
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-17-001
first version: March 2017updated: September 2017

An Iterative Time-BucketRefinement Algorithm for aHigh ResolutionResource-ConstrainedProject SchedulingProblem
Martin Riedler, Thomas Jatschka, Johannes
Maschler, and Günther R. Raidl

www.ac.tuwien.ac.at/tr

An Iterative Time-Bucket Refinement
Algorithm for a High Resolution

Resource-Constrained Project Scheduling
Problem

Martin Riedler, Thomas Jatschka,
Johannes Maschler, and Günther R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien, Austria

{maschler|riedler|raidl}@ac.tuwien.ac.at, jatschka.thomas@gmail.com

We consider a resource-constrained project scheduling problem originating
in particle therapy for cancer treatment, in which the scheduling has to be
done in high resolution. Traditional mixed integer linear programming tech-
niques such as time-indexed formulations or discrete-event formulations are
known to have severe limitations in such cases, i.e., growing too fast or having
weak linear programming relaxations. We suggest a relaxation based on par-
titioning time into so-called time-buckets. This relaxation is iteratively solved
and serves as basis for deriving feasible solutions using heuristics. Based on
these primal and dual solutions and bounds the time-buckets are successively
refined. Combining these parts we obtain an algorithm that provides good
approximate solutions soon and eventually converges to an optimal solution.
Diverse strategies for performing the time-bucket refinement are investigated.
The approach shows excellent performance in comparison to the traditional
formulations and a metaheuristic.

Keywords. Resource-Constrained Project Scheduling, Time-Bucket Relaxation, Mixed
Integer Linear Programming, Matheuristics, Particle Therapy

1 Introduction

Scheduling problems arise in a variety of practical applications. Prominent examples are
job shop or project scheduling problems that require a set of activities to be scheduled
over time. The execution of the activities typically depends on certain resources of lim-
ited availability and diverse other restrictions such as precedence constraints. The goal is

1

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

to find a feasible schedule that minimizes some objective function like the makespan. In
certain cases, scheduling has to be done in a very fine-grained way, i.e., in high resolution,
using, e.g., seconds or even milliseconds as unit of time.

Classical mixed integer linear programming (MILP) formulations are known to strug-
gle under these conditions. On the one hand, time discretized models provide strong
linear programming (LP) bounds but grow too quickly with the instance size due to the
fine time discretization. Event-based and sequencing-based models on the other hand
typically have trouble as a result of their weak LP bounds.

In the following, we focus on problems with a large, very fine-grained scheduling hori-
zon and consider a simplified scheduling problem arising in the context of modern particle
therapy used for cancer treatment. The problem is motivated by a real world patient
scheduling scenario at the recently founded cancer treatment center MedAustron located
in Wiener Neustadt, Austria1. The tasks involved in providing a given set of patients
with their individual particle treatments shall be scheduled in such a way that given
precedence constraints with minimum and maximum time lags are respected. Each task
needs certain resources for its execution. One of the resources is the particle beam, which
is particularly scarce as it is required by every treatment and shared between several
treatment rooms. The motivation therefore is to exploit in particular the availability of
the beam as good as possible by suitably scheduling all activities in high time resolution.
Ideally, the beam is switched immediately after an irradiation has taken place in one
room to another room where the next irradiation session starts without delay.

Our goal is to minimize the makespan. This objective emerges from the practical
scenario as tasks need to be executed as densely as possible to avoid idle time within the
day as well as to allow treating as many patients as possible within the operating hours.
However, makespan minimization is clearly an abstraction from the real world scenario
where more specific considerations need to be taken into account. In the terminology of
the scientific literature in scheduling, the considered problem corresponds to a resource-
constrained project scheduling problem with minimum and maximum time lags.

In this work, we introduce the simplified intraday particle therapy patient scheduling
problem (SI-PTPSP) and present for it a discrete-event formulation and a time-indexed
formulation as reference models. We propose a time-bucket relaxation (TBR) and prove
some theoretical properties. In the main part, we deal with the iterative time-bucket
refinement algorithm (ITBRA) that aims at closing the gap between dual solutions ob-
tained by solving TBR based on iteratively refined bucket partitionings and heuristically
determined primal solutions exploiting dual solutions. Various strategies for refining the
bucket partitioning are suggested. Experimental results clearly indicate the superiority
of the new matheuristic approach over the reference MILP models as well as a basic
greedy randomized adaptive search procedure (GRASP).

The remainder of the article is organized as follows. In Section 2 we provide a formal
definition of the SI-PTPSP. Then, we review the related literature. In the following
section we provide two reference MILP formulations. The main part consists of the
description of TBR and its properties in Section 5 and the presentation of ITBRA in

1https://www.medaustron.at

2

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Section 6. We provide the fundamental iterative framework with its specifically used sub-
algorithms, which are the gap closing heuristic, the activity block construction heuristic,
a GRASP metaheuristic, and the investigated bucket refinement strategies. Further im-
plementation details such as preprocessing procedures are covered in Section 7. Finally,
we discuss computational experiments conducted on two sets of benchmark instances in
Section 8, before concluding and giving an outlook on promising future research direc-
tions in Section 9.

2 Simplified Intraday Particle Therapy Patient Scheduling
Problem

The simplified intraday particle therapy patient scheduling problem (SI-PTPSP) is de-
fined on a set of activities A = {1, . . . , α} and a set of unit-capacity resources R =
{1, . . . , ρ}. Each activity a ∈ A is associated with a processing time pa ∈ N>0, a release
time tra ∈ N≥0, and a deadline tda ∈ N≥0 with tra ≤ tda. For its execution an activity
a ∈ A requires a subset Qa ⊆ R of the resources. Activities need to be executed without
preemption. The considered set of time slots T = {Tmin, . . . , Tmax} is derived from the
properties of the activities as follows: Tmin = mina∈A tra and Tmax = maxa∈A tda − 1. We
denote by Ya(t) the set of time points during which activity a ∈ A executes when starting
at time t, i.e., Ya(t) = {t, . . . , t+ pa − 1}. To model dependencies among the activities,
we consider a directed acyclic precedence graph G = (A,P) with P ⊂ A× A. Each arc
(a, a′) ∈ P is associated with a minimum and a maximum time lag Lmin

a,a′ , L
max
a,a′ ∈ N≥0

with Lmin
a,a′ ≤ Lmax

a,a′ . For each resource r ∈ R a set of availability time windows Wr =⋃
w=1,...,ωr

Wr,w with Wr,w = {W start
r,w , . . . ,W end

r,w } ⊆ T is given. Resource availability win-

dows are non-overlapping and ordered according to starting time W start
r,w . In accordance

with the resource availabilities and the precedence relations among the activities, we can
deduce for each activity a set of feasible starting times, denoted by Ta ⊆ {tra, . . . , tda−pa};
for details on the computation of this set see Section 7.1.

A feasible solution S (also called schedule) to SI-PTPSP is a vector of values Sa ∈ Ta
assigning each activity a ∈ A a starting time within its release time and deadline s.t. the
availabilities of the required resources and all precedence relations are respected. The
goal is to find a feasible solution having minimum makespan.

Using the notation introduced in Brucker et al. [1999] our problem can be classified
as PSm, ·, 1|rj , dj , temp|Cmax.

Computational Complexity Lawler and Lenstra [1982] have shown that finding a so-
lution for the non preemptive single machine scheduling problem with deadlines and
release times (1|rj |Cmax according to the notation by Graham et al. [1979]) is NP-hard.
We can easily reduce an instance of 1|rj |Cmax to an instance of SI-PTPSP by assigning
the same resource to each activity of the 1|rj |Cmax instance. Processing times, release
times, and deadlines of the activities remain unchanged. Since there are no precedence
constraints in 1|rj |Cmax, the set of precedence arcs is empty. Consequently, SI-PTPSP
is NP-hard.

3

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

3 Related Work

In this section, we discuss the related work relevant for our contribution. We start
with a brief overview of resource-constrained project scheduling problems (RCPSPs).
Afterwards, we review the derivation of dual bounds for such scheduling problems. Then,
we give a short introduction on matheuristics applied in this domain. Finally, we review
previous work that is important from the methodological point of view, i.e., that deals
with time-buckets or similar aggregation techniques.

3.1 Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP) considers scheduling of a
project subject to resource and precedence constraints, where a project is represented by
a graph with each node being an activity of the project. Precedence relations between
activities are represented as directed edges between the nodes. The RCPSP is a well
studied problem with many extensions and variations. SI-PTPSP is a combination of
multiple such extensions: We use minimum and maximum time lags, release times and
deadlines, and dedicated renewable resources. For a detailed description of those terms
and a broader overview of RCPSP variants we refer to Hartmann and Briskorn [2010].

There exists a wide range of exact and heuristic approaches for solving the RCPSP
and its extensions, for an overview see Brucker et al. [1999], Neumann et al. [2003], and
Artigues et al. [2008]. Here we specifically want to focus on exact approaches. Often used
are branch-and-bound (B&B) algorithms (Demeulemeester and Herroelen [1997], Bianco
and Caramia [2012]) and MILP techniques. However, also constraint programming (CP),
SAT, and combinations thereof gained importance, e.g., Berthold et al. [2010]. For our
work we are primarily interested in MILP-based approaches and thus focus on them in
the following.

A well-known technique are so-called time-indexed models, see Artigues [2017]. The
classical variant uses binary variables for each time slot representing the start of an
activity. In addition, there are also so-called step-based formulations, in which variables
indicate if an activity has started at or before a certain time instant. This might lead
to a more balanced B&B tree. Both variants typically provide strong LP bounds but
struggle with larger time horizons due to the related model growth.

Also quite well-known are event-based formulations. Koné et al. [2011] and Artigues
et al. [2013] provide an extensive overview. These models are based on a set of ordered
events to which activity starts and ends need to be assigned, allowing modeling starting
times as continuous variables. On/Off event-based formulations use the same idea but
require even fewer variables. These models are usually independent of any time dis-
cretization and the time horizon but feature significantly weaker LP bounds compared
to time-indexed models.

There also exist formulations combining continuous-time and discrete-time formula-
tions, so-called mixed-time models, see Westerlund et al. [2007], Baydoun et al. [2016].
Further MILP techniques make use of exponentially sized models and apply advanced
methods such as column generation, Lagrangian decomposition, or Benders decomposi-

4

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

tion, see, e.g., Hooker [2007].

3.2 Dual Bounds for Scheduling Problems

The most common approach for deriving lower bounds is based on solving LP relaxations,
often strengthened by cutting plane methods. This technique is widely applicable but
often provides only weak bounds.

Also rather well-known are algorithms based on Lagrangian relaxation, see Fisher
[1973]. The basic idea is to relax a set of complex constraints by adding corresponding
penalty terms to the objective function to simplify the model. Its strong reliance on a
suitable problem structure limits the applicability of this technique. For an application
to the RCPSP see Bianco and Caramia [2011b].

Other techniques to obtain dual bounds are less common. Li et al. [2015] consider
a dual heuristic for MILP. For some nodes of the B&B tree, the heuristic attempts to
improve the current dual bound by computing relaxations based on simply dropping, du-
alizing, or aggregating constraints. The heuristic uses dual variables and slack variables
of the LP solution in order to decide which constraints to relax.

Apart from such general approaches, there are some works that consider problem spe-
cific methods. In the RCPSP context this includes, among others, Bianco and Caramia
[2011a], Carlier et al. [to appear], and Dupin and Talbi [2016].

3.3 Matheuristics for Scheduling Problems

Matheuristics are a combination of mathematical programming techniques and meta-
heuristics, see Maniezzo et al. [2010]. The idea of matheuristics is to either improve
the metaheuristic by exploiting mathematical programming techniques or to improve
the mathematical programming technique with the robustness and time efficiency of the
metaheuristic.

So far, Matheuristics have only been rarely considered for tackling the RCPSP. Palpant
et al. [2004] present an approach based on large neighborhood search. Subproblems are
generated dynamically and solved using MILP, CP, or a heuristic approach.

Further matheuristic approaches can be found in terms of the multi-mode resource-
constrained multi-project scheduling problem (MRCMPSP). This is an extension of the
RCPSP in which each activity is associated with a set of modes that decide the processing
time and resource demand. Artigues and Hebrard [2013] solve the MRCMPSP with an
algorithm consisting of four phases. In the first phase initial modes are assigned to each
activity using MILP. Phases two and three generate a schedule based on the modes
assigned to the activities using CP. The last phase uses a large neighborhood search
procedure to improve the schedule by changing the modes of some activities. CP is used
to solve the subproblems. Phases two to four are repeated until a termination criterion
is met. Toffolo et al. [2016] solve the problem using a decomposition-based matheuristic.
After fixing execution modes, the problem is decomposed into time windows that are
solved using MILP models. Finally, a hybrid local search is employed to improve the
obtained solutions.

5

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Moreover, there are resemblances to Benders and Lagrangian-based techniques, e.g.,
Maniezzo and Mingozzi [1999], Möhring et al. [2003].

3.4 Time Aggregation Models

Note that the contributions mentioned in this section stay in contrast to a more common
approach in which the time-discretization is coarsened in order to possibly obtain feasible
but also less precise solutions, which are in general not optimal for the original problem.
The approaches discussed here are characterized by iteratively refining a relaxation of
the original problem until a provably optimal solution is found.

