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Todays society is facing an ever-growing demand for mobility. Large
amounts of these needs can be fulfilled by individual transport and public
transport. People that do not have access to the former and cannot use the
latter require additional means of transportation. This is where dial-a-ride
services come into play. The dial-a-ride problem considers transportation
requests of people from pick-up to drop-off locations. Users specify time
windows w.r.t. these points. Requests are served by a given vehicle fleet
with limited capacity and tour duration per vehicle. Moreover, user incon-
venience considerations are taken into account by limiting the travel time
between origin and destination for each request.

Previous research on the dial-a-ride problem primarily focused on serving
a given set of requests with a fixed-size vehicle fleet at minimal traveling
costs. It is assumed that the request set is sufficiently small to be served by
the available vehicles. We consider a different scenario in which a maximal
number of requests shall be served under the given constraints, i.e., it is no
longer guaranteed that all requests can be accepted. For this new problem
variant we propose a compact mixed integer linear programming model as
well as algorithms based on Benders decomposition. In particular we em-
ploy logic-based Benders decomposition and branch-and-check using mixed
integer linear programming and constraint programming algorithms. We con-
sider different variants on how to generate Benders cuts as well as heuristic
boosting techniques and different types of valid inequalities. Computational
experiments illustrate the effectiveness of the suggested algorithms.

1. Introduction
The dial-a-ride problem (DARP) considers the design of vehicle routes for a set of cus-
tomers who specify transportation requests from origin (pick-up) to destination (drop-
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off) points. Users typically impose time-windows with respect to these locations. To
reduce user inconvenience the time required to go from the pick-up to the drop-off loca-
tion (ride time) is limited. The available requests shall be served by a fleet of vehicles.
Each vehicle has a limited capacity corresponding to the number of customers that can
be transported and a maximum total travel time. The restriction on the tour duration
is important in order to deal with restrictions regarding driver shifts.

As done by Jaw et al. [30], Cordeau [10], and others we distinguish between outbound
and inbound requests. An outbound request considers the case that a customer wants
to go from some starting location to a destination. An inbound request corresponds
to the opposite case, i.e., a customer who wants to return to his/her starting location.
According to the survey presented in [31] customers have different priorities w.r.t. the
adherence to time-windows. For outbound requests it is critical to stay within the time-
window at the drop-off location and for inbound requests the priority is to keep the
time-window at the pick-up location.

In the literature several variants of the DARP have been investigated, see [11, 13,
32]. The two main variants are the static and the dynamic case. In the former it is
assumed that all requests are known in advance whereas in the latter requests become
known gradually over time and routes need to be adjusted accordingly. There are also
mixed variants for which some requests are known in advance and some are revealed
dynamically. Moreover, there is a distinction between the single- and the multi-vehicle
case. In the former variant the requests have to be served using a single vehicle and
in the latter multiple vehicles are available. In the following we deal with the static
multi-vehicle DARP.

1.1. Our Contribution and Structure of the Article
In many DARP applications it is assumed that all requests can be served and that the
total travel expenses together with the user inconvenience have to be minimized. In
contrast, we consider the scenario that in general not all customers can be handled with
the given fixed-size vehicle fleet and aim at maximizing the number of served requests.
This is intended to deal with situations in which dial-a-ride systems are overallocated.
In these cases serving as many customers as possible appears to be more relevant than
savings due to shorter tour lengths. Of course user inconvenience considerations still
have to be taken into account to provide reasonable service conditions.

