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In memory of Franco Montagna

Abstract We give a combinatorial description of the
finitely generated free weak nilpotent minimum alge-
bras, and provide explicit constructions of normal forms.

1 Introduction

A triangular norm T is a binary, associative and com-

mutative [0, 1]-valued operation on the unit square [0, 1]2

that is monotone (b ≤ c implies T (a, b) ≤ T (a, c) for all
a, b, c ∈ [0, 1]), has 1 as identity (T (a, 1) = a for all

a ∈ [0, 1]), and (thus) has 0 as annihilator (T (a, 0) = 0
for all a ∈ [0, 1]). In the theory of fuzzy sets, triangu-
lar norms and their duals, triangular conorms, model
respectively intersections and unions of fuzzy sets, and

hence provide natural interpretations for conjunctions
and disjunctions of propositions whose truth values range
over the unit interval. If a triangular norm T is left con-

tinuous, then the operation R(a, b) = max{c | T (a, c) ≤
b}, called the residual of T , is the unique binary [0, 1]-
valued operation on the unit square that satisfies the
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residuation equivalence,

T (a, b) ≤ c if and only if a ≤ R(b, c),

for all a, b, c ∈ [0, 1], and hence arguably acts as the
logical implication induced by the interpretation of T
as a logical conjunction (for instance, it implies right
distributivity of R over T ).

It is known that the class of all left continuous tri-

angular norms and their residuals, intended as the alge-
braic structures obtained by equipping the unit interval
[0, 1] with a distributive bounded integral lattice struc-

ture (∧, ∨, 0, and 1) together with a triangular norm
and its residual (· and →), generates a certain vari-
ety of residuated lattices, MTL-algebras, which forms in

fact the algebraic counterpart of a many-valued propo-
sitional logic called monoidal triangular norm logic,
MTL-logic; for a discussion and an axiomatization of
MTL-logic we refer the reader to [10,14].

Adopting this logical interpretation, if

A = (A,∧,∨, ·,→, 0, 1)

is a MTL-algebra, then the unary operation term de-
fined by

a′ � a→ 0,

for all a ∈ A, is intended as a negation operation. In-
terestingly, the class of unary operation ′ : [0, 1]→ [0, 1]
arising as negation operations of MTL-algebras over
[0, 1] coincides with the class of weak negation oper-

ations [16]; that is, unary operations over [0, 1] such
that, for all a, b ∈ [0, 1]: 0′ = 1; a ≤ b implies b′ ≤ a′;
and, a ≤ a′′.

Given a weak negation ′ : [0, 1]→ [0, 1], it is possible

to equip [0, 1] with a particular MTL-algebraic struc-
ture by defining the norm operation as follows, for all
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2 Stefano Aguzzoli et al.

a, b ∈ [0, 1]:

a · b =

{
0 if a ≤ b′,
a ∧ b otherwise.

(1)

For instance, Figure 1 displays the first four members

of the family of weak negations {fn | n = 0, 1, 2, . . . },
where fn is the step function over [0, 1] that maps 0 to
1, and ((i − 1)/n, i/n] to (n − i)/n for i = 1, 2, . . . , n,

so that fn has 2n discontinuities. The top part displays
the graphs of f0, f1, f2, and f3, and the bottom part
displays the triangular norms induced (1).

Fig. 1

In fact, the class of all weak negations, intended
as the MTL-algebraic structures over [0, 1] described

above, generates a subvariety of MTL-algebras, namely
the variety of weak nilpotent minimum algebras, or, for
short, WNM-algebras. The naming refers to the nilpo-
tent minimum triangular norm, introduced by Fodor

[11], which corresponds via (1) to the special weak nega-
tion a′ = 1−a for all a ∈ [0, 1], which is involutive, that
is a′′ = a for all a ∈ [0, 1]. See Figure 2. Actually, the

family {fn | n = 0, 1, 2, . . . } is sufficient to generate
all WNM-algebras [16]. WNM-algebras have been ex-
tensively studied in Carles Noguera’s PhD dissertation

[16]. We refer the reader to this monograph for back-
ground.

Fig. 2: The graphs of the involutive weak negation a 7→ 1 −
a (on the left) and its triangular norm (on the right), the
nilpotent minimum triangular norm by Fodor [11].

In this note, we give a concrete, combinatorial de-
scription of free finitely generated free algebras in the

variety of WNM-algebras. Knowledge of the structure
of the free WNM-algebras is interesting for both logical
and algebraic reasons.

On the logical side, the elements of the free alge-
bra, which we explicitly construct, are exactly the truth
functions of the corresponding propositional logic. The

result then launches further investigation of various fea-
tures of the deductive system, such as interpolation,
unification, and admissibility; it is worth to mention

that in [9], Ciabattoni et al. present a uniform method
for generating analytic logical calculi from given ax-
iom schemata, and the WNM-logic represents a hard
case (in a sense that can be made precise) where the

method succeeds. In the recent work [2] the authors
use a WNM-chain to solve an open problem posed by
Franco Montagna in [15], namely that, for extensions of

the logic MTL, the single chain completeness does not
imply the strong single chain completeness.

On the algebraic side, the problem is non-trivial

because it requires a description of finitely generated
WNM-chains, nice enough to study a certain subalge-
bra of their direct product. Exploiting the fact that

WNM-algebras are locally finite, a combinatorial de-
scription of WNM-chains is reachable, in sharp contrast
with MTL-algebras, where a nice description of chains

is unknown (and hard). Certain special cases of WNM-
algebras have been studied, namely the variety gener-
ated by f0 and f1 in Figure 1, respectively Gödel [13]
and RDP-algebras [18,6], and the variety generated by

the involutive negation in Figure 2, NM-algebras, to-
gether with NMG-algebras [5]. The paper [12] classifies
all subvarieties of NM-algebras, while [8,4] determines

the structure of free NM-algebras. In this note, in the
veine of [3], we generalize such results to the entire class
of WNM-algebras.

We conclude the introduction by making precise the
background notions and facts about finitely presented

algebras and weak nilpotent minimum algebras used in
the above discussion. For further standard background
in universal algebra, we refer the reader to [7].

1.1 Finitely Generated Free Algebras

Let σ be a finite algebraic signature, that is, a finite set
of operation symbols with an arity function ar : σ →
{0} ∪ N. Let X = {x1, x2, . . . } be a countable set of

variables; x, y, z, . . . denote arbitrary pairwise distinct
variables in X. The set of σ-terms is the smallest set T
such that: X ∪{f ∈ σ | ar(f) = 0} ⊆ T ; for all f ∈ σ, if

ar(f) = k ≥ 1 and s1, . . . , sk ∈ T , then f(s1, . . . , sk) ∈
T . For Y ⊆ X, we let TY denote the set of σ-terms on
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Free Weak Nilpotent Minimum Algebras 3

variables Y ; in short, we write Tn instead of T{x1,...,xn};
if t ∈ Tn, we also write t(x1, . . . , xn).

Equations (on σ) are first-order σ-formulas of the
form s = t with s, t ∈ T ; we say that s = t is in TY if

s, t ∈ TY ; if Ξ is a set of equations, we say that Ξ is
in TY if each equation in Ξ is in TY . If Y ⊆ X is finite
and Ξ is a finite set of equations in TY , we denote by

∧Ξ the conjunction of all equations in Ξ.
A σ-algebra A = (A, (fA)f∈σ) is a non-empty set A

equipped with a family of operations indexed by σ, such

that fA : Aar(f) → A for all f ∈ σ; in particular, fA ∈ A
if ar(f) = 0. A is trivial if |A| = 1. If t ∈ TY and g : X →
A, then the evaluation of t in A under g, in symbols
tA(g) ∈ A, is defined inductively on t as follows: tA(g) =

g(x) if t = x ∈ Y ; tA(g) = fA(sA1 (g), . . . , sAar(f)(g)) if
t = f(s1, . . . , sar(f)) with f ∈ σ and s1, . . . , sar(f) ∈ TY ;
in particular, tA(g) = fA if t = f and ar(f) = 0. We

write A, g |= s = t iff sA(g) = tA(g).
A class of σ-algebras V is an (algebraic) variety if

and only if, there exists a set of equations Ξ such that
A ∈ V iff A, g |= s = t for all g : X → A and s = t in Ξ

[7]; if V is the class of models of Ξ we also write VΞ .
As usual, an n-generated σ-algebra A is an alge-

bra on a signature σ{1,...,n} (in short, σn) extending σ

with n new constant symbols x1, . . . , xn, that is, σn =
(σ, x1, . . . , xn) with ar(xi) = 0 for i = 1, . . . , n, and

A = (A, (fA)f∈σ, x
A
1 , . . . , x

A
n),

where for each a ∈ A there is a term t ∈ Tn such that
tA = a. Then, if A and B are n-generated σ-algebras,

we say that:

1. A is a subalgebra of B if there exists an injective
σn-homomorphism from A to B;

2. A is isomorphic to B if there exists a bijective σn-
homomorphism from A to B;

3. B is a quotient of A if there exists a surjective σn-
homomorphism h from A to B and B is isomorphic
to A/ ≡, where ≡ is the congruence relation on A
defined as usual (a ≡ b iff h(a) = h(b) for all a, b ∈
A).

For Y ⊆ X, the σ-algebra

TY � (TY , (f
TY )f∈σ)

where fTY (s1, . . . , sar(f)) � f(s1, . . . , sar(f)) for all
s1, . . . , sar(f) ∈ TY (in particular fTY = f if ar(f) = 0)

is called the term algebra (on σ). Note that

Tn � (Tn, (f
Tn)f∈σn , x

Tn
1 , . . . , xTn

n )

is in fact an n-generated σ-algebra with generators xTn
i

= xi for i = 1, . . . , n.

We define the notion of finitely presented algebra for
VΞ a finitely axiomatized variety, that is, with Ξ finite.

A presentation is a pair (Y,Σ) where Σ is a finite set

of equations in TY ; (Y,Σ) is finite if Y = {x1, . . . , xn}
for some n ∈ N. A finite presentation ({x1, . . . , xn}, Σ)
defines the equivalence relation,

s ≡ t if and only if {∧Ξ,∧Σ} |= s = t, (2)

where s, t ∈ Tn are related iff for all A ∈ VΞ and
g : X → A, if A, g |= Σ, then A, g |= s = t. The relation
≡ is a congruence relation on Tn. In this setting, the
algebra in VΞ , finitely presented by ({x1, . . . , xn}, Σ),

is the quotient
Tn/ ≡ .

Conversely, a σ-algebra A ∈ VΞ is finitely presented

iff A is isomorphic to a quotient Tn/ ≡, where ≡ is the
congruence defined as in (2) by some finite presentation.

If Σ = ∅, then we denote Tn/ ≡ by

Fn � ({[t]≡ | t ∈ Tn}, (fFn)f∈σn
, xFn

1 , . . . , xFn
n )

and we refer to Fn as the σ-algebra in VΞ freely gener-
ated by xFn

i � [xi]≡ for i = 1, . . . , n. In this case, by (2),
if Θ is a finite set of equations in Tn and h : {x1, . . . , xn}
→ Fn is such that xi 7→ [xi]≡ for i = 1, . . . , n, then,

Fn, h |= Θ if and only if A |= ∧Θ (3)

for all A ∈ VΞ .

