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Abstract Resolution proof systems for quantified Boolean formulas (QBFs) provide
a formal model for studying the limitations of state-of-the-art search-based QBF
solvers that use these systems to generate proofs. We study a proof system that
combines two proof systems supported by the solver DepQBF: Q-resolution with
generalized universal reduction according to a dependency scheme and long distance
Q-resolution. We show that the resulting proof system—which we call long-distance
Q(D)-resolution—is sound for the reflexive resolution-path dependency scheme—in
fact, we prove that it admits strategy extraction in polynomial time. This comes as
an application of a general result, by which we identify a whole class of dependency
schemes for which long-distance Q(D)-resolution admits polynomial-time strategy
extraction. As a special case, we obtain soundness and polynomial-time strategy
extraction for long distance Q(D)-resolution with the standard dependency scheme.
We report on experiments with a configuration of DepQBF that generates proofs in
this system.
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1 Introduction

Quantified Boolean Formulas (QBFs) offer succinct encodings for problems from
domains such as formal verification, synthesis, and planning [5,12,15,28,35,40]. Al-
though the combination of (more verbose) propositional encodings with SAT solvers
is still the state-of-the-art approach to many of these problems, QBF solvers are
gaining ground. An arsenal of new techniques has been introduced over the past
few years [10, 11, 13, 20, 21, 23, 24, 27, 30, 31, 33], and these advances in solver tech-
nology have been accompanied by the development of a better understanding of the
underlying QBF proof systems and their limitations [4, 7–9,17,25,39].

Search-based solvers based on the QDPLL algorithm [14] represent one of the
principal state-of-the-art approaches in QBF solving. Akin to modern SAT solvers,
these solvers rely on successive variable assignments in combination with fast con-
straint propagation and learning. Unlike SAT solvers, however, search-based QBF
solvers are constrained by the variable dependencies induced by the quantifier pre-
fix1: while SAT solvers can assign variables in any order, search-based QBF solvers
can only assign variables from the leftmost quantifier block that contains unassigned
variables, since the assignment of a variable further to the right might depend on the
variable assignment to this block. In the most extreme case, this forces solvers into a
fixed order of variable assignments, rendering decision variable heuristics ineffective.

The search-based solver DepQBF uses dependency schemes to partially bypass
this restriction [10,29]. Dependency schemes can sometimes identify pairs of variables
as independent, allowing the solver to assign them in any order. This gives decision
heuristics more freedom and results in increased performance [10].

While this provides a strong motivation to use dependency schemes, their in-
tegration with QDPLL poses challenges of its own. Soundness of the proof system
underlying QDPLL with the standard dependency scheme as implemented in De-
pQBF was shown only recently [39], and combining other state-of-the-art techniques
with dependency schemes is often highly nontrivial. In this paper, we focus on two
such issues:

(a) Long-distance Q-resolution permits the derivation of tautological clauses in cer-
tain cases [2, 42, 43]. This system can be used in constraint learning as an al-
ternative to Q-resolution, leading to fewer backtracks during search and, some-
times, reduced runtime [18]. In addition, clause learning based on long-distance
Q-resolution is substantially easier to implement. Currently, however, DepQBF
does not permit learning based on long-distance Q-resolution in conjunction with
dependency schemes, as the resulting proof system is not known to be sound.

(b) For applications in verification and synthesis, it is not enough for solvers to
decide whether an input QBF is true or false—they also have to generate a
certificate. Such certificates can be efficiently constructed from Q-resolution [2]
and even long-distance Q-resolution proofs [3]. However, it is not clear whether
this is possible for proofs generated by DepQBF with the standard dependency
scheme, and proof generation with the standard dependency scheme is disabled
by default.

We address (a) by showing that long-distance Q-resolution combined the reflexive
resolution-path dependency scheme [39] is sound. In fact, we prove that this proof

1 We consider QBFs in prenex normal form.
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system allows for certificate extraction in polynomial time, thus resolving (b) as
well. These results also hold for long-distance Q-resolution combined with the weaker
standard dependency scheme.

Our proof relies on a familiar interpretation of Q-resolution refutations as win-
ning strategies for the universal player in the evaluation game [22]. Defining LDQ(D)
as the proof system consisting of long-distance Q-resolution with a dependency
scheme D, we identify a natural property of dependency schemes D that not only
allows for the interpretation of an LDQ(D)-refutation as a winning strategy for the
universal player, but even implies certificate extraction in time O(|P| · n) from an
LDQ(D)-refutation P of a QBF with n variables. We then show that the reflexive
resolution path dependency scheme in fact has this property.

One of our motivations for studying the combination of long-distance Q-resolution
and dependency schemes is that it is already supported by DepQBF—by default,
long-distance Q-resolution and the standard dependency scheme cannot be enabled
at the same time because it was unclear whether the resulting solver configuration
is sound. To complement our theoretical results, we performed experiments with a
modified version of DepQBF that uses constraint learning based on LDQ(D) with
the standard dependency scheme. Our experiments show that performance with this
type of learning is on par with and—in some cases—even surpasses the performance
of DepQBF with other configurations of constraint learning.

Organization Section 2 establishes basic notions used throughout this paper. In Sec-
tion 3, we review dependency schemes and introduce the LDQ(D) proof system.
Section 4 is split into two parts: in the first part, we define a property of dependency
schemes D and prove that it is sufficient for soundness of LDQ(D); in the second
part, we show that the reflexive resolution-path dependency scheme has this prop-
erty. In Section 5, we report on experiments with a modified version of DepQBF
that generates LDQ(Dstd)-proofs. In Section 6, we briefly discuss recently published
related work. We conclude in Section 7 with some open questions.

2 Preliminaries

Formulas and Assignments. A literal is a negated or unnegated variable. If x is a
variable, we write x = ¬x and ¬x = x, and let var(x) = var(¬x) = x. If X is a
set of literals, we write X for the set {x : x ∈ X }. A clause is a finite disjunction
of literals. We call a clause tautological if it contains the same variable negated as
well as unnegated. A CNF formula is a finite conjunction of non-tautological clauses.
Whenever convenient, we treat clauses as sets of literals, and CNF formulas as sets
of sets of literals. We write var(C) for the set of variables occuring (negated or
unnegated) in a clause C, that is, var(C) = { var(`) : ` ∈ C }. Moreover, we let
var(ϕ) =

⋃
C∈ϕ var(C) denote the set of variables occurring in a CNF formula ϕ.

A truth assignment (or simply assignment) to a set X of variables is a mapping
τ : X → {0, 1}. We write [X] for the set of truth assignments to X, and extend
τ : X → {0, 1} to literals by letting τ(¬x) = 1− τ(x) for x ∈ X. Let τ : X → {0, 1}
be a truth assignment. The restriction C[τ ] of a clause C by τ is defined as follows:
if there is a literal ` ∈ C ∩ (X ∪ X) such that τ(`) = 1 then C[τ ] = 1. Otherwise,
C[τ ] = C \ (X ∪X). The restriction ϕ[τ ] of a CNF formula ϕ by the assignment τ
is defined ϕ[τ ] = {C[τ ] : C[τ ] 6= 1 }.
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PCNF Formulas. A PCNF formula is denoted by Φ = Q.ϕ, where ϕ is a CNF
formula and Q = Q1X1 . . . QnXn is a sequence such that Qi ∈ {∀,∃}, Qi 6= Qi+1 for
1 ≤ i < n, and the Xi are pairwise disjoint sets of variables. We call ϕ the matrix of Φ
and Q the (quantifier) prefix of Φ, and refer to the Xi as quantifier blocks. We require
that var(ϕ) = X1∪· · ·∪Xn and write var(Φ) = var(ϕ). We define a partial order <Φ
on var(ϕ) as x <Φ y ⇔ x ∈ Xi, y ∈ Xj , i < j. We extend <Φ to a relation on literals
in the obvious way and drop the subscript whenever Φ is understood. For x ∈ var(Φ)
we let RΦ(x) = { y ∈ var(Φ) : x <Φ y } and LΦ(x) = { y ∈ var(Φ) : y <Φ x } denote
the sets of variables to the right and to the left of x in Φ, respectively. Relative
to the PCNF formula Φ, variable x is called existential (universal) if x ∈ Xi and
Qi = ∃ (Qi = ∀). The set of existential (universal) variables occurring in Φ is
denoted var∃(Φ) (var∀(Φ)). The size of a PCNF formula Φ = Q.ϕ is defined as
|Φ| =

∑
C∈ϕ |C|. If τ is an assignment, then Φ[τ ] denotes the PCNF formula Q′.ϕ[τ ],

where Q′ is the quantifier prefix obtained from Q by deleting variables that do not
occur in ϕ[τ ]. True and false PCNF formulas are defined in the usual way.