We consider solution algorithms based on logic-based Benders decomposition (LBBD)
(see Hooker and Ottosson [27]) and branch-and-check (BaC) (see Thorsteinsson [42]).
The Benders master problem focuses on the selection of requests and their assignment to
vehicles. It is modeled as integer linear program and enhanced by different subproblem
relaxations to speed up convergence. For solving the Benders subproblems, which corre-
spond to the route planning tasks, we consider mixed integer linear programming (MILP)
as well as constraint programming (CP) approaches. In particular, we also present a hy-
brid approach that combines MILP and CP. Several strategies for constructing Benders
cuts are studied. We consider cuts derived from greedily obtained minimal infeasible
request subsets, the full set of all minimal infeasible request subsets, as well as the set of
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all minimum cardinality infeasible request subsets and compare them to the unrefined
cuts that are directly obtained from the subproblem assignments. Moreover, we consider
heuristic boosting techniques to possibly speed up the solution process. To this end we
terminate the master problem prematurely according to a specific termination criterion
and use the suboptimal solution to derive Benders cuts. As soon as no further cuts
can be obtained this way, we fall back to solving the master problem to optimality and
continue with regular Benders iterations. This is necessary to obtain a provably optimal
solution. As termination criterion we consider a decreasing sequence of thresholds for
the optimality gap and an increasing sequence of time limits. Employing an adaptive
approach we start at the first element of the sequence and move to the next one whenever
no further cuts can be found with the current termination condition. A more flexible
approach allows traversing the sequence in both directions, depending on whether cuts
could be obtained or not. The suggested algorithms are tested extensively on a novel
set of benchmark instances as well as on instances from the literature.

The remainder of the article is organized as follows. We first provide an overview of
previous work in the area and give details on the used methodological concepts. Then we
provide a formal definition of the specific problem variant, including a complexity dis-
cussion. In terms of the formal specification we provide a compact reference model that
is a straightforward extension of the MILP from [10] for the tour-length-minimization
DARP. In the main part we present the details of our decomposition approaches; in-
cluding important implementation details. Finally, we discuss computational results on
various test instances and conclude with an outlook on future research directions.

1.2. Previous Work
The DARP has a rather long research history. Among the first was the work by Psaraftis
[33] that deals with the static single-vehicle variant. Sexton and Bodin [40, 41] solve
the problem by splitting it into a routing and a scheduling phase which they formally
describe in the context of Benders decomposition. The routing is done by an insertion
heuristic. In [6] the same authors use this approach to tackle the multi-vehicle case
by first forming clusters of requests and then solving the single-vehicle problem for each
cluster. Since they construct the clusters (grouping close customers) as well as the routes
heuristically, neither method can guarantee optimal solutions. Later on, this approach
for the multi-vehicle problem has been refined by using so-called “mini-clusters”, see
[15, 14]. The most recent contribution by Ioachim et al. [28] relying on this technique
shows the positive influence of using mathematical optimization methods to globally
define the set of “mini-clusters”. The authors argue that more sophisticated techniques
provide a significant advantage over simpler heuristic approaches. However, all of these
algorithms are still heuristics.

Only few contributions so far do not minimize traveling costs. Wolfler Calvo and
Colorni [45] maximize the number of served customers and consider a penalty term
regarding user inconvenience. This term considers the relative ratio between the direct
and the actual travel time. The authors consider a fast heuristic construction approach
based on an auxiliary graph.
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Berbeglia et al. [5] and Häme and Hakula [24] focus on feasibility checking of DARP
instances. Similarly, also the large neighborhood search by Jain and Van Hentenryck [29]
has been tested as feasibility checking algorithm. Although we consider an optimization
problem here, we are still concerned with feasibility checking when it comes to the
Benders subproblems.

For a broader overview on the DARP we refer to the surveys by Cordeau and Laporte
[11, 13] and Parragh et al. [32].

An optimization problem closely related to the DARP is the pickup and delivery
problem with time windows (PDPTW). The main difference between the two problems
is that the PDPTW primarily deals with the transportation of goods rather than persons.
As a consequence, it does not consider user inconvenience and related concerns. In this
area branch-price-and-cut approaches have been shown to be able to provide state-of-
the-art results in terms of exact solution approaches; see Ropke and Cordeau [38] and
Baldacci et al. [2], respectively. For further details consider the survey conducted in [32].