Notation 1 If A = (A, (fA)f∈σ) is a σ-algebra, and
s, t ∈ Tn, then we write

A |= s = t if and only if sA = tA;

moreover, if a ∈ A is such that sA = a, then we write
A |= s = a instead of A, h |= s = x, where h : X → A is

such that h(x) = a.

1.2 Weak Nilpotent Minimum Algebras

Fix σ = (∧, ·,→, 0, 1) with ar(◦) = 2 for all ◦ ∈ {∧, ·,→
}, and ar(0) = ar(1) = 0. We write x′ instead of x→ 0,
x ∨ y instead of ((x → y) → y) ∧ ((y → x) → x),
and x2 instead of x · x. As usual, we adopt the in-

fix notation for binary operation symbols. A monoidal
triangular norm based logic algebra (in short, MTL-
algebra) is a σ-algebra A = (A,∧A, ·A,→A, 0A, 1A) such

that (A,∧A,∨A, 0A, 1A) is a bounded lattice, (A, ·A, 1A)
is a commutative monoid, a ·A c ≤A b if and only if
c ≤A a →A b for all a, b, c ∈ A (residuation), which is
true if and only if,

A |= (x→ ((x · y) ∨ z)) ∧ y = y,

A |= (y ∨ z) · x = (y · x) ∨ (z · x),

A |= (y · (y → x)) ∨ x = x;
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4 Stefano Aguzzoli et al.

and A |= x → y ∨ y → x = 1 (prelinearity). Therefore
there exists a finite set of equations Ξ in T{x,y,z} such
that a σ-algebra A models Ξ if and only if A is a MTL-
algebra [10]; we denote the variety of MTL-algebras by

MT L. We collect some known facts on MTL-algebras
[10].

Note that for all A ∈MT L and a, b ∈ A, by residu-

ation and integrality, a =A a ·A 1A ≤A b iff 1A ≤A a→A

b = 1A, therefore b <A a iff a→A b <A 1A. Moreover,

A |= x′ = x′′′. (4)

Let A be a MTL-algebra. A filter on A is a non-

empty upset B ⊆ A closed under the operation ·A. A
filter B on A is prime iff B ⊂ A and a →A b ∈ B
or b →A a ∈ B for all a, b ∈ A. The set of filters on
A, with intersection as meet operation and closure of

union under ·A as join operation, is a lattice. The lat-
tice of congruences on A is isomorphic to the lattice of
filters on A, via the map that sends a congruence ≡ on

A to the filter {a ∈ A | a ≡ 1A} � [1A]≡; the inverse
map sends a filter B ⊆ A to the congruence, a ≡ b iff for
all a, b ∈ A, a →A b ∈ B and b →A a ∈ B. In fact, un-
der such bijective correspondence, completely meet irre-

ducible congruences maps to prime filters, which implies
by universal algebraic facts that subdirectly irreducible
MTL-algebras are chains. In fact, let C � A/ ≡. If

[1A]≡ is prime, then a→A b ∈ [1A]≡ or b→A a ∈ [1A]≡
for all a, b ∈ A; in the first case,

[a]≡ →C [b]≡ � [a→A b]≡ = [1A]≡

implies [a]≡ ≤C [b]≡; in the second case, similarly, [b]≡ ≤C

[a]≡. Then C is a chain. Similarly, if C is a chain, then
[1A]≡ is prime. It follows by universal algebraic facts,
that the variety of MTL-algebras is generated by MTL-
chains.

A MTL-algebra A is a weak nilpotent minimum al-
gebra (in short, WNM-algebra) if

A |= (x · y)′ ∨ ((x ∧ y)→ x · y) = 1; (5)

we let WNM denote the variety of WNM-algebras. In

particular, the variety WNM is generated by WNM-
chains, and for all WNM-chains C, the operations ·C
and →C are uniquely determined by the lattice and
negation operations, as follows (for all a, b ∈ C):

a ·C b =

{
0C if a ≤C b′C,

a ∧C b otherwise;
(6)

a→C b =

{
1C if a ≤C b,

a′C ∨C b otherwise.
(7)

Direct inspection of the previous equations and (4) shows
that finitely generated WNM-chains are finite, which

implies that the varietyWNM is locally finite, that is,
finitely generated algebras are finite [16].

Let A ∈ WNM. Then A is: a NMG-algebra (no-
tion introduced in [20], while the following one-variable

axiomatisation is given in [1]), if

A |= x′′ ∨ (x′′ → x) = 1;

a RDP-algebra (revised drastic product algebra) [19], if

A |= x′′ ∨ (x→ x′) = 1;

a NM-algebra (nilpotent minimum algebra), if A is a
WNM-algebra (or an NMG-algebra) and

A |= x′′ = x;

a Gödel algebra, if A is a MTL-algebra (or a WNM-
algebra) and

A |= x = x2.

Notice that in [1] it is proved that Gödel algebras, NM-
algebras, and NMG-algebras can be axiomatised from
MTL-algebras using only one-variable axioms. This is

achieved replacing (5) with the following:

A |= (x · x)′ ∨ (x→ x · x) = 1. (8)

On the other hand, replacing (5) by (8) does not work
for RDP-algebras: as a matter of fact, MTL-algebras
satisfying (8) constitutes a subvariety properly larger

than RDP-algebras, named GP-algebras in [1].
We apply routinely the following known facts [17].

Proposition 1 For all WNM-chains C and g : X →
C:

C, g |= x ≤ x′′ =
∧
{z ∈ C | x ≤ z, z = z′′}, (9)

C, g |= x = x2 iff C, g |= x′ < x or C, g |= x = 0, (10)

C, g |= x ≤ y implies C, g |= y′ ≤ x′, (11)

C, g |= x′ < x and C, g |= y′ < y implies C, g |= x′ < y,

(12)

C, g |= x ≤ x′ and C, g |= y′ < y implies C, g |= x ≤ y,
(13)

C, g |= x′ < x and C, g |= y ≤ y′ implies C, g |= x′ < y′.
(14)

Organization. In this note, we provide an explicit de-
scription of finitely presented WNM-algebras. We pro-

vide an explicit direct decomposition of the WNM-alge-
bra freely generated by x1, . . . , xn, and we give an ex-
plicit construction of normal forms.

The paper is organized as follows. Let n ≥ 1. In
Section 2, we characterize the (finite) set

Cn = {C1, . . . ,Cm},
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Free Weak Nilpotent Minimum Algebras 5

where each Cj is a subdirectly irreducible WNM-algebra

n-generated by x
Cj

i for i = 1, . . . , n and j = 1, . . . ,m,
and the Cj ’s are pairwise non σn-isomorphic. By uni-
versal algebraic facts, the WNM-algebra Fn freely gen-

erated by xFn
i = (xC1

i , . . . , x
Cm
i ) for i = 1, . . . , n is (σn-

isomorphic to) the subalgebra A of C1 × · · · ×Cm gen-
erated by xAi = (xC1

i , . . . , x
Cm
i ) for i = 1, . . . , n [7]. In

Section 3, we characterize factors in the direct decom-
position of Fn. In Section 4, we provide an explicit com-
binatorial description of Fn.

2 Subdirectly Irreducible WNM-algebras

In this section, we describe the (finite) set

Cn = {C1, . . . ,Cm}

of (pairwise non σn-isomorphic) subdirectly irreducible
n-generated WNM-algebras. Actually, the structure of

subdirectly irreducible WNM-algebras is well-known,
see for instance [16]. Being WNM-algebras a subvari-
ety of MTL-algebras, the subdirectly irreducible WNM-

algebras are chains, whose operations are completely
determined by the choice of the negation operation,
which is an arbitrary weak negation. Moreover, being
WNM-algebras a locally finite variety, the n-generated

subdirectly irreducible members coincide with the n-
generated chains, which all have finite cardinality. In
this section we classify σn-isomorphism classes of sub-

firectly irreducible n-generated WNM-algebras by sub-
dividing the universe of n-generated chains into blocks.
This representation turns out to be useful to charac-

terise the direct factors of the free n-generated WNM-
algebra, given in a later section.

Definition 1 (Blockwise Representation) Let C be

a WNM-chain generated by xC1 , . . . , x
C
n ∈ C. Then

bk(C) � ({B1, . . . , Bk}, (fbk(C))f∈σ, x
bk(C)
1 , . . . , xbk(C)

n )

(reads blockwise C) is the n-generated WNM-chain such
that:

1. the blocks B1, . . . , Bk form a partition of
{0, 1, xi, x′i, x′′i | i = 1, . . . , n};

2. the generator x
bk(C)
i is the block containing xi for

i = 1, . . . , n;

3. x, y ∈ Bj iff C |= x = y for j = 1, . . . , k;
4. Bj <bk(C) Bj+1 iff C |= x < y, where x ∈ Bj ,
y ∈ Bj+1, j = 1, . . . , k − 1;

5. B
′bk(C)
j = Bl iff C |= x′ = y, where x ∈ Bj , y ∈ Bl,

j = 1, . . . , k.

We also write,

bk(C) = B1 < · · · < Bk.

The n-generated WNM-chains bk(C) and C are σn-

isomorphic, clearly. The next fact characterizes the class
C1 of singly generated WNM-chains.

Proposition 2 C1 = {Ci | i = 1, . . . , 9}, where:

bk(C1) = 0x1x
′′
1 < x′11,

bk(C2) = 0 < x1 < x′′1 < x′1 < 1,

bk(C3) = 0 < x1x
′′
1 < x′1 < 1,

bk(C4) = 0 < x1 < x′1x
′′
1 < 1,

bk(C5) = 0 < x1x
′
1x
′′
1 < 1,

bk(C6) = 0 < x′1 < x1 < x′′1 < 1,

bk(C7) = 0 < x′1 < x1x
′′
1 < 1,

bk(C8) = 0x′1 < x1 < x′′11,

bk(C9) = 0x′1 < x1x
′′
11,

with slight liberality in the usage of the blockwise nota-
tion.

Proof Equations (4),(6) and (7) show that each singly
generated σ1-WNM-chain A contains at most 5 ele-
ments: its universe is the set {0A, xA1 , (x′1)A, (x′′1)A, 1}.
Moreover, two such chains A, B such that, for each
pair of elements c1, c2 ∈ {0, x1, x

′
1, x
′′
1 , 1} it holds that

cA1 ≤A cA2 iff cB1 ≤B cB2 , are clearly σ1-isomorphic. Tak-

ing into account that A |= x ≤ x′′, direct inspection
now proves that each singly generated σ1-WNM-chain
is isomorphic with one in C1. Notice that all chains in
C1 have negations that are restrictions of f2. ut

x’

x

x’’

4 5 6 7

76543

2 3

21

1 8 9

98

0

1

Fig. 3: The construction of C1 in Proposition 2. On the left,
the graph of x : [0, 1] → [0, 1] and x′ : [0, 1] → [0, 1], where
0′ = 1, a′ = 3/4 for a ∈ (0, 1/4], a′ = 1/2 for a ∈ (1/4, 1/2],
a′ = 1/4 for a ∈ (1/2, 3/4], a′ = 0 for a ∈ (3/4, 1]. The WNM-
chain C6 (center) is generated by x = 5/8, so that x′ = 1/4
and x′′ = 3/4. On the right, the WNM-chains C1, . . . ,C9,
numbered from 1 to 9, where solid, •, and open, ◦, dots denote
respectively idempotent and non-idempotent elements.