Countermodels. Let Φ = Q.ϕ be a PCNF formula. A countermodel of Φ is an indexed
family {fu}u∈var∀(Φ) of functions fu : [LΦ(u)]→ {0, 1} such that ϕ[τ ] = {∅} for every
assignment τ : var(Φ)→ {0, 1} satisfying τ(u) = fu(τ |LΦ(u)) for u ∈ var∀(Φ).

Proposition 1 (Folklore) A PCNF formula is false if, and only if, it has a coun-
termodel.

3 Dependency Schemes and LDQ(D)-Resolution

In this section, we introduce the proof system LDQ(D), which combines Q(D)-res-
olution [39] with long-distance Q-resolution [2]. Q-resolution is a generalization of
propositional resolution to PCNF formulas [26]. Q-resolution is of practical inter-
est due to its relation to search based QBF solvers that implement the QDPLL
algorithm [14]: the trace of a QDPLL solver generated for a false PCNF formula
corresponds to a Q-resolution refutation [19]. QDPLL generalizes the well-known
DPLL procedure [16] from SAT to QSAT. In a nutshell, DPLL searches for a satis-
fying assignment of an input formula by propagating unit clauses and assigning pure
literals until the formula cannot be simplified any further, at which point it picks an
unassigned variable and branches on the assignment of this variable. Although any
of the remaining variables can be chosen for assignment, the order of assignment can
have significant effects on the runtime, and modern SAT solvers derived from the
DPLL algorithm use sophisticated heuristics to determine what variable to assign
next [32].

In QDPLL, the quantifier prefix imposes constraints on the order of variable
assignments: a variable may be assigned only if it occurs in the leftmost quantifier
block with unassigned variables. Often, this is more restrictive than necessary. For
instance, variables from disjoint subformulas may be assigned in any order. Intu-
itively, a variable can be assigned as long as it does not depend on any unassigned
variable. This is the intuition underlying a generalization of QDPLL implemented in
the solver DepQBF [10,29]. DepQBF uses a dependency scheme [36] to compute an
overapproximation of variable dependencies. Dependency schemes are mappings that
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associate every PCNF formula with a binary relation on its variables that refines the
order of variables in the quantifier prefix.2

Definition 1 (Dependency Scheme) A dependency scheme is a mapping D that
associates each PCNF formula Φ with a relation DΦ ⊆ { (x, y) : x <Φ y } called the
dependency relation of Φ with respect to D.

The mapping which simply returns the prefix ordering of an input formula can be
thought of as a baseline dependency scheme:

Definition 2 (Trivial Dependency Scheme) The trivial dependency scheme Dtrv

associates each PCNF formula Φ with the relation Dtrv
Φ = { (x, y) : x <Φ y }.

DepQBF uses a dependency relation to determine the order in which variables can
be assigned: if y is a variable and there is no unassigned variable x such that (x, y)
is in the dependency relation, then y is considered ready for assignment. DepQBF
also uses the dependency relation to generalize the ∀-reduction rule used in clause
learning [10]. As a result of its use of dependency schemes, DepQBF generates proofs
in a generalization of Q-resolution called Q(D)-resolution [39], a proof system that
takes a dependency scheme D as a parameter.

Dependency schemes can be partially ordered based on their dependency rela-
tions: if the dependency relation computed by a dependency scheme D1 is a subset of
the dependency relation computed by a dependency scheme D2, then D1 is more gen-
eral thanD2. The more general a dependency scheme, the more freedom DepQBF has
in choosing decision variables. Currently, (aside from the trivial dependency scheme)
DepQBF supports the so-called standard dependency scheme [36].3 We will work
with the more general reflexive resolution-path dependency scheme [39], a variant of
the resolution-path dependency scheme [38, 41]. This dependency scheme computes
an overapproximation of variable dependencies based on whether two variables are
connected by a (pair of) resolution path(s).

Definition 3 (Resolution Path) Let Φ = Q.ϕ be a PCNF formula and let X
be a set of variables. A resolution path (from `1 to `2k) via X (in Φ) is a sequence
`1, . . . , `2k of literals satisfying the following properties:

1. For all i ∈ [k], there is a Ci ∈ ϕ such that `2i−1, `2i ∈ Ci.
2. For all i ∈ [k], var(`2i−1) 6= var(`2i).
3. For all i ∈ [k − 1], {`2i, `2i+1} ⊆ X ∪X.
4. For all i ∈ [k − 1], `2i = `2i+1.

If π = `1, . . . , `2k is a resolution path in Φ via X, we say that `1 and `2k are connected
in Φ (with respect to X). For every i ∈ {1, . . . , k} we say that π goes through var(`2i).

One can think of a resolution path as a potential chain of implications: if each clause
Ci contains exactly two literals, then assigning `1 to 0 requires setting `2k to 1. If, in
addition, there is such a path from `1 to `2k, then `1 and `2k have to be assigned the
same value. Accordingly, the resolution path dependency scheme identifies variables
connected by a pair of resolution paths as potentially dependent on each other.

2 The original definition of dependency schemes [36] is more restrictive than the one given
here, but the additional requirements are irrelevant for the purposes of this paper.

3 Strictly speaking, it uses a refined version of the standard dependency scheme [29, p.49].
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(input clause)
C

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1 ∨ e and ¬e∨C1, where
e is an existential variable, the (long-distance) resolution rule can derive the clause C1 ∨ C2,
provided that (u, e) /∈ DΦ for each universal variable u with u ∈ C1 and u ∈ C2 (or vice versa).

C (∀-reduction)
C \ {u,¬u}

The ∀-reduction rule derives the clause C \ {u,¬u} from C, where u ∈ var(C) is a universal
variable such that (u, e) /∈ DΦ for every existential variable e ∈ var(C).

Fig. 1: Derivation rules of LDQ(D)-resolution for a PCNF formula Φ = Q.ϕ.

Definition 4 (Dependency Pair) Let Φ be a PCNF formula and x, y ∈ var(Φ).
We say {x, y} is a resolution-path dependency pair of Φ with respect to X ⊆ var∃(Φ)
if at least one of the following conditions holds:
– x and y, as well as ¬x and ¬y, are connected in Φ with respect to X.
– x and ¬y, as well as ¬x and y, are connected in Φ with respect to X.

Definition 5 The reflexive resolution-path dependency scheme is the mapping Drrs

that assigns to each PCNF formula Φ = Q.ϕ the relation Drrs
Φ = {x <Φ y : {x, y} is

a resolution-path dependency pair in Φ with respect to RΦ(x) \ var∀(Φ) }.

Both Q-resolution and Q(D)-resolution only allow for the derivation of non-tau-
tological clauses, that is, clauses that do not contain a literal negated as well as
unnegated. Long-distance Q-resolution is a variant of Q-resolution that admits tau-
tological clauses in certain cases [2]. Variants of QDPLL that allow for learnt clauses
to be tautological [42, 43] have been shown to generate proofs in long-distance Q-
resolution [18].

In long-distance Q-resolution, when a tautological clause is created by resolution,
a variable that appears in both polarities must be to the right of the pivot variable.
We generalize this by requiring that the pivot be independent of a tautological vari-
able to obtain long-distance Q(D)-resolution (LDQ(D)-resolution). The derivation
rules of LDQ(D)-resolution are shown in Figure 1.4 Here, as in the rest of the paper,
D denotes an arbitrary dependency scheme.

A derivation in a proof system consists of repeated applications of the derivation
rules to derive a clause from the clauses of an input formula. Here, derivations will
be represented by node-labeled directed acyclic graphs (DAGs). More specifically, we
require these DAGs to have a unique sink (that is, a node without outgoing edges)
and each of their nodes to have at most two incoming edges. We further assume an
ordering on the in-neighbors (or parents) of every node with two incoming edges—
that is, each node has a “first” and a “second” in-neighbor. Referring to such DAGs
as proof DAGs, we define the following two operations to represent resolution and
∀-reduction:

4 The resolution rule as defined here is more general than the one considered in an earlier
version of this paper [34], in that we admit complementary universal literals to be “merged”
as long as the pivot is independent according to D (rather than Dtrv). This definition—which
we think is required to capture proofs generated by DepQBF—was proposed in (independent)
work by Beyersdorff and Blinkhorn [6].
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1. If ` is a literal and P1 and P2 are proof DAGs with distinct sinks v1 and v2, then
P1 �` P2 is the proof DAG consisting of the union of P1 and P2 along with a
new sink v that has two incoming edges, the first one from v1 and the second one
from v2. Moreover, if C1 is the label of v1 in P1 and C2 is the label of v2 in P2,
then v is labeled with the clause (C1 \ {`}) ∪ (C2 \ {`}).