Boland et al. [2017] consider such an approach for the countinuous time service net-
work design problem (CTSNDP). The authors solve the problem using a time-expanded
network. Initially, only a partially time-expanded network is considered to avoid the
substantial size of the complete network. The MILP model associated with the reduced
network constitutes a relaxation to the original problem. If the optimal solution to this
relaxation turns out to be feasible w.r.t. the original problem, the algorithm terminates.
Otherwise, the partially time-expanded network is extended based on the current solu-
tion to obtain a more refined model. Iteratively applying this approach converges to an
optimal solution due to the finite size of the full time-expanded network.

A different type of relaxation is to partition the given time horizon into subsets.
Such approaches are presented by Bigras et al. [2008], Baptiste and Sadykov [2009],
and Boland et al. [2016] for single machine scheduling problems. Iterative approaches
based on these techniques have been primarily considered in terms of routing problems.
Wang and Regan [2002] and Wang and Regan [2009] consider such an algorithm for the
traveling salesman problem with time windows (TSPTW). First, the time windows of
each node are partitioned into subsets. Then, for a given time window partitioning a
lower bound and an upper bound are calculated, using an underconstrained MILP model
and an overconstrained one. If the gap between lower and upper bound is not sufficiently
small, the scheduling horizon gets further refined and the problem is solved anew.

Another algorithm of this type has been considered by Macedo et al. [2011] for solving
the vehicle routing problem with time windows and multiple routes (MVRPTW). They
solve a relaxation which is modeled as a network flow s.t. nodes of the graph correspond
to time instants. The idea of the initial relaxation is to aggregate several time instants
into each node. If the solution to the relaxation turns out to be infeasible w.r.t. the
original problem, the current time discretization is locally refined by considering further
time instants individually, i.e., by disaggregating nodes.

Dash et al. [2012] combine the ideas of Wang and Regan [2002] and Bigras et al. [2008]
in order to solve the TSPTW. The time windows of the nodes are partitioned into buckets
using an iterative refinement heuristic. Refinement decisions are based on the solution
to the current LP relaxation. Afterwards, the resulting formulation is turned into an
exact approach by adding valid inequalities and solved using branch-and-cut (B&C). In
each node of the B&B tree a primal heuristic is applied using the reduced costs of the
variables of the current LP solution.

Recently, Clautiaux et al. [2017] introduced an approach that is more generally ap-

6

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

plicable to problems that can be modeled as minimum-cost circulation problems with
linking bound constraints. The proposed algorithm projects the original problem onto an
aggregated approximate one. This aggregated model is iteratively refined until a prov-
ably optimal solution is found. Experiments have been conducted on a routing problem
and a cutting-stock problem.

4 Reference MILP Models

In this section, we present two MILP models for SI-PTPSP following classical ap-
proaches: a discrete-event formulation (DEF) and a time-indexed formulation (TIF).
Both serve as reference formulations to which we will compare our iterative time-bucket
refinement algorithm (ITBRA).

4.1 Discrete Event Formulation

The discrete-event formulation (DEF) is based on the idea of considering certain events
that need to be ordered and for which respective times need to be found, see also model
SEE in Artigues et al. [2013]. Resource constraints then only have to be checked at the
times associated with these events.

In regard to our problem, the considered events are the start and the end of each activ-
ity (activity events), and times at which the availability of a resource changes (resource
events). To simplify the model, we transform all resource events into activity events by
introducing a new artificial activity for each period during which a resource r ∈ R is
unavailable. To this end, we create a new activity for each maximal interval in T \Wr

requiring the resource where the processing time is the length of the interval, and the re-
lease time and the deadline are the start and the end of the interval, respectively. Then,
we define a new set of activities A′ being the union of A and the artificial activities;
let α′ = |A′|. Consequently, we denote by K = {1, . . . , 2α′} the set of chronologically
ordered events.

To state the model we use binary variables xa,k that are one if event k ∈ K is the start
of activity a ∈ A and zero otherwise. Similarly, binary variables ya,k indicate whether
event k is the end of activity a. Variables Ek represent the time assigned to each event
k. The starting times of the activities a ∈ A′ are modeled using variables Sa. Finally,
binary variables Dr,k are one if resource r ∈ R is used by any activity immediately after
event k and zero otherwise, and variable MS denotes the makespan.

min MS (1)

Sa + pa ≤ MS ∀a ∈ A (2)

Sa′ − Sa ≥ pa + Lmin
a,a′ ∀(a, a′) ∈ P (3)

Sa′ − Sa ≤ pa + Lmax
a,a′ ∀(a, a′) ∈ P (4)

∑

k∈K
xa,k = 1 ∀a ∈ A′ (5)

7

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

∑

k∈K
ya,k = 1 ∀a ∈ A′ (6)

∑

a∈A′
(xa,k + ya,k) = 1 ∀k ∈ K (7)

Ek−1 ≤ Ek ∀k ∈ K \ {1} (8)

Ek −M (9)
a,k(1− xa,k) ≤ Sa ∀k ∈ K, a ∈ A′ (9)

Ek +M
(10)
a,k (1− xa,k) ≥ Sa ∀k ∈ K, a ∈ A′ (10)

Ek −M (11)
a,k (1− ya,k) ≤ Sa + pa ∀k ∈ K, a ∈ A′ (11)

Ek +M
(12)
a,k (1− ya,k) ≥ Sa + pa ∀k ∈ K, a ∈ A′ (12)

Dr,0 =
∑

a∈A′:r∈Qa

xa,0 ∀r ∈ R (13)

Dr,k = Dr,k−1 +
∑

a∈A′:r∈Qa

xa,k −
∑

a∈A′:r∈Qa

ya,k ∀k ∈ K \ {1}, r ∈ R (14)

Dr,k ≤ 1 ∀k ∈ K, r ∈ R (15)

tra ≤ Sa ≤ tda − pa a ∈ A′ (16)

MS , Ek, Dr,k ≥ 0
∀k ∈ K, a ∈ A′,

r ∈ R (17)

xa,k, ya,k ∈ {0, 1} ∀k ∈ K, a ∈ A′ (18)

Inequalities (2) are used for determining the makespan. Precedence relations are enforced
by Inequalities (3) and (4). According to Equalities (5) and (6) each activity starts
and ends at precisely one event. Equalities (7) ensure that each event is assigned to
either exactly one starting time or exactly one ending time of an activity. Events are
ordered chronologically by Inequalities (8). Starting times of activities are linked to the
corresponding start events by Inequalities (9) and (10). Similarly, Inequalities (11) and
(12) link the event at which an activity a ends to the time at which the activity ends.
Big-M constants used in these inequalities will be explained below. Equalities (13) and
(14) compute the total demand of a resource of all activities running during an event.
Finally, Inequalities (15) ensure that all resource demands are met at all events.

Choosing the smallest possible Big-M constants for Inequalities (9)–(12) in DEF is
important for making its LP relaxation as tight as possible. An easy way to set them is

M
(9)
a,k = Tmax−tra, M (10)

a,k = tda−pa−Tmin, M
(11)
a,k = Tmax−tra−pa, and M

(12)
a,k = tda−Tmin.

However, by computing sets of activities that must precede or succeed a certain event
in any feasible schedule, respectively, it is possible to fix some constants to zero. For
details, we refer to Jatschka [2017].

The formulation has O(|A′|2) variables and O(|R| · |A′|2) constraints. Thus, DEF is a
compact model, but its LP relaxation typically yields rather weak LP bounds, primarily
due to the inequalities involving the Big-M constants.

8

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

4.2 Time-indexed Formulation

In a classical MILP way, we can model SI-PTPSP by the following time-indexed formu-
lation (TIF) using binary variables xa,t for indicating whether an activity a ∈ A starts
at time t ∈ Ta.

min MS (19)
∑

t∈Ta
xa,t = 1 ∀a ∈ A (20)

∑

t∈Ta
t · xa,t + pa ≤ MS ∀a ∈ A (21)

∑

a∈A:r∈Qa

∑

t′∈Ta:t∈Ya(t′)

xa,t′ ≤ 1 ∀r ∈ R, t ∈Wr (22)

∑

t∈Ta′
txa′,t −

∑

t∈Ta
txa,t ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P (23)

∑

t∈Ta′
txa′,t −

∑

t∈Ta
txa,t ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P (24)

xa,t ∈ {0, 1} ∀a ∈ A, t ∈ Ta (25)

MS ≥ 0 (26)

Equations (20) ensure that exactly one starting time is chosen for each activity. Inequal-
ities (21) are used to determine the makespan MS . Resource restrictions are enforced
by Inequalities (22). Last but not least, Constraints (23) and (24) guarantee that the
precedence relations with their minimum and maximum time lags are respected.

The model has O(|A|·|T |) variables and O(|T |·(|A|+|R|+|P |)) constraints. Typically,
the LP relaxation of TIF yields substantially tighter dual bounds than the LP relaxation
of DEF but its size and solvability strongly depend on the used time discretization, i.e.,
|T |.

5 Time-Bucket Relaxation

As the number of variables and constraints of TIF becomes fairly large when consider-
ing a fine-grained time discretization, directly solving the model may not be a viable
approach in practice. We therefore consider a relaxation of it, in which we combine
subsequent time slots into so-called time-buckets. This model, which we call time-bucket
relaxation (TBR), yields a dual bound to the optimal value of the original problem but
in general not a valid solution. Based on TBR we will build our iterative refinement
approach in Section 6.

Let B = {B1, . . . , Bβ} be a partitioning of T into subsequent time-buckets. Note
that the individual buckets do not need to have the same size. We denote by I(B) =
{1, . . . , β} the index set of B. For all b ∈ I(B) we define the set of consecutive time
slots Bb = {Bstart

b , . . . , Bend
b } contained in the bucket. Since B is a chronologically

9

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

B1 B2 B3 B4 B5 B6 · · · Bβ

Tmin Tmax

Figure 1: Bucket partitioning of T .

ordered partitioning of T , we have Bstart
1 = Tmin, Bend

β = Tmax, and Bend
b + 1 = Bstart

b+1 ,

∀b ∈ I(B)\{β}. For an illustration see Fig. 1. Additionally, letWB
r (b) = |Bb∩Wr| denote

the aggregated amount of resource r ∈ R available over the whole bucket b ∈ I(B).
Considering a bucket partitioning we now derive for each activity a ∈ A all subsets

of buckets in which the activity can be completely performed s.t. it executes at least
partially in every bucket. We call these subsets bucket sequences of activity a and denote
them by Ca = {Ca,1, . . . , Ca,γa} ⊆ 2I(B). Let functions bfirst(a, c) and blast(a, c) for a ∈
A and c = 1, . . . , γa provide the index of the first and the last bucket of bucket sequence
Ca,c, respectively. The bucket sequences in Ca are assumed to be ordered according
to increasing starting time, or, more precisely, lexicographically ordered according to
(bfirst(a, c),blast(a, c)). We can determine all bucket sequences for an activity in time
O(|B| log |B|), for details see Section 7.2. Analogous to set Ta we do not consider bucket
sequences that involve only infeasible starting times.

For each bucket sequence let Smin
a,c ∈ T be the earliest time slot at which activity a can

feasibly start when it is assigned to bucket sequence Ca,c ∈ Ca. Similarly, let Smax
a,c ∈ T

be the latest possible starting point. Moreover, values zmin
a,b,c and zmax

a,b,c provide bounds
on the number of utilized time slots within bucket b ∈ Ca,c when activity a uses bucket-
sequence Ca,c ∈ Ca. Note that for inner buckets b with bfirst(a, c) < b < blast(a, c) we
always have zmin

a,b,c = zmax
a,b,c = |Bb|. Fig. 2 shows a set of bucket sequences for a given

activity. Observe that for bucket sequence Ca,2 we need to shift the execution window
s.t. the activity executes at least for one time slot in bucket B3, i.e., we require zmin

a,3,2 > 0
to avoid an overlap with bucket sequence Ca,1.

Our relaxation of TIF uses binary variables ya,c indicating whether activity a ∈ A is
performed in bucket sequence Ca,c for c ∈ {1, . . . , γa}. Model TBR is stated as follows:

min MS (27)
γa∑

c=1

ya,c = 1 ∀a ∈ A (28)

γa∑

c=1

Smin
a,c · ya,c + pa ≤ MS ∀a ∈ A (29)

∑

a∈A:r∈Qa

∑

Ca,c∈Ca:b∈Ca,c

zmin
a,b,c · ya,c ≤WB

r (b) ∀r ∈ R, b ∈ I(B) (30)

10

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

B1 B2 B3 B4 B5 Ca,1 = {B1, B2}

tra tdapa

zmin
a,2,1zmax

a,1,1

pa

zmin
a,1,1

zmax
a,2,1

B1 B2 B3 B4 B5 Ca,2 = {B1, B2, B3}

pa

zmin
a,3,2zmax

a,1,2

pa

zmin
a,1,2

zmax
a,3,2

B1 B2 B3 B4 B5 Ca,3 = {B2, B3, B4}

pa

zmin
a,4,3zmax

a,2,3

pa

zmin
a,2,3 zmin

a,4,3

B1 B2 B3 B4 B5 Ca,4 = {B3, B4, B5}

pa

zmin
a,5,4zmax

a,3,4

pa

zmin
a,3,4

zmax
a,5,4

B1 B2 B3 B4 B5
Ca,5 = {B4, B5}

pa

zmin
a,5,5zmax

a,4,5

pa

zmin
a,4,5

zmax
a,5,5

Figure 2: Bucket sequences Ca of an activity a with processing time pa. Descriptions of
inner buckets of a sequence are omitted since zmin

a,b,c = zmax
a,b,c = |Bb| holds for

them.