Let C ∈ Cn. For i = 1, . . . , n, the orbit of xi in C
is the σ{i}-subalgebra of C generated by xCi . We define

orbit(C, 0) � 1, orbit(C, 1) � 9, and for i = 1, . . . , n,

orbit(C, xi) � j,
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6 Stefano Aguzzoli et al.

iff the orbit of xi in C is σ{i}-isomorphic to Cj ∈ C1,
where j ∈ {1, . . . , 9}. Notice that the orbit of xi in C
is in C1, hence σ{i}-isomorphic to Cj ∈ C1 for some
j ∈ {1, . . . , 9}.
Example 1 C ∈ Cn is a Boolean (respectively, Gödel,

NM, NMG, RDP) chain iff orbit(C, xi) ∈ {1, 9} (respec-
tively, orbit(C, xi) ∈ {1, 8, 9}, orbit(C, xi) ∈ {1, 3, 5, 7,
9}, orbit(C, xi) ∈ {1, 3, 5, 7, 8, 9}, orbit(C, xi) ∈ {1, 4,
5, 8, 9}) for all i = 1, . . . , n.

Let
Kn ⊆ Cn

be such that C ∈ Kn iff C ∈ Cn and there does not exist
D ∈ Cn and a congruence ≡ on D above the identity

such that C = D/ ≡.

Proposition 3 C ∈ Kn if and only if orbit(C, xi) ∈
{2, 3, . . . , 7} for all i = 1, . . . , n.

Proof Let bk(C) = B1 < · · · < Bk. Then, C ∈ Kn iff
Bk = {1}, iff orbit(C, xi) 6= 1, 8, 9 in C for i = 1, . . . , n.
ut
Example 2 (n = 1) By Proposition 3,K1 = {C2, . . . ,C7}
⊆ C1. See Figure 4. In fact, C1 is a quotient of C2

via [1]≡ � {x′1, 1}, C8 is a quotient of C6 via [1]≡ �
{x′′1 , 1}, and C9 is a quotient of C7 and C8 via [1]≡ �
{x1, x

′′
1 , 1}.

2 3

4 5

765

4

3

2

7

6

Fig. 4: K1 = {C2,C3,C4,C5,C6,C7} ⊆ C1.

Example 3 (n = 2) K2 is listed in Appendix A. For

readability sake, we display the generators x1 and x2

as x and y respectively.

Proposition 4 The free n-generated WNM-algebra Fn
is (isomorphic to) the subalgebra of

∏
C∈Kn

C generated
by (xCi )C∈Kn

for i = 1, . . . , n.

Proof Let Cn = {C1, . . . ,Ck,Ck+1, . . . ,Cl} and letKn =

{C1, . . . ,Ck}. By universal algebraic facts [7], Fn is iso-
morphic to the subalgebra of

∏
C∈Cn C generated by

(xCi )C∈Cn for i = 1, . . . , n. By Proposition 3, the latter

is σn-isomorphic to the subalgebra of
∏

C∈Kn
C gener-

ated by (xCi )C∈Kn
for i = 1, . . . , n. ut

We establish the basic terminology and facts on
WNM-chains.

Notation 2 Let D ∈ Kn. We write,

D0 � {0},
D1 � {xi, x′′i | orbit(D, xi) ∈ {2, 3}, i = 1, . . . , n}

∪ {x′i | orbit(D, xi) ∈ {6, 7}, i = 1, . . . , n},
D2 � {xi | orbit(D, xi) = 4, i = 1, . . . , n},
D3 � {x′i, x′′i | orbit(D, xi) = 4, i = 1, . . . , n}

∪ {xi, x′i, x′′i | orbit(D, xi) = 5, i = 1, . . . , n},
D4 � {x′i | orbit(D, xi) ∈ {2, 3}, i = 1, . . . , n}

∪ {xi, x′′i | orbit(D, xi) ∈ {6, 7}, i = 1, . . . , n},
D5 � {1}.
Also, we let lD, gD ∈ D be such that,

D |= lD =
∧

x∈D4∪D5

x,

D |= gD =
∨

x∈D0∪D1∪D2∪D3

x.

The following facts hold by inspection of C1. We
write p ≺ q to mean that p < q and there is no r such

that p < r < q.

Fact 1 (Blocks) Let D ∈ Kn. Then,

(i) x ∈ D0 iff D |= x = 0 iff x′ ∈ D5;

(ii) x ∈ D1 iff D |= 0 < x ≤ x′′ < x′ iff x′ ∈ D4;
(iii) x ∈ D2 iff D |= x < x′′ = x′, and x ∈ D2

implies x′ ∈ D3;

(iv) x ∈ D3 iff D |= x = x′′ = x′ iff x′ ∈ D3;
(v) x ∈ D4 iff D |= x′ < x < 1 iff x′ ∈ D1;
(vi) x ∈ D5 iff D |= x = 1 iff x′ ∈ D0.

Also, lD is the least element x ∈ D such that D |=
x′ < x, and gD is the greatest element x ∈ D such that
D |= x ≤ x′, so D |= gD ≺ lD.

In words, lD is the least idempotent element strictly
above the bottom and gD is the greatest non-idempotent
element in D; note that D ∈ Kn implies that gD exists.

For instance, for each chain D ∈ K1 in Figure 4, lD and
gD are respectively the smallest solid dot (above the
bottom) and the largest open dot.

Proposition 5 (Order Between Blocks) Let D ∈
Kn. Then, D |= x < y for all x ∈ Di and y ∈ Dj with

0 ≤ i < j ≤ 5.

Proof It is sufficient to show that D |= x < y for all

x ∈ Di and y ∈ Di+1 with i = 1, 2, 3. In all cases, clearly
D |= x 6= y. Assume for a contradiction D |= y < x.
If x ∈ D1 and y ∈ D2, then D |= y < x ≤ x′′ <
x′ ≤ y′ = y′′ ≤ x′′. If x ∈ D2 and y ∈ D3, then

D |= y < x < x′′ = x′ ≤ y′ = y′′ = y. If x ∈ D3 and
y ∈ D4, then D |= y′ < y < x = x′′ = x′ ≤ y′. ut
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Free Weak Nilpotent Minimum Algebras 7

Proposition 6 (Order Within Blocks) Let D ∈ Kn.
Then, if x, y ∈ D3, then D |= x = y.

Proof If x, y ∈ D3, assume for a contradiction D |= x <
y (the case D |= y < x is symmetric). Then, D |= x′ =

x < y = y′ ≤ x′. ut

Let D ∈ Kn. In light of Proposition 5 and Proposi-
tion 6, bk(D) has the form,

D0 < D1,1 < · · · < D1,i1 < D2,1 < · · · < D2,i2 < D3 ≤
≤ D3 < D4,1 < · · · < D4,i4 < D5,

where {Dj,1, . . . , Dj,ij} is a partition of Dj (j = 1, 2, 4).

We prepare a technical fact for later use in Theorem 2. If

C ∈ Kn and I ∈ {{0, 1}, {2, 3}, {4, 5}}, we write CI �
∪i∈ICi.

Proposition 7 Let C,D ∈ Kn.
Let I, J ∈ {{0, 1}, {2, 3}, {4, 5}}, x ∈ CI , y ∈ CJ , w ∈
DI , z ∈ DJ .

(i) C |= x ≤ y and D |= z < w implies either I =

J = {0, 1}, or I = J = {2, 3}, or I = J = {4, 5}.
(ii) C |= y < x implies either x ∈ C{0,1} and y ∈
C{0,1}, or x ∈ C{2,3} and y ∈ C{0,1} ∪ C{2,3}, or
x ∈ C{4,5} and y ∈ C{0,1} ∪ C{2,3} ∪ C{4,5}.
(iii) C |= x ≤ y′ and D |= z′ < w implies either
(I, J) = ({0, 1}, {4, 5}) or (I, J) = ({4, 5}, {0, 1}).
(iv) C |= y′ < x implies either x ∈ C{0,1} and y ∈
C{4,5}, or x ∈ C{2,3} and y ∈ C{4,5}, or x ∈ C{4,5}
and y ∈ C{0,1} ∪ C{2,3} ∪ C{4,5}.

Proof (i) If x ∈ C{0,1} and w ∈ D{0,1}, then z ∈ D{0,1}
because D |= z < w, and then y ∈ C{0,1}. If x ∈ C{2,3}
and w ∈ D{2,3}, then z ∈ D{0,1} ∪D{2,3} because D |=
z < w. Then y ∈ C{0,1}∪C{2,3}. But y 6∈ C{0,1} because
C |= x ≤ y. Then y ∈ C{2,3} and z ∈ D{2,3}. If x ∈
C{4,5} and w ∈ D{4,5}, then y ∈ C{4,5} because C |=
x ≤ y, and then z ∈ D{2,3}.

(ii) Clear.

(iii) By part (i) and Fact 1, C |= x ≤ y′ and D |=
z′ < w implies either x ∈ C{0,1}, y ∈ C{4,5}, w ∈ D{0,1},
and z ∈ D{4,5}, or x, y ∈ C{2,3} and w, z ∈ D{2,3}, or
x ∈ C{4,5}, y ∈ C{0,1}, w ∈ D{4,5}, and z ∈ D{0,1}. But
w, z ∈ D{2,3} is impossible because D |= z′ < w.

(iv) By part (ii) noticing that x, y ∈ C{2,3} is im-
possible as C |= y′ < x. ut

3 Direct Factors

In this section, we describe directly indecomposable n-
generated WNM-algebras, in fact the direct factors of

Fn.

Definition 2 (Signature, C ∼ D) C and D in Kn
have the same signature (in symbols, C ∼ D) iff:

(S1) Ci = Di for i = 1, 2, 3, 4;
(S2) C |= x � y iff D |= x � y for all x, y ∈ C2 and all
� ∈ {<,=}.

The signature relation is an equivalence relation on
Kn = {C1, . . . ,Ck}. In the next section, we prove that
{Ci | i ∈ I} is a block in the partition induced by the
signature relation over Kn iff the subalgebra of

∏
j∈I Cj

generated by (x
Cj

i )j∈I for i = 1, . . . , n is a direct factor
of Fn.

Example 4 (n = 1) The signature relation partitions
K1 into four blocks, namely {C2,C3}, {C4}, {C5}, and

{C6,C7}.