2. If u is a variable and P is a proof DAG with a sink w labeled with C, then P −u
denotes the proof DAG obtained from P by adding an edge from w to a new
node v such that v is labeled with C \ {u,¬u}.

Definition 6 (Derivation) An LDQ(D)-resolution derivation (or LDQ(D)-derivation)
of a clause C from a PCNF formula Φ = Q.ϕ is a proof DAG P satisfying the fol-
lowing properties.
– Source nodes are labeled with input clauses from ϕ.
– If a node with label C has parents labeled C1 and C2 then C can be derived from
C1 and C2 by (long-distance) resolution.

– If a node labeled with a clause C has a single parent with label C ′ then C can
be derived from C ′ by ∀-reduction with respect to the dependency scheme D.

We refer to these nodes as input nodes, resolution nodes, and ∀-reduction nodes,
respectively.

Let P be an LDQ(D)-derivation from a PCNF formula Φ. The (clause) label of the
sink node is called the conclusion of P, denoted Cl(P). If the conclusion of P is the
empty clause then we refer to P as an LDQ(D)-refutation of Φ. For a node v of P, the
subderivation (of P) rooted at v is the proof DAG induced by v and its ancestors in
P. It is straightforward to verify that the resulting proof DAG is again an LDQ(D)-
derivation from Φ. For convenience, we will identify (sub)derivations with their sinks.
The size of P, denoted |P|, is the total number of literal occurrences in clause labels
of P.

4 Soundness of and Strategy Extraction for LDQ(Drrs)

A PCNF formula can be associated with an evaluation game played between an
existential and a universal player. These players take turns assigning quantifier blocks
in the order of the prefix. The existential player wins if the matrix evaluates to 1
under the resulting variable assignment, while the universal player wins if the matrix
evaluates to 0. One can show that the formula is true (false) if and only if the
existential (universal) player has a winning strategy in this game, and this winning
strategy is a (counter)model.

Goultiaeva, Van Gelder and Bacchus [22] proved that a Q-resolution refutation
can be used to compute winning moves for the universal player in the evaluation
game. The idea is that universal maintains a “restriction” of the refutation by the
assignment constructed in the evaluation game, which is a refutation of the restricted
formula.

For assignments made by the existential player, the universal player only needs
to consider each instance of resolution whose pivot variable is assigned: one of the
premises is not satisifed and can be used to (re)construct a refutation.

When it is universal’s turn, the quantifier block for which she needs to pick an
assignment is leftmost in the restricted formula. This means that ∀-reduction of
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these variables is blocked by any of the remaining existential variables and can only
be applied to a purely universal clause. In a Q-resolution refutation, these variables
must therefore be reduced at the very end, and because Q-resolution does not permit
tautological clauses, only one polarity of each universal variable from the leftmost
block can appear in a refutation. It follows that universal can maintain a Q-resolution
refutation by assigning variables from the leftmost block in such a way as to map
the associated literals to 0, effectively deleting them from the remaining Q-resolution
refutation.

In this manner, the universal player can maintain a refutation until the end of
the game, when all variables have been assigned. At that point, a refutation can
consist only of the empty clause, which means that the assignment chosen by the
two players falsifies a clause of the original matrix and universal has won the game.

Egly, Lonsing, and Widl [18] observed that this argument goes through even in
the case of long-distance Q-resolution, since a clause containing both u and ¬u for
a universal variable u can only be derived by resolving on an existential variable to
the left of u, but no such existential variable exists if u is from the leftmost block.

In this section, we will prove that this argument can be generalized to LDQ(Drrs)-
refutations. We illustrate this correspondence with an example:

Example 1 Consider the PCNF formula

Φ = ∃x ∀u ∃e, y (x ∨ u ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ y) ∧ (x ∨ e) ∧ (u ∨ y) ∧ (y ∨ e)

Figure 2 shows an LDQ(Drrs)-refutation of Φ. The only universal variable is u, so
a strategy for the universal player in the evaluation game associated with Φ has to
determine an assignment to u given an assignment to x, the only (existential) variable
preceding u. The figure illustrates how to compute the assignment to u for the two
possible assignments τ : {x} → {0, 1} from the restriction of the refutation by τ . In
both cases, only one polarity of u occurs in the restricted refutation and therefore it
is easy for universal to determine the correct assignment. Notice that in one of the
cases, a generalized ∀-reduction node remains present in the restriction—this shows
that we cannot limit ourselves to looking at the final reduction step in the proof
when looking for the variables to assign (as is the case with ordinary Q-resolution
refutations, cf. [22]).

In all of the above cases, the key property that allows universal to maintain
a refutation is that universal variables from the leftmost quantifier block may ap-
pear in at most one polarity. We will show that, indeed, this property is sufficient
for soundness of LDQ(D) when combined with a natural monotonicity property of
dependency schemes.

Definition 7 A dependency scheme D is monotone if DΦ[τ ] ⊆ DΦ for every PCNF
formula Φ and every assignment τ to a subset of var(Φ). We say that D is simple
if, for every PCNF formula Φ = ∀XQ.ϕ, every LDQ(D)-derivation P from Φ, and
every universal variable u ∈ X, u or u does not appear in P. A dependency scheme
D is normal if it is both monotone and simple.

As in the case of Q-resolution, universal’s move for a particular quantifier block
can be computed from the assignment corresponding to the previous moves and
the refutation in polynomial time. Since every polynomial-time algorithm can be
implemented by a family of polynomially-sized circuits, and because these circuits
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Fig. 2: An LDQ(Drrs)-refutation of the formula Φ from Example 1 (above) and two
its restrictions (below).

can even be computed in polynomial time [1, p.109], it follows that LDQ(D) admits
polynomial-time strategy extraction when D is normal. While the strategy extraction
algorithm based on these general considerations is unlikely to be efficient, the algo-
rithm for computing winning moves for universal is simple enough to be amenable to
efficient simulation by a Boolean circuit. In Section 4.1, we give a direct construction
that leads to the following result.

Theorem 1 Let D be a normal dependency scheme. Then, there is an algorithm that
computes a countermodel of a PCNF formula Φ with n variables from an LDQ(D)-
refutation P of Φ in time O(|P| · n).

As an application of this general result, we will prove that the reflexive resolution-
path dependency scheme is normal in Section 4.2.

Theorem 2 Drrs is normal.

Corollary 1 There is an algorithm that computes a countermodel of a PCNF for-
mula Φ with n variables from an LDQ(Drrs)-refutation P of Φ in time O(|P| · n).

This result immediately carries over to the less general standard dependency scheme:

Corollary 2 There is an algorithm that computes a countermodel of a PCNF for-
mula Φ with n variables from an LDQ(Dstd)-refutation P of Φ in time O(|P| · n).

In combination with Proposition 1, these results imply soundness of both proof
systems.

Corollary 3 The systems LDQ(Dstd) and LDQ(Drrs) are sound.
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4.1 Certificate Extraction for Normal Dependency Schemes

We begin by formally defining the “restriction” of an LDQ(D)-derivation by an as-
signment, which is a straightforward generalization of this operation for Q-resolution
derivations [22].5 The result of restricting a derivation is either a derivation or the
object >, which can be interpreted as representing the tautological clause containing
every literal. Accordingly, we stipulate that ` ∈ > for every literal `.

Definition 8 (Restriction) Let Φ be a PCNF formula and let P be an LDQ(D)-
derivation from Φ. Further, let X ⊆ var(Φ) and let τ : X → {0, 1} be a truth
assignment. The restriction of P by τ , in symbols P[τ ], is defined as follows.

1. If P is an input node there are two cases. If Cl(P)[τ ] = 1 then P[τ ] = >. Other-
wise, P[τ ] is the proof DAG consisting of a single node labeled with Cl(P)[τ ].

2. If P = P1 �` P2, that is, if P is a resolution node, we distinguish four cases:
(a) If ` /∈ Cl(P1[τ ]) then P[τ ] = P1[τ ].
(b) If ` ∈ Cl(P1[τ ]) and ` /∈ Cl(P2[τ ]) then P[τ ] = P2[τ ].
(c) If ` ∈ Cl(P1[τ ]), ` ∈ Cl(P2[τ ]), and P1[τ ] = > or P2[τ ] = >, we let P[τ ] = >.
(d) If ` ∈ Cl(P1[τ ]), ` ∈ Cl(P2[τ ]), P1[τ ] 6= >, and P2[τ ] 6= >, we define P[τ ] =
P1[τ ]�` P2[τ ].