11

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

γa′∑

c′=1

Smax
a′,c′ · ya′,c′ −

γa∑

c=1

Smin
a,c · ya,c ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P (31)

γa′∑

c′=1

Smin
a′,c′ · ya′,c′ −

γa∑

c=1

Smax
a,c · ya,c ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P (32)

ya,c ∈ {0, 1} ∀a ∈ A,
c = 1, . . . , γa

(33)

MS ≥ 0 (34)

Equations (28) ensure that exactly one bucket sequence is chosen for each activity. The
makespan MS is determined using Inequalities (29). Constraints (30) consider the re-
source availabilities individually for each bucket in an accumulated fashion. Determined
resource consumptions of activities are precise for all used inner buckets of a sequence
but might underestimate the actually required amount in the first and last bucket. Fi-
nally, Inequalities (31) and (32) realize the precedence constraints with their minimum
and maximum time lags, respectively. These restrictions also constitute a relaxation of
the corresponding ones in TIF since the precise starting times within the buckets are
not known (unless dealing with buckets of unit size).

The model has O(|A| · |B|) variables and O(|A|+ |R| · |B|+ |P |) constraints, and thus
its size does not depend on |T |.

5.1 Comparison of TIF and TBR

First, let us consider the case of TBR in which all buckets have unit size, i.e., B =
{{Tmin}, {Tmin + 1}, . . . , {Tmax}}. Let us denote this special case by TBR1. This leads
to several simplifications. All buckets b belonging to some sequence Ca,c are fully used,
i.e., zmin

a,b,c = zmax
a,b,c = |Bb| = 1. Moreover, minimum and maximum starting times are equal

and equivalent to the first time slot of the initial bucket of the sequence: Smin
a,c = Smax

a,c =

Bstart
bfirst(a,c). Essentially, this means that Ta = {Smin

a,c | Ca,c ∈ Ca} = {Smax
a,c | Ca,c ∈ Ca}

and |Ta| = |Ca| for all a ∈ A. Furthermore, since buckets correspond to original time
slots in this scenario, resource availabilities become binary for each bucket.

For TIF and TBR1 we consider function ϕa : {1, . . . γa} → Ta for each activity a ∈ A
with ϕa(c) := Smin

a,c .

Proposition 1. Function ϕ is bijective.

Proof. Each bucket sequence w.r.t. TBR1 corresponds to a specific starting time. For
each activity Ca considers all feasible bucket sequences and Ta all feasible starting times.
Thus, there exists a unique mapping between these sets.

Proposition 2. The polyhedra of TBR1 and TIF are isomorphic.

Proof. We establish an isomorphism between the variables of the models using function
ϕa and its inverse: xa,t = ya,ϕ−1

a (t) and ya,c = xa,ϕa(c). Moreover, we can use these

12

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

functions to immediately transform (20) into (28), (21) into (29), (23) into (31), and (24)
into (32) and vice versa. To provide the isomorphism between (22) and (30) we need a
few further things. First, recall that all zmin

a,b,c constants are equal to 1. Second, using

t↔ {t} as isomorphism between T and the set of unit buckets we obtain WB
r (b) = 1 if the

corresponding time point t ∈Wr and WB
r (b) = 0 otherwise. Finally, the correspondence

between time points and unit buckets guarantees that Ya(t) and Ca,c are isomorphic for
ϕ−1
a (t) = c. Putting things together also the resource constraints can be transformed

into one another.

Corollary 1. The LP relaxations of TBR1 and TIF are equally strong.

Definition 1. Let TBRB and TBRB′ be two TBR-models with bucket partitionings B
and B′, respectively. TBRB′ is called a refined model of TBRB iff ∀b′ ∈ I(B′) ∃b ∈
I(B) (B′b′ ⊆ Bb).

In the following we show that TBRB is a relaxation of TBRB′ and thus of TIF.

Definition 2. Let TBRB be a TBR-model and let TBRB′ be a refined model of TBRB.
Then, σ : C ′a → Ca defines a (surjective) mapping from bucket sequences C ′a w.r.t. TBRB′

to bucket sequences Ca w.r.t. TBRB satisfying for all C ′a,c′ ∈ C ′a:

⋃

b′∈C′
a,c′

b′ ⊆
⋃

b∈σ(C′
a,c′)

b ∧ ∀Ca,ĉ ∈ Ca




⋃

b′∈C′
a,c′

b′ *
⋃

b∈Ca,ĉ

b ∨ σ(C ′a,c′) ⊆ Ca,ĉ


 .

This means σ provides the inclusion minimal bucket sequence from TBRB that con-
tains at least the time slots that the bucket sequence from TBRB′ contains.

Lemma 1. Function σ can be implemented by:

σ(C ′a,c′) = Ca,c s.t. Ca,c ∈ Ca ∧ Smin
a,c′ ∈ bfirst(a, c) ∧ (Smin

a,c′ + pa) ∈ blast(a, c)

Proof. Feasibility of C ′a,c′ together with the fact that buckets in TBRB′ are subsets

of those in TBRB implies that there exists a sequence Ca,c ∈ Ca satisfying Smin
a,c′ ∈

bfirst(a, c) and (Smin
a,c′ + pa) ∈ blast(a, c). The buckets of sequence C ′a,c′ are contained

in those of sequence Ca,c, i.e.,
⋃
b′∈C′

a,c′
b′ ⊆ ⋃b∈Ca,c

b. Moreover, Ca,c is uniquely deter-

mined since by definition two different bucket sequences cannot have the same first and
last buckets. Therefore, every other sequence covering the buckets from C ′a,c′ must be
strictly larger than Ca,c.

Theorem 1. Let TBRB be a TBR-model and let TBRB′ be a refined model of TBRB.
Then, TBRB is a relaxation of TBRB′.

Proof. Using function σ according to Lemma 1, we create a solution y to TBRB from
an optimal solution y∗ to TBRB′ as follows:

ya,c =
∑

C′
a,c′∈C′a:σ(C′

a,c′)=Ca,c

y∗a,c′ ∀a ∈ A, c ∈ {1, . . . , γa}

13

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

We first show that y is a feasible solution for TBRB. Constraints (28) are satisfied since
y∗a,c′ is feasible and σ is surjective. As bfirst(a, c′) ⊆ bfirst(a, c) for all Ca,c = σ(C ′a,c′)
it holds that Smin

a,c ≤ Smin
a,c′ and Smax

a,c′ ≤ Smax
a,c . Hence, Constraints (29), (31), and (32)

must hold. If Inequalities (30) are satisfied for y∗, then the resource constraints are also
satisfied for y since the refined resource allocation entails the coarser one. Therefore, y
is a feasible solution to TBRB.

Since Smin
a,c ≤ Smin

a,c′ , the objective can only decline due to the transformation. Thus,
the optimal solution value to TBRB can be at most as large as the value of the optimal
solution to TBRB′ . Thus, TBRB is a relaxation of TBRB′ .

Corollary 2. TBR is a relaxation of TIF.

5.2 Strengthening TBR by Valid Inequalities

In the following we introduce two types of valid inequalities to compensate for the loss of
accuracy in TBR due to the bucket aggregation. Note that these inequalities strengthen
the relaxation in general but might become redundant for more fine-grained bucket
partitionings.

5.2.1 Clique Inequalities

Observe that two activities, represented by non-unit bucket sequences, cannot feasibly
start in the same bucket if both require a certain resource. The same holds for two or
more bucket sequences with these properties ending in the same bucket. This can be
used to derive sets of incompatible bucket sequences that give rise to clique inequalities,
see Demassey et al. [2005], Hardin et al. [2008].

To formulate respective constraints we determine for each b ∈ I(B) sets Sb = {(a, c) |
a ∈ A, c ∈ Ca, z

min
a,b,c < |Bb|, |Ca,c| > 1, bfirst(a, c) = b} and Fb = {(a, c) | a ∈ A, c ∈

Ca, z
min
a,b,c < |Bb|, |Ca,c| > 1,blast(a, c) = b} of non-unit bucket sequences starting and

ending in bucket Bb, respectively. From each of these sets we derive a graph having
the respective set as nodes and an edge between two nodes if the activities of the corre-
sponding bucket sequences share a resource. Let CSb and CFb be the sets of all maximal
cliques with a minimum size of two within these graphs. This leads to the following
inequalities:

∑

(a,c)∈κ
ya,c ≤ 1, ∀b ∈ I(B),∀κ ∈ CSb (35)

∑

(a,c)∈κ
ya,c ≤ 1, ∀b ∈ I(B), ∀κ ∈ CFb (36)

Some of these constraints might be redundant if the sum of zmin
a,b,c of the smallest two

sequences is already large enough to prohibit them from being in the same bucket by
means of Inequalities (30). The most trivial form of this case is excluded in the above
sets by the condition zmin

a,b,c < |Bb|.

14

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

The considered cliques can be computed using the algorithm by Bron and Kerbosch
[1973]. Cazals and Karande [2008] show that this algorithm is worst-case optimal, i.e.,
it runs in O(3

n
3) which is the largest possible number of maximal cliques in a graph on

n nodes. Although problematic in general, this might still be reasonable considering the
rather small expected size of the conflict graphs.

Nevertheless, in our implementation we decided to avoid clique computations and re-
sort to a simpler variant. We do so by considering a separate graph per resource obtaining
a set of not necessarily maximal cliques. This leads to conceptually weaker inequalities
but requires almost no computational overhead. More specifically, we consider subsets
Sb,r = Sb ∩ {(a, c) | a ∈ A, c ∈ Ca, r ∈ Qa} of Sb and subsets Fb,r = Fb ∩ {(a, c) | a ∈
A, c ∈ Ca, r ∈ Qa} of Fb, respectively, for b ∈ I(B) and r ∈ R s.t. within these subsets
all activities require a common resource. Using these sets we formulate the following
constraints:

∑

(a,c)∈Sb,r
ya,c ≤ 1, ∀b ∈ I(B),∀r ∈ R : |Sb,r| ≥ 2 (37)

∑

(a,c)∈Fb,r

ya,c ≤ 1, ∀b ∈ I(B),∀r ∈ R : |Fb,r| ≥ 2 (38)

If mutual overlap of the resources required by the activities is rare, the simpler in-
equalities are often almost as powerful as the full clique inequalities.

5.2.2 Path Inequalities

The idea of this kind of inequalities is to extend the precedence constraints (31) and (32)
and the makespan constraints (34) to be valid for paths in the precedence graph instead
of only for adjacent activities.

We consider the acyclic directed precedence graph G = (A,P). Let πa0,am = (a0, a1,
. . . , am) be a directed path from activity a0 to activity am in G. Moreover, let minimum
and maximum path lengths dLmin(πa0,am) =

∑m−1
i=0 pai + Lmin

ai,ai+1
and dLmax(πa0,am) =∑m−1

i=0 pai + Lmax
ai,ai+1

be the minimum and maximum makespan of the activities within
the path, respectively. Let Πa,a′ denote the set of all distinct paths from node a to node
a′. Since G is acyclic, Πa,a′ is finite (but in general exponential in the number of edges)
for all pairs of nodes (a, a′) ∈ A×A : a 6= a′. Let Π =

⋃
a,a′∈A:a6=a Πa,a′ denote the union

of all these paths between any two different nodes.
Let S be a feasible solution to SI-PTPSP. Then, for each path πa,a′ in G it must hold

that Sa + dLmin(πa,a′) ≤ Sa′ and Sa + dLmax(πa,a′) ≥ Sa′ . Hence, adding the following
inequalities for all πa,a′ ∈ Π to TBR yields a strengthened relaxation of TIF:

γa∑

c=1

Smin
a,c · ya,c + dLmin(πa,a′) ≤

γa′−1∑

c′=0

Smax
a′,c′ · ya′,c′ (39)

γa∑

c=1

Smax
a,c · ya,c + dLmax(πa,a′) ≥

γa′−1∑

c′=0

Smin
a′,c′ · ya′,c′ (40)

15

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

γa∑

c=1

Smin
a,c · ya,c + dLmin(πa,a′) + pa′ ≤ MS (41)

Due to the exponential number of these inequalities we only consider a reasonable
subset of them in our implementation, for details see Section 7.3.

6 Iterative Time-Bucket Refinement Algorithm

For the original SI-PTPSP, TBR on its own is a method yielding a lower bound but
no concrete feasible solution. The basic idea of the iterative time-bucket refinement
algorithm (ITBRA) is to solve TBR repeatedly, refining the bucket partitioning in each
iteration, until a proven optimal solution can be derived via primal heuristics or some
other termination criterion is met. We will show that, given enough time, this algorithm
converges to an optimal SI-PTPSP solution.

More specifically, we start by solving TBR with an initial bucket partitioning. Then,
we try to heuristically derive a feasible SI-PTPSP solution that matches the objective
value of TBR with a so-called gap closing heuristic (GCH). This heuristic fixes concrete
times for activities in accordance with the TBR solution and guarantees to never violate
resource or precedence constraints. If all activities can be scheduled in this way, we have
found and optimal solution and the algorithm terminates. Otherwise, some activities
remain unscheduled and we apply a follow-up heuristic to augment and repair the partial
solution, possibly obtaining a feasible approximate solution and a primal bound. Here
it can again be the case that we are able to close the optimality gap. If no provably
optimal solution has been found thus far, we refine the bucket partitioning by splitting
selected buckets and solve TBR again. For selecting the buckets to be refined and doing
the splitting, we exploit information obtained from the TBR solution and the applied
primal heuristics. This process is iterated until specified termination criteria are met
or an optimal solution is found. The whole procedure is shown in Algorithm 1. The
individual components of this approach will be explained in detail in the next sections.

6.1 Initial Bucket Partitioning

We create the initial bucket partitioning B in such a way that buckets start/end at any
time when a resource availability interval starts or ends and at any release time and
deadline of the activities. For details see Algorithm 2.

