, the only possibility for v to be a backbone is if I ′ has no solutions, and
thus is unsatisfiable. We then know that I contains an unsatisfiable subset of at most k constraints
if and only if I ′ contains an unsatisfiable subset of at most k constraints, which holds if and only if
some subset of I of at most k constraints forces each solution α to satisfy α(z) = 0.

This reductions is also an fpt-reduction to LOCAL-CSP-ANTI-BACKBONE, since I contains an
unsatisfiable subset containing at most k constraints if and only if some subset of I ′ containing at
most k constraints forces each solution α to satisfy α(z) 6= d0, for any d0 ∈ D.

Next, we show that we can also construct an fpt-reduction in the other direction. For each class C
of CSP instances that is closed under partial assignment, applying this reduction to an instance
where the CSP instance is in C results in an instance where the CSP instance is also in C. This is the
case for all classes of CSP instances that we considered, except for the cases of 0-valid and 1-valid
CSP instances.

LEMMA 6.8. The problems LOCAL-CSP-BACKBONE and LOCAL-CSP-ANTI-BACKBONE
are fpt-reducible to SMALL-CSP-UNSAT-SUBSET.

PROOF. We firstly give an fpt-reduction for the case of LOCAL-CSP-BACKBONE.
Let (I, x, d, k) be an instance of LOCAL-CSP-BACKBONE. We construct an equivalent in-
stance (I ′, k) of SMALL-CSP-UNSAT-SUBSET as follows. For each constraint C = (S,R) ∈ I,
we add the constraint C ′ = (S,R′) to I ′, whose scope S is identical to the scope of C, but whose
constraint relation R′ differs from the constraint relation R of C as follows. The constraint rela-
tion R′ contains exactly those tuples from R that do not set the variable x to d. So, if x 6∈ Var(C),
then R′ = R. We show that (I ′, k) is a yes-instance of SMALL-CSP-UNSAT-SUBSET if and only
if (I, x, d, k) is a yes-instance of LOCAL-CSP-BACKBONE.

(⇒) Suppose that there is an unsatisfiable subset J ′ ⊆ I ′ of size k. Consider the subset J ⊆ I
that corresponds to J ′, that is, J consists of those constraints C for which C ′ ∈ J ′. Clearly, |J | ≤
k. We show that every solution α of J satisfies α(x) = d. Take an arbitrary solution α of J , and

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:37

to derive a contradiction, suppose that α(x) 6= d. Now, by construction of the constraints C ′ in I ′,
we know that α satisfies J ′, which is a contradiction with our assumption that J ′ is unsatisfiable.
Therefore, we can conclude that every solution α of J satisfies that α(x) = d. Thus, (I, x, d, k) ∈
LOCAL-CSP-BACKBONE.

(⇐) Conversely, suppose that there is a subset J ⊆ I of size k such that all solutions α of J
satisfy that α(x) = d. Then, consider the subset J ′ ⊆ I ′ consisting of exactly those constraints C ′
for which C ∈ J . Clearly, |J ′| ≤ k. We show that J ′ is unsatisfiable. There are two possibilities:
either (1) x 6∈ Var(J ′) or (2) x ∈ Var(J ′). In case (1), we know that J = J ′, and moreover we
know thatJ ′ is unsatisfiable. Consider case (2). To derive a contradiction, suppose that there is some
solution α of J ′. Then, by construction of the constraints in I ′, we know that α(x) 6= d. Moreover,
then α is also a solution of J . This is a contradiction with our assumption that all solutions of J
set x to d. Therefore, we can conclude that J ′ is unsatisfiable. Thus, (I ′, k) ∈ SMALL-CSP-
UNSAT-SUBSET.

A similar fpt-reduction works for the case of LOCAL-CSP-ANTI-BACKBONE, with the differ-
ence that for the constraints C ′ in I ′ the constraint relation R′ contains exactly those tuples of the
constraint relation R of the original constraint C that do not set x to any value d′ ∈ D\{d}.