3. If P = P ′ − u, that is, if P is a ∀-reduction node, we distinguish three cases:
(a) If P ′[τ ] = > then P[τ ] = >.
(b) If P ′[τ ] 6= > and u /∈ var(Cl(P ′[τ ])) then P[τ ] = P ′[τ ].
(c) If P ′[τ ] 6= > and u ∈ var(Cl(P ′[τ ])) then P[τ ] = P ′[τ ]− u.

If D is a monotone dependency scheme, LDQ(D)-refutations are preserved under
restriction by an existential assignment (cf. [22, Lemma 4]). This is stated in the
following lemma, which can by proved by a straightforward induction on the structure
of the LDQ(D)-derivation.

Lemma 1 Let D be a monotone dependency scheme, let P be an LDQ(D)-derivation
from a PCNF formula Φ, let E ⊆ var∃(Φ), and let τ : E → {0, 1} be an assignment.
If P[τ ] = > then Cl(P)[τ ] = 1. Otherwise, P[τ ] is an LDQ(D)-derivation from Φ[τ ]
such that Cl(P[τ ]) ⊆ Cl(P)[τ ].

Proof The proof is by induction on the structure of P.

1. If P is an input node then P[τ ] = > iff Cl(P)[τ ] = 1 and Cl(P[τ ]) = Cl(P)[τ ]
otherwise, so the statement holds trivially.

2. If P = P1 �` P2 is a resolution node we distinguish four cases:
(a) If ` /∈ Cl(P1[τ ]), then P[τ ] = P1[τ ] and

Cl(P1[τ ]) = Cl(P1[τ ]) \ {`} ⊆ Cl(P1)[τ ] \ {`} ⊆ Cl(P)[τ ],

where the first inclusion holds by induction hypothesis and the second inclu-
sion follows from the definition of the resolution rule.

(b) If ` ∈ Cl(P1[τ ]) and ` /∈ Cl(P2[τ ]) then P[τ ] = P2[τ ] and the statement
follows via a symmetric argument.

5 Our definition slightly differs from the original for the resolution rule: if restriction removes
the pivot variable from both premises, we simply pick the (restriction of the) first premise as
the result (rather than the clause containing fewer literals). This simplifies the certificate
extraction argument given below.
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(c) If ` ∈ Cl(P1[τ ]), ` ∈ Cl(P2[τ ]), and P1[τ ] = > or P2[τ ] = > then we
have P[τ ] = >. Assume without loss of generality that P1[τ ] = >. Then
Cl(P1)[τ ] = 1 by induction hypothesis. Let `′ ∈ Cl(P1) be a literal such
that τ(`′) = 1. We distinguish two cases. If ` 6= `′ then `′ ∈ Cl(P) and
Cl(P)[τ ] = 1. Otherwise, τ(`′) = τ(`) = 0, and we must have P2[τ ] = > since
` ∈ Cl(P2[τ ]). By induction hypothesis, there has to be another literal `′′ 6= `
such that `′′ ∈ Cl(P2) and τ(`′′) = 1. The literal `′′ is contained in Cl(P) as
well, so Cl(P)[τ ] = 1.

(d) If ` ∈ Cl(P1[τ ]), ` ∈ Cl(P2[τ ]), P1[τ ] 6= >, and P2[τ ] 6= >, then P[τ ] =
P1[τ ]�` P2[τ ] and P[τ ] 6= >. By induction hypothesis, P1[τ ] is an LDQ(D)-
derivation from Φ[τ ] such that Cl(P1[τ ]) ⊆ Cl(P1)[τ ], and P2[τ ] is an LDQ(D)-
derivation from Φ[τ ] such that Cl(P2[τ ]) ⊆ Cl(P2)[τ ]. Monotonicity of D en-
sures that after restriction, the resolution step is still sound and thus P[τ ] is
an LDQ(D)-derivation from Φ[τ ] as well and

Cl(P[τ ]) = Cl(P1[τ ]�` P2[τ ])
= Cl(P1[τ ]) ∪ Cl(P2[τ ]) \ {`, `}
⊆ Cl(P1)[τ ] ∪ Cl(P2)[τ ] \ {`, `} = Cl(P)[τ ].

3. If P = P ′ − u is a reduction node, we have to distinguish two cases:
(a) If P ′[τ ] = > then P[τ ] = > by definition. By induction hypothesis Cl(P ′)[τ ] =

1 and since τ does not assign u, we get Cl(P)[τ ] = 1 as well.
(b) If P[τ ] 6= > then P ′[τ ] 6= > by definition of the restriction operation. By

induction hypothesis, P ′[τ ] is an LDQ(D)-derivation from Φ[τ ] such that
Cl(P ′[τ ]) ⊆ Cl(P ′)[τ ]. If u /∈ var(Cl(P ′[τ ])) then P[τ ] = P ′[τ ] and the
statement holds. Otherwise, if u ∈ var(Cl(P ′[τ ])) then P[τ ] = P ′[τ ]− u and
thus

Cl(P[τ ]) = Cl(P ′[τ ]) \ {u,¬u}
⊆ Cl(P ′)[τ ] \ {u,¬u} = (Cl(P ′) \ {u,¬u})[τ ] = P[τ ],

where the last but one equality holds because τ does not assign u. To see that
P[τ ] = P ′[τ ] − u is a valid ∀-reduction node, note that Cl(P ′[τ ]) ⊆ Cl(P ′)
by induction hypothesis and observe that Drrs

Φ[τ ] ⊆ Drrs
Φ .

ut
Above, we argued that the universal player can use an LDQ(D)-refutation for a
normal dependency scheme D in order to compute winning moves in the evaluation
game associated with a PCNF formula and that this can be used to compute a
countermodel of the formula in polynomial time. We now prove this directly, by
showing how to construct a circuit implementing a countermodel from an LDQ(D)-
refutation.

We begin by describing auxiliary circuits simulating the restriction operation. Let
Φ = Q1X1 . . . QkXk.ϕ be a PCNF formula and let P be a refutation of Φ. For each
quantifier block Xi, each subderivation S of P, and each literal `, we will construct
circuits topiS and containsiS,` with inputs from X =

⋃
j<i Xj such that, for every

assignment σ : X → {0, 1},
topiS [σ] = 1⇐⇒ S[σ] = > (1)

containsiS,`[σ] = 1⇐⇒ ` ∈ Cl(S[σ]) (2)
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We first describe our construction and then prove that it satisfies the above properties
in Lemma 2. Let S be an input node. We let

top1
S :=

∨
{Cl(S) ∩ (X1 ∪X1) },

and define topiS for 1 < i ≤ k as

topiS := topi−1
S ∨

∨
{Cl(S) ∩ (Xi ∪Xi) }.

Moreover, for 1 ≤ i ≤ k we define containsiS,` as

containsiS,` =

{
1 if ` ∈ Cl(S) \ (X ∪X),
topiS otherwise.

For non-input nodes, we proceed as follows. If S = S1 �q S2, we define topiS as

topiS = (containsiS1,q ∧ topiS2 ) ∨ (containsiS2,q
∧ topiS1 ),

and if S = S ′ − u, we let

topiS := topiS′ .

For the containsiS,` circuit, we distinguish two cases. Let ` be a literal and S a
derivation. If ` /∈ Cl(S) we simply let

containsiS,` := topiS .

Otherwise, if ` ∈ Cl(S), we have to consider two cases. First, if S = S1�q S2, we let

containsiS,` =topiS ∨
(¬containsiS1,q ∧ containsiS1,`) ∨
(containsiS1,q ∧ ¬containsiS2,q

∧ containsiS2,`) ∨
(containsiS1,q ∧ containsiS2,q

∧ (containsiS1,` ∨ containsiS2,`)).

Second, if S = S ′ − u, then

containsiS,` := containsiS′,`.