6.2 Primal Heuristics

We consider heuristics that attempt to derive feasible SI-PTPSP solutions and corre-
sponding primal bounds based on TBR solutions. If ITBRA is terminated early, the best
solution found in this way is returned. Note, however, that depending on the instance
properties, these heuristics might also fail and then yield no feasible solution.

16

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Algorithm 1: Iterative time-bucket refinement algorithm (ITBRA)

Input: SI-PTPSP instance
Output: solution to SI-PTPSP and lower bound

1: compute initial bucket partitioning;
2: compute initial primal solution;
3: do
4: solve TBR for the current bucket partitioning;
5: apply gap closing heuristic (GCH): try to find an SI-PTPSP solution in

accordance with the TBR solution;
6: if unscheduled activities remain then
7: apply follow-up heuristic to find feasible SI-PTPSP solution
8: end if
9: if gap closed then

10: return optimal solution
11: end if
12: derive refined bucket partitioning for the next iteration;

13: while termination criteria not met ;
14: return best heuristic solution and lower bound from TBR

6.2.1 Gap Closing Heuristic (GCH)

This is the first heuristic applied during an iteration of ITBRA. It attempts to construct
an optimal solution according to TBR’s result to close the optimality gap. Thus, it
may only fully succeed when the relaxation’s objective value does not underestimate the
optimal SI-PTPSP solution value. If the gap cannot be closed, GCH provides only a
partial solution and no primal bound. Information on the unscheduled activities then
forms an important basis for the subsequent bucket refinement.

Let (y∗,MS ∗) be the current optimal TBR solution. Initially, GCH receives for each
activity a ∈ A the interval STBR

a = {STBR,min
a , . . . , STBR,max

a } of potential starting times,

Algorithm 2: Computing an initial bucket partitioning

Output: the initial bucket partitioning
1: B ← ∅; // bucket partitioning

2: T ← {Tmin} ∪ {Tmax + 1}; // bucket starting times

3: T ← T ∪ {W start
r,w ,W end

r,w + 1 | r ∈ R, w = 1, . . . , ωr};
4: T ← T ∪ {tra, tda | a ∈ A};
5: sort T ;
6: for i← 1 to |T | − 1 do
7: B ← B ∪ {{T [i], . . . , T [i+ 1]− 1}}; // add bucket

8: end for
9: return B;

17

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

where STBR,min
a =

∑γa−1
c=0 Smin

a,c · y∗a,c and STBR,max
a =

∑γa−1
c=0 Smax

a,c · y∗a,c. These intervals

can in general be further reduced by removing for each a ∈ A all time slots t ∈ STBR
a

violating at least one of the following conditions in relation to the precedence constraints
and the calculation of the makespan:

∃t′ ∈ STBR
a′ (t+ pa + Lmin

a,a′ ≤ t′ ≤ t+ pa + Lmax
a,a′) ∀(a, a′) ∈ P (42)

∃t′ ∈ STBR
a′ (t′ + pa′ + Lmin

a′,a ≤ t ≤ t′ + pa′ + Lmax
a′,a) ∀(a′, a) ∈ P (43)

t+ pa ≤ MS ∗ (44)

We prune the set of intervals of potential activity starting times for all activities
STBR = {STBR

a | a ∈ A} so that arc consistency is achieved w.r.t. Conditions (42)–(44).
This is done by constraint propagation with a method like the well-known AC3 algorithm,
see Mackworth [1977]. Note that this constraint propagation may yield empty intervals
for some activities, indicating that there remains no feasible starting time assignment
respecting all constraints. In this case GCH will give up on this activity and continues
with the remaining ones deviating from the usual arc consistency concept to allow further
activities to be scheduled.

The pseudocode of GCH is shown in Algorithm 3. After the initial pruning of starting
time intervals, GCH constructs the (partial) schedule S by iteratively scheduling the
activities respecting all constraints. If this is not possible for some activities, they remain
unscheduled. Using a greedy strategy, the activities are considered in non-decreasing
order of STBR,max

a +pa, i.e., according to their earliest possible finishing times. Activities
are always scheduled at the earliest feasible time from STBR

a . Note that any explicit
enumeration of time slots from an interval can be efficiently avoided by using basic
interval arithmetic. Whenever an activity starting time is set, constraint propagation is
repeated to ensure arc consistency according to Conditions (42)–(44).

If GCH fails to close the gap, we attempt to compute a feasible solution instead that
might have a larger objective value than the current TBR bound.

6.2.2 Activity Block Construction Heuristic (ABCH)

This algorithm is based on the idea of first constructing so-called activity blocks, which
correspond to the weakly connected components of the precedence graph. All the activi-
ties belonging to one such weakly connected component are statically linked considering
the precedence constraints and minimum time lags between them. ABCH then greedily
schedules the activity blocks that have not been scheduled completely by GCH instead
of the individual activities. The activity blocks are considered in order of their release
times and are scheduled at the first time slot where no resource constraint is violated
w.r.t. the activity block’s individual activities and resource requirements. Details are
provided in Algorithm 4.

6.2.3 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is a prominent metaheuristic that applies a randomized variant of a construction
heuristic followed by a local search component independently many times, where the

18

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Algorithm 3: Gap closing heuristic (GCH)

Input: intervals of potential starting times STBR = {STBR
a | a ∈ A} with

STBR
a = {STBR,min

a , . . . , STBR,max
a }

Output: (partial) schedule S and all activities that cannot be scheduled w.r.t.
STBR grouped by violation type

1: AP ← ∅; // activities with violated precedence constraints

2: AR ← ∅; // activities with violated resource constraints

3: AU ← A; // unscheduled activities

4: W ′r ←Wr; // resource availabilities

5: prune potential starting time intervals STBR;
6: while AU 6= ∅ do
7: select and remove an activity a ∈ AU with minimal STBR,max

a + pa;
8: if STBR

a = ∅ then // precedence constraints violated

9: AP ← AP ∪ {a};
10: continue;

11: end if

12: STBR
a ← {t ∈ STBR

a | {t, . . . , t+ pa − 1} ⊆W ′r, ∀r ∈ Qa};
13: if STBR

a = ∅ then // resource constraints violated

14: AR ← AR ∪ {a};
15: continue;

16: end if

17: Sa ← min STBR
a ;

18: STBR
a ← {Sa};

19: W ′r ←W ′r \ {t, . . . , t+ pa − 1}, ∀r ∈ Qa;
20: prune potential starting time intervals STBR;

21: end while
22: return S,AP , AR;

best found solution is kept as the result, see Resende and Ribeiro [2010]. We consider
GRASP here as an advanced alternative to ABCH within ITBRA. The approach provides
a reasonable balance between being still relatively simple but providing considerably
better results than ABCH. There are clearly other options but our aim here is to keep
standard metaheuristic aspects simple in order to put more emphasis on TBR’s and
ITBRA’s fundamentals.

Both, GCH and ABCH can be randomized. We do so by allowing the order in which
the activities or activity blocks are considered to deviate from the strict greedy criterion.
In particular, we choose uniformly at random from the kgrand

GCH (kgrand
ABCH) candidates with

the highest priority. Parameters kgrand
GCH and kgrand

ABCH control the strength of the random-
ization. Note that the success of ABCH and hence also of the GRASP strongly depends
on the partial solution provided by GCH. Therefore, we primarily choose to randomize
GCH. We also try to compute a primal solution at the very beginning before solving

19

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Algorithm 4: Activity block construction heuristic (ABCH)

Input: a partial schedule SGCH computed by GCH
Output: a feasible schedule S or no solution if SGCH cannot be completed

1: C ← set of subsets of A corresponding to the weakly connected components of
the precedence graph which are not completely scheduled in SGCH;

2: AC ← ∅; // the set of activity blocks

3: forall weakly connected components c ∈ C do
4: Sc ← ∅ ; // a schedule representing the activity block of c
5: forall activities a ∈ c in topological order do
6: schedule a in Sc at the earliest possible time w.r.t. the precedence

constraints and resource consumptions of activities in c but ignoring all
other activities as well as release times and deadlines, and resource
availabilities;

7: end
8: the release time of the activity block is mina∈c tra;
9: AC ← AC ∪ {Sc} ;

10: end
11: forall activity blocks Sc ∈ AC ordered according to release time do
12: try to schedule the activity block at the earliest feasible time in S s.t. activity

release times and deadlines as well as resource constraints are satisfied;
13: if no feasible time found then
14: return no solution;
15: end if

16: end
17: return S;

TBR for the first time. Hence, there is no GCH solution available at this point. In this
case we randomize ABCH instead.

To get a strong guidance for the bucket refinement process we prefer GCH solutions
that schedule as many activities as possible. However, these solutions might not necessar-
ily correspond to those solutions that work best in conjunction with ABCH. Therefore,
we track the best complete solution and the best partial GCH solution separately. This
means that our GRASP returns a feasible SI-PTPSP solution as well as a partial GCH
solution (which might be unrelated). Since GRASP combines the functionalities of GCH
and ABCH, it effectively replaces Lines 5–8 in Algorithm 1.

We consider a local search component using a classical 2-exchange neighborhood on
the order of the activity blocks scheduled by ABCH. The local search is always performed
until a local optimum is reached.

As termination criterion for the GRASP a combination of a time limit and a maximal
number of iterations without improvement is used, details will be given in Section 8.
Moreover, in the first iteration of the GRASP the deterministic versions of GCH and
ABCH are used. This guarantees, especially for short executions, that the final result of

20

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

B1 B2 B3 B4 B5 B6 · · · Bβ

Tmin Tmaxτ2
1 τ4

1 τ4
2

B′
1 B′

2 B′
3 B′

4 B′
5 B′

6 B′
7 B′

8 B′
9 · · · B′

β

Figure 3: An example of a bucket refinement for τ2 = {τ2
1 }, τ4 = {τ4

1 , τ
4
2 }, and τ b = ∅

for b ∈ I(B) \ {2, 4}.

the GRASP is never worse than the one of the pure heuristics.

6.3 Bucket Refinement Strategies

In general, the bucket refinement is done by selecting one or more existing buckets and
splitting each of them at selected points into two or more new buckets. If a bucket
consists of only a single time slot, it cannot be subdivided further and becomes irrel-
evant for subsequent splitting decisions. Buckets are never merged or extended in our
approach, i.e., the number of buckets always strictly increases due to the refinement.
This guarantees that ITBRA eventually terminates if at least one bucket is subdivided
in each iteration (cf. Theorem 1).

More formally, a refinement of some bucket Bb ∈ B is given by an ordered set of
splitting points τ b = {τ b1 , . . . , τ bm} ⊆ {Bstart

b + 1, . . . , Bend
b } with τ b1 < . . . < τ bm. Based on

τ b we get |τ b|+1 new buckets replacing the original one: {Bstart
b , . . . , τ b1−1}, {τ b1 , . . . , τ b2−

1}, . . . , {τ bm, . . . , Bend
b }. For an example see Fig. 3.

In general, the decisions to be made in the bucket refinement process are (a) which
buckets are to be refined, (b) at which positions, and (c) how many splits to apply. To
address these tasks we need criteria that identify promising bucket refinements. Most
importantly, a bucket refinement should affect the current optimal TBR solution in
order to guarantee that not the same bucket sequences comprise an optimal solution
again. In this way, it is ensured that we obtain a more refined solution in each iteration.
Furthermore, bucket splitting should be done in such a way that it is beneficial for the
heuristics, helping them to find good feasible solutions. Therefore, constraints that were
responsible for leaving activities unscheduled in the heuristics should be exploited to
prevent these situations from occurring again. Last but not least, we want to obtain a
dual bound for the SI-PTPSP that is as tight as possible. Hence, a bucket refinement
that likely has implications on TBR’s objective value is desirable.

6.3.1 Selecting Buckets to Refine

Observe that refining inner buckets of selected bucket sequences does not directly affect
the current TBR solution. Refining first and last buckets (if they are non-unit buckets),

21

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

however, ensures that the bucket sequence that contained them does not exist in the
refined TBR anymore and therefore cannot be used again. Furthermore, some newly
introduced buckets might not be part of feasible bucket sequences anymore, resulting in
a more restricted scenario. Hence, we want to either split only first or last buckets of
selected sequences or both. If we use just one bucket, we need to resort to the other one
if otherwise no progress can be made. During preliminary tests it turned out that always
using both boundary buckets for refinement is superior. Another question is for which
bucket sequences the bounding buckets shall be refined. In the following we propose
different strategies that will be experimentally compared in Section 8.2.2.

All Selected (ASEL) Using this strategy we refine all first and last buckets of all
bucket sequences selected in the current optimal TBR solution. This can, however, be
inefficient as it may increase the total number of buckets in each iteration substantially.
The following strategies will therefore only consider certain subsets.

All In GCH Schedule (AIGS) We refine all first and last buckets of only those bucket
sequences whose corresponding activities could be feasibly scheduled by GCH. The idea is
to improve accuracy for the scheduled activities in order to reveal sources of infeasibility
w.r.t. the activities that could not be scheduled once TBR is solved the next time.

Violated Due (VDUE) If GCH fails to schedule all activities, it provides a set of
activities AP that cannot be scheduled due to the precedence constraints and a set of
activities AR that cannot be scheduled due to the resource constraints. The basic idea
is to refine buckets related to activities in the schedule that immediately prevent the
activities in AP and AR from being scheduled. To identify these activities we consider
the partial schedule S generated by GCH.