Example 5 (n = 2) See Appendix A. The signature re-
lation partitions K2 into 18 blocks B1, . . . , B18, namely,

for j = 1, . . . , 18, Bj = {Ck | k ∈ Kj} with

K1 = {1, 2, 3, 4, 13, 14, 35, 36, 41, 42, 43, 44, 53, 54},
K2 = {5, 15}, K3 = {6, 16},
K4 = {7, . . . , 12, 17, . . . , 22}, K5 = {23},
K6 = {24}, K7 = {25, 26}, K8 = {27, 28},
K9 = {29, . . . , 34, 39, 40, 69, . . . , 74}, K10 = {37},
K11 = {38}, K12 = {45, 55}, K13 = {46, 56},
K14 = {47, . . . , 52, 57, . . . , 62}, K15 = {63},
K16 = {64}, K17 = {65, 66}, K18 = {67, 68}.

Definition 3 (Infix, infix(C,D)) Let C ∈ Kn. For an
interval I = B1 < · · · < Bk in bk(C), we write x ∈ I iff

x ∈ B1 ∪ · · · ∪Bk.

An infix of C is an interval I in bk(C) such that:

(I1) There exists x ∈ I such that C |= x = gC or C |=
x = lC.

Let C ∼ D in Kn. Then, infix(C,D) is the greatest com-
mon infix I of C and D such that:

(I2) xi ∈ I and x′i, x
′′
i 6∈ I, or xi, x

′
i, x
′′
i ∈ I for all i =

1, . . . , n.

Example 6 (n = 1) If K1 is partitioned as in Example 4,
infix(C2,C3) = infix(C6,C7) = ∅.

Example 7 (n = 2) See Appendix A. Let {B1, . . . , B18}
be the partition of K2 in Example 5. We list infix(C,D)
for every C ∼ D in K2. By direct computation:

infix(C2,C13) = y < y′′ < y′,
infix(C4,C14) = yy′′ < y′,
infix(C42,C53) = x < x′′ < x′,
and infix(C44,C54) = xx′′ < x′ (in B1);

infix(C5,C15) = y < y′y′′ (in B2);
infix(C6,C16) = yy′y′′ (in B3);
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8 Stefano Aguzzoli et al.

infix(C9,C19) = y′ < y < y′′,
infix(C7,C17) = infix(C7,C9) = infix(C17,C19) =
infix(C7,C19) = infix(C17,C9) = y,
infix(C12,C22) = y′ < yy′′,
infix(C11,C8) = x < x′′ < x′,
and infix(C21,C18) = xx′′ < x′ (in B4);
infix(C25,C26) = x < x′x′′ (in B7);

infix(C27,C28) = xx′x′′ (in B8);
infix(C30,C31) = x′ < x < x′′,
infix(C29,C32) = infix(C29,C30) = infix(C29,C31) =

infix(C30,C32) = infix(C31,C32) = x,
infix(C33,C34) = x′ < xx′′,
infix(C70,C71) = y′ < y < y′′,
infix(C69,C72) = infix(C70,C69) = infix(C70,C72) =
infix(C69,C71) = infix(C71,C72) = y,
and infix(C73,C74) = y′ < yy′′ (in B9);

infix(C45,C55) = x < x′x′′ (in B12);
infix(C46,C56) = xx′x′′ (in B13);
infix(C49,C59) = x′ < x < x′′,
infix(C47,C57) = infix(C47,C49) = infix(C47,C59) =

infix(C57,C49) = infix(C57,C59) = x,
infix(C52,C62) = x′ < xx′′,
infix(C51,C48) = y < y′′ < y′,
and infix(C61,C58) = yy′′ < y′ (in B14);
infix(C65,C66) = y < y′y′′ (in B17);
infix(C67,C68) = yy′y′′ (in B18).

Theorem 1 Let t ∈ Tn and C ∼ D in Kn.

(i) C |= t′ < t iff D |= t′ < t.
(ii) For all x ∈ infix(C,D), C |= t = x iff D |= t = x.

The statement says that the partition of Kn un-

der the equivalence relation ∼ yields in fact subsets
{D1, . . . ,Dl} ⊆ Kn maximal under inclusion (in the
powerset of Kn) such that the subalgebra of D1×· · ·×Dl
generated by (xD1

i , . . . , x
D1
i ) for i = 1, . . . , n lacks non-

trivial direct factors.
Before proving the theorem, we illustrate the idea

with two examples, which we then formalize in Sec-
tion 4.3.

Example 8 (n = 1) See Figure 5.

Example 9 (n = 2) See Figure 6.

3.1 Proof of Theorem 1

Proof By induction on t, we prove,

(i′) for all I ∈ {{0, 1}, {2, 3}, {4, 5}}, there exists x ∈
∪i∈ICi = CI such that C |= t = x iff there exists

y ∈ ∪i∈IDi = DI such that D |= t = y,

and part (ii). Part (i) follows directly from (i′) noticing

that if x ∈ C{0,1} ∪ C{2,3} and y ∈ D{0,1} ∪ D{2,3},
then by Fact 1, C,D |= t ≤ t′, and if x ∈ C{4,5} and
y ∈ C{4,5}, then by Fact 1, C,D |= t′ < t.

2 3

3

2

2 3

3

2

2 3

3

2

2 3

3

2

Fig. 5: Consider C2 ∼ C3 in K1. The first diagram displays
the term x′

1 ∈ T1 as a pair in the subalgebra of C2 × C3

generated by (xC2
1 , xC3

1 ); note that C2,C3 |= x′′
1 < x′

1. The
second diagram displays a maximal antichain in the disjoint
union of C2 and C3, with a2 ∈ C2 and a3 ∈ C3, that is
not realizable by a term t ∈ T1, in the sense that there not
exists a term t ∈ T1 such that C2 |= t = a2 and C3 |= t =
a3. In fact, C2 |= x′′

1 = t′ < t = x′
1 but C3 |= x1 = x′′

1 =
t < t′ = x′

1, impossible by Theorem 1(i). The third diagram
presents a poset P, extending the disjoint union of C2 and
C3 with two new cover relations, such that there not exists
a maximal antichain in P not realizable by a term t ∈ T1

in the above sense; Theorem 3 proves that in fact each such
maximal antichain is realized by a term t ∈ T1.

9

19

199

9

19

199

9

19

199

9

19

199

9

19

199

9

19

199

Fig. 6: Consider C9 ∼ C19 in K2. Note that by Example 7,
infix(C9,C19) = y′ < y < y′′. The configurations in the first
and third diagrams are consistent with Theorem 1. The con-
figurations in the second and fourth diagrams are inconsistent
with Theorem 1, respectively violating (ii) and (i). All con-
figurations in the sixth diagram, corresponding to maximal
antichains in the poset in the fifth diagram, are consistent
with Theorem 1; in fact, Theorem 3 shows that they are all
realizable by terms in T1.

Base Case. t ∈ {0, 1, xi | i = 1, . . . , n}.

Case t ∈ {0, 1}: If t = 1, then C |= t = x iff x = 1 ∈ C5,

and D |= t = y iff y = 1 ∈ D5. This settles (i). For (ii), if
x ∈ infix(C,D), then C |= 1 = x iff x = 1 iff D |= 1 = x.
The case t = 0 is similar.

Case t = xi (i ∈ {1, . . . , n}): As C ∈ Kn, xi ∈ C1∪C2∪
C3 ∪ C4, say xi ∈ Cj . By Proposition 5, if C |= t = x,
then x ∈ Cj . By (S1), Ci = Di for i = 1, 2, 3, 4. Then,

letting y = xi ∈ Dj we have D |= t = y. The converse is
symmetric. This settles (i). For (ii), if x ∈ infix(C,D)
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Free Weak Nilpotent Minimum Algebras 9

and C |= t = xi = x, then D |= t = xi = x by definition.
The converse is symmetric. This settles (ii).

Inductive Case. t ∈ {u ∧ v, u · v, u→ v}.

Case t = u ∧ v: We distinguish four cases.

Case C |= u ≤ v and D |= u ≤ v: Then, C |= t = u
and D |= t = u and both parts follow by induction

hypothesis.

Case C |= u ≤ v and D |= u > v: Let C |= u = x
with x ∈ CI and C |= v = y with y ∈ CJ , so that by
induction, D |= u = w with w ∈ DI and D |= v = z

with z ∈ DJ (I, J ∈ {{0, 1}, {2}, {3}, {4, 5}}).
In this case, by Proposition 7, it holds that either

x, y ∈ C{0,1} and w, z ∈ D{0,1}, or x, y ∈ C{2,3} and
w, z ∈ D{2,3}, or x, y ∈ C{4,5} and w, z ∈ D{4,5}. Then

part (i) follows, because C |= t = u∧ v = x∧ y ∈ {x, y}
and C |= t = u ∧ v = w ∧ z ∈ {w, z}.

For part (ii), we prove that if C |= x = u ≤ v = y
and D |= w = u > v = z, so that C |= t = u = x and

D |= t = v = z, and D |= z 6= x, then x 6∈ infix(C,D).
Assume for a contradiction that x ∈ infix(C,D). Then
C |= u = x implies D |= u = x inductively.

Suppose first that x, y ∈ CI and w, z ∈ DI with I ∈
{{0, 1}, {2, 3}}. Then, y ∈ infix(C,D) by (I1), because
C |= x ≤ y ≤ gC ≺ lC and x ∈ infix(C,D). Then, C |=
v = y implies D |= v = y inductively. Since C |= x ≤ y

and x, y ∈ infix(C,D), we have D |= u = x ≤ y = v,
contradicting D |= u > v.

Suppose now that x, y ∈ C{4,5} and w, z ∈ D{4,5}. In

this case, D |= gD ≺ lD ≤ z = v < w = u, because D |=
z′ < z. Observe that z 6∈ infix(C,D), because otherwise
D |= v = z implies C |= v = z inductively, which implies
that C |= x > z = v = y (contradicting C |= x ≤ y),

since D |= x = u > z and x, z ∈ infix(C,D). Then, by
(I1), w 6∈ infix(C,D), a contradiction since D |= w =
u = x and x ∈ infix(C,D).

Conversely, we prove that if D |= w = u > v = z
and C |= x = u ≤ v = y, so that D |= t = v = z and
C |= t = u = x, and C |= x 6= z, then z 6∈ infix(C,D).
Assume for a contradiction that z ∈ infix(C,D). Then

D |= v = z implies C |= v = z inductively.

Suppose first that x, y ∈ CI and w, z ∈ DI with I ∈
{{0, 1}, {2, 3}}. Then, w ∈ infix(C,D) by (I1), because

D |= z = v < u = w ≤ gD ≺ lD. Then, D |= u = w
implies C |= u = w inductively. Since D |= w > z
and w, z ∈ infix(C,D), we have C |= u = w > z = v,
contradicting C |= u ≤ v.