To implement the winning strategy for universal sketched above, we further construct
circuits polarityS,u for each node S of P and each universal variable u ∈ var∀(Φ),
such that, for each assignment τ : LΦ(u)→ {0, 1},

polarityS,u[τ ] = 1⇐⇒ u occurs in S[τ ]. (3)

Let u ∈ Xi be a universal variable from the ith quantifier block. If S is an input
node, we simply define

polarityS,u := containsiS,u,

and if S = S ′ − u is a ∀-reduction node, we let

polarityS,u := polarityS′,u.
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If S = S1 �q S2, then

polarityS,u :=(¬containsiS1,q ∧ polarityS1,u) ∨
(containsiS1,q ∧ ¬containsiS2,q

∧ polarityS2,u) ∨
(containsiS1,q ∧ containsiS2,q

∧
(polarityS1,u ∨ polarityS2,u)).

Lemma 2 Let Φ = Q1X1 . . . QkXk.ϕ be a PCNF formula and let P be an LDQ(D)-
derivation from Φ. For each 1 ≤ i ≤ k, each literal `, every u ∈ var∀(Φ) ∩ Xi,
and every truth assignment σ :

⋃i−1
j=1 Xj → {0, 1}, topiP satisfies (1), containsiP,`

satisfies (2), and polarityP,u satisfies (3).

Proof Let X = X1 ∪ · · · ∪Xi−1. As (1) and (2) are related, we will prove them first.
We will use induction on the structure of P, with the induction hypothesis that (1)
and (2) hold. The inductive step will be carried out in two phases. In the first phase,
we prove that (1) holds and in the second phase we use this additional information
to prove that (2) holds as well.

1. Let P be an input node. By Definition 8 we have P[σ] = > if, and only if,
Cl(P)[σ] = 1. Since σ only assigns variables in X, this is the case if, and only if,
topiP [σ] = 1, so (1) holds.

2. Let P = P1 �q P2 such that (1) and (2) hold for P1 and P2. We distinguish
several cases.
(a) q /∈ Cl(P1[τ ]). Then P[τ ] = P1[τ ]. Since q /∈ Cl(P1[τ ]), it cannot be the case

that P1[τ ] = > and so P[τ ] 6= > as well. By the induction hypothesis, we
have containsiP1,q

[τ ] = 0 and also topiP1
[τ ] = 0 which means topiP [τ ] = 0

as required.
(b) q ∈ Cl(P1[τ ]) and q /∈ Cl(P2[τ ]). Then P[τ ] = P2[τ ]. Since q /∈ Cl(P2[τ ]),

we cannot have P2[τ ] = > and thus P[τ ] 6= > as well. By the induction
hypothesis, we have containsiP2,q

[τ ] = 0 and also topiP2
[τ ] = 0 which means

topiP [τ ] = 0 as required.
(c) q ∈ Cl(P1[τ ]) and q ∈ Cl(P2[τ ]) and P1[τ ] = > or P2[τ ] = >. Then
P[τ ] = > and by induction hypothesis, we have containsiP1,q

[τ ] = 1 as
well as containsiP2,q

[τ ] = 1, and topiP1
[τ ] = 1 or topiP2

[τ ] = 1. In any case,
topiP [τ ] = 1.

(d) q ∈ Cl(P1[τ ]) and q ∈ Cl(P2[τ ]) and P1[τ ] 6= > and P2[τ ] 6= >. Then
P[τ ] = P1[τ ] �q P2[τ ] 6= >. By induction hypothesis, we have topiP1

[τ ] = 0
and topiP2

[τ ] = 0, which ensures topiP [τ ] = 0.
3. Let P = P ′−u. From the definitions, we can immediately see that P ′[τ ] = > ⇐⇒
P[τ ] = > and topiP′ = topiP which proves (1).

We have proved that P[τ ] = > ⇐⇒ topiP [τ ] = 1, and it can be easily checked that,
by definition, topiP ⇒ containsiP,` for every literal `. Therefore, if P[τ ] = >, (2)
holds and in the following, we can restrict ourselves to the cases when P[τ ] 6= >.
Also, we can restrict ourselves to the cases when ` (the literal in question) actually
belongs to Cl(P), because otherwise containsiP,` = topiP and in that case (2)
clearly holds.
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1. Let P be an input node. We may assume P[τ ] 6= > and ` ∈ Cl(P) by the
above. By definition, we can easily see that containsiP,`[τ ] = 1 if, and only if,
` ∈ Cl(P[τ ]).

2. Let P = P1 �q P2 such that (1) and (2) hold for P1 and P2. We distinguish
several cases.
(a) q /∈ Cl(P1[τ ]). By the induction hypothesis, we have containsiP1,q

[τ ] = 0.
Also P[τ ] = P1[τ ] and

` ∈ Cl(P[τ ])⇐⇒ ` ∈ Cl(P1[τ ])⇐⇒ containsiP1,`[τ ],

where the second equivalence holds by induction hypothesis. Since we have
containsiP1,q

[τ ] = 0, we can write

containsiP1,`[τ ]⇐⇒ ¬containsiP1,q[τ ] ∧ containsiP1,`[τ ].

Because containsiP1,q
[τ ] = 0 and topiP [τ ] = 0, the only disjunct in the

definition of containsiP,`[τ ] that can possibly be satisfied is the second one,
so that

containsiP,`[τ ]⇐⇒ ¬containsiP1,q[τ ] ∧ containsiP1,`[τ ],

which establishes (2).
(b) q ∈ Cl(P1[τ ]) and q /∈ Cl(P2[τ ]). By the induction hypothesis, we have

containsiP1,q
[τ ] = 1 and containsiP2,q

[τ ] = 0. An argument symmetric to
the one for the preceding case can be used to show (2).

(c) q ∈ Cl(P1[τ ]) and q ∈ Cl(P2[τ ]) and P1[τ ] = > or P2[τ ] = >. In this case
P[τ ] = > which has already been taken care of (see above).

(d) q ∈ Cl(P1[τ ]) and q ∈ Cl(P2[τ ]) and P1[τ ] 6= > and P2[τ ] 6= >. Then
P[τ ] = P1[τ ]�q P2[τ ] and since we have restricted ourselves to the case when
` ∈ Cl(P) (see above), we have

` ∈ Cl(P[τ ])⇐⇒ ` ∈ Cl(P1[τ ]) ∨ ` ∈ Cl(P2[τ ])
⇐⇒ containsiP1,`[τ ] ∨ containsiP2,`[τ ],

where the final equivalence follows from the induction hypothesis. It is straight-
forward to verify that the last expression in turn is equivalent to the fourth
disjunct in the definition of containsiP,` being satisfied, and since this is the
only disjunct that can be satisfied in this case, we conclude that (2) holds.

By Definition 8, P[σ] = > if, and only if, P ′[σ] = >, and ` ∈ Cl(P[σ]) if, and
only if, ` ∈ Cl(P ′[σ]), for each literal ` ∈ Cl(P). Since (1) and (2) hold for P ′ by
induction hypothesis, these properties must hold for P as well.

Let us now turn to the proof of (3).

1. If P is an input node we have

u ∈ P [τ ]⇐⇒ u ∈ Cl(P[τ ])⇐⇒ containsiP,u[τ ] = polarityP,u[τ ]

by what we proved previously and the definition of polarityP,u for input nodes
(and the fact that a literal appears in a derivation that consists of a single input
node iff it occurs in the clause of associated with that node).

2. Let P = P1 �q P2.
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(a) q /∈ Cl(P1[τ ]). Then P[τ ] = P1[τ ] and by the induction hypothesis, we have

u appears in P[τ ]⇐⇒ u appears in P1[τ ]⇐⇒ polarityP1,u[τ ] = 1.

Using (2), it is readily verified that polarityP,u[τ ] = polarityP1,u[τ ].
(b) q ∈ Cl(P1[τ ]) and q /∈ Cl(P2[τ ]). Here, (3) can be proved using an argument

symmetric to one for the previous case.
(c) q ∈ Cl(P1[τ ]) and q ∈ Cl(P2[τ ]) and P1[τ ] = > or P2[τ ] = >. Then P[τ ] =
>, so u appears in P[τ ]. Without loss of generality, let P1[τ ] = >. By the
induction hypothesis we have polarityP1,u[τ ] = 1, which, along with the
assumptions for this case and (2), implies that polarityP,u is satisfied by
the last disjunct.

(d) q ∈ Cl(P1[τ ]) and q ∈ Cl(P2[τ ]) and P1[τ ] 6= > and P2[τ ] 6= >. In this case
u appears in P[τ ] if, and only if, it appears in P1[τ ] or in P2[τ ]. Using the
induction hypothesis and (2), one can verify that this is the case if, and only
if, polarityP,u[τ ] = 1.

ut

These auxiliary circuits can be efficiently constructed in a top-down manner, from
the input nodes to the conclusion. By a careful analysis, we obtain the following:

Lemma 3 There is an algorithm that, given a PCNF formula Φ and an LDQ(D)-
derivation P from Φ, computes the circuits polarityP,u for every universal vari-
able u in time O(|P| · n), where n = |var(Φ)|.