Recently, also revenue maximizing variants of the PDPTW have been considered. In
Qiu and Feuerriegel [34] and Qiu et al. [35] each transportation request is assigned a
profit. The goal is then to identify a subset of requests to be served with a given heteroge-
neous vehicle fleet that maximizes the revenue, i.e., sum of profits minus transportation
cost. The problem is solved using a graph search algorithm as well as a maximum
set partitioning formulation for the case of a homogeneous vehicle fleet. A similar sce-
nario is also considered in Gansterer et al. [17] and solved with different metaheuristic
approaches.

Somewhat related are also certain variants of the team orienteering problem. A contri-
bution in this respect is from Baklagis et al. [1] who solve a variant considering pick-up
and delivery with a branch-and-price approach.

Finally, we want to review contributions that are relevant to our work from the
methodological point of view, i.e., works that apply (logic-based) Benders decompo-
sition in the context of vehicle routing problems. Cire and Hooker [8] consider the home
health care problem in which medical services need to be provided to patients. Each
service is represented as a job and requires a certain minimal qualification level. The
services are provided by nurses that travel to the patients. The aim is to design routes
and shift plans such that all required services can be provided while minimizing the costs
for the nurses’ working hours. The problem is solved using LBBD. In the master problem
the jobs are assigned to the nurses and the subproblems determine the actual shift plan
and route per nurse. After solving a subproblem a cut is introduced into the master
problem reflecting the cost of the assignment or prohibiting an infeasible allocation. In
case of an infeasible subproblem it is often possible to strengthen the obtained cut by
identifying a subset of assigned jobs that is the cause of the infeasibility. Moreover, a
local search procedure is employed that tries to repair infeasible solutions by reassigning
jobs to other nurses. The authors solve the master problem only heuristically and there-
fore optimal solutions cannot be guaranteed. In the computational study the LBBD
approach is compared to a CP model which it outperforms clearly.

The bi-level vehicle routing problem (VRP) considers the distribution of goods in two
stages. The goods are first transported from the main depot to satellite depots. Starting
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at each satellite depot the goods are then brought to the customers. This kind of VRP
arises for example in newspaper distribution. Raidl et al. [36, 37] consider a bi-level
VRP with a global restriction on the time until which all customers need to receive their
goods. The assignment of customers to the satellite depots is pre-specified. Deliveries are
carried out with a homogeneous fleet of vehicles with restricted capacity. The goal is to
perform all deliveries within the time limit at minimal routing cost. Due to the structure
of the problem routing costs at the first level as well as for every satellite depot can be
considered independently. However, the levels are still interlinked via the global time
limit. These properties provide a promising basis for the application of LBBD. Raidl
et al. [36, 37] consider a decomposition approach in which the master problem determines
the route from the main depot to the satellite depots. With the now fixed starting
times at the satellite depots the corresponding routes can be computed independently
as subproblems. Infeasibilities (due to the global time limit) are prevented by computing
a minimal starting time for each satellite depot that guarantees the existence of a feasible
route. Hence, only Benders optimality cuts are required. These cuts turn out to be quite
strong here since routing costs can only be reduced given a smaller starting time at the
respective depot. Raidl et al. [36] consider an exact variant of this decomposition, as well
as a hybrid approach with either the master or the subproblems solved via metaheuristics,
and a completely heuristic approach. In Raidl et al. [37] the hybrid approach is further
refined by verifying and, if needed, correcting the heuristically added Benders cuts in a
second phase. With this approach the obtained solution is guaranteed to be provably
optimal but the solution process is much faster than the purely exact one.

2. Methodology
In this section we introduce the decomposition techniques that build the basis for the
algorithms presented in the remainder of this work.