Suppose now that x, y ∈ C{4,5} and w, z ∈ D{4,5}.
In this case, C |= gC ≺ lC ≤ x ≤ y. Observe that
x 6∈ infix(C,D), because otherwise D |= u = x induc-

tively, which implies that D |= u = x ≤ z = v (con-
tradicting D |= u > v), since C |= x = u ≤ v = z

and x, z ∈ infix(C,D). Then, by (I1), y 6∈ infix(C,D), a

contradiction since C |= y = v = z and z ∈ infix(C,D).

This settles (ii).

Case C |= u > v and D |= u ≤ v: Swap C and D in
the previous case.

Case C |= u > v and D |= u > v: Then, C |= t = v
and D |= t = v and both parts follow by induction

hypothesis.

Case t = u→ v: We distinguish four cases.

Case C |= u ≤ v and D |= u ≤ v: C |= t = x iff
x = 1 ∈ C5, and D |= t = y iff y = 1 ∈ D5. This settles
both (i) and (ii).

Case C |= u ≤ v and D |= u > v: Let C |= u = x
with x ∈ CI and C |= v = y with y ∈ CJ , so that by

induction, D |= u = w with w ∈ DI and D |= v = z
with z ∈ DJ (I, J ∈ {{0, 1}, {2, 3}, {4, 5}}).

In this case by Proposition 7, it holds that either
x, y ∈ C{0,1} and w, z ∈ D{0,1}, or x, y ∈ C{2,3} and
w, z ∈ D{2,3}, or x, y ∈ C{4,5} and w, z ∈ D{4,5}. For

part (i), we have C |= t = x iff x = 1 ∈ C5. If w, z ∈
D{0,1}, then D |= t = u′ ∨ v = w′ ∨ z = w′ with w′ ∈
D{4,5}; and if w, z ∈ D{4,5}, then D |= t = u′ ∨ v =
w′ ∨ z = z with z ∈ D{4,5}. This settles (i).

For part (ii), we have C |= t = x with x = 1 ∈
C5 and, D |= t = w′ if x, y ∈ CI and w, z ∈ DI for

I ∈ {{0, 1}, {2, 3}}, or D |= t = z if x, y ∈ C{4,5} and
w, z ∈ D{4,5}. We prove that w′ 6∈ infix(C,D) in the
first case, and z 6∈ infix(C,D) in the second case; both

imply that 1 6∈ infix(C,D) by (I1). This settles (ii).

Assume for a contradiction w′ ∈ infix(C,D), with

w′ ∈ D4. By (I2), w ∈ infix(C,D). Then, D |= w = u
implies C |= w = u inductively. Then, C |= w = u =
x ≤ y = v. As y ∈ CI , we have C |= y ≤ y′, then

C |= w ≤ y ≤ gC ≺ lC so that y ∈ infix(C,D) by
(S2). Then, C |= y = v implies D |= y = v inductively.
Then, C |= w = x ≤ y with w, y ∈ infix(C,D) implies
D |= u = w = x ≤ y = z = v, contradicting D |= u > v.

Assume for a contradiction z ∈ infix(C,D), with z ∈
D4. Then, D |= z = v implies C |= z = v inductively.

As y ∈ C{4,5}, we have C |= y′ < y. Then C |= gC ≺
lC ≤ x ≤ y = v = z and z ∈ infix(C,D), so that
x ∈ infix(C,D) by (S2). Then, C |= x = u implies

D |= x = u inductively. Then, C |= x ≤ y with x, y ∈
infix(C,D) implies D |= u = x ≤ y = v, a contradiction.

Case C |= u > v and D |= u ≤ v: Swap C and D in
the previous case.

Case C |= u > v and D |= u > v: Let C |= u = x
with x ∈ CI and C |= v = y with y ∈ CJ , so that by
induction, D |= u = w with w ∈ DI and D |= v = z

with z ∈ DJ (I, J ∈ {{0, 1}, {2, 3}, {4, 5}}). By (7), we
have C |= t = u′ ∨ v and D |= t = u′ ∨ v.
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10 Stefano Aguzzoli et al.

For part (i), by Proposition 7 and Fact 1 we have:
C |= t = x′ ∨ y ∈ C{4,5} and D |= t = w′ ∨ z ∈ D{4,5}
if I = {0, 1}; C |= t = x′ ∨ y ∈ C{2,3} and D |= t =

w′ ∨ z ∈ D{2,3} if I = {2, 3}; C |= t = x′ ∨ y ∈ CJ and
D |= t = w′ ∨ z ∈ DJ if I = {4, 5}.

For part (ii), we have C |= t = u′ ∨ v and D |= t =

u′ ∨ v. If C,D |= t = u′ ∨ v = u′ and u′ ∈ infix(C,D), or
C,D |= t = u′ ∨ v = v and v ∈ infix(C,D), we are done.

If C |= t = u′ ∨ v = u′, D |= t = u′ ∨ v = v, and

D |= v > u′, we claim that u′ 6∈ infix(C,D). Assume
for a contradiction that u′ ∈ infix(C,D). Note that in
this case I = {4, 5} and J = {0, 1}. Then, D |= u′ <
v ≤ gD ≺ lD, and v ∈ infix(C,D) by (I1). But C |=
v ≤ u′ and D |= v > u′ with u′, v ∈ infix(C,D) is a
contradiction. Analogously, if D |= t = v and C |= t =

u′ > v, then v 6∈ infix(C,D), because otherwise C |=
v ≤ u′ ≤ gC ≺ lC, so that u′ ∈ infix(C,D), impossible
because C |= v ≤ u′ and D |= v > u′.

If C |= t = v and D |= t = u′ > v, we reason along
the lines of the previous case swapping C and D.

This settles (ii).

Case t = u · v: We distinguish four cases.

Case C |= u ≤ v′ and D |= u ≤ v′: C |= t = x iff
x = 0 ∈ C0, and D |= t = y iff y = 0 ∈ D0. This settles

both (i) and (ii).

Case C |= u ≤ v′ and D |= u > v′: Let C |= u = x

with x ∈ CI and C |= v = y with y ∈ CJ , so that by
induction, D |= u = w with w ∈ DI and D |= v = z
with z ∈ DJ (I, J ∈ {{0, 1}, {2, 3}, {4, 5}}).

For part (i), by Proposition 7, the pair (I, J) is ei-
ther ({0, 1}, {4, 5}) or ({4, 5}, {0, 1}). By (6), we have
C |= t = 0 and D |= t = u ∧ v. Then, D |= t = u with

u ∈ D{0,1}, or D |= t = v with v ∈ D{0,1}, which settles
(i).

For part (ii), if 0 ∈ infix(C,D), then 1 ∈ infix(C,D),

then C = D, impossible. Conversely, we show that if
D |= t = u > 0 then u 6∈ infix(C,D), and if D |= t =
v > 0 then v 6∈ infix(C,D).

Assume for a contradiction that D |= 0 < u = u ∧
v = t and u ∈ infix(C,D). From part (i), we have u ∈
D{0,1} and v ∈ D{4,5}, so that C |= u ≤ v′ ≤ gC ≺ lC,

which implies v′ ∈ infix(C,D), a contradiction since
C |= u ≤ v′ and D |= u > v′ with u, v′ ∈ infix(C,D).

Next assume for a contradiction that D |= 0 < v =

u ∧ v = t and v ∈ infix(C,D). From part (i), we have
v ∈ D{0,1} and u ∈ D{4,5}, so that D |= v < u′ ≤ gC ≺
lC, which implies u′ ∈ infix(C,D), a contradiction since

C |= u ≤ v′ and D |= u > v′ with u, v′ ∈ infix(C,D).

Case C |= u > v′ and D |= u ≤ v′: Swap C and D in
the previous case.

Case C |= u > v′ and D |= u > v′: Let C |= u = x
with x ∈ CI and C |= v = y with y ∈ CJ , so that by

induction, D |= u = w with w ∈ DI and D |= v = z
with z ∈ DJ (I, J ∈ {{0, 1}, {2, 3}, {4, 5}}). We have
C |= t = u ∧ v and D |= t = u ∧ v by (6).

By Proposition 7 and Fact 1, we have: C |= t =
x∧y ∈ CI and D |= t = w∧z ∈ DI if I ∈ {{0, 1}, {2, 3}};
and C |= t = x ∧ y ∈ CJ and D |= t = w ∧ z ∈ DJ if
I = {4, 5}, which settles part (i).

For part (ii), if C,D |= t = u with u ∈ infix(C,D),
or C,D |= t = v with v ∈ infix(C,D), the claim holds.
If C |= t = u and D |= t = v < u, we claim that

v 6∈ infix(C,D). Otherwise, assume v ∈ infix(C,D) for
a contradiction. If I, J ∈ {{0, 1}, {2, 3}}, then D |= v <
u ≤ gD ≺ lD, then u ∈ infix(C,D), a contradiction

since C |= u ≤ v and D |= u > v. If I = {4, 5}, then
C |= gD ≺ lD ≤ u ≤ v, then u ∈ infix(C,D), again a
contradiction. The case C |= t = v and D |= t = u < v
is symmetric. This settles part (ii).

4 Free Algebra

In this section, we describe the free n-generated WNM-
algebra Fn.

Definition 4 Let

A ⊆
∏

C∈Kn

C (15)

be such that a ∈ A iff, for all C ∼ D in Kn:

(i) C |= πC(a)′ < πC(a) iff D |= πD(a)′ < πD(a);

(ii) If x ∈ infix(C,D), then C |= πC(a) = x iff D |=
πD(a) = x.

Proposition 8 A in (15) is a subuniverse of the
(∧,∨, x1, . . . , xn)-reduct of

∏
C∈Kn

C.

Proof Let B denote the (∧,∨, x1, . . . , xn)-reduct of the
product

∏
C∈Kn

C. Clearly xBi ∈ A for i = 1, . . . , n. Let
a, b ∈ A. We show that a ∧B b ∈ A (a similar argument

shows that a ∨B b ∈ A). Note that for all E ∈ Kn, we
have E |= πE(a) = πE(a∧B b) or E |= πE(b) = πE(a∧B b).
Let C ∼ D in Kn.

For part (i), we distinguish four cases. First, C |=
πC(a) = πC(a ∧B b) and D |= πD(a) = πD(a ∧B b). Since
a ∈ A, we have that C |= πC(a∧Bb)′ < πC(a∧Bb) iff D |=
πD(a∧Bb)′ < πD(a∧Bb). Second, C |= πC(a) = πC(a∧Bb)
and D |= πD(b) = πD(a ∧B b). If C |= πC(a)′ < πC(a)
and D |= πD(b)′ < πD(b), then C |= πC(a ∧B b)′ <
πC(a ∧B b) and D |= πD(a ∧B b)′ < πD(a ∧B b), and we
are done. Similarly, if C |= πC(a) ≤ πC(a)′ and D |=
πD(b) ≤ πD(b)′, we are done. The case C |= πC(a)′ <
πC(a) and D |= πD(b) ≤ πD(b)′ is impossible, because

C |= πC(b)′ ≤ πC(a)′ < πC(a) ≤ πC(b) implies D |=
πD(b)′ < πD(b) since b ∈ A. Similarly, the case C |=
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Free Weak Nilpotent Minimum Algebras 11

πC(a)′ < πC(a) and D |= πD(b)′ < πD(b) is impossible.
The remaining two cases are similar.