Let AGCH = A \ (AR ∪ AP) be the set of feasibly scheduled activities. Refinements
based on resource infeasibilities are derived from sets NR(a) = {a′ ∈ AGCH | Qa ∩Qa′ 6=
∅ ∧ {Sa′ , . . . , Sa′ + pa′ − 1} ∩ {STBR,min

a , . . . , STBR,max
a + pa − 1} 6= ∅} for a ∈ AR. For

each activity a′ ∈ NR(a) we refine the first and last bucket of the bucket sequence Ca′,c
in the TBR solution.

The activities potentially responsible for a ∈ AP having no valid starting time are the
activities a′ in AGCH s.t. (a, a′) ∈ P or (a′, a) ∈ P . However, we do not have to consider
all activities incident to a for the refinement. Let N−P (a) = {a′ | (a′, a) ∈ P ∧a′ ∈ AGCH}
and N+

P (a) = {a′ | (a, a′) ∈ P ∧ a′ ∈ AGCH} for all a ∈ AP . Then, calculate:

NP (a) = arg max
a′∈N−P (a)

{Sa′ + pa′ + Lmin
a′,a} ∪ arg min

a′∈N−P (a)

{Sa′ + pa′ + Lmax
a′,a } ∪

arg min
a′∈N+

P (a)

{Sa′ − Lmax
a,a′ } ∪ arg max

a′∈N+
P (a)

{Sa′ − Lmin
a,a′} (45)

We refine the first and last buckets of all bucket sequences of activities a′ ∈ NP (a)
that are selected in the current TBR solution. If no refinement is possible for bucket
sequences corresponding to a′ ∈ NR(a) ∪ NP (a), we refine the first and last bucket of
Ca,c instead.

22

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

6.3.2 Identifying Splitting Positions

Once a bucket has been selected for refinement, we have to decide at which position(s) it
shall be subdivided. Again, we consider different strategies. The challenge is to identify
candidate positions that usually have a large impact on the subsequent TBR and its
solution while resulting in well-balanced sub-buckets.

Binary (B) Let Ca,c be the bucket sequence causing its first and last buckets to be
selected for refinement. We split the selected buckets in such a way that the interval of
potential starting and finishing times of the respective activity is bisected. In particular,
for bfirst(a, c) and blast(a, c), we consider the splitting positions d(Smin

a,c + Smax
a,c)/2e and

d(Smax
a,c + Smin

a,c)/2e + pa, respectively. We have to round up in case of non integral
refinement positions since it is not feasible to refine w.r.t. the bucket start. Although
this approach typically leads to well-balanced sub-buckets, it might often have a rather
weak impact on the subsequent TBR solution because the resulting buckets might still
be too large to reveal certain sources of infeasibility.

Start/End Time (SET) Let a be an activity that could be scheduled by GCH and Ca,c
the corresponding bucket sequence in TBR whose first and last buckets shall be refined.
We split bfirst(a, c) at the activity’s starting time Sa and blast(a, c) at Sa+pa, i.e., after
activity a has ended according to GCH’s schedule. Thus, the specifically chosen time
assignment of GCH gets an individual bucket sequence in the next iteration.

Because this method is defined only for activities that could be scheduled by GCH,
it is applicable only in direct combination with AIGS. To overcome this limitation we
resort to B if SET is not applicable. The obtained strategy is denoted by SET+B.

6.3.3 Selecting Splitting Positions

The strategies introduced above may yield several splitting positions for a single bucket,
especially since the same bucket may be selected multiple times for refinement for dif-
ferent activities. In principle, we want to generate as few new buckets as possible while
ensuring strong progress w.r.t. the dual bound and narrowing down the activities’ pos-
sible starting time intervals. Splitting at all identified positions might therefore not be
the best option. In the following we propose different strategies for selecting for each
selected bucket the splitting positions to be actually used from all positions determined
in the previous step. Let set τ b be this union of identified splitting positions for bucket
b.

Union Refinement (UR) We simply use all identified splitting positions. As already
mentioned, however, this approach may lead to a high increase in the number of buckets
and may therefore not be justified.

Binary Refinement (BR) We use the splitting position τ ′ ∈ τ b closest to the center of

the bucket, i.e., τ ′ = arg mint∈τb
∣∣∣B

start
b +Bend

b
2 − t

∣∣∣; ties are broken according to the order

23

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

ASEL

AIGS

VDUE

B

SET+B

SET

BR

UR

CPR

Selecting buckets
Identifying

splitting positions
Selecting

splitting positions

Figure 4: Overview of the proposed strategies to perform a bucket refinement and how
they can be combined.

in which the splitting positions have been obtained. This approach clearly tends to keep
the number of buckets low but may increase the total number of required iterations of
ITBRA.

Centered Partition Refinement (CPR) We first partition τ b into two sets at t =
Bstart

b +Bend
b

2 . Let τ b,l = {t ∈ τ b | t ≤ t} and τ b,r = {t ∈ τ b | t > t}. To obtain up to three
new buckets we choose as splitting points the two “innermost” elements, i.e., we apply
the refinement {max τ b,l,min τ b,r}. If one of the sets is empty, we apply only a single
split.

The idea of this partitioning is to give candidate positions close to either boundary of
the bucket equal chances of being selected. Splitting a bucket close to its end usually has
a strong influence on (non-unit) bucket sequences starting in the bucket while choosing
a splitting position close to the start typically has a higher impact on (non-unit) bucket
sequences ending in this bucket. Prioritizing splitting positions close to the center of the
bucket results in a more balanced subdivision.

6.3.4 Further Considerations

We also investigated bucket selection techniques based on critical paths, see Guerriero
and Talarico [2010]. This means that we consider sequences of activities that directly
define the makespan. However, our experiments indicate that bucket refinements based
on this strategy do not work well. We therefore omit them, as well as a few other inferior
techniques, here and refer the interested reader to Jatschka [2017] for further details.

Fig. 4 provides an overview of the discussed bucket selection, splitting position iden-
tification, and splitting position selection strategies.

7 Implementation Details

In this section, we discuss further algorithmic details that are important for an efficient
implementation of ITBRA and the associated heuristics.

24

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

7.1 Preprocessing Activity Starting Times

To obtain the restricted set of possible activity starting times Ta we start by discarding
the starting times leading to resource infeasibilities:

Ta = {t ∈ T | tra ≤ t ≤ tda − pa,∀r ∈ Qa ∀t′ ∈ Ya(t) (t′ ∈Wr)}

The obtained set is then further reduced by taking also precedence relations into account.
In particular, only starting times respecting the following conditions are feasible:

∀(a, a′) ∈ P ∃t′ ∈ Ta′ (t+ pa + Lmin
a,a′ ≤ t′ ≤ t+ pa + Lmax

a,a′)

∀(a′, a) ∈ P ∃t′ ∈ Ta′ (t′ + pa′ + Lmin
a′,a ≤ t ≤ t′ + pa′ + Lmax

a′,a)

To achieve arc consistency w.r.t. them we can use constraint propagation similar as
in GCH. All these calculations can be performed based on interval arithmetic without
enumerating individual time slots, and thus in time independent of |T |.

Finally, the originally given release times and deadlines can be tightened according to
the pruned sets Ta, i.e., we set

tra ← minTa ∀a ∈ A
tda ← pa + maxTa ∀a ∈ A

7.2 Computing Bucket Sequences

Algorithm 5 calculates the bucket sequences Ca for an activity a ∈ A using the fact
that bucket sequences are uniquely determined by their earliest possible starting times
Smin
a,c . In particular, we can efficiently compute the next such time point that needs to

be considered from the previous one.
If the current bucket sequence consists of a single bucket, we proceed with the time

point ensuring that only pa − 1 time can be spent in the current bucket, see Line 12.
Otherwise, we try to find the earliest time point that guarantees that we start in bfirst

and finish in bucket blast + 1. If no such time point exists, we proceed with the earliest
time slot in bucket bfirst + 1 instead or stop if the activity’s deadline has already been
reached. The offset, denoted by δ, to the sought time point can be computed according
to Line 16.

Iterating over the earliest starting times is linear in the number of buckets. The bucket
to which a certain time slot belongs can be determined in logarithmic time w.r.t. the
number of buckets. Hence, the overall time required by the algorithm is in O(|B| log |B|).
Note that the zmin

a,b,c and zmax
a,b,c values are only set for the first and last buckets of the

computed sequences since these values are always equal to the bucket size for all inner
buckets.

For Ca,c ∈ Ca let T s
a,c = {Smin

a,c , . . . , S
max
a,c }∩Ta. We can discard all bucket sequences for

which T s
a,c = ∅. Moreover, Smin

a,c and Smax
a,c can be tightened by setting Smin

a,c to min(T s
a,c)

and Smax
a,c to max(T s

a,c).

25

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Algorithm 5: Computing all bucket sequences for an activity.

Input: Activity a ∈ A
Output: Set of bucket sequences Ca, associated values Smin

a,c , Smax
a,c , zmin

a,b,c, and
zmax
a,b,c

1: Ca ← ∅;
2: t← tra;
3: c← 1;

4: while t ≤ tda − pa do
5: bfirst ← b : t ∈ Bb;
6: blast ← b : (t+ pa − 1) ∈ Bb;
7: Ca,c ← {Bbfirst , . . . , Bblast};
8: Smin

a,c ← t;

9: if bfirst = blast then
10: zmin

a,blast,c
← pa;

11: zmax
a,blast,c

← pa;

12: t← Bend
blast − pa + 2;

13: else
14: zmax

a,bfirst,c
← Bend

bfirst − t+ 1;

15: zmin
a,blast,c

← Smin
a,c + pa −Bstart

blast ;

16: δ ← min
{
zmax
a,bfirst,c

− 1,min
{
Bend
blast , t

d
a − 1

}
−
(
Smin
a,c + pa − 1

)}
;

17: zmin
a,bfirst,c

← zmax
a,bfirst,c

− δ;
18: zmax

a,blast,c
← zmin

a,blast,c
+ δ;

19: t← Smin
a,c + δ + 1;

20: end if

21: Smax
a,c = Bend

bfirst − zmin
a,bfirst,c

+ 1;

22: Ca ← Ca ∪ {Ca,c};
23: c← c+ 1;

24: end while
25: return Ca;

26

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

7.3 Valid Inequalities

As already mentioned, we only consider the simplified version of the clique inequalities
(37) and (38) to avoid the overhead for computing maximal cliques. The number of these
inequalities grows significantly as the buckets get more fine-grained. Fortunately, the
final bucket partitionings turned out to be still sufficiently coarse to add all inequalities
of this type to the initial formulation.

Recall that the number of path inequalities (39)–(41) is in general exponential. In
favor of keeping the model compact we avoided dynamic separation and consider only a
reasonable subset of these inequalities that is added in the beginning. Clearly, we want
to use a subset of the paths Π still having a strong influence on the relaxation. The idea
is to use all paths targeting nodes of the precedence graph with an out-degree of zero.
This guarantees that precedence relations are enforced more strictly between all sinks
and their predecessors. Since the sinks in the precedence graph are the nodes that will
define the makespan, this appears to be particularly important.

To this end, we consider the following subsets of Π with deg+(·) denoting the out-
degree of a node:

ΠLmin =
⋃

a,a′∈A:a6=a′
{ arg max
πa,a′∈Πa,a′

dLmin(πa,a′) | Πa,a′ 6= ∅, deg+(a′) = 0}

ΠLmax =
⋃

a,a′∈A:a6=a′
{ arg min
πa,a′∈Πa,a′

dLmax(πa,a′) | Πa,a′ 6= ∅, deg+(a′) = 0}

We then add Inequalities (39) and (41) only for paths πa,a′ ∈ ΠLmin and Inequalities (40)
only for paths πa,a′ ∈ ΠLmax .

8 Computational Study

In this section we are going to present the computational results for the considered
algorithms with their variants. We start by giving details on the used test instances
and the motivation for their selection. Then, we provide details on the actually used
configurations. Finally, we present the obtained results.

8.1 Test Instances

The benchmark instances are motivated by the real world patient scheduling scenario
at cancer treatment center MedAustron that requires scheduling of particle therapies.
In general, each treatment session consists of five activities that have to be performed
sequentially. The modeled resources are the particle beam, the irradiation rooms, the
radio oncologists, and the anesthetist. In principle, resources are assumed to be available
for the whole time horizon except for short time periods. The most critical resource is the
particle beam, which is required by exactly one activity of each treatment. The particle
beam is shared between three irradiation rooms, in which also additional preparation
and follow-up tasks have to be performed. A radio oncologist is required for the first and

27

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

the last activity, respectively. In addition, some patients require sedation, which means
that the anesthetist is involved in all activities.

The main characteristic of our benchmark instances is the number of activities. We
have generated two groups of benchmark instances, each consisting of 15 instances per
number of activities α ∈ {20, 30, . . . , 100}. These two groups differ in the size of the
interval between release time and deadline of the activities and with it their difficulty.

Activities are generated treatment-wise, i.e., by considering sequences of five activities
at a time. The particle beam resource is required by the middle activity, i.e., the third
one. The second, third, and fourth activity demand one of the room resources selected
uniformly at random. We assume that d α10e radio oncologists are available and select one
of them for the first and last activity. Moreover, 25% of the treatments are assumed to
require sedation and are therefore associated with the anesthetist resource. We add for
each consecutive activity in the treatment sequence a minimum and maximum time lag.
Hence, the resulting precedence graph consists of connected components, each being a
path of length five. In the following we refer to these paths, that essentially are equivalent
to the treatments, also as chains. The processing times of the activities are randomly
chosen from the set {100, . . . , 10000}. Minimum lags are always 100 and maximum lags
are always 10000.