2.1. Logic-based Benders Decomposition
The so-called logic-based Benders decomposition (LBBD) has been proposed by Hooker
and Ottosson [27]. It builds upon the classical Benders decomposition (BD) [4] that was
originally described to solve large linear programming (LP) problems having variables
that can be partitioned into two subsets (x, y) such that the problem separates into one
or more easier solvable subproblems on the x variables after fixing the y variables. Infor-
mation regarding the solution to the subproblems is then incorporated into the master
problem by means of Benders cuts. These cuts can be either feasibility or optimality cuts.
The former reflect that the subproblems revealed the master assignment to be infeasible
and prevent this assignment from occurring again. The latter provide a bound on the
part of the objective function considered by the subproblems in case the assignment of
the master problem is feasible. Infeasibility can be represented by an infinite bound.
Master and subproblems are then repeatedly solved until optimality is proven by finding
a feasible master solution that matches the bound of the subproblems.
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In the original BD the subproblems are restricted to be LPs. Geoffrion showed in [22]
how to extend the method to other convex optimization methods using nonlinear convex
duality theory. This allows for a systematic generation of the bounding function by
means of duality theory. Unfortunately, this also limits the applicability of the approach.

LBBD extends this approach by allowing also integer variables and possibly nonlin-
earities in the subproblems. The Benders cuts are obtained by solving the inference dual
of the subproblem, see [27]. The inference dual finds the tightest dual bound on the
objective function that is implied by the constraints. Solving the inference dual yields a
bounding function on the master problem’s objective value that is tight for the current
assignment. In contrast to the traditional BD there exists no (single) general systematic
way to identify a strong bounding function for the Benders cuts. Thus, tailored cuts
have to be identified with respect to the encountered subproblems.

LBBD has been applied effectively in several areas including planning and scheduling
(Hooker [26], Hamdi and Loukil [23]), location problems (Fazel-Zarandi and Beck [16],
Wheatley et al. [44]), survivable network design (Garg and Smith [20]), and vehicle
routing (Cire and Hooker [8], Raidl et al. [36, 37]).

2.2. Branch-and-Check
The idea behind classical BD and LBBD is to iteratively (re)solve the master problem to
optimality. Each obtained solution is used as basis for the subproblems, whose solving
potentially gives rise to Benders cuts that are added to the master problem. However,
repeatedly solving the master problem to optimality might not be necessary. Suboptimal
solutions can be sufficient to derive relevant cuts for further progress. Ultimately, it
seems reasonable to generate all Benders cuts within a single branch-and-cut (B&C)
tree search for identified intermediate solutions.

This idea was first introduced in Hooker [25] and further examined in [42] and is also
closely related to the concept of Combinatorial Benders cuts considered by Codato and
Fischetti [9]. Thorsteinsson [42] referred to this strategy as branch-and-check (BaC).
We will adopt this term in the following.

Using the terminology introduced for BD, BaC basically specifies a single problem
defined only on the y variables together with their constraints. This problem is then
solved. Whenever a feasible (integral) solution is identified within the B&C tree, the
corresponding subproblems are derived and solved. Dependent on their solutions Benders
cuts are added, possibly cutting off the current solution. Thus, the main difference to
LBBD is that the master problem is solved only once and that Benders cuts are typically
generated with respect to suboptimal assignments of the y variables inside a single B&C
tree search.

When dealing solely with feasibility cuts, i.e., the solution of the subproblems has
no influence on the objective value of the master problem, BaC has one advantage
over LBBD that really stands out. Since BaC operates on the branch-and-bound tree
and iteratively approaches the feasible area, it is usually capable of finding feasible
solutions quite fast. LBBD, on the other hand, either terminates with an optimal solution
(found in its last iteration) or no feasible solution at all. Often it is possible to derive
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a feasible solution from the trial values of the intermediate Benders iterations, however,
this requires additional computational effort which is not incurred when using BaC.