For part (ii), let x ∈ infix(C,D) be such that C |=
πC(a ∧B b) = x. We show that if C |= πC(a) = x, then
D |= πD(a∧B b) = x; a symmetric argument shows that
if C |= πC(b) = x, then D |= πD(a ∧B b) = x.

Assume C |= πC(a) = x. Then D |= πD(a) = x since
a ∈ A. If there exists y ∈ infix(C,D) such that C |=
πC(b) = y, then since C |= x ≤ y implies D |= x ≤ y, we

have D |= πD(a∧B b) = x, and we are done. If there does
not exist y ∈ infix(C,D) such that C |= πC(b) = y, then
C |= πC(b)′ < πC(b) by (I1), so that D |= πD(b)′ < πD(b)

by part (i). Then D |= πD(a) = x ≤ πD(b) by (I1). Then
D |= πD(a ∧B b) = x, and we are done. ut

By Proposition 8, the (∧,∨, x1, . . . , xn)-structure

A = (A,∧A,∨A, xA1 , . . . , xAn), (16)

with operations and constants inherited from the
(∧,∨, x1, . . . , xn)-reduct of

∏
C∈Kn

C, is a distributive
lattice. In this setting, we note that a ∈ A is join irre-

ducible iff there exists C ∈ Kn and c ∈ C such that a is
the least element in A such that C |= πC(a) = c; in this
case, we say that a corresponds to c and we write acC.

We prove the two key facts. Theorem 2 proves that
for every term t ∈ Tn there exists a tuple a ∈ A that
corresponds to t, and Corollary 1 in Section 4 proves

that for every tuple a ∈ A there exists a term t ∈ Tn
that corresponds to a.

Theorem 2 For all t ∈ Tn, there exists a ∈ A such
that

∏
C∈Kn

C |= t = a.

Proof Let t ∈ Tn. Let a� (tC)C∈Kn ∈
∏

C∈Kn
C. Then∏

C∈Kn
C |= t = a by definition. We claim that a ∈ A.

Let C ∼ D in Kn. Then by Theorem 1, C |= t′ < t
iff D |= t′ < t; and for all x ∈ infix(C,D), C |= t = x iff
D |= t = x. The statement follows immediately because

C |= πC(a) = tC = t and D |= πD(a) = tC = t by
definition of a. ut

We now prove the second key fact in a sequence of
lemmas.

Theorem 3 (Join Irreducible) Let a ∈ A be join
irreducible. Then, there exists a term ta ∈ Tn such that∏

C∈Kn
C |= ta = a.

Lemma 1 Let C ∈ Kn, let c ∈ C such that C |= lC ≤ c,
and let acC ∈ A be the join irreducible element corre-

sponding to c. Then, there exists a term tcC ∈ Tn such

that
∏

C∈Kn
C |= tcC = acC.

Proof (Proof of Lemma 1) See Section 4.1.

Lemma 2 Let C ∈ Kn, let c ∈ C such that C |= c ≤
gC, and let acC ∈ A be the join irreducible element in A
corresponding to c. Then, there exists a term tcC ∈ Tn
such that

∏
C∈Kn

C |= tcC = acC.

Proof (Proof of Lemma 2) See Section 4.2.

Proof (Proof of Theorem 3) Immediate by Lemma 1

and Lemma 2, noticing that a ∈ A is join irreducible
iff exactly one of the following two cases occurs: there
exists C ∈ Kn and c ∈ C such that C |= lC ≤ c; or,

there exists C ∈ Kn and c ∈ C such that C |= c ≤ gC.

Corollary 1 (Normal Forms) For all a ∈ A, there
exists a term t ∈ Tn such that

∏
C∈Kn

C |= t = a.

Proof Let a ∈ A. Then there exist join irreducible
a1, . . . , ak ∈ A such that

∏
C∈Kn

C |= a = a1 ∨ · · · ∨ ak.
For ta1 , . . . , tak the terms given by Theorem 3, let t =

ta1 ∨ · · · ∨ tak . Then,
∏

C∈Kn
C |= t = a. ut

Using Theorem 2 and Corollary 1, expand the
(∧,∨, x1, . . . , xn)-algebra A in (16) to a σn-algebra,

A = (A,∧A,∨A, ·A,→A, 0A, 1A, xA1 , . . . , x
A
n), (17)

by putting:

1. if a ∈ A is such that
∏

C∈Kn
C |= 0 = a (respectively,∏

C∈Kn
C |= 1 = a), then 0A = a (respectively, 1A =

a);

2. for all ◦ ∈ {·,→} and a, b ∈ A, if r, s ∈ Tn are
such that

∏
C∈Kn

C |= r = a and
∏

C∈Kn
C |= s = b

and c ∈ A is such that
∏

C∈Kn
C |= r ◦ s = c, then

a ◦A b = c.

Theorem 4 (Free Algebra) The σn-algebra A in (17)
is σn-isomorphic to the free n-generated WNM-algebra

Fn.

Proof Let B denote the σn-algebra
∏

C∈Kn
C. Then A is

σn-isomorphic to the σn-subalgebra of B generated by

xBi for i = 1, . . . , n, via the σn-isomorphism that sends
xAi to xBi for i = 1, . . . , n. ut
Example 10 (n = 1) F1 is displayed in Figure 7.

Example 11 (n = 2) F2 is displayed in Appendix A.

4.1 Lemma 1

Definition 5 Define the binary operations,

x <1 y � (y → x)→ y′ ∧ x→ y, (18)

x <2 y � (y → x)→ (y → x)′, (19)

x <4 y � (y → x)→ y, (20)

x =i y � (x→ y ∧ y → x)2, (21)

where i ∈ {1, 2, 4}.
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12 Stefano Aguzzoli et al.
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Fig. 7: |F1| = 1200.

Proposition 9 Let D ∈ Kn and � ∈ {<,=}. Then:

(i) if x, y ∈ D1, then

D |= x �1 y =

{
1 if D |= x � y,

x′ ∧ y′ otherwise;

(ii) if x, y ∈ D2, then

D |= x �2 y =

{
1 if D |= x � y,

0 otherwise;

(iii) if x, y ∈ D4, then

D |= x �4 y =

{
1 if D |= x � y,

x ∧ y otherwise.

Proof (Proof of Proposition 9) (i) Let x, y ∈ D1. If
D |= x < y < y′ ≤ x′, then D |= x <1 y = (y′ ∨ x) →
y′ ∧ 1 = y′ → y′ = 1; if D |= y = x < x′ = y′, then

D |= x <1 y = 1→ y′∧1 = y′ = x′∧y′; if D |= y < x <
x′ ≤ y′, then D |= x <1 y = 1→ y′ ∧ (x′ ∨ y) = x′ ∧ y′.

If D |= x = y, then D |= x =1 y = 12 = 1; if
D |= x < y < y′ ≤ x′, then D |= x =1 y = (1 ∧ (y′ ∨
x))2 = (y′)2 = x′ ∧ y′; if D |= y < x < x′ ≤ y′, then

D |= x =1 y = ((x′ ∨ y) ∧ 1)2 = (x′)2 = x′ ∧ y′.
(ii) Let x, y ∈ D2. If D |= x < y < y′′ = y′ = x′′ =

x′, then D |= x <2 y = (y′∨x)→ (y′∨x)′ = y′ → y′′ =
1; if D |= y ≤ x, then D |= x <2 y = 1→ 1′ = 1→ 0 =
0.

If D |= x = y, then D |= x =2 y = 12 = 1; if
D |= x < y < y′′ = y′ = x′′ = x′, then D |= x =2 y =

(1 ∧ (y′ ∨ x))2 = (y′)2 = 0; if D |= y < x < x′′ = x′ =
y′′ = y′, then D |= x =2 y = ((x′ ∨ y)∧ 1)2 = (x′)2 = 0.

(iii) Let x, y ∈ D4. If D |= y′ ≤ x′ < x < y, then
D |= x <4 y = (y′ ∨ x)→ y = x→ y = 1; if D |= y ≤ x,
then D |= x <4 y = 1→ y = y = x ∧ y.

If D |= x = y, then D |= x =4 y = 12 = 1; if D |=
x < y, then D |= x =4 y = (1 ∧ x)2 = x2 = x = x ∧ y;

if D |= y < x, then D |= x =4 y = (y ∧ 1)2 = y2 = y =
x ∧ y. ut

Proposition 10 For I ∈ {{2, 3}, {4}, {5}, {6, 7}}, there
exists a unary term oI such that, for all i = 1, . . . , n and
all D ∈ Kn,

D |= oI(xi) =

{
1 if orbit(D, xi) ∈ I,

0 otherwise.

Proof (Proof of Proposition 10) Let i ∈ {1, . . . , n} and

D ∈ Kn. By direct computation,

D |= o{2,3}(xi) � x′′i <2 x
′
i =

{
1 if orbit(D, xi) ∈ {2, 3},
0 otherwise,

D |= o{5}(xi) � xi =2 x
′
i =

{
1 if orbit(D, xi) = 5,

0 otherwise.

D |= o{6,7}(xi) � x′i <2 xi =

{
1 if orbit(D, xi) ∈ {6, 7},
0 otherwise,

and o{4}(xi) = (o{2,3}(xi) ∨ o{5}(xi) ∨ o{6,7}(xi))′ are
the desired terms. ut

We now prove Lemma 1. We want to show that if

C ∈ Kn, c ∈ C is such that C |= lC ≤ c, and acC ∈ A is
join irreducible element in A corresponding to c, then
there exists a term tcC ∈ Tn such that A |= tcC = acC.

Proof (Proof of Lemma 1) Let C ∈ Kn and let c ∈ C
be such that C |= lC ≤ c = z where z ∈ {0, 1, xi, x′i, x′′i |
i = 1, . . . , n}. Let,

rC �
∧

I∈{{2,3},{4},{5},{6,7}}

∧

{i|orbit(C,xi)∈I}
oI(xi), (22)

eC � rC ∧
∧

�∈{<,=}

∧

{(x,y)∈C2
2 |C|=x�y}

x �2 y, (23)

sC �
∧

i∈{1,4}

∧

�∈{<,=}

∧

{(x,y)∈C2
i |C|=x�y}

x �i y. (24)

Observe preliminarily that, for all D ∈ Kn,

D |= eC =

{
1 if C ∼ D,

0 otherwise.

Let

t1C = eC ∧ sC.

We claim that the term,

tcC = z ∧ t1C,

satisfies the statement. Let a1
C ∈ A be the join ir-

reducible element in A corresponding to 1 ∈ C. We
show that D |= t1C = πD(a1

C) for all D ∈ Kn, so that
A |= t1C = a1

C. The rest follows directly. Let D ∈ Kn.

If D = C, by construction D |= t1C = 1 = πC(a1
C) =

πD(a1
C). Assume C 6= D.
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Free Weak Nilpotent Minimum Algebras 13

If C 6∼ D, then D |= tC = 0 = πD(a1
C) by the prelim-

inar observation. Assume C ∼ D.