Lemmas 6.7 and 6.8 give us the following result about the relation between the parameter-
ized complexity of the problems SMALL-CSP-UNSAT-SUBSET, LOCAL-CSP-BACKBONE, and
LOCAL-CSP-ANTI-BACKBONE.

PROPOSITION 6.9. For all classes of CSP instances that we considered, with the exception
of 0-valid and 1-valid CSP instances, the problems SMALL-CNF-UNSAT-SUBSET, LOCAL-CNF-
BACKBONE, and LOCAL-CSP-ANTI-BACKBONE have the same parameterized complexity (mod-
ulo fpt-reductions).

For the case of 0-valid and 1-valid CSP instances, it turns out that the problems LOCAL-CSP-
BACKBONE and LOCAL-CSP-ANTI-BACKBONE are in fact A[2]-complete. This is in contrast with
the (trivial) polynomial-time solvability of SMALL-CSP-UNSAT-SUBSET with the same restric-
tions. We prove the hardness result for the restriction to 0-valid instances. The result for 1-valid
instances then follows by a symmetry argument.

LEMMA 6.10. LOCAL-CSP-BACKBONE is A[2]-hard when restricted to Boolean CSP in-
stances that are 0-valid.

PROOF PROOF (IDEA). Similarly to the proof of Lemma 6.5, we can construct an fpt-reduction
from the problem SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances, to the prob-
lem LOCAL-CSP-BACKBONE restricted to 0-valid Boolean CSP instances.

By Lemmas 6.8 and 6.10 (and by the straightforward extension of the latter to the case of 1-valid
CSP instances), we then get the following result.

PROPOSITION 6.11. LOCAL-CSP-BACKBONE and LOCAL-CSP-ANTI-BACKBONE are A[2]-
complete, when restricted to Boolean CSP instances that are 0-valid or when restricted to Boolean
CSP instances that are 1-valid.

6.3. Iterative Local Backbones
We showed that the problem of identifying local backbones is as hard as the problem of finding
small unsatisfiable subsets (if not harder), for all classes of CNF formulas and CSP instances that
we considered. In the introduction, we briefly discussed the notion of iterative local backbones,
which are local backbones that are obtained by repeatedly finding local backbones and its corre-
sponding (truth) value and instantiating them. In this section, we briefly consider the parameterized
complexity of identifying iterative local backbones.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:38 R. de Haan, I. Kanj, S. Szeider

Firstly, we show that fixed-parameter tractability results for finding local backbones (for classes
of CNF instances that are closed under instantiation) carry over to the setting of iterative local
backbones.

PROPOSITION 6.12. Let C be a class of CNF formulas that is closed under variable instantia-
tion. If the problem LOCAL-CNF-BACKBONE is fixed-parameter tractable when restricted to CNF
formulas in C, then finding all iterative local backbones of order at most k (and their corresponding
truth value) can be found in fixed-parameter tractable time.

PROOF. The fixed-parameter tractable algorithm A to solve LOCAL-CNF-BACKBONE can be
applied a polynomial number of times to find all iterative local backbones of order at most k. Letϕ ∈
C be a CNF formula, and let k ∈ N. We describe an algorithm to find all iterative local backbones
of order at most k. The algorithm works in rounds. In each round, we use the algorithm A to decide
if (ϕ, l, k) ∈ LOCAL-CNF-BACKBONE, for each literal l over the variables in Var(ϕ). Each literal l
for which (ϕ, l, k) ∈ LOCAL-CNF-BACKBONE, we add to the collection of found iterative local
backbones of order at most k. Moreover, we update ϕ by instantiating l. It is straightforward to
verify that all the implied literals that this algorithm identifies are in fact iterative local backbones
of order at most k, and that any iterative local backbone of order at most k is identified by the
algorithm in at most |Var(ϕ)| rounds. Moreover, the algorithm runs in fixed-parameter tractable
time (with respect to the parameter k).

For the case of CSP instances, the notion of iterative local backbones can be defined analogously,
and in this setting we can get a similar result.

PROPOSITION 6.13. Let C be a class of CSP instances that is closed under partial assignment.
If the problem LOCAL-CSP-BACKBONE is fixed-parameter tractable when restricted to CSP in-
stances in C, then finding all iterative local backbones of order at most k (and their corresponding
value) can be found in fixed-parameter tractable time.