3. Formulations
Our variant of the DARP is defined on a directed graph G = (N,A). Given n requests,
the set of nodes N consists of two copies of the depot {0, 2n + 1}, the set of pick-
up locations P = {1, . . . , n}, and the set of drop-off locations D = {n + 1, . . . , 2n}.
A request corresponds to a pair (i, n + i) such that i ∈ P and (n + i) ∈ D. In the
following we occasionally identify requests by their corresponding pick-up locations. The
load (e.g., the number of persons to be transported) at each pick-up location i ∈ P is
given by qi ≥ 0 and the same amount is to be unloaded at the drop-off location, i.e.,
qn+i = −qi. The service duration at each node i ∈ N is given by di ≥ 0. For the depot
q0 = q2n+1 = d0 = d2n+1 = 0 holds. In addition, each node i has an associated time
window [ei, li], ei < li.

The set of arcs is defined as A = {(i, j) | (i = 0 ∧ j ∈ P ) ∨ (i, j ∈ P ∪D ∧ i 6= j ∧ i 6=
n+ j) ∨ (i ∈ D ∧ j = 2n+ 1)}. The non-negative travel time of arc (i, j) is tij and the
maximum user ride time is denoted by L > 0. We are given a set of vehicles K and
every vehicle k ∈ K has a maximum capacity Qk > 0 and a maximum route duration
T k > 0. Moreover, we assume that a time horizon limited by T is given, i.e., all requests
have to be served in the time window [0, T ].

The goal is to serve as many requests as possible respecting all time windows, prece-
dence constraints, capacity restrictions, maximum route durations, and the maximum
ride times.

3.1. Complexity
The original DARP has been shown to be NP-hard (see Baugh et al. [3]) and we will
show that the problem still remains NP-hard under the modified scenario. Our proof
is based on the traveling salesman problem (TSP) and the decision problem variant
of the selective DARP (S-DARP-D). Both are provided in the following. The TSP is
well-known to be NP-hard, see Garey and Johnson [18].

Definition 1. TSP [18]
INSTANCE: Set C of m cities, distance cij ∈ Z>0 for each pair of cities i, j ∈ C, positive
integer B.
QUESTION: Is there a Hamiltonian tour of C having length B or less?

Definition 2. S-DARP-D
INSTANCE: Selective DARP instance, positive integer n′.
QUESTION: Is there a feasible solution to the selective DARP serving at least n′ re-
quests?

Theorem 1. The selective DARP is NP-hard.
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Proof. We show NP-hardness of the selective DARP via a reduction from the TSP to S-
DARP-D. First, we create a request for each city in C setting di = qi = 0 for the pick-up
and drop-off locations. Moreover, a single vehicle with Q1 = T 1 =∞ is considered. For
the pick-up nodes we set the time windows to [0, B] and for the drop-off nodes we set the
time windows to [B+1,∞]. The maximum user ride time is assumed to be unrestricted,
i.e., L = ∞. For i and j, both pick-up nodes, we set tij = cij . The remaining travel
times are set to zero. There exists a Hamiltonian tour of C with length B or less iff the
constructed S-DARP-D instance allows serving at least |C| requests.

Corollary 1. The selective DARP remains NP-hard when the triangle inequality holds
for the travel times tij; including the even more specific cases of the L1 (rectilinear)
metric and the L2 (Euclidean) metric.

Proof. Use the transformation stated above, but start from a TSP instance with the
respective properties. The TSP is known to be also NP-hard under these conditions,
see Garey et al. [19].

3.2. Compact Model
The following MILP model is a slightly modified variant of the one introduced in [10]. We
are going to refer to it as compact model (CM). The difference is that we are maximizing
the number of requests served, instead of minimizing travel costs.

We use binary variables xkij for each arc (i, j) ∈ A per vehicle k ∈ K. Moreover,
variables Bk

i and Qki are used to track for each vehicle k ∈ K the beginning-of-service
time and the load at node i ∈ N after serving i, respectively. Finally, we use variables
Lki to model the ride time of each request identified by its pick-up location i ∈ P on
vehicle k ∈ K.

max
∑

k∈K

∑

∀(i,j)∈A:j∈P
xkij (1)

∑

k∈K

∑

(i,j)∈A
xkij ≤ 1 ∀i ∈ P, (2)