Proof The algorithm first sorts clauses according to a fixed order of literals. Let k
be the number of quantifier blocks in the prefix of Φ. There is at most one circuit
topiP for each node S of P and each 1 ≤ i ≤ k. Similarly, there is at most one circuit
containsiS,` for each node S of P, each 1 ≤ i ≤ k, and each literal ` ∈ Cl(S).

Once topiS has been computed for each 1 ≤ i ≤ k, the circuits containsiS,` can
easily be constructed for each 1 ≤ i ≤ k and every literal ` ∈ Cl(S). Overall, this
can be done in time

O(|Cl(S)| · k) ⊆ O(|Cl(S)| · n).

Assume that the circuits containsiS,` are stored in lists following the order of
literals in Cl(S). Then for each node S, the circuits topiS and containsiS,` associated
with S can again be computed in time O(|Cl(S)| · n), so that overall, these circuits
can be computed in time O(|P| ·n) for all nodes of P. Having computed the circuits
contains and top, the circuits polarityS,u can be computed for each node S and
each universal variable u ∈ var∀(Φ) in time O(|P| · n). ut

Using Lemma 1, we can spell out the argument sketched at the beginning of this
section and prove that for normal dependency schemes D, the universal player can
maintain an LDQ(D)-refutation throughout the evaluation game by successively re-
stricting an initial LDQ(D)-refutation by both players’ moves and assigning universal
variables from the leftmost remaining block X so as to falsify the (unique) literals
from X remaining the refutation. Lemma 2 tells us that the polarity circuits can
be used to implement this strategy. In order to put things together, we will need the
following two lemmas, which tell us that successive restriction and bulk restriction
in fact yield the same result.
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Lemma 4 Let P be an LDQ(D)-derivation from a PCNF formula Φ, let τ1, τ2 be
two assignments to disjoint sets of variables. Then P[τ1][τ2] = P[τ1 ∪ τ2].
Proof By induction on the structure of the derivation. If P is an input node, we
have Cl(P[τ ]) = Cl(P)[τ ] = Cl(P)[τ1][τ2] = Cl(P[τ1][τ2]) and since both derivations
consist of a single node with the same label, they are in fact equal. For derivations
created by the operations, the equality is trivially preserved. ut
Lemma 5 Let D be a normal dependency scheme, let Φ = Q1X1 . . . QkXk.ϕ be a
PCNF formula, let P be an LDQ(D)-refutation of Φ. Let Xi be a universal quantifier
block and let τ :

⋃i−1
j=1 Xj → {0, 1} be an assignment. If P[τ ] is an LDQ(D)-refutation

of Φ[τ ], then P[τ ∪ σ] is an LDQ(D)-refutation of Φ[τ ∪ σ], where σ : Xi → {0, 1} is
the assignment such that σ(u) = ¬polarityP,u[τ ] for each u ∈ Xi.
Proof Assume P[τ ] is an LDQ(D)-refutation of Φ[τ ]. Let u ∈ Xi. Because D is simple,
variable u appears in P[τ ] in at most one polarity. If u does not appear in P[τ ] at all,
the restriction P[τ ][σ] does not depend on σ(u). Otherwise, there is a unique literal
` with var(`) = u that appears in P[τ ]. By Lemma 2, polarityP,u[τ ] = 1 iff u
appears in P[τ ], so σ(u) = ¬polarityP,u[τ ] = 0 if ` = u and σ(u) = 1 if ` = ¬u. It
is a straightforward consequence that P[τ ][σ] can be obtained from P[τ ] by deleting
every occurrence of a variable u ∈ Xi and omitting instances of ∀-reduction that
become redundant as a result. Because D is monotone, the restriction P[τ ][σ] is an
LDQ(D)-refutation of Φ[τ ∪ σ], and P[τ ][σ] = P[τ ∪ σ] by Lemma 4. ut

With that, we are ready to prove the final statement.
Lemma 6 Let D be a normal dependency scheme, let P be an LDQ(D)-refutation of
a PCNF formula Φ. Then the family {fu}u∈var∀(Φ) of functions fu = ¬polarityP,u
is a countermodel of Φ.
Proof Let Φ = Q1X1 . . . QkXk.ϕ and let τ : var(Φ) → {0, 1} be a truth assignment
such that τ(u) = fu

(
τ |LΦ(u)

)
for each universal variable u. Let X<i =

⋃i−1
j=1 Xj ,

and let τi = τ |X<i for each 1 ≤ i ≤ k + 1. We claim that P[τi] is an LDQ(D)-
refutation of Φ[τi] for 1 ≤ i ≤ k + 1. The assignment τ1 is empty so P[τ1] = P and
Φ[τ1] = Φ so the statement holds in that case. Suppose the claim holds for i such
that 1 ≤ i ≤ k. If Qi = ∃, then P[τi][τ |Xi ] is an LDQ(D)-refutation of Φ[τi+1] by
Lemma 1, and P[τi][τ |Xi ] = P[τi+1] by Lemma 4. Otherwise, Qi = ∀ and P[τi+1]
is an LDQ(D)-refutation of Φ[τi+1] by Lemma 5. This completes the proof of the
claim. In particular, we now have that P[τk+1] = P[τ ] is an LDQ(D)-refutation of
Φ[τk+1] = Φ[τ ]. Because Φ[τ ] does not contain any variables, the only way Φ[τ ] can
have a refutation is that its matrix contains the empty clause, which means that
ϕ[τ ] = {∅}. ut

Theorem 1 immediately follows from Lemma 3 and Lemma 6.

4.2 The Reflexive Resolution-Path Dependency Scheme is Normal

In order to prove Theorem 2 and show that Drrs is normal, we will need some
insight into the relationship between resolution paths and LDQ(Drrs)-derivation. For
a formula Φ and a universal variable u, we will denote by Tu(Φ) the set of existential
literals to the right of u that are reachable from u by resolution-paths over existential
variables to the right of u in Φ.
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Lemma 7 Let Φ = ∀XQ.ϕ be a PNCF formula and u ∈ X be a universal literal
from the outermost block. Let C1, C2 ∈ Φ be clauses such that for some existential
literal x, x ∈ C1 and x ∈ C2, and let C = C1∪C2\{x, x}. Then Tu(Φ) = Tu(Φ∪{C}).

Proof Let Φ′ = Φ ∪ {C}. Of course, by adding clauses to a formula, we preserve
all existing resolution paths, so Tu(Φ) ⊆ Tu(Φ′). We will prove that the opposite
inclusion holds as well. Let e ∈ Tu(Φ′) and let π be a resolution path in Φ′ certifying
this. If π is also a resolution path in Φ, we are done. If it is not, it must be because it
performs a C-transition, namely it contains a subsequence of two literals l1, l2 such
that var(l1) 6= var(l2), l1, l2 ∈ C, but {l1, l2} 6⊆ C1 and {l1, l2} 6⊆ C2. In this case,
without loss of generality, we have l1 ∈ C1 and l2 ∈ C2. Let π1 be the prefix of
π up to and including l1 and π2 be the suffix of π starting with l2. Let π′ be the
concatenation of π1, x, x, and π2. It is clearly a valid resolution path and it uses one
fewer C-transitions than π. Iterating this process, we can remove all C-transitions
from π to obtain a resolution path in Φ. The resulting resolution path has the same
endpoints and therefore certifies that e ∈ Tu(Φ). ut

The previous lemma implies that when considering reachability from an outer-
most universal literal in a formula Φ, we can use clauses derived from Φ by LDQ(Drrs)-
resolution as well. Indeed, adding clauses produced by the resolution rule does not
change the set of reachable literals by Lemma 7, and adding clauses produced by
universal reduction clearly does not even create new resolution paths. Particularly,
if two literals ever appear together in a derived clause, there is a resolution path
between them. This is summarized by the following corollary.

Corollary 4 Let P be an LDQ(Drrs)-derivation from a PCNF formula Φ = ∀XQ.ϕ
and let u ∈ X,u ∈ Cl(P). Then for all existential literals e ∈ Cl(P), there is a
resolution path from u to e in Φ.

As a first step towards proving Theorem 2, we will prove that both polarities of an
outermost universal literal cannot appear together in a single clause of a derivation.

Lemma 8 Let P be an LDQ(Drrs)-derivation from a PCNF formula Φ = ∀XQ.ϕ
and let u ∈ X. Then u /∈ Cl(P) or ¬u /∈ Cl(P).