PROOF. The proof is entirely analogous to the proof of Proposition 6.12.

For essentially all classes of CNF formulas and (Boolean) CSP instances that we considered in
Sections 4 and 5 for which the problems SMALL-CNF-UNSAT-SUBSET and SMALL-CSP-UNSAT-
SUBSET are fixed-parameter intractable (e.g., W[1]-hard), these intractability results can be ex-
tended to the problem of finding iterative local backbones (of order at most k). Let C be a class of
CNF formulas or CSP instances. By the proof of Lemmas 6.1 and 6.7, we know that if the problem
of identifying small unsatisfiable subsets restricted to C is shown to be W[1]-hard by means of an
fpt-reduction that does not involve instances containing backbones of order at most k, then the prob-
lem of identifying iterative local backbones of order at most k is W[1]-hard as well. The hardness
proofs for SMALL-CNF-UNSAT-SUBSET and SMALL-CSP-UNSAT-SUBSET that we presented in
Sections 4 and 5 have this property (or can be modified straightforwardly in such a way that they
have this property)—with the exception of Proposition 4.4.

Interestingly, there is one class of CNF formulas for which the problem of identifying iterative
local backbones is easier than identifying local backbones. This is the class of definite Horn for-
mulas. We can use the W[1]-hardness result of Lemma 4.3 to show W[1]-hardness for the problem
LOCAL-CNF-BACKBONE restricted to definite Horn formulas.

PROPOSITION 6.14. LOCAL-CNF-BACKBONE is W[1]-hard even when restricted to CNF for-
mulas that are definite Horn, and that contain only clauses of size at most 3.

PROOF. We describe an fpt-reduction from SHORT-HYPERPATH. Let (ϕ, s, t, k) be an instance
of SHORT-HYPERPATH. By Lemma 4.3, we may assume without loss of generality that ϕ contains
only definite Horn clauses of size at most 3. Then let ϕ′ = ϕ ∪ {{s}}. We have that (ϕ, s, t, k) ∈
SHORT-HYPERPATH if and only if there is a subset ϕ′′ ⊆ ϕ′ of size at most k′ = k + 1 such
that ϕ′′ |= ¬t.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:39

In contrast, for definite Horn formulas, finding iterative local backbones of order at most k can be
done in polynomial time, for any k ∈ N. We show that for any k and any definite Horn formula ϕ,
the set of iterative local backbones of ϕ of order at most k coincides with the set of backbones
of ϕ. Since for definite Horn formulas, deciding whether a literal l is entailed can be done in linear
time [Dowling and Gallier 1984], computing the set of iterative local backbones of a definite Horn
formula ϕ of order at most k can be done in polynomial time.

PROPOSITION 6.15. Let ϕ be a definite Horn formula, and let x ∈ Var(ϕ) be a variable occur-
ring in ϕ. Then x is an iterative local backbone of ϕ of order 1 if and only if ϕ |= x.

PROOF. One direction follows immediately: if x is an iterative local backbone of ϕ of order 1,
then x is a backbone of ϕ. Since definite Horn formulas can only entail positive literals (the all-ones
truth assignment satisfies any definite Horn formula), we then know that ϕ |= x.

Conversely, assume that ϕ |= x. It is well-known that the method of forward chaining (that
is, applying the rule of modus ponens to derive the entailed unit clause {x} from a definite Horn
clause {¬x1, . . . ,¬xm, x} and previously derived entailed unit clauses {x1}, . . . , {xm}) is a com-
plete method for deriving entailed unit clauses for definite Horn formulas. Therefore, there must be
a forward chaining derivation witnessing that ϕ |= x. It is now straightforward to show by induction
on the structure of this derivation that x is an iterative local backbone of ϕ of order 1.