Let I = infix(C,D). Let C4,i ∈ bk(C) be the least
block in bk(C) not in I, and let D4,i ∈ bk(D) be the

least block in bk(D) not in I. If such pair C4,i and D4,i

does not exist, then C5 and D5 are in I, that is, 1 ∈ I,
so that 0 ∈ I by (I2), and therefore C = D. Clearly,
D |= y = πD(a1

C), where y ∈ D4,i. Then, it is sufficient

to show that D |= t1C = y.

If C4,i 6= D4,i, then there exist x ∈ C4,i \ D4,i and
y ∈ D4,i (notice that by definition, C4,i, D4,i 6= ∅). By
(S1), C4 = D4. Note that there exists D4,i < D4,j such

that x ∈ D4,j so that D |= y < x. If y ∈ C4,i, since C |=
y = x, the term t1C contains the conjunct y =4 x. Then,
D |= t1C ≤ (y =4 x) = y ∧ x = y. If y 6∈ C4,i, then there

exists C4,i < C4,k such that y ∈ C4,k and C |= x < y,
so that the term t1C contains the conjunct x <4 y. Since
D |= y < x, we have D |= t1C ≤ (x <4 y) = x ∧ y = y.

Since C |= t1C = 1, and D4,i is the least block in bk(D)
not in I. Assume for a contradiction that D |= z =
t1C < y. Since C |= 0 = (t1C)′ < t1C = 1, by Theorem 1(i)
we have D |= (t1C)′ < t1C, therefore, D |= lD ≤ z ≤ y

with z ∈ I by (I1), so that by Theorem 1(ii) we have
C |= z = t1C. But, C |= z < x < 1, a contradiction. So,
D |= y ≤ tC, and therefore D |= t1C = y.

If C4,i = D4,i but D4,i 6∈ I, by (I2) it is the case

that there exists y′ ∈ D4,i ∩ {x′i, x′′i | i = 1, . . . , n} such
that if y ∈ D1,j ; indeed, if z ∈ {xi | i = 1, . . . , n} for
all z ∈ D4,i, then C4,i = D4,i implies D4,i ∈ I. Then,

the interval D1,j < · · · < D4,i is not a common infix to
C and D. In this case, there exist v, w ∈ C1 = D1 such
that either C |= y ≤ v = w ≤ gC ≺ lC and D |= y ≤
v < w ≤ gD ≺ lD, or C |= y ≤ v < w ≤ gC ≺ lC and
D |= y ≤ v = w ≤ gD ≺ lD.

In the first case, the term t1C contains the conjunct
v =1 w. Since D |= v < w, we have D |= t1C ≤ (v =1

w) = v′ ∧ w′ = w′ ≤ y′. In the second case, the term
tC contains the conjunct v <1 w. Since D |= v = w
so that D |= w′ ≤ v′, we have D |= t1C ≤ (v <1 w) =
v′ ∧ w′ = w′ ≤ y′. Since C |= t1C = 1, and and D4,i is

the least block in bk(D) not in I, we have D |= y′ ≤ t1C
by Theorem 1. So, D |= t1C = y′. ut

Example 12 Let a1, . . . , a9 ∈ F1 be the idempotent join

irreducible elements in F1, depicted in Figure 8 from left
to right and top to bottom respectively. Let:
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Fig. 8: The 9 idempotent join irreducible elements in F1, re-
spectively a1, . . . , a9 ∈ F1 from left to right, and top to bot-
tom.

t1 � x′ ∧ o{2,3}(x),

t2 � o{2,3}(x) ∧ (x <1 x
′′),

t3 � o{2,3}(x) ∧ (x =1 x
′′),

t4 � o{4}(x),

t5 � o{5}(x),

t6 � o{6,7}(x) ∧ (x <4 x
′′),

t7 � o{6,7}(x) ∧ (x =4 x
′′),

t8 � x′′ ∧ o{6,7}(x) ∧ (x <4 x
′′),

t9 � x ∧ o{6,7}(x),

so that ti ∈ T1 correspond to ai ∈ F1 as by Lemma 1,

that is,

F1 |= ti = ai,

for i = 1, . . . , 9.

4.2 Lemma 2

We want to show that if C ∈ Kn, c ∈ C is such that
C |= c ≤ gC, and acC ∈ A is the join irreducible element

in A corresponding to c, then there exists a term tcC ∈
Tn such that A |= tcC = acC.

Proof (Proof of Lemma 2) Let C ∈ Kn and let c ∈ C be

such that C |= c ≤ gC. Note c ∈ C0 ∪C1 ∪C2 ∪C3. Let
acC ∈ A be join irreducible element of A corresponding
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14 Stefano Aguzzoli et al.

to c ∈ C. We define tcC ∈ Tn such that A |= tcC = acC.
Two cases.

Case 1: c ∈ C2 ∪ C3.
If c ∈ C2, then let i ∈ {1, . . . , n} be such that C |=

c = xi. Let eC ∈ Tn be as in (23). Let,

tcC � eC ∧ xi.

If c ∈ C3, then let i ∈ {1, . . . , n} be such that C |= c =
x′i. Let,

tcC � eC ∧ x′i.
We claim,

A |= tcC = acC.

Case 2: c ∈ C0 ∪ C1. Two subcases.

Subcase 2.1: C |= c = d′ for some d ∈ C4 ∪ C5.
Without loss of generality, let d ∈ C4∪C5 be the largest
in C such that C |= c = d′.

For E ∈ Kn and e ∈ E be such that E |= lE ≤
e, we let aeE ∈ A be the join irreducible element of
A corresponding to e ∈ E and, by Lemma 1, we let
teE ∈ Tn be such that A |= teE = aeE. We define

tcC �


tdC ∨

∨

C∼D,d 6∈infix(C,D)

t1D ∨
∨

C 6∼D
t1D



′

,

and we claim,
A |= tcC = acC.

We prove the claim. Note that C |= tcC = d′ = c by
construction. Assume for a contradiction that there ex-

ists D ∈ Kn such that D |= πD(acC) < tcC. If D 6∼
C, then D |= 0 = tcC by construction; so, D ∼ C.
If D ∼ C and d 6∈ infix(C,D), then D |= 0 = tcC
by construction. So, D ∼ C and d ∈ infix(C,D). If
d′ = c ∈ infix(C,D), then D |= c = tcC by Theorem 1,
and D |= c = πD(acC). So, d′ = c 6∈ infix(C,D). By (I2),

it is the case that for some i ∈ {1, . . . , n}, C |= d = xi
and C |= d′ = x′i with x′i 6∈ infix(C,D). Note that
C |= xi < x′′i and D |= xi < x′′i and x′′i 6∈ infix(C,D), be-
cause d = xi = x′′i ∈ infix(C,D) implies x′i ∈ infix(C,D)

by (I2). Clearly, C |= (x′′i )′ = x′i = c, but C |= d = xi,
a contradiction with the fact that d ∈ C4 ∪ C5 is the
largest in C such that C |= c = d′. This settles the

claim.
Subcase 2.2: C |= c 6= d′ for all d ∈ C4 ∪ C5. Then,

there exists i ∈ {1, . . . , n} such that C |= c = xi < x′′i <
lC ≤ x′i. We define

t
x′′
i

C �


tx

′
i

C ∨
∨

C∼D,x′
i 6∈infix(C,D)

t1D ∨
∨

C 6∼D
t1D



′

,

and by the previous part we note that

A |= t
x′′
i

C = a
x′′
i

C .

Then we define,

tcC � xi ∧ tx
′′
i

C ,

and we claim,
A |= tcC = acC.

We prove the claim. We have C |= tcC = xi = c by con-

struction. Assume for a contradiction that there exists
D ∈ Kn such that D |= πD(acC) < tcC. If D ∼ C then
D |= tcC = 0, then D 6∼ C. If x′i 6∈ infix(C,D), then D |=
tcC = 0, then x′i ∈ infix(C,D). Then xi ∈ infix(C,D)
by (I2). Then D |= tcC = xi = c by Theorem 1 and
D |= πD(acC) = c, contradiction. This settles the claim.

4.3 Poset Representation

In this section, we describe an explicit combinatorial
construction of the universe of the free n-generated

WNM-algebra Fn, which we call poset representation.
We recall some standard terminology and notation on
posets; the combinatorial notation (summations, coef-

ficients, et cetera) is standard.
A (finite) poset is a structure P = (P,≤P) such that

P is a (finite) set and ≤P is a reflexive, antisymmetric,
and transitive binary relation on P . Let P = (P,≤P)

be a poset. We let P∂ � (P, {(q, p) | p ≤P q}) denote
the poset dual to P. Let p, q ∈ P . We say that p and
q are comparable (in P) if p ≤P q or q ≤P p, and in-

comparable otherwise, and we write p ‖ q. An antichain
in P is a set of elements in P pairwise incomparable in
P. An antichain Q in P is maximal if there does not
exist an antichain in P that includes Q properly. We

let maxant(P) denote the set of maximal antichains in
the poset P.

Let 1 denote the one element poset (unique up to

isomorphism). Let P and Q be posets with P ∩ Q =
∅. We let P + Q denote the horizontal sum of P and
Q, that is, the poset P + Q � (P ∪ Q,≤P+Q) where

p ≤P+Q q if and only if either p, q ∈ P and p ≤P q, or
p, q ∈ Q and p ≤Q q. We let P⊕Q denote the vertical
sum of P and Q, that is, the poset P ⊕ Q � (P ∪
Q,≤P⊕Q) where p ≤P⊕Q q if and only if either p, q ∈ P
and p ≤P q, or p, q ∈ Q and p ≤Q q, or p ∈ P and
q ∈ Q. In the following, we always assume that posets
involved in horizontal and vertical sums are disjoint, by

taking isomorphic copies of operands when necessary.
Moreover, for all n ∈ N, we freely write n instead of
((· · · (1⊕1)⊕· · ·⊕1)⊕1), where 1 occurs n times, and
we freely write nP instead of ((· · · (P+P)+· · ·+P)+P),

where P occurs n times.
The class of series-parallel posets is the smallest

class of posets that contains 1 and is closed under hor-

izontal and vertical sums.
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We define recursively a map poset : N→ FSP, from
the set N of natural numbers to the class FSP of finite
series-parallel posets. For all n ∈ N, there exists a bi-
jection r : A → maxant(poset(n)), between the set A

in (15), that is, by Theorem 4, the universe of the free
n-generated WNM-algebra Fn, and the set of maximal
antichains in poset(n).