It remains to set the release times and deadlines of the activities and the resources’
availability windows in such a way that the resulting benchmark instances are feasible
with high probability but not trivial. For this reason a preliminary näıve schedule is
generated from which release times and deadlines are derived. To this end, the activities
are placed treatment-wise in the tentative time horizon {0, . . . ,∑a∈A(pa + 10000)} by
randomly selecting a starting time for the first activity of each connected component.
For the subsequent activities a random time lag in {Lmin

a,a′ , . . . , L
max
a,a′ } is enforced. If a

determined starting time of an activity conflicts with an already scheduled one, the
connected component is reconsidered.

From this preliminary schedule we derive tentative release times and deadlines which
are then scaled to receive a challenging instance. We consider two variants to generate a
group of “easy” and a group of “hard” instances. The latter features larger release time
deadline windows that make the respective instances more challenging. For details on
the used scaling factors see Jatschka [2017].

Finally, the availability of the resources is restricted. Each resource has five to seven
time windows during which it is unavailable. The duration of these time windows is
randomly chosen from the set {700, . . . , 1500}. The positions of these unavailability
windows are chosen uniformly at random from the set {0, . . . , Tmax}.

To our best knowledge benchmark instances considering a comparable scenario do not
exist. Our newly introduced test instances are made available at http://www.ac.tuwien.
ac.at/research/problem-instances. An overview of the basic characteristics of the test
instances is provided in Table 1. Instance sets are named according to [e|h]α where e
stands for the “easy” group of instances and h for the “hard” ones, and α indicates the
considered number of activities. Each instance set consists of 15 instances.

28

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Table 1: Characteristics of the test instances grouped by difficulty and number of ac-
tivities. The subscripts indicate the number of activities per instance. Tmax

denotes the average scheduling horizon. The number of resources ρ and the
number of chains (chains) is the same for all instance of a set.

set Tmax ρ chains

e20 104 649 7 4
e30 138 808 8 6
e40 169 642 9 8
e50 198 386 10 10
e60 220 792 11 12
e70 244 279 12 14
e80 271 461 13 16
e90 293 110 14 18
e100 316 316 15 20

set Tmax ρ chains

h20 104 575 7 4
h30 137 745 8 6
h40 167 003 9 8
h50 201 269 10 10
h60 220 606 11 12
h70 244 788 12 14
h80 271 327 13 16
h90 289 278 14 18
h100 317 324 15 20

8.2 Computational Experiments

The test runs have been executed on an Intel Xeon E5540 with 2.53 GHz using a time
limit of 7200 seconds and a memory limit of 4GB RAM. MILP models have been solved
using Gurobi 7 with a single thread. We used irace in version 2.1 for parameter tuning,
see López-Ibáñez et al. [2016].

The results of the test instances are grouped by difficulty and number of activities.
Unless otherwise indicated, computation times are stated using the median and for all
other properties we use the mean. Let pb denote the primal bound and db the dual
bound of the investigated algorithm. The starred versions denote the respective best
bounds obtained across all algorithms. Optimality gaps are computed by 100 · pb−db∗db∗ .

Primal bounds are compared using 100 · pb−pb∗pb∗ and dual bounds are compared using

100 · db∗−dbdb∗ .
We first deal with the parametrization of the primal heuristics used within ITBRA.

Then, we compare different combinations of refinement strategies for use within the
matheuristic. Finally, we compare ITBRA to a simple metaheuristic and the reference
MILP models.

8.2.1 Parametrization of the Primal Heuristics

GRASP from Section 6.2 can also be applied outside the context of the matheuristic,
thus, as stand-alone algorithm for SI-PTPSP, when simply applied using an empty initial
schedule. We start by explaining how the involved parameters are set since they serve
as basis for deriving appropriate values for use within the matheuristic.

The stand-alone GRASP terminates if a time limit of two hours is reached. We chose
this criterion primarily to match the time limit of the other approaches, a reasonable
degree of convergence is usually reached much earlier. Parameter kgrand

ABCH has been set

29

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

to 8 for all benchmark instances. We applied irace to determine this value. However, it
turned out that the performance of our GRASP is very robust against changes to kgrand

ABCH.
For the GRASP embedded in ITBRA we imposed a time limit of 300 seconds and

a maximal number of 10,000 iterations without improvement. The latter is set high
enough to be non-restrictive in most cases but avoid wasting time if the algorithm already
converged sufficiently. The values of the parameters kgrand

GCH and kgrand
ABCH of the embedded

GRASP have been determined experimentally starting with the values from the stand-
alone variant. For the parameter kgrand

GCH we first assumed a value of kgrand
GCH = 5 ·kgrand

ABCH as
all activity chains in the test instances consist of five activities. Afterwards, we fine-tuned
these parameters by iterative adjustment. The parameter kgrand

ABCH is set to 6 and kgrand
GCH is

set to 35. The randomization itself is based on a fixed seed. Tests showed that the chosen
termination criteria provide a reasonable balance between result quality and execution
speed. Objective values obtained from the embedded GRASP are on average only 0.21%
larger tan those obtained from the stand-alone variant. The embedded GRASP provides
on average solutions with 16.7% smaller objective value than ABCH.

The local search uses a best improvement strategy. Preliminary experiments confirmed
that this strategy works slightly better than a first improvement strategy since the aggre-
gation in terms of activity blocks typically results in only few moves with improvement
potential. For the same reason the local optimum is usually reached after a few itera-
tions. Thus, the overhead of the best improvement strategy is not that large. The locally
optimal solutions obtained by the best improvement strategy, however, turned out to
pay off in terms of a better average quality that is achieved. Tests with irace confirmed
this observation, although the differences are quite small. However, for instances with
different properties this might not be the case. For a larger number of activity blocks a
first improvement strategy might be superior.

8.2.2 Comparison of Bucket Refinement Strategies

Due to the large number of possible combinations of refinement techniques (includ-
ing further ones not presented in this work) we did not test every variant. Instead,
we employed a local search strategy to identify good options. Experiments with the
matheuristic terminate if optimality is proven or the time limit of two hours is reached.

We started with variant ASEL,B,UR and then step by step investigated the impact
of exchanging each of the three parts, making use of statistical tests. It turned out that
the best refinement strategies are VDUE,B,CPR and VDUE,SET+B,CPR. In addition
to the these variants we also consider ASEL,B,UR and the best strategy based on AIGS
(AIGS,SET,CPR) in the following. The former mainly serves as näıve reference strategy.
The latter is used to discuss certain particularities of the bucket refinement process. We
shortly summarize the made observations here and refer to Jatschka [2017] for a more
detailed discussion.

We compared the four strategies in a pairwise fashion checking the assumption that
one strategy yields smaller optimality gaps than the other by a one-tailed Wilcoxon
rank-sum test with a significance level of 0.05 per difficulty setting and in total. All
considered algorithms perform significantly better than the reference strategy on both

30

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Table 2: Comparison of selected bucket refinement strategies. We consider the average
optimality gaps (gap), the number of solved instances (opt) and the median
computation times (t). Entries marked with “tl” indicate that the experiment
terminated due to the time limit. The summary is obtained by aggregating
over the preceding rows using the same function as for the respective column.

ASEL AIGS VDUE VDUE
B SET B SET+B

UR CPR CPR CPR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

e20 0.0 15 12 0.0 15 13 0.0 15 27 0.0 15 13
e30 0.6 14 219 0.6 14 36 0.0 15 91 0.6 14 66
e40 5.3 10 836 4.3 10 268 4.9 10 200 5.6 10 160
e50 1.1 14 189 1.1 14 220 0.0 15 183 0.0 15 105
e60 1.2 14 82 1.2 14 54 1.2 14 100 1.2 14 78
e70 2.1 8 6957 1.2 11 2664 0.4 13 742 0.3 14 528
e80 2.0 7 tl 1.7 9 1687 0.8 10 1197 0.4 13 266
e90 1.7 6 tl 1.6 8 4090 1.6 6 tl 1.5 9 1908
e100 0.9 5 tl 1.3 6 tl 0.7 7 tl 1.2 8 4740
summary 1.7 93 836 1.4 101 268 1.1 105 200 1.2 112 160

h20 0.0 15 17 0.0 15 10 0.0 15 22 0.0 15 20
h30 11.4 9 4341 8.0 10 1726 6.4 12 1860 6.4 12 985
h40 14.4 4 tl 10.7 6 tl 9.5 6 tl 8.9 7 tl
h50 18.3 2 tl 18.7 3 tl 17.0 4 tl 18.2 4 tl
h60 18.0 1 tl 17.5 3 tl 17.6 3 tl 16.4 4 tl
h70 21.9 0 tl 21.0 0 tl 21.2 0 tl 20.8 3 tl
h80 13.0 1 tl 12.9 1 tl 13.0 1 tl 12.6 2 tl
h90 11.1 1 tl 10.9 1 tl 10.4 1 tl 10.6 1 tl
h100 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 13.2 33 tl 12.3 39 tl 11.7 42 tl 11.6 48 tl

instance groups and also in total. The two VDUE variants outperform AIGS on the easy
set of instances and in total. However, VDUE,B,CPR is not significantly better than the
AIGS variant on the hard set of instances. The VDUE algorithms perform quite similar
and none can be shown to work significantly better than the other.

Table 2 provides the results of the selected matheuristic variants. VDUE combined
with SET+B and CPR is clearly the dominant strategy when taking computation times
into account but is closely followed by VDUE,B,CPR. To discuss the results in depth we
present more specific characteristics of the matheuristic variants in Table 3. In particular,
we consider the increase in the number of buckets and the average computation time
spent per iteration. The former is considered as ratio between the final and the initial
number of buckets. The higher this ratio, the more buckets were needed to solve the
instance.

Reference strategy ASEL,B,UR generates significantly more buckets than the remain-
ing approaches. This typically keeps the number of iterations low. However, this is paid
for excessively in terms of higher computation times per iteration due to the fast increase
in model size. In general, the number of buckets grows too fast and unguided to obtain
a successful approach.

One could expect AIGS to require the fewest buckets among the introduced strategies

31

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Table 3: Comparison of the characteristics of selected bucket refinement strategies. We
consider the ratio between the number of buckets at the start and at the end of
the algorithm (ratioB), the average number of iterations (nit), and the average
computation time spent per iteration (tit). Column |Binit| provides the average
number of buckets contained in the initial bucket partitioning. The summary
is obtained by aggregating over the preceding rows using the same function as
for the respective column.

ASEL AIGS VDUE VDUE
B SET B SET+B

UR CPR CPR CPR

set |Binit| ratioB nit tit[s] ratioB nit tit[s] ratioB nit tit[s] ratioB nit tit[s]

e20 43 4.73 9 5 2.73 5 2 1.93 16 2 1.69 9 2
e30 44 7.30 9 85 5.77 9 62 2.89 24 17 2.91 16 22
e40 47 7.14 7 454 5.75 7 330 2.99 19 158 2.91 13 191
e50 45 8.53 7 152 10.13 9 147 2.83 15 25 2.87 12 33
e60 49 5.30 4 218 5.09 5 189 2.50 11 72 2.30 6 81
e70 49 10.18 6 573 8.25 7 395 3.59 18 89 3.52 12 103
e80 52 7.45 4 629 7.01 5 380 3.35 13 131 3.23 9 118
e90 52 6.94 3 809 6.08 4 565 3.54 11 270 3.53 8 235
e100 58 7.69 3 951 6.62 4 708 3.99 13 266 3.75 9 312
summary 48 7.25 6 431 6.38 6 309 3.07 16 114 2.97 10 122

h20 43 4.25 8 8 3.73 8 6 1.93 17 3 2.00 13 3
h30 44 6.84 9 418 6.13 9 295 3.08 23 121 3.37 19 109
h40 43 6.98 6 924 6.63 8 621 3.39 17 276 3.29 12 313
h50 48 5.27 3 1812 4.90 5 1160 2.93 11 743 3.06 9 820
h60 44 5.49 2 1926 6.22 5 1166 3.50 11 803 3.59 9 855
h70 48 4.86 1 2629 3.96 3 2611 3.08 7 1280 3.17 6 1332
h80 49 4.94 1 2362 4.97 3 1489 3.01 7 1043 3.15 5 1112
h90 54 4.97 1 2239 4.61 3 1538 3.04 6 1017 3.22 5 1161
h100 55 4.96 1 2617 4.79 3 1648 2.86 4 1287 3.02 4 1430
summary 48 5.40 4 1659 5.10 5 1170 2.98 11 730 3.10 9 793

32

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

due to the potentially small number of refinement candidates. However, using only
buckets related to activities scheduled by GCH turned out to be too restrictive. This
strategy causes some important splits to be delayed until the bucket partitioning is rather
fine-grained.

VDUE is again a strategy that can be expected to generate only few new buckets per
iteration. However, compared to AIGS their choice appears to be much more meaningful.
Nevertheless, splitting only few buckets leads to a high number of iterations. Fortunately,
this is not too problematic due to the small computation times per iteration. Identifying
splitting positions with the pure binary strategy leads to only few bucket splits which
proves to be beneficial. As SET+B typically selects more candidates, one could expect
this strategy to be inferior. However, this is compensated for by incorporating more
information obtained from the TBR solution.

In general, it can be observed that the number of applied splits has a strong influence
on performance. However, the quality of the bucket refinement is also very important.
For an illustration see Fig. 5. As mentioned before, the large number of buckets generated
by ASEL raises the computation time within a few iterations to a problematic level
causing an overall bad performance. VDUE,B,CPR features the smallest increase in
buckets but requires more iterations to converge. Here it becomes clearly visible that
SET+B excels by incorporating more knowledge for making its decision.