6.3.1. Relation to generalized unit-refutation completeness. Somewhat related to the method of
computing enforced assignments via iterative local backbones is the mechanism used to define unit-
refutation complete formulas of level k [Gwynne and Kullmann 2013; Kullmann 1999]. This mech-
anism is based on mappings rk from CNF formulas to CNF formulas. For a nonnegative inte-
ger k, the mapping rk is defined inductively as follows. In the case for k = 0, the definition states
that r0(ϕ) = {⊥} if ⊥ ∈ ϕ, and r0(ϕ) = ϕ otherwise. In the case for k > 0, the definition states
that rk(ϕ) = rk(ϕ|l) if there exists a literal l ∈ Lit(ϕ) such that rk−1(ϕ|l) = {⊥}, and rk(ϕ) = ϕ
otherwise. In particular, the mapping r1 computes the result of applying unit propagation. Note that
the result of rk(ϕ) is the application of a number of forced assignments to ϕ, i.e., rk(ϕ) = ϕ|L for
some L ⊆ Lit(ϕ) such that for all l ∈ L it holds that ϕ |= l. We let LUC

k (ϕ) denote the set of forced
literals that are computed by rk, i.e., LUC

k (ϕ) = L ⊆ Lit(ϕ) such that rk(ϕ) = ϕ|L. Similarly, we
let LILB

k (ϕ) denote the set of forced literals that are found by computing iterative local backbones
of order at most k.

The following observations relate the two mechanisms. Let ϕ be an arbitrary CNF formula. We
have that LUC

1 (ϕ) = LILB
1 (ϕ). In fact, this set contains exactly those enforced literals that can be

found by unit propagation. Also, for any k ≥ 2 we have that LILB
k (ϕ) (LUC

k (ϕ). The inclusion
follows from the fact that each minimal subset ϕ′ of size at most k that enforces a literal l has at
most k literals (which is a direct result of Tarsi’s Lemma). Whenever l is identified as an enforced
literal in the computation of iterative local backbones of order at most k, it can then also be com-
puted by rk by first guessing l, and subsequently obtaining a contradiction for each instantiation
of the other variables in Var(ϕ′). In order to see that the inclusion is strict, consider the family of
formulas (ϕn)n∈N, where ϕn = { {¬xi, xi+1} : 1 ≤ i < n } ∪ {¬xn,¬x1}. For each ϕn, we
know that ϕn |= ¬x1. Furthermore, we have that ¬x1 ∈ LUC

2 (ϕn), but x1 is not an iterative local
backbone of ϕn of any order k < n.

7. CONCLUSION
We studied the problem of identifying whether a given set of constraints has a small unsatisfiable
subset (and if it does, finding such a subset) from a parameterized complexity point of view. We
studied both the case where the set of constraints is given in the form of a CNF (or affine) formula,
and the case where the set of constraints is given in the form of a CSP instance. In the general case
of the problem, we showed that the problem is harder in the case of CSP instances (we showed
that in this case the problem is A[2]-complete) than in the case of CNF instances (in this case the

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:40 R. de Haan, I. Kanj, S. Szeider

problem was already known to be W[1]-complete). Interestingly, this is one of the first problems to
be shown complete for the parameterized intractability class A[2].

Then, we considered various restricted classes of instances over a Boolean domain. In particular,
we considered the classes of instances (propositional formulas and CSP instances) induced by the
constraint languages identified by Schaefer as the maximal constraint languages with a tractable
satisfiability problem. In the case of propositional formulas, we showed that the problem remains
W[1]-hard in all (non-trivial) cases, except for Krom (2CNF) formulas. In the case of CSP instances,
we showed that the problem is at least as hard as the corresponding problem for propositional
formulas (and in many cases even harder), and that in all cases the problem is fixed-parameter
intractable (that is, at least W[1]-hard).

Both for the setting of CNF formulas and for the setting of CSP instances we also identified
fragments for which the problem is fixed-parameter tractable. For CNF formulas, any class of in-
stances where the degree (the maximum number of times that any variable occurs in the instance)
is bounded by a function of the parameter leads to fixed-parameter tractability. For CSP instances,
one needs to bound the maximum arity of constraints and the domain size (by a function of the
parameter) in addition to the degree, to obtain fixed-parameter tractability.