Proof Towards a contradiction, suppose u,¬u ∈ Cl(P). Since input clauses do not
contain both polarities of any literal, there must be a resolution step inside the
derivation, which merges u and ¬u into one clause. Let P ′ = P1 �x P2 be such
a step. Then, without loss of generality, x, u ∈ Cl(P1) and ¬x,¬u ∈ Cl(P2) and
by Corollary 4, there is a resolution path from u to x and from ¬u to ¬x, i.e.
(u, x) ∈ Drrs

Φ . However, if x depends on u, opposite polarities of u cannot be merged
in a resolution step with the pivot x, a contradiction. ut

Using Lemma 8, we can proceed to finish the proof of Theorem 2.

Proof (of Theorem 2) Towards a contradiction, let P be an LDQ(Drrs)-derivation
from a formula Φ = ∀XQ.ϕ and let u ∈ X be such that both polarities of u occur in
the derivation P. We will make several assumptions on the structure of P, which are
general enough so that an arbitrary derivation can be transformed into this form.
First of all, let us assume that P is tree-like, i.e. its underlying DAG is a tree. In
order to transform a derivation into tree-like form, one just makes copies of those
nodes that are used more than once.
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Fig. 3: Shape of the derivation constructed in the proof of Theorem 2.

Let us then note that if we have an LDQ(Drrs)-derivation from a formula Φ, we
can delete (an arbitrary number of) universal variables from Φ and from all clauses
of the derivation, omit reduction steps on those variables, and we will still have a
valid LDQ(Drrs)-derivation (from a different formula). Moreover, all occurences of
other literals, particularly u and ¬u, will be preserved. That allows us to make the
assumption that Φ is of the form ∀u∃Y.ϕ.

Let us further assume that P is minimal in the sense that it ends in a resolution
step (we omit reduction steps at the end if necessary), i.e. P = P1�xP ′1 and in neither
of the subderivations P1,P ′1 both u and ¬u occur. Next, let us omit all reduction
steps on one polarity of u (introducing occurrences of that polarity to clauses below
the reduction steps omitted). This must be possible, because the only way it can
invalidate an inference rule is if we introduced the other polarity of u to a clause
which already contained a literal on u. However, by our assumption, the only clause
where this can happen is the root clause and it cannot contain both polarities of u
by Lemma 8. Therefore, for omission we select that polarity of u which is contained
in the root clause if there is any, and an arbitrary one if there is none.

Without loss of generality, let the polarity chosen for omission be ¬u. Since u
is present in the derivation P, but not in the root clause Cl(P), there must be
a reduction step on u somewhere in P. As u is the only universal variable and
we omitted all reduction steps on ¬u, all reduction steps in P are on u and P
must have the from depicted in Figure 3, where Pn = Pn+1 − u is a lowermost
reduction step on u and the subsequent resolutions are on pivots xn, . . . , x1. Let
C0 = Cl(P), Ci = Cl(Pi), C ′i = Cl(P ′i). The clauses C ′1, . . . , C ′n, Cn+1 are derived
by LDQ(Drrs)-resolution and by Lemma 7 we know that we can use them to show
resolution-path connections as if they were input clauses. By the transformations we
considered we know that starting from an arbitrary LDQ(Drrs)-derivation we can
obtain a valid LDQ(Drrs)-derivation in this form, so any contradiction we derive
from here means a contradiction with the assumption that an LDQ(Drrs)-derivation
contains both polarities of a universal variable from the outermost block, thus proving
Theorem 2. With that, we are ready to finish the proof.

We will prove that there is a resolution path from ¬u to u going through an
existential literal in Cn+1, which is in contradiction with the soundness of reduction
of u from Cn+1. Let us consider open resolution paths, i.e. resolution paths without
their final literal. If an open resolution path ends in a literal ` of clause C, we say
that the path leads to the clause C. By induction on n, we will prove that there is
an open resolution path from ¬u which leads to the clause Cn. If n = 1, we have the
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path ¬u,¬x1, x1. For n > 1, let π be the open path leading to Cn−1 and let ` be its
last literal. Then either ` ∈ Cn, in which case we have an open path leading to Cn,
or ` ∈ C ′n, in which case we have the open path π,¬xn, xn leading to Cn. An open
path that leads to Cn also leads to Cn+1, because those two clauses only differ in
the presence of u and therefore can be closed by the literal u to obtain the required
resolution path. ut

5 Experiments

To gauge the potential of clause learning based on LDQ(Dstd), we ran experiments
with the search-based solver DepQBF.6 By default, DepQBF supports proof gen-
eration only in combination with the trivial dependency scheme—in that case, it
generates Q-resolution or long-distance Q-resolution proofs (depending on whether
long-distance resolution is enabled). However, by uncommenting a few lines in the
source code, proof generation can also be enabled with the standard dependency
scheme, and this option can even be combined with long-distance resolution. For
false formulas, the resulting proofs are Q(Dstd)-resolution or LDQ(Dstd)-resolution
refutations.

We compared the performance of DepQBF in four configurations,7 each using a
different proof system for constraint learning:

1. Long-distance Q-resolution with ∀/∃-reduction according to Dstd (LDQD).
2. Long-distance Q-resolution with ordinary ∀/∃-reduction (LDQ).
3. Q-resolution with ∀/∃-reduction according to Dstd (QD).
4. Ordinary Q-resolution (Q).

These experiments were performed on a cluster with Intel Xeon E5649 processors at
2.53 GHz running 64-bit Linux. We set time and memory limits of 900 seconds and
4 GB, respectively. Instances were taken from two tracks of the QBF Gallery 2014:
the applications track consisting of 6 instance families and a total of 735 formulas,
and the QBFLib track consisting of 276 formulas.

For our first set of experiments, we disabled dynamic QBCE (Quantified Blocked
Clause Elimination), a technique introduced with version 5.0 of DepQBF [30]. We
further used bloqqer8 with default settings as a preprocessor. Since LDQ(Dstd) gen-
eralizes both long-distance Q-resolution and Q(Dstd)-resolution, we were expecting
a performance increase with LDQ(Dstd)-learning compared to learning based on the
other proof systems. However, all four configurations showed virtually identical per-
formance on both the application and QBFlib benchmark sets in terms of total
runtime and instances solved within the time limit (see Table 1).

To get a more detailed picture, we broke down the results for the application track
by instance family, limiting ourselves to instances that were solved by at least one
configuration. The barplot in Figure 4 shows that there are considerable differences
in performance between solver configurations for individual instances families, with
each solver configuration being outperformed by another configuration on at least
one family.

6 http://lonsing.github.io/depqbf/
7 As a sanity check, we verified that all configurations that were able to solve a particular

instance returned the same result.
8 http://fmv.jku.at/bloqqer/
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Application track
Configuration Solved True False Time
LDQD 377 186 191 343455
LDQ 377 186 191 345459
QD 377 183 194 343928
Q 376 182 194 345914

QBFLib track
Configuration Solved True False Time
LDQD 130 69 61 140743
LDQ 131 69 62 141646
QD 129 67 62 140975
Q 127 65 62 142679

Table 1: Solved instances, solved true instances, solved false instances, and total
runtime in seconds (including timeouts) with preprocessing (but without QBCE).

0

50

100

150

bomb complexity dungeon hardness planning testing
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Fig. 4: Average runtime in seconds (y-axis) for instances from the application track
for each instance family (x-axis), by solver configuration (with preprocessing, but
without dynamic QBCE). Here, we only considered instances that were solved by at
least one configuration.

For our second set of experiments, we turned on dynamic QBCE. This led to a
significant performance increase both in terms of number of instances solved within
the time limit and total runtime for both benchmark sets, a result that is consistent
with the findings in [30]. However, as far as the performance of LDQ(Dstd)-learning
is concerned, the application and QBFlib tracks differed significantly for this exper-
iment. While LDQ(Dstd)-learning fared worst among the configurations both with
respect to instances solved and total runtime on the application track, it was the best
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Application track
Configuration Solved True False Time
LDQD 385 195 190 339143
LDQ 388 201 187 336739
QD 392 201 191 334965
Q 389 198 191 337141

QBFLib track
Configuration Solved True False Time
LDQD 145 75 70 132567
LDQ 133 64 69 141682
QD 137 70 67 134150
Q 129 62 67 142399

Table 2: Results with preprocessing and dynamic QBCE.
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Fig. 5: Solved instances from the QBFLib track (x-axis) sorted by runtime (y-axis),
by solver configuration (with preprocessing and dynamic QBCE).

configuration for the QBFlib track in both respects (see Table 2). Figure 5 shows
that using the standard dependency scheme was beneficial both with and without
long-distance resolution for the QBFlib instances.