∑

(i,j)∈A
xkij −

∑

(n+i,j)∈A
xkn+i,j = 0 ∀i ∈ P,∀k ∈ K, (3)

∑

j∈P
xk0j = 1 ∀k ∈ K, (4)

∑

(j,i)∈A
xkji −

∑

(i,j)∈A
xkij = 0 ∀i ∈ P ∪D,∀k ∈ K, (5)

∑

i∈D
xki,2n+1 = 1 ∀k ∈ K, (6)

(Bk
i + di + tij)xkij ≤ Bk

j ∀(i, j) ∈ A,∀k ∈ K, (7)
(Qki + qj)xkij ≤ Qkj ∀(i, j) ∈ A,∀k ∈ K, (8)
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Bk
n+i − (Bk

i + di) = Lki ∀i ∈ P,∀k ∈ K, (9)
Bk

2n+1 −Bk
0 ≤ T k ∀k ∈ K, (10)

ei ≤ Bk
i ≤ li ∀i ∈ N, ∀k ∈ K, (11)

ti,n+i ≤ Lki ≤ L ∀i ∈ P,∀k ∈ K, (12)
max{0, qi} ≤ Qki ≤ min{Qk, Qk + qi} ∀i ∈ N, ∀k ∈ K, (13)
xkij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K. (14)

The objective function (1) determines the number of served requests by counting the
selected arcs leading to pick-up nodes. Constraints (2) ensure that each request is served
by at most one vehicle. These are the only differences to the original model. Constraints
(3) guarantee that pick-up and drop-off of each request are served by the same vehicle.
Equalities (4) to (6) ensure that each vehicle leaves the depot as well as each node it visits
and that it finally returns to the depot. Constraints (7) and (8) enforce that the B and
Q variables are set correctly. Note that in addition to tracking the beginning-of-service
times these constraints also serve as a variant of Miller-Tucker-Zemlin constraints to
prevent subtours. Equalities (9) calculate the ride time for each request and inequalities
(10) limit the route duration for each vehicle. The remaining inequalities ensure that
the used variables stay within their respective domains.

The quadratic constraints (7) and (8) can be linearized as follows:

Bk
i + di + tij −Mk

ij(1− xkij) ≤ Bk
j ∀(i, j) ∈ A, ∀k ∈ K, (15)

Qki + qj −W k
ij(1− xkij) ≤ Qkj ∀(i, j) ∈ A, ∀k ∈ K, (16)

with the Big-M constants set to Mk
ij = max{0, li+di+ tij−ej} and W k

ij = min{Qk, Qk+
qi}, respectively.

3.3. Decomposition Approach
For the decomposition approach we split the problem into a master problem and several
subproblems. The master problem is responsible for assigning the requests to the vehi-
cles. When an assignment has been identified, we generate one subproblem per vehicle
to check if a feasible tour exists.

(master) max
∑

k∈K

∑

i∈P
yki (17)

∑

k∈K
yki ≤ 1 ∀i ∈ P, (18)

Benders cuts ∀k ∈ K, (19)
yki ∈ {0, 1} ∀k ∈ K,∀i ∈ P. (20)

The master problem maximizes the number of requests that are served. Constraints (18)
ensure that each request is assigned to at most one vehicle. The Benders cuts (19) will be
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provided by the subproblems. They are responsible for preventing infeasible assignments
of requests. Furthermore, we will later augment this basic master problem by initially
provided valid inequalities originating from a relaxation of the subproblem.

We formulate the subproblems sub(k, I) based on a vehicle k ∈ K and a subset I ⊆ P
of the requests. Dependent on a solution ȳ to the master problem we identify for each
vehicle k ∈ K the set Ik = {i ∈ P | ȳki = 1} of assigned requests. Each of these
sets results in an independently solvable subproblem sub(k, Ik). The subproblems can
be stated similarly to the compact formulation introduced in the previous section and
essentially constitute feasibility-based single-vehicle DARPs.