Finally, we related the problem of finding small unsatisfiable subsets to the problem of identifying
whether a small subset of constraints already enforces or rules out a variable-value assignment.
We showed that the latter problem is just as hard as the former problem for all fragments that
we considered, with one exception. For the class of 0-valid and 1-valid constraints, the problem of
finding small unsatisfiable subsets is trivial (there are no unsatisfiable subsets), whereas the problem
of finding variable-value assignments that are enforced by a small subset is W[1]-complete for CNF
formulas and A[2]-complete for CSP instances.

Future research includes extending this parameterized complexity analysis to further formalisms
that express constraints. Natural candidates of such formalisms can be found, for instance, in the
area of Satisfiability Modulo Theories (SMT). There, sets of constraints are usually expressed as
CNF formulas where the propositional variables are atomic statements over an underlying theory
(e.g., linear arithmetic).

REFERENCES
Faisal N. Abu-Khzam, Michael A. Langston, Pushkar Shanbhag, and Christopher T. Symons. 2006. Scalable Parallel Algo-

rithms for FPT Problems. Algorithmica 45, 3 (2006), 269–284.
Ron Aharoni and Nathan Linial. 1986. Minimal Non-Two-Colorable Hypergraphs and Minimal Unsatisfiable Formulas. J.

Combin. Theory Ser. A 43 (1986), 196–204.
Sanjeev Arora and Boaz Barak. 2009. Computational Complexity – A Modern Approach. Cambridge University Press. I–

XXIV, 1–579 pages.
Fahiem Bacchus and George Katsirelos. 2015. Using minimal correction sets to more efficiently compute minimal unsatis-

fiable sets. In Proceedings of the 27th International Conference on Computer Aided Verification (CAV 2015) (Lecture
Notes in Computer Science), Vol. 9207. Springer Verlag, 70–86.

Anton Belov, Inês Lynce, and João Marques-Silva. 2012. Towards efficient MUS extraction. AI Commun. 25, 2 (2012),
97–116.

Anton Belov and João Marques-Silva. 2012. MUSer2: An Efficient MUS Extractor. J on Satisfiability, Boolean Modeling
and Computation 8, 1/2 (2012), 123–128.

Joshua Buresh-Oppenheim and David G. Mitchell. 2006. Minimum Witnesses for Unsatisfiable 2CNFs. In Proceedings of
SAT 2006, Ninth International Conference on Theory and Applications of Satisfiability Testing, August 12-15, 2006,
Seattle, WA, USA (Lecture Notes in Computer Science), Armin Biere and Carla P. Gomes (Eds.), Vol. 4121. 42–47.

James Cheetham, Frank Dehne, Andrew Rau-Chaplin, Ulrike Stege, and Peter J. Taillon. 2003. Solving large FPT problems
on coarse-grained parallel machines. J. of Computer and System Sciences 67, 4 (2003), 691–706.

Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad Kanj, and Ge Xia. 2005. Tight lower bounds
for certain parameterized NP-hard problems. Information and Computation 201, 2 (2005), 216–231.

Jianer Chen, Xiuzhen Huang, Iyad Kanj, and Ge Xia. 2006. Strong computational lower bounds via parameterized complex-
ity. J. of Computer and System Sciences 72, 8 (2006), 1346–1367.

Jianer Chen and Iyad Kanj. 2012. Parameterized Complexity and Subexponential-Time Computability. In The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:41

(Lecture Notes in Computer Science), Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx (Eds.), Vol.
7370. Springer Verlag, 162–195.

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. 2011. Computing Small Unsatisfiable Cores in Satisfiability
Modulo Theories. J. Artif. Intell. Res. 40 (2011), 701–728.

Jason Crampton, Gregory Gutin, and Daniel Karapetyan. 2015. Valued workflow satisfiability problem. In Proceedings of
the 20th ACM Symposium on Access Control Models and Technologies (SACMAT 2015). Assoc. Comput. Mach., New
York, 3–13.

Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. 2015. Parameterized Algorithms. Springer.