For our final set of experiments, we left dynamic QBCE enabled but disabled
preprocessing for the application track, as this was shown to lead to a performance
increase in the case of learning with ordinary Q-resolution [30]. Indeed, this resulted
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Configuration Solved True False Time
LDQD 440 223 217 287012
LDQ 435 223 212 291574
QD 440 225 215 291661
Q 437 221 216 337141

Table 3: Results for the application track with QBCE (but without preprocessing).

in a performance increase across the board (see Table 3). Moreover, LDQ(Dstd)-
learning was the best configuration in terms of instances solved (on par with Q(Dstd)-
resolution) as well as in terms of overall runtime. Moreover, LDQ(Dstd)-learning was
the best configuration in terms of instances solved (on par with Q(Dstd)-resolution)
as well as in terms of overall runtime.

6 Related Work

Recently and independently of this work, Beyersdorff and Blinkhorn investigated the
soundness of Q-resolution proof systems parameterized by dependency schemes [6].
They define a property of dependency schemes D—full exhibition—which ensures
that a certain version of long-distance Q(D)-resolution is sound, and show that the
reflexive resolution-path dependency scheme has that property.

In a nutshell, a dependency scheme D is fully exhibited if every true QBF Φ has
a model {fe}e∈var∃(Φ) such that fe may only depend on a universal variable u if
(u, e) ∈ DΦ (such models have elsewhere been referred to as D-models [37]). It is
fairly straightforward to show that Q(D)-resolution is sound if D has this property,
but generalizing this result to proof systems with long-distance resolution presents a
challenge. Beyersdorff and Blinkhorn show that full exhibition is sufficient for sound-
ness of a restricted version of LDQ(D)-resolution, where complementary universal
literals that are “merged” by resolution must be annotated with the (existential)
pivot variable, and universal reduction can be applied only if every existential vari-
able occurring in the premise or the annotation of a universal variable is independent
of the universal variable to be reduced. However, it is uncertain whether proofs gen-
erated by DepQBF with LDQ(D)-learning satisfy this additional restriction.

How full exhibition relates our normality property is not entirely clear. Bey-
ersdorff and Blinkhorn prove that full exhibition is not sufficient for soundness of
LDQ(D)-resolution as defined here. In combination with Theorem 1, this shows that
dependency schemes that are fully exhibited need not be normal. Whether there
are normal dependency schemes that are not fully exhibited, on the other hand,
remains open. Indeed, there is some evidence to the effect that normality entails
full exhibition: consider a dependency scheme D that is not fully exhibited, and
let Φ = ∀uQ.ϕ be a true QBF that does not have a D-model. If we could show that
there is an LDQ(D)-derivation P from Φ in which both u and ¬u appear, we would
be able to conclude that D is not normal, proving that normality implies full exhi-
bition. We now sketch an argument for how this can be done under the assumption
that u is the only universal variable of Φ. In this restricted case, the (non-)existence
of a D-model can be expressed as a QBF Ψ by simply shifting existentials indepen-
dent of u to the left. Because Φ does not have a D-model, Ψ must be false and admit
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a Q-resolution refutation P, which is also an LDQ(D)-refutation of Φ. This refuta-
tion must contain both u and ¬u—otherwise, it could be turned into a Q-resolution
refutation of Φ by simply postponing universal reduction. Obviously, the assump-
tion that u is the only universal variable of Φ is very restrictive, but since we can
suppose that D is monotone (recall that a dependency scheme is normal if it is both
simple and monotone), there is hope that the argument for an arbitrary QBF can
be reduced to this case by instantiating with a suitable variable assignment.

7 Discussion

The experiments in Section 5 show that DepQBF can benefit from learning based
on LDQ(Dstd). This benefit is essentially “for free”, in that it does not require any
changes to the implementation, but soundness of the resulting solver configuration
is not immediate. The results of Section 4 contribute to a soundness proof, but they
remain partial in two respects: first, soundness of LDQ(Dstd) only implies that we can
trust the solver when it outputs “false”. To prove that “true” answers can be trusted
as well, one has to show soundness of quantified term resolution when combined
with the standard dependency scheme and long-distance resolution. Alternatively,
one could use LDQ(Dstd) for clause learning only, in combination with ordinary
long-distance Q-resolution for term learning. Second, we observed synergies only
when dynamic QBCE was activated, and it remains to show that clause learning
based on LDQ(Dstd) is sound in combination with this technique.

We take Theorem 1 as proof that, in principle, efficient certificate extraction
from LDQ(Drrs)-refutations is possible. For practical purposes, the time bound of
O(|P| · n) is not good enough. For LDQ(Dstd), a modified extraction algorithm
achieves a runtime of O(|P| · k), where k is the number of quantifier alternations
of the input formula. A proof-of-concept implementation currently does not scale to
proofs larger than a few megabytes, but we are confident that further improvements
will lead to an efficient enough algorithm for practical use.
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olution calculi. In: M.M. Halldórsson, K. Iwama, N. Kobayashi, B. Speckmann (eds.)
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Lecture Notes in Computer Science, vol. 9134, pp. 180–192. Springer Verlag (2015)

10. Biere, A., Lonsing, F.: Integrating dependency schemes in search-based QBF solvers. In:
O. Strichman, S. Szeider (eds.) Theory and Applications of Satisfiability Testing - SAT
2010, Lecture Notes in Computer Science, vol. 6175, pp. 158–171. Springer Verlag (2010)

11. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: N. Bjørner,
V. Sofronie-Stokkermans (eds.) International Conference on Automated Deduction -
CADE 23, Lecture Notes in Computer Science, vol. 6803, pp. 101–115. Springer Verlag
(2011)

12. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In:
K.L. McMillan, X. Rival (eds.) Verification, Model Checking, and Abstract Interpretation
- VMCAI 2014, Lecture Notes in Computer Science, vol. 8318, pp. 1–20. Springer Verlag
(2014)

13. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis,
University of Paderborn (2010)

14. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quanti-
fied Boolean Formulae and its experimental evaluation. Journal of Automated Reasoning
28(2) (2002)

15. Cashmore, M., Fox, M., Giunchiglia, E.: Partially grounded planning as Quantified Boolean
Formula. In: D. Borrajo, S. Kambhampati, A. Oddi, S. Fratini (eds.) 23rd International
Conference on Automated Planning and Scheduling, ICAPS 2013. AAAI (2013)

16. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Com-
munications of the ACM 5, 394–397 (1962)

17. Egly, U.: On sequent systems and resolution for QBFs. In: A. Cimatti, R. Sebastiani (eds.)
Theory and Applications of Satisfiability Testing - SAT 2012, Lecture Notes in Computer
Science, vol. 7317, pp. 100–113. Springer Verlag (2012)

18. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and strategy
extraction in search-based QBF solving. In: K.L. McMillan, A. Middeldorp, A. Voronkov
(eds.) Logic for Programming, Artificial Intelligence, and Reasoning - LPAR 2013, Lecture
Notes in Computer Science, vol. 8312, pp. 291–308. Springer Verlag (2013)

19. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the
evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)

20. Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation. In:
M. Fox, D. Poole (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010. AAAI Press (2010)

21. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-
based QBF solving. In: E. Macii (ed.) Design, Automation and Test in Europe, DATE 13,
pp. 811–814. EDA Consortium San Jose, CA, USA / ACM DL (2013)

22. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs
and strategies for both true and false QBF formulas. In: T. Walsh (ed.) Proceedings of
IJCAI 2011, pp. 546–553. IJCAI/AAAI (2011)

23. Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: S. Demri,
D. Kapur, C. Weidenbach (eds.) Automated Reasoning - 7th International Joint Confer-
ence, IJCAR 2014, Lecture Notes in Computer Science, vol. 8562, pp. 91–106. Springer
Verlag (2014)

24. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterex-
ample guided refinement. In: A. Cimatti, R. Sebastiani (eds.) Theory and Applications
of Satisfiability Testing - SAT 2012, Lecture Notes in Computer Science, vol. 7317, pp.
114–128. Springer Verlag (2012)

25. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In:
M. Järvisalo, A. Van Gelder (eds.) Theory and Applications of Satisfiability Testing - SAT
2013, Lecture Notes in Computer Science, vol. 7962, pp. 67–82. Springer Verlag (2013)

24

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
3
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