Definition 6 (poset : N→ FSP) Let n ∈ N. Then,

poset(n) =
∑

a,b,c∈{0}∪N,
a+b+c=n

(
n

a, b, c

)
Xa,b,c,

Xa,b,c =





Y∂
a,c ⊕ Za,c if b = 0,
b∑
i=1

i!
{
b
i

}
(
(
Y∂
a,c ⊕ i⊕ Za,c

)
+

+
(
Y∂
a,c ⊕ i⊕ 1⊕ Za,c

)
) otherwise;

Ya,c =





1 if a = c = 0,
a−1∑
i=0

c−1∑
j=0

(
a
i

)(
c
j

) (
Si,j + S−i,j

)
+

c−1∑
j=0

(
c
j

) (
Sa,j + S+

a,j

)
+

a−1∑
i=0

(
a
i

) (
Si,c + S−i,c

)
otherwise;

Za,c =





1 if a = c = 0,
a−1∑
i=0

c−1∑
j=0

(
a
i

)(
c
j

) (
Ti,j + T−i,j

)
+

c−1∑
j=0

(
c
j

) (
Ta,j + T+

a,j

)
+

a−1∑
i=0

(
a
i

) (
Ti,c + T−i,c

)
otherwise;

Si,j = 1⊕Yi,j ,

S+
i,j =

{
2 if i = j = 0,

Si,j + Yi,j otherwise;

S−i,j = (1⊕ Si,j) +

i−1∑

k=0

(
i

k

)(
(1⊕ Sk,j) + (1⊕ S−k,j)

)
,

Ti,j = 1⊕ Zi,j ,

T+
i,j =

{
3 if i = j = 0,

1⊕ (Ti,j + Zi,j) otherwise;

T−i,j = Ti,j +

i−1∑

k=0

(
i

k

)(
Tk,j + T−k,j

)
.

Theorem 5 There is a bijective correspondence between

the universe of Fn and the set

maxant(poset(n)) .

Actually, poset(n) is built together with a corre-
spondence mapping each chain in Kn to a maximal

chain of poset(n) (see Fig. 10, for the case n = 2).
This makes then easy to equip maxant(poset(n)) with
a structure of WNM-algebra, mimicking the operations
of each chain of Kn over its image in poset(n). The re-

sulting WNM-algebra constitutes then an isomorphic
representation of Fn. Furthermore, a recurrence com-
puting the cardinality of Fn can be easily deduced from

Definition 6.

In this paper we do not prove Theorem 5. The proof,

which will be a lengthy and complex but purely com-
binatorial argument, will be the focus of a future work.
However, we invite the reader to check that poset(1)
and poset(2) actually correspond to those posets given

in the corresponding examples (see Fig. 7, Fig. 9 and
Fig. 10). We finally remark that the poset in Fig. 10
has been first (and thus, independently) generated by

a brute-force algorithm. Subsequently, the correctness
of the output of the computation of poset(n) has been
checked with a brute-force algorithm for all n ≤ 5.

Example 13 (n = 1) The Hasse diagram of poset(1) is
displayed in Figure 9.

2 3

4 5

765

4

3

2

7

6

Fig. 9: poset(1).

Example 14 (n = 2) The Hasse diagram in Appendix A
is poset(2).
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29 32

30 31 33 34

39 40

70 71

69 72

73 74
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38

45

55 46

56

49

59 47

57

52

62 50

60

51 48

61 58 63

64

65 66

67 68

68

67

66

65

6463

58

61

48

51

6050

62525747

5949

56465545

3837

74

73

72

6971

70

40

3934

33

32

2931

30

1

2

13

3

4

14 35

36

41

42

53

43

44

54

5

15 6

16

9

19 7

17

22

12

10

20

11 8

21 18 23

24

25 26

27 28

28

27

26

25

2423

18

21

8

11

2010

2212177

1991661555444

43

5342

413635

144

3

132

1

Fig. 10: poset(2). |F2| = |maxant(poset(2))| = 12, 632, 396, 375, 864, 721, 690, 604, 339, 200, 000, 000 ≈ 1.26324 · 1034. In the
actual Hasse diagram, each point immediately below the dotted line edges each point immediately above the dotted line.

A The 2-generated free WNM-algebra

In the following list, an item of the form,

3 > 2 : C43 = 0 < y < y′′xx′′ < y′x′ < 1

represents a WNM-chain generated by x and y, and specifies
that C43 |= x > y, orbit(C43, x) = 3, and orbit(C43, y) = 2.
In this format, the set,

K2 = {Ci | i = 1, 2, . . . , 74},

is as follows:

2 < 2: C1 = 0 < x < y < y′′x′′ < y′x′ < 1;
2 < 2: C2 = 0 < x < x′′ < y < y′′ < y′ < x′ < 1;
2 < 3: C3 = 0 < x < x′′yy′′ < x′y′ < 1;
2 < 3: C4 = 0 < x < x′′ < yy′′ < y′ < x′ < 1;
2 < 4: C5 = 0 < x < x′′ < y < y′y′′ < x′ < 1;
2 < 5: C6 = 0 < x < x′′ < yy′y′′ < x′ < 1;
2 < 6: C7 = 0 < x < x′′y′ < y < x′y′′ < 1;
2 < 6: C8 = 0 < y′ < x < x′′ < x′ < y < y′′ < 1;
2 < 6: C9 = 0 < x < x′′ < y′ < y < y′′ < x′ < 1;
2 < 7: C10 = 0 < x < x′′y′ < x′yy′′ < 1;
2 < 7: C11 = 0 < y′ < x < x′′ < x′ < yy′′ < 1;
2 < 7: C12 = 0 < x < x′′ < y′ < yy′′ < x′ < 1;
3 < 2: C13 = 0 < xx′′ < y < y′′ < y′ < x′ < 1;
3 < 3: C14 = 0 < xx′′ < yy′′ < y′ < x′ < 1;
3 < 4: C15 = 0 < xx′′ < y < y′y′′ < x′ < 1;
3 < 5: C16 = 0 < xx′′ < yy′y′′ < x′ < 1;
3 < 6: C17 = 0 < xx′′y′ < y < x′y′′ < 1;
3 < 6: C18 = 0 < y′ < xx′′ < x′ < y < y′′ < 1;
3 < 6: C19 = 0 < xx′′ < y′ < y < y′′ < x′ < 1;
3 < 7: C20 = 0 < xx′′y′ < x′yy′′ < 1;
3 < 7: C21 = 0 < y′ < xx′′ < x′ < yy′′ < 1;
3 < 7: C22 = 0 < xx′′ < y′ < yy′′ < x′ < 1;
4 < 4: C23 = 0 < x < y < x′x′′y′y′′ < 1;
4 < 5: C24 = 0 < x < x′x′′yy′y′′ < 1;
4 < 6: C25 = 0 < y′ < x < x′x′′ < y < y′′ < 1;

4 < 7: C26 = 0 < y′ < x < x′x′′ < yy′′ < 1;
5 < 6: C27 = 0 < y′ < xx′x′′ < y < y′′ < 1;
5 < 7: C28 = 0 < y′ < xx′x′′ < yy′′ < 1;
6 < 6: C29 = 0 < x′y′ < x < y < x′′y′′ < 1;
6 < 6: C30 = 0 < y′ < x′ < x < x′′ < y < y′′ < 1;
6 < 7: C31 = 0 < y′ < x′ < x < x′′ < yy′′ < 1;
6 < 7: C32 = 0 < x′y′ < x < x′′yy′′ < 1;
7 < 6: C33 = 0 < y′ < x′ < xx′′ < y < y′′ < 1;
7 < 7: C34 = 0 < y′ < x′ < xx′′ < yy′′ < 1;
2 = 2: C35 = 0 < xy < x′′y′′ < x′y′ < 1;
3 = 3: C36 = 0 < xx′′yy′′ < x′y′ < 1;
4 = 4: C37 = 0 < xy < x′x′′y′y′′ < 1;
5 = 5: C38 = 0 < xx′x′′yy′y′′ < 1;
6 = 6: C39 = 0 < x′y′ < xy < x′′y′′ < 1;
7 = 7: C40 = 0 < x′y′ < xx′′yy′′ < 1;
2 > 2: C41 = 0 < y < x < x′′y′′ < x′y′ < 1;
2 > 2: C42 = 0 < y < y′′ < x < x′′ < x′ < y′ < 1;
3 > 2: C43 = 0 < y < y′′xx′′ < y′x′ < 1;
3 > 2: C44 = 0 < y < y′′ < xx′′ < x′ < y′ < 1;
4 > 2: C45 = 0 < y < y′′ < x < x′x′′ < y′ < 1;
5 > 2: C46 = 0 < y < y′′ < xx′x′′ < y′ < 1;
6 > 2: C47 = 0 < y < y′′x′ < x < y′x′′ < 1;
6 > 2: C48 = 0 < x′ < y < y′′ < y′ < x < x′′ < 1;
6 > 2: C49 = 0 < y < y′′ < x′ < x < x′′ < y′ < 1;
7 > 2: C50 = 0 < y < y′′x′ < y′xx′′ < 1;
7 > 2: C51 = 0 < x′ < y < y′′ < y′ < xx′′ < 1;
7 > 2: C52 = 0 < y < y′′ < x′ < xx′′ < y′ < 1;
2 > 3: C53 = 0 < yy′′ < x < x′′ < x′ < y′ < 1;
3 > 3: C54 = 0 < yy′′ < xx′′ < x′ < y′ < 1;
4 > 3: C55 = 0 < yy′′ < x < x′x′′ < y′ < 1;
5 > 3: C56 = 0 < yy′′ < xx′x′′ < y′ < 1;
6 > 3: C57 = 0 < yy′′x′ < x < y′x′′ < 1;
6 > 3: C58 = 0 < x′ < yy′′ < y′ < x < x′′ < 1;
6 > 3: C59 = 0 < yy′′ < x′ < x < x′′ < y′ < 1;
7 > 3: C60 = 0 < yy′′x′ < y′xx′′ < 1;
7 > 3: C61 = 0 < x′ < yy′′ < y′ < xx′′ < 1;
7 > 3: C62 = 0 < yy′′ < x′ < xx′′ < y′ < 1;
4 > 4: C63 = 0 < y < x < y′y′′x′x′′ < 1;
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5 > 4: C64 = 0 < y < y′y′′xx′x′′ < 1;
6 > 4: C65 = 0 < x′ < y < y′y′′ < x < x′′ < 1;
7 > 4: C66 = 0 < x′ < y < y′y′′ < xx′′ < 1;
6 > 5: C67 = 0 < x′ < yy′y′′ < x < x′′ < 1;
7 > 5: C68 = 0 < x′ < yy′y′′ < xx′′ < 1;
6 > 6: C69 = 0 < y′x′ < y < x < y′′x′′ < 1;
6 > 6: C70 = 0 < x′ < y′ < y < y′′ < x < x′′ < 1;
7 > 6: C71 = 0 < x′ < y′ < y < y′′ < xx′′ < 1;
7 > 6: C72 = 0 < y′x′ < y < y′′xx′′ < 1;
6 > 7: C73 = 0 < x′ < y′ < yy′′ < x < x′′ < 1;
7 > 7: C74 = 0 < x′ < y′ < yy′′ < xx′′ < 1.
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