Adnan Darwiche and Pierre Marquis. 2002. A Knowledge Compilation Map. J. Artif. Intell. Res. 17 (2002), 229–264.
William F. Dowling and Jean H. Gallier. 1984. Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn

Formulae. J. Logic Programming 1, 3 (1984), 267–284.
Rodney G. Downey and Michael R. Fellows. 1995a. Fixed-parameter tractability and completeness I: Basic results. SIAM J.

Comput. 24, 4 (1995), 873–921.
Rodney G. Downey and Michael R. Fellows. 1995b. Fixed-parameter tractability and completeness II: On completeness for

W[1]. Theoretical Computer Science 141, 1-2 (1995), 109–131.
Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity. Springer Verlag, New York.
Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer Verlag.
Olivier Dubois and Gilles Dequen. 2001. A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In

Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001, Bernhard Nebel (Ed.).
248–253.

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. 2009. On the parameterized complexity
of multiple-interval graph problems. Theoretical Computer Science 410, 1 (2009), 53–61.

Michael R. Fellows, Stefan Szeider, and Graham Wrightson. 2006. On Finding Short Resolution Refutations and Small
Unsatisfiable Subsets. Theoretical Computer Science 351, 3 (2006), 351–359.

Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS
Series, Vol. XIV. Springer Verlag, Berlin.

Giorgio Gallo, Giustino Longo, Stefano Pallotino, and Sang Nguyen. 1993. Directed hypergraphs and applications. Discrete
Applied Mathematics 42 (1993), 177–201.

Serge Gaspers and Stefan Szeider. 2011. The Parameterized Complexity of Local Consistency. In Proceedings of the 17th
International Conference on Principles and Practice of Constraint Programming (CP 2011) (Lecture Notes in Computer
Science), Jimmy Ho-Man Lee (Ed.), Vol. 6876. Springer Verlag, 302–316.

Georg Gottlob and Stefan Szeider. 2006. Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and
database problems. Comput. J. 51, 3 (2006), 303–325.

Matthew Gwynne and Oliver Kullmann. 2013. Generalising and Unifying SLUR and Unit-Refutation Completeness.. In
SOFSEM 2013: Theory and Practice of Computer Science (Lecture Notes in Computer Science), Vol. 7741. 220–232.

Ronald de Haan, Iyad Kanj, and Stefan Szeider. 2013a. Local Backbones. In Proceedings of SAT 2013, 16th International
Conference on Theory and Applications of Satisfiability Testing, July 8-12, 2013, Helsinki, Finland (Lecture Notes in
Computer Science), Matti Järvisalo and Allen Van Gelder (Eds.), Vol. 7962. Springer Verlag, 377–393.

Ronald de Haan, Iyad Kanj, and Stefan Szeider. 2013b. Local Backbones. Technical Report 1304.5479. arXiv.org. (updated
version of [de Haan et al. 2013a]).

Ronald de Haan, Iyad Kanj, and Stefan Szeider. 2014. Small Unsatisfiable Subsets in Constraint Satisfaction. In 26th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, November 10-12, 2014.
429–436. DOI:http://dx.doi.org/10.1109/ICTAI.2014.72

Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric Boussemart. 2006. Extracting MUCs from constraint net-
works. In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006) (Frontiers in Artificial
Intelligence and Applications), Vol. 141. 113–117.

Timon Hertli, Robin A. Moser, and Dominik Scheder. 2011. Improving PPSZ for 3-SAT using Critical Variables.. In Sym-
posium on Theoretical Aspects of Computer Science, Thomas Schwentick and Christoph Dürr (Eds.), Vol. 9. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 237–248.

Holger H. Hoos and Thomas Stützle. 2000. SATLIB: An Online Resource for Research on SAT. In SAT2000: Highlights
of Satisfiability Research in the year 2000, Ian Gent, Hans van Maaren, and Toby Walsh (Eds.). Kluwer Academic,
283–292.

Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. 2008. Algorithm engineering for color-coding with applications to
signaling pathway detection. Algorithmica 52, 2 (2008), 114–132.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:42 R. de Haan, I. Kanj, S. Szeider

Alexey Ignatiev, Alessandro Previti, Mark Liffiton, and Joao Marques-Silva. 2015. Smallest MUS extraction with minimal
hitting set dualization. In Proceedings of the 21st International Conference on Principles and Practice of Constraint
Programming (CP 2015) (Lecture Notes in Computer Science), Vol. 9255. Springer Verlag, 173–182.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential complexity?
J. of Computer and System Sciences 63, 4 (2001), 512–530.

Henry Kautz and Bart Selman. 1996. Pushing the envelope: planning, propositional logic, and stochastic search. In Proceed-
ings of the Thirteenth AAAI Conference on Artificial Intelligence (AAAI’96). AAAI Press, 1194–1201.

Philip Kilby, John K. Slaney, Sylvie Thiébaux, and Toby Walsh. 2005. Backbones and Backdoors in Satisfiability.. In Pro-
ceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA (AAAI 2005). 1368–1373.

Oliver Kullmann. 1999. Investigating a general hierarchy of polynomially decidable classes of CNF’s based on short tree-like
resolution proofs. Technical Report TR99–041. Electronic Colloquium on Computational Complexity (ECCC).

Oliver Kullmann. 2000a. An application of matroid theory to the SAT problem. In Fifteenth Annual IEEE Conference
on Computational Complexity. 116–124. See also TR00-018, Electronic Colloquium on Computational Complexity
(ECCC), March 2000.

Oliver Kullmann. 2000b. An application of matroid theory to the SAT problem. Technical Report TR00–018. Electronic
Colloquium on Computational Complexity (ECCC).

Michael A. Langston, Andy D. Perkins, Arnold M. Saxton, Jon A. Scharff, and Brynn H. Voy. 2008. Innovative compu-
tational methods for transcriptomic data analysis: A case study in the use of FPT for practical algorithm design and
implementation. Comput. J. 51, 1 (2008), 26–38.

Paolo Liberatore. 2005. Redundancy in logic I: CNF propositional formulae. Artificial Intelligence 163, 2 (2005), 203–232.
Inês Lynce and João P. Marques Silva. 2004. On Computing Minimum Unsatisfiable Cores. In Proceedings of SAT 2004

(Seventh International Conference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Vancouver,
BC, Canada).

João Marques-Silva. 2012. Computing Minimally Unsatisfiable Subformulas: State of the Art and Future Directions. Journal
of Multiple-Valued Logic and Soft Computing (2012), 163–183.

Albert R. Meyer and Larry J. Stockmeyer. 1972. The Equivalence Problem for Regular Expressions with Squaring Requires
Exponential Space. In SWAT. IEEE Computer Soc., 125–129.

Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford.
Christos H. Papadimitriou. 1994. Computational Complexity. Addison-Wesley.
Christos H. Papadimitriou and Mihalis Yannakakis. 1999. On the complexity of database queries. J. of Computer and System

Sciences 58, 3 (1999), 407–427.
Andrew J. Parkes. 1997. Clustering at the phase transition. In 14th National Conference on Artificial Intelligence (AAAI’97).

AAAI Press, 340–345.
Daniele Prelotani. 1996. Efficiency and Stability of Hypergraph SAT Algorithms. In Cliques, Coloring and Satisfiability,

David S. Johnson and Michael A. Trick (Eds.). AMS, 479–498.
Chantal Roth-Korostensky. 2000. Algorithms for Building Multiple Sequence Alignments and Evolutionary Trees. Ph.D.

Dissertation. 13550, ETH Zürich.
Marko Samer and Stefan Szeider. 2010. Constraint satisfaction with bounded treewidth revisited. J. of Computer and System

Sciences 76, 2 (2010), 103–114.
Thomas J. Schaefer. 1978. The complexity of satisfiability problems. In Conference Record of the Tenth Annual ACM Sym-

posium on Theory of Computing (San Diego, Calif., 1978). ACM, 216–226.
Johannes Schneider, Christine Froschhammer, Ingo Morgenstern, Thomas Husslein, and Johannes Maria Singer. 1996.