Finally, we also want to discuss the properties of the remaining variants in excerpts.
Fig. 6 shows a comparison of the average number of iterations and the average final
number of buckets for a broad selection of refinement strategies on the set of easy in-
stances with 30 activities. A successful approach is typically characterized by being able
to solve an instance by refining only relatively few buckets. Variants that generate many
buckets within few iterations usually do not work well. Observe that ASEL and the
AIGS variants are all located in the upper half of the figure. The superior strategies
are situated near the bottom. It is also clearly visible that SET+B allows to solve an
instance in fewer iterations than the pure binary variant. UR and BR are able to solve
an instance using fewer buckets and iterations than CPR. This is a peculiarity of the
small instances considered here that does not generalize to the larger ones.

8.2.3 Comparing ITBRA to Other Algorithms

We start by comparing the matheuristic to the stand-alone GRASP, see Table 4. ITBRA
is in general able to provide better results. However, when dealing with the most difficult
instances, it is sometimes the case that the matheuristic only completes very few itera-
tions and GRASP is able to compute a slightly better solution. As the number of activ-
ities increases, ITBRA struggles more and more to improve upon the initially obtained
primal bound. This is caused by the originally high computation times per iteration
that prevent the algorithm from reaching a sufficient degree of convergence. Remember,
however, that ITBRA also puts much effort in determining good lower bounds which
GRASP cannot provide at all. In the remainder of this section we compare ITBRA to
the compact reference models DEF and TIF.

DEF was not able to find a primal solution for any instance but at least always

33

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

0 10 20 30 40 50 60
0

200

400

600

800

iterations

b
u
ck
et
s

0

500

1,000

1,500

2,000

2,500

co
m
p
u
ta
ti
on

ti
m
e

buckets

computation time

(a) VDUE,SET+B,CPR

0 10 20 30 40 50 60
0

200

400

600

800

iterations

b
u
ck
et
s

0

500

1,000

1,500

2,000

2,500

co
m
p
u
ta
ti
on

ti
m
e

buckets

computation time

(b) VDUE,B,CPR

0 10 20 30 40 50 60
0

200

400

600

800

iterations

b
u
ck
et
s

0

500

1,000

1,500

2,000

2,500

co
m
p
u
ta
ti
on

ti
m
e

buckets

computation time

(c) ASEL,B,UR

Figure 5: Comparison of the relation between computation time and increase in the
number of buckets for the same e40 instance when using different bucket re-
finement strategies.

34

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Table 4: Comparison of the best found refinement strategies with GRASP. For each
algorithm the average gaps to the best primal bound (gap), the standard de-
viation of the gaps (σ), and the median computation times (t) are presented.
Entries marked with “tl” indicate the termination of the experiment due to the
time limit. For GRASP, we also provide the number of instances for which a
feasible solution could be computed (feas). For the calculation of the gaps we
considered only instances for which all algorithms were able to compute a pri-
mal bound. The summary is obtained by aggregating over the preceding rows
using the same function as for the respective column.

VDUE VDUE
B SET+B

CPR CPR GRASP

set gap[%] σ t[s] gap[%] σ t[s] gap[%] σ feas

e20 0.0 0.0 27 0.0 0.0 13 38.6 17.3 12
e30 0.0 0.0 91 0.6 2.1 66 28.0 16.0 14
e40 3.5 7.4 200 4.2 7.4 160 12.6 7.7 15
e50 0.0 0.0 183 0.0 0.0 105 7.8 8.0 15
e60 0.8 2.9 100 0.8 2.9 78 3.4 4.6 15
e70 0.4 1.6 742 0.3 1.0 528 3.8 3.9 15
e80 0.5 1.1 1197 0.1 0.4 266 2.2 3.7 15
e90 0.8 1.0 tl 0.7 1.0 1908 0.9 1.0 15
e100 0.2 0.5 tl 0.7 1.5 4740 1.3 2.1 15
summary 0.7 1.6 200 0.8 1.8 160 11.0 7.1 131

h20 0.0 0.0 22 0.0 0.0 20 23.3 12.7 12
h30 5.9 13.1 1860 5.9 13.1 985 34.9 11.9 15
h40 6.5 8.2 tl 5.9 8.1 tl 21.6 11.6 15
h50 6.6 7.5 tl 7.6 7.9 tl 10.6 7.1 15
h60 6.9 5.8 tl 5.6 5.5 tl 8.4 5.6 15
h70 2.7 3.2 tl 2.2 3.3 tl 4.5 5.9 15
h80 1.3 2.9 tl 0.9 2.0 tl 1.1 2.9 15
h90 2.0 3.4 tl 2.2 4.1 tl 2.6 6.0 15
h100 1.0 0.9 tl 1.0 0.9 tl 0.1 0.5 15
summary 3.7 5.0 tl 3.5 5.0 tl 11.9 7.1 132

35

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

0 5 10 15 20 25

100

150

200

250

300

350

400

iterations

|B
fi
n
a
l |

ASEL,B,UR

AIGS,B,UR

AIGS,B,BR

AIGS,B,CPR

AIGS,SET,UR

AIGS,SET,BR

AIGS,SET,CPR

VDUE,B,UR

VDUE,B,BR

VDUE,B,CPR

VDUE,SET+B,UR

VDUE,SET+B,BR

VDUE,SET+B,CPR

Figure 6: Comparison of the average number of iterations and the average final number
of buckets on the set of e30 instances.

computed a dual bound. Table 5 provides the comparison with the matheuristic. The
bounds obtained from DEF are always worse than those found by ITBRA and turned
out to be particularly weak for the group of hard instances, which can be expected due
to the looser restrictions featured in this instance group.

As a result of the extremely large time horizons and the memory restriction of 4GB,
none of the TIF models even fit into the RAM. Therefore, we consider coarsened TIF
models by only taking a subset of the original time horizon into account. Let κ ∈ N>1

be the coarsening measure and TIFκ the associated model. Then, the new time horizon
T κ of TIFκ is defined as T κ = {t ∈ T | t ≡ 0 (mod κ)}. Consequently, we obtain
reduced sets of feasible starting times T κa = Ta ∩ T κ for the activities a ∈ A. Reducing
the number of considered time slots decreases the size of the model, which leads to faster
computation times. However, an optimal solution to TIFκ is in general not optimal w.r.t.
the original problem due to the disregarded time slots, making it a heuristic approach.
A coarsened model might even become infeasible when discarding too many time slots.

Table 6 provides the results of the differently coarsened TIF models. We increase
the value of κ stepwise until all instances can either be solved within the time limit
or do not permit feasible solutions anymore. For κ < 100 the models fail to generate
a primal bound for almost all instances due to memory or time limitations. Missing
table entries (marked with “-”) indicate that the coarsened model is not able to find a
primal bound for any instance of the corresponding set. For smaller instances the TIFκ

models are able to produce reasonable primal solutions. However, the quality of the
solutions deteriorates drastically as more time slots are disregarded. No TIFκ variant

36

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Table 5: Comparison between ITBRA and DEF. For each algorithm we provide the
average gaps to the best dual bound (gap), the standard deviation of the gaps
(σ) and the median computation times (t). Entries marked with “tl” indicate
the termination of the experiment due to the time limit. The summary is
obtained by aggregating over the preceding rows using the same function as for
the respective column.

VDUE VDUE
B SET+B

CPR CPR DEF

set gap[%] σ t[s] gap[%] σ t[s] gap[%] σ t[s]

e20 0.0 0.0 27 0.0 0.0 13 15.3 10.6 tl
e30 0.0 0.0 91 0.0 0.1 66 7.6 6.5 tl
e40 0.2 0.4 200 0.2 0.5 160 4.5 7.8 tl
e50 0.0 0.0 183 0.0 0.0 105 3.0 6.4 tl
e60 0.0 0.0 100 0.0 0.0 78 1.8 3.2 tl
e70 0.0 0.0 742 0.0 0.0 528 1.6 2.4 tl
e80 0.0 0.0 1197 0.0 0.1 266 1.0 1.7 tl
e90 0.0 0.1 tl 0.1 0.2 1908 1.5 2.8 tl
e100 0.0 0.1 tl 0.1 0.1 4740 2.0 1.8 tl
summary 0.0 0.1 200 0.0 0.1 160 4.3 4.8 tl

h20 0.0 0.0 22 0.0 0.0 20 19.6 11.4 tl
h30 0.3 1.1 1860 0.4 1.1 985 31.3 12.2 tl
h40 0.2 0.4 tl 0.1 0.2 tl 18.6 13.3 tl
h50 2.0 3.3 tl 1.6 1.5 tl 15.4 9.0 tl
h60 0.9 1.7 tl 1.3 2.1 tl 4.3 4.8 tl
h70 2.8 4.0 tl 2.9 3.9 tl 6.7 7.4 tl
h80 1.5 4.8 tl 1.4 4.9 tl 2.3 4.9 tl
h90 0.3 0.7 tl 0.3 0.6 tl 3.8 5.9 tl
h100 0.3 0.4 tl 0.3 0.4 tl 1.0 1.3 tl
summary 0.9 1.8 tl 0.9 1.6 tl 11.4 7.8 tl

37

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

is able to find a primal solution for all instances. When using a small value for κ, many
instances cannot be solved due to the time limit. For larger κ-values we can solve more
instances but at the cost of much larger gaps. Moreover, as we reduce the precision
even further, the models start to become infeasible. The number of infeasible instances
strongly increases for κ ≥ 10000 and the few instances that still permit feasible solutions
feature gaps of over 120%. Therefore, further increasing the value of κ does not seem
meaningful. It appears that there does not exist an appropriate value for κ allowing
a reasonable balance between computation time and result quality. Due to the many
missing entries we decided to use median instead of average gaps in the summary table.

According to our experiments the best variants are those with κ = 1000 and κ = 2000,
respectively. The former provides better solutions but the latter is able to find more
feasible solutions. For some instances the coarsened TIF variants even find better primal
solutions than the matheuristic. Especially for instance sets h40, h50, and h60 we obtain
a high number of good solutions s.t. also the median gaps are smaller here. Overall,
however, ITBRA still provides the better results. Moreover, recall that the TIFκ models
can only provide heuristic solutions and no dual bounds.

Last but not least, we also investigated the use of disaggregated precedence constraints
(see Artigues [2017]) but this did not lead to significant improvements.

9 Conclusions

In this work we considered a matheuristic, referred to as iterative time-bucket refine-
ment algorithm (ITBRA), intended for solving a resource-constrained project scheduling
problem (RCPSP) that requires scheduling in high resolution. We proposed a relaxation
for the original problem based on aggregating consecutive integral time points into so-
called time-buckets. Exploiting this relaxation we constructed a matheuristic that solves
this relaxation based on iteratively refined bucket partitionings. Moreover, we heuris-
tically derive primal bounds incorporating information from the relaxed solution. The
matheuristic then attempts to close the gap between dual bounds obtained from the
relaxation and primal bounds determined by (meta-)heuristics. The crucial part of this
approach is how to determine the subsequent (more refined) bucket partitioning for
the next iteration. We considered a variety of strategies and investigated them on a
novel benchmark set motivated by an application arising in particle therapy for cancer
treatment.

Our experiments indicate that it is most critical to limit the increase in the number of
buckets. However, the quality of the applied bucket splits has a substantial impact on
the convergence speed. Strategy VDUE,SET+B,CPR turned out to work best in this
respect.

The matheuristic works better than a simple greedy randomized adaptive search pro-
cedure (GRASP) on all instance sets except for the most difficult one. There it fails
to complete a sufficient number of iterations to make reasonable improvements to the
primal bound.

ITBRA clearly outperforms the compact mixed integer linear programming (MILP)

38

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

Table 6: Comparison of differently coarsened TIF models with ITBRA. We provide the
median gaps to the best primal bound of the original problem (gap) and the
median computation times (t). Missing entries (“-”) indicate that the coarsened
model is not able to find a primal bound for any instance of the corresponding
set. Moreover, for each instance set we indicate the number of optimally (optc)
and feasibly (feas) solved instances w.r.t. the coarsened model. Column infeas
denotes the number of instances with proven infeasible model. Finally, we
indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating
over the preceding rows using the same function as for the respective column.