Searching for backbones – an efficient parallel algorithm for the traveling salesman problem. Computer Physics Com-
munications 96 (1996), 173–188.

John K. Slaney and Toby Walsh. 2001. Backbones in Optimization and Approximation. In Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2001, Bernhard Nebel (Ed.). 254–259.

Yinglei Song, Chunmei Liu, Xiuzhen Huang, Russell L. Malmberg, Ying Xu, and Liming Cai. 2006. Efficient Parameterized
Algorithms for Biopolymer Structure-Sequence Alignment. IEEE/ACM Trans. Comput. Biology Bioinform. 3, 4 (2006),
423–432.

Ulrike Stege. 2000. Resolving Conflicts from Problems in Computational Biology. Ph.D. Dissertation. 13364, ETH Zürich.
Larry J. Stockmeyer. 1976. The polynomial-time hierarchy. Theoretical Computer Science 3, 1 (1976), 1–22.
Ofer Strichman. 2000. Tuning SAT Checkers for Bounded Model Checking. In Computer Aided Verification: 12th Interna-

tional Conference (CAV 2000). Springer-Verlag, London, UK, 480–494.
Celia Wrathall. 1976. Complete Sets and the Polynomial-Time Hierarchy. Theoretical Computer Science 3, 1 (1976), 23–33.

Received January 2017; revised January 2017; accepted January 2017

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

On the Param. Compl. of Finding Small Unsat. Subsets of CNF Formulas and CSP Instances 1:43

A. EMPIRICAL RESULTS: (ITERATIVE) LOCAL BACKBONES
In this appendix, we provide some empirical results that show the low (iterative) order of many
backbones in several SAT instances from various domains (Figures 2–4). In order to avoid the
computationally expensive task of computing cardinality-minimal unsatisfiable subsets, we approx-
imated the number of iterative local backbones by computing subset-minimal unsatisfiable subsets,
using the MUSer2 algorithm [Belov and Marques-Silva 2012]. We considered instances originating
from planning [Hoos and Stützle 2000; Kautz and Selman 1996], circuit fault analysis [Prelotani
1996], and bounded model checking [Strichman 2000]. For each of the instances, we give the per-
centage of backbones that are of order k (dashed lines) and the percentage of backbones that are
of iterative order k (solid lines), as well as the total number of backbones and the total number of
clauses. For these instances, most backbones are (iterative) local backbones of very low order. For
example, already more than 75 percent of the backbones in all the considered bmc-ibm instances are
of iterative order 2.

0 20 40 60 80 100
0

20

40

60

80

100

(iterative) order k

pe
rc

en
ta

ge
of

ba
ck

bo
ne

s
th

at
ar

e
of

(i
te

ra
tiv

e)
or

de
ra

tm
os

tk

logistics

Fig. 2: Percentage of backbones that are of order at most k (dashed) and of iterative order at most k (solid), for
SAT instances from planning (logistics.[a–d], 828–4713 variables, 6718–21991 clauses, 437–838 backbones).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

1:44 R. de Haan, I. Kanj, S. Szeider

0 20 40 60 80 100
0

20

40

60

80

100

(iterative) order k

pe
rc

en
ta

ge
of

ba
ck

bo
ne

s
th

at
ar

e
of

(i
te

ra
tiv

e)
or

de
ra

tm
os

tk

ssa7552

Fig. 3: Percentage of backbones that are of order at most k (dashed) and of iterative order at most k (solid), for
SAT instances from circuit fault analysis (ssa7552-[038,158–160], 1363–1501 variables, 3032–3575 clauses,
405–838 backbones).

0 20 40 60 80 100
0

20

40

60

80

100

(iterative) order k

pe
rc

en
ta

ge
of

ba
ck

bo
ne

s
th

at
ar

e
of

(i
te

ra
tiv

e)
or

de
ra

tm
os

tk

bmc-ibm

Fig. 4: Percentage of backbones that are of order at most k (dashed) and of iterative order at most k (solid), for
SAT instances from bounded model checking (bmc-ibm-[2,5,7], 2810–9396 variables, 11683–41207 clauses,
405–557 backbones).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
9