VDUE VDUE
B SET+B

TIF100 TIF200 TIF1000 TIF2000 TIF10000 CPR CPR

set gapmed [%] t[s] gapmed [%] t[s] gapmed [%] t[s] gapmed [%] t[s] gapmed [%] t[s] gapmed [%] t[s] gapmed [%] t[s]

e20 0.3 15 0.6 4 21.7 <1 24.0 <1 - - 0.0 27 0.0 13
e30 0.1 310 0.4 58 4.0 4 18.3 2 - - 0.0 91 0.0 66
e40 0.3 2940 0.5 698 3.8 40 12.3 6 - - 0.0 200 0.0 160
e50 0.2 409 0.4 113 1.9 17 6.4 5 - <1 0.0 183 0.0 105
e60 0.3 5569 0.4 839 2.4 52 4.7 21 - <1 0.0 100 0.0 78
e70 14.3 tl 0.3 2713 1.9 165 4.7 77 - <1 0.0 742 0.0 528
e80 - tl 0.3 5630 1.7 292 3.4 108 - <1 0.0 1197 0.0 266
e90 - tl - tl 0.9 555 3.0 327 - 1 0.0 tl 0.0 1908
e100 - tl - tl 1.8 652 4.0 263 - 6 0.0 tl 0.0 4740
summary 0.3 5569 0.4 839 1.9 52 4.7 21 - <1 0.0 200 0.0 160

h20 0.4 39 0.5 8 6.4 1 19.8 <1 - <1 0.0 22 0.0 20
h30 11.8 6106 1.0 1129 11.1 42 24.6 13 - - 0.0 1860 0.0 985
h40 35.4 tl 0.6 tl 5.5 227 13.7 65 - <1 3.9 tl 3.2 tl
h50 - tl - tl 0.0 2815 9.5 381 - <1 3.5 tl 3.9 tl
h60 - tl 8.9 tl 2.3 1532 7.0 940 - <1 9.2 tl 6.5 tl
h70 - tl - tl 14.3 tl 10.4 3052 82.5 <1 1.6 tl 0.0 tl
h80 - tl - tl 5.0 tl 12.1 tl 77.0 3 0.0 tl 0.0 tl
h90 - tl - tl 9.0 tl 14.2 tl 93.8 8 0.3 tl 0.3 tl
h100 - tl - tl 39.6 tl 22.7 tl - 16 1.2 tl 1.2 tl
summary - tl - tl 6.4 2815 13.7 940 - <1 1.2 tl 0.3 tl

TIF 100 TIF 200 TIF 1000 TIF 2000 TIF 10000

set optc feas infeas tl ml optc feas infeas tl optc feas infeas tl optc feas infeas tl optc feas infeas tl

e20 15 15 0 0 0 15 15 0 0 15 15 0 0 13 13 2 0 0 0 15 0
e30 15 15 0 0 0 15 15 0 0 15 15 0 0 15 15 0 0 0 0 15 0
e40 9 12 0 6 0 12 14 0 3 15 15 0 0 15 15 0 0 0 0 15 0
e50 13 14 0 2 0 14 14 0 1 15 15 0 0 15 15 0 0 2 2 13 0
e60 9 9 0 6 0 14 15 0 1 15 15 0 0 15 15 0 0 6 6 9 0
e70 6 9 0 9 0 12 14 0 3 15 15 0 0 15 15 0 0 2 2 13 0
e80 3 3 0 12 0 9 11 0 6 15 15 0 0 15 15 0 0 7 7 8 0
e90 0 0 0 13 2 6 7 0 9 14 14 0 1 14 15 0 1 4 4 11 0
e100 1 1 0 8 6 4 5 0 11 13 15 0 2 15 15 0 0 2 2 13 0
summary 71 78 0 56 8 101 110 0 34 132 134 0 3 132 133 2 1 23 23 112 0

h20 15 15 0 0 0 15 15 0 0 15 15 0 0 15 15 0 0 2 2 13 0
h30 8 12 0 7 0 14 15 0 1 15 15 0 0 14 14 1 0 0 0 15 0
h40 4 9 0 11 0 8 12 0 7 15 15 0 0 15 15 0 0 5 5 10 0
h50 1 4 0 14 0 4 7 0 11 12 15 0 3 15 15 0 0 6 6 9 0
h60 0 0 0 15 0 2 9 0 13 9 15 0 6 14 15 0 1 6 6 9 0
h70 0 0 0 15 0 0 1 0 15 4 10 0 11 10 15 0 5 8 8 7 0
h80 0 0 0 11 4 1 4 0 14 5 11 0 10 4 15 0 11 9 9 6 0
h90 0 0 0 12 3 1 1 0 14 4 12 0 11 6 12 0 9 8 8 7 0
h100 0 0 0 1 14 0 0 0 15 1 8 0 14 0 11 0 15 5 5 10 0
summary 28 40 0 86 21 45 64 0 90 80 116 0 55 93 127 1 41 49 49 86 0

39

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

formulations. The considered discrete-event formulation (DEF) is only capable of com-
puting dual bounds for all of our benchmark instances and the considered time-indexed
formulation (TIF) cannot even be solved due to its model size. Variants of TIF based
on a coarsened time horizon are manageable but become infeasible once too many time
points are disregarded. For some instances good primal solutions could be obtained but
there exists no coarsening factor that works well in general by providing a good balance
between model size and result quality.

We primarily focused on MILP-based algorithms here. Another well-known exact
technique often used to deal with scheduling problems is constraint programming (CP).
In a more comprehensive study it appears to be interesting to compare our matheuristic
also to a suitable CP approach. Moreover, it might also be relevant to consider CP
techniques within ITBRA to improve its performance. In general the (meta-)heuristics
currently used within the matheuristic are rather simple. In particular, they suffer from
the effects of fixing the time lags which prevents them from considering a large variety
of possible solutions. This is a crucial part of the matheuristic for which more elaborate
techniques should be identified and tested.

In the computational study we investigated the power of our algorithm on a rather
specific set of benchmark instances. The fundamental approach, however, is in principle
much more generally applicable to problems that require scheduling in high resolution.
To verify this a more diversified set of benchmark instances, originating from differ-
ent application domains, has to be considered. Of course this requires adjusted MILP
formulations and adapted as well as novel bucket refinement strategies.

Acknowledgments

We thank EBG MedAustron GmbH, Wiener Neustadt, Austria, for the collaboration on
particle therapy patient scheduling and partially funding this work.

References

C. Artigues. On the strength of time-indexed formulations for the resource-constrained
project scheduling problem. Operations Research Letters, 45(2):154 – 159, 2017.

C. Artigues and E. Hebrard. Mip relaxation and large neighborhood search for a multi-
mode resource-constrained multi-project scheduling problem. In G. Kendall, B. Mc-
Collum, and G. Venden Berghe, editors, In proceedings of the 6th Multidisciplinary
International Conference on Scheduling : Theory and Applications (MISTA 2013),
27–30 Aug 2013, Ghent, Belgium, pages 815–819, 2013.

C. Artigues, S. Demassey, and E. Neron. Resource-Constrained Project Scheduling: Mod-
els, Algorithms, Extensions and Applications. Wiley-ISTE, 2008.

C. Artigues, P. Brucker, S. Knust, O. Koné, and P. Lopez. A note on “event-based

40

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

MILP models for resource-constrained project scheduling problems”. Computers and
Operations Research, 40(4):1060–1063, 2013.

P. Baptiste and R. Sadykov. On scheduling a single machine to minimize a piecewise
linear objective function: A compact MIP formulation. Naval Research Logistics, 56
(6):487–502, 2009.

G. Baydoun, A. Häıt, R. Pellerin, B. Clément, and G. Bouvignies. A rough-cut capacity
planning model with overlapping. OR Spectrum, 38(2):335–364, 2016.

T. Berthold, S. Heinz, M. E. Lübbecke, R. H. Möhring, and J. Schulz. A constraint
integer programming approach for resource-constrained project scheduling. In Inter-
national Conference on Integration of Artificial Intelligence (AI) and Operations Re-
search (OR) Techniques in Constraint Programming, pages 313–317. Springer, 2010.

L. Bianco and M. Caramia. A new lower bound for the resource-constrained project
scheduling problem with generalized precedence relations. Computers & Operations
Research, 38(1):14–20, 2011a.

L. Bianco and M. Caramia. Minimizing the completion time of a project under re-
source constraints and feeding precedence relations: a lagrangian relaxation based
lower bound. 4OR, 9(4):371–389, 2011b.

L. Bianco and M. Caramia. An exact algorithm to minimize the makespan in project
scheduling with scarce resources and generalized precedence relations. European Jour-
nal of Operational Research, 219(1):73–85, 2012.

L. P. Bigras, M. Gamache, and G. Savard. Time-indexed formulations and the total
weighted tardiness problem. INFORMS Journal on Computing, 20(1):133–142, 2008.

N. Boland, R. Clement, and H. Waterer. A Bucket Indexed Formulation for Nonpre-
emptive Single Machine Scheduling Problems. INFORMS Journal on Computing, 28
(1):14–30, 2016.

N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The continuous-time service
network design problem. Operations Research, 65(5):1303–1321, 2017.

C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-constrained
project scheduling: Notation, classification, models, and methods. European journal
of operational research, 112(1):3–41, 1999.

J. Carlier, A. Moukrim, and A. Sahli. Lower bounds for the Event Scheduling Problem
with Consumption and Production of Resources. Discrete Applied Mathematics, to
appear. available at https://doi.org/10.1016/j.dam.2016.05.021.

41

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

F. Cazals and C. Karande. A note on the problem of reporting maximal cliques. Theo-
retical Computer Science, 407(1–3):564 – 568, 2008. ISSN 0304-3975.

F. Clautiaux, S. Hanafi, R. Macedo, M. Voge, and C. Alves. Iterative aggregation
and disaggregation algorithm for pseudo-polynomial network flow models with side
constraints. European Journal of Operational Research, 258(2):467–477, 2017.

S. Dash, O. Günlük, A. Lodi, and A. Tramontani. A time bucket formulation for the
traveling salesman problem with time windows. INFORMS Journal on Computing,
24(1):132–147, 2012.

S. Demassey, C. Artigues, and P. Michelon. Constraint-propagation-based cutting
planes: An application to the resource-constrained project scheduling problem. IN-
FORMS Journal on Computing, 17(1):52–65, 2005.

E. L. Demeulemeester and W. S. Herroelen. A Branch-and-Bound Procedure for the
Generalized Resource-Constrained Project Scheduling Problem. Operations Research,
45(2):201–212, 1997.

N. Dupin and E. G. Talbi. Dual Heuristics and New Lower Bounds for the Challenge
EURO/ROADEF 2010. In Matheuristics 2016 - Proceedings of the Sixth International
Workshop on Model-based Metaheuristics, 4–7 Sep 2016, Brussels, Belgium, pages 60–
71, 2016.

M. L. Fisher. Optimal Solution of Scheduling Problems Using Lagrange Multipliers:
Part I. Operations Research, 21(5):1114–1127, 1973.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5:287–326, 1979.

F. Guerriero and L. Talarico. A solution approach to find the critical path in a time-
constrained activity network. Computers & Operations Research, 37(9):1557 – 1569,
2010.

J. R. Hardin, G. L. Nemhauser, and M. W. P. Savelsbergh. Strong valid inequalities
for the resource-constrained scheduling problem with uniform resource requirements.
Discrete Optimization, 5(1):19 – 35, 2008. ISSN 1572-5286.

S. Hartmann and D. Briskorn. A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research,
207(1):1–14, 2010.

J. N. Hooker. Planning and Scheduling by Logic-Based Benders Decomposition. Oper-
ations Research, 55(3):588–602, 2007.

T. Jatschka. An iterative refinement algorithm for high resolution scheduling problems.
Master’s thesis, TU Wien, 2017. in preparation.

42

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

O. Koné, C. Artigues, P. Lopez, and M. Mongeau. Event-based MILP models for
resource-constrained project scheduling problems. Computers & Operations Research,
38(1):3–13, 2011.

E. L. Lawler and J. K. Lenstra. Machine Scheduling with Precedence Constraints. In
I. Rival, editor, Ordered Sets, pages 655–675. Springer Netherlands, 1982.

Y. Li, O. Ergun, and G. L. Nemhauser. A dual heuristic for mixed integer programming.
Operations Research Letters, 43(4):411–417, 2015.

M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle. The
irace package: Iterated racing for automatic algorithm configuration. Operations Re-
search Perspectives, 3:43–58, 2016.

R. Macedo, C. Alves, J. De Carvalho, F. Clautiaux, and S. Hanafi. Solving the vehi-
cle routing problem with time windows and multiple routes exactly using a pseudo-
polynomial model. European Journal of Operational Research, 214(3):536–545, 2011.

A. K. Mackworth. Consistency in networks of relations. Artificial intelligence, 8(1):
99–118, 1977.

V. Maniezzo and A. Mingozzi. A heuristic procedure for the multi-mode project schedul-
ing problem based on Benders’ decomposition. In J. Weglarz, editor, Project Schedul-
ing: Recent Models, Algorithms and Applications, pages 179–196. Springer US, Boston,
MA, 1999.

V. Maniezzo, T. Stützle, and S. Voß, editors. Matheuristics: Hybridizing Metaheuristics
and Mathematical Programming. Springer US, 2010.

R. H. Möhring, A. S. Schulz, F. Stork, and M. Uetz. Solving project scheduling problems
by minimum cut computations. Management Science, 49(3):330–350, 2003.

K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling with Time Windows
and Scarce Resources. Springer Berlin Heidelberg, 2003.

M. Palpant, C. Artigues, and P. Michelon. LSSPER: Solving the resource-constrained
project scheduling problem with large neighbourhood search. Annals of Operations
Research, 131(1-4):237–257, 2004.

M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures:
Advances, hybridizations, and applications. In M. Gendreau and J. Potvin, editors,
Handbook of Metaheuristics, pages 283–319. Springer US, Boston, MA, 2010.

T. A. M. Toffolo, H. G. Santos, M. A. M. Carvalho, and J. A. Soares. An integer
programming approach to the multimode resource-constrained multiproject scheduling
problem. Journal of Scheduling, 19(3):295–307, 2016.

X. Wang and A. C. Regan. Local truckload pickup and delivery with hard time window
constraints. Transportation Research Part B: Methodological, 36(2):97–112, 2002.

43

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

X. Wang and A. C. Regan. On the Convergence of a New Time Window Discretiza-
tion Method for the Traveling Salesman Problem with Time Window Constraints.
Computers & Industrial Engineering, 56(1):161–164, 2009.

J. Westerlund, M. Hästbacka, S. Forssell, and T. Westerlund. Mixed-Time Mixed-Integer
Linear Programming Scheduling Model. Industrial & Engineering Chemistry Research,
46(9):2781–2796, 2007.

44

Tec
hn
ica
lRe
po
rtA
C-T
R-1
7-0
01