For subproblem sub(k, I) let P I = I and DI = {n + i | i ∈ I} be the pick-up
and drop-off locations corresponding to set I, resulting in a restricted set of nodes
N I = {0, 2n + 1} ∪ P I ∪ DI . According to N I we define the reduced arc set AI =
A \ {(i, j) | i /∈ N I ∨ j /∈ N I}. The subproblems can now be modeled as follows:

(sub(k, I)) min 0 (21)
∑

(i,j)∈AI

xij = 1 ∀i ∈ P I ∪DI , (22)

∑

j∈P I

x0j = 1, (23)

∑

(j,i)∈AI

xji −
∑

(i,j)∈AI

xij = 0 ∀i ∈ P I ∪DI , (24)

∑

i∈DI

xi,2n+1 = 1, (25)

Bi + di + tij −Mk
ij(1− xij) ≤ Bj ∀(i, j) ∈ AI , (26)

Qk + qj −W k
ij(1− xij) ≤ Qj ∀(i, j) ∈ AI , (27)

Bn+i − (Bi + di) = Li ∀i ∈ P I , (28)
B2n+1 −B0 ≤ T k, (29)
ei ≤ Bi ≤ li ∀i ∈ N I , (30)
ti,n+i ≤ Li ≤ L ∀i ∈ P I , (31)
max{0, qi} ≤ Qi ≤ min{Qk, Qk + qi} ∀i ∈ N I , (32)
xij ∈ {0, 1} ∀(i, j) ∈ AI . (33)

The objective function (21) is constant since we are only interested whether there
exists a feasible tour or not, i.e., this is actually a decision problem. In each subproblem
all assigned requests I have to be served. We no longer need to enforce that pick-up and
drop-off locations are visited by the same vehicle since we only consider one vehicle. It
is sufficient to use constraints (22) for ensuring that the pick-up and drop-off locations
of all assigned requests are visited. The remaining parts stay the same.

In addition to the MILP formulation we also provide a CP model similar to the one
introduced in [5] but restricted to the single vehicle case and slightly adjusted. To
formulate element constraints we define a bijective function π : N I → {0, . . . , 2 · |I|+ 1}
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mapping the nodes required in the subproblem to a consecutive range as follows. Depot
node 0 is mapped to itself and depot copy 2n+ 1 is mapped to 2 · |I|+ 1. Nodes in P I

are mapped to {1, . . . , |I|} and those in DI to {|I| + 1, . . . , 2 · |I|} such that π(i) = j
iff π(i + n) = j + |I|, ∀i ∈ DI . Accordingly, we define sets P̃ I = {π(i) | i ∈ P I},
D̃I = {π(i) | i ∈ DI}, and Ñ I = P̃ I ∪ D̃I ∪ {0, 2 · |I| + 1}. Additionally, we specify an
appropriately reduced travel time matrix t̃ij = tπ−1(i)π−1(j), ∀(i, j) ∈ Ñ I × Ñ I and load
vector q̃i = qπ−1(i), ∀i ∈ Ñ I . Observe that the remaining input (service duration, time
windows) is not part of element constraints and therefore does not need transformed
data structures.

To provide the model we use three sets of variables which are successor variables s[i],
∀i ∈ Ñ I \{2 · |I|+1}, load variables q[i], ∀i ∈ Ñ I , and beginning-of-service time variables
b[i], ∀i ∈ Ñ I . The model reads as follows:

(sub(k, I))
allDifferent(s), (34)
b[i] + t̃i,|I|+i + dπ−1(i) ≤ b[|I|+ i] ∀i ∈ P̃ I , (35)
b[i] + t̃i,s[i] + dπ−1(i) ≤ b[s[i]] ∀i ∈ Ñ I \ {2 · |I|+ 1}, (36)
b[i+ n]− (b[i] + dπ−1(i)) ≤ L ∀i ∈ D̃I , (37)
b[2 · |I|+ 1]− b[0] ≤ T k, (38)
q[i] + q̃s[i] = q[s[i]] ∀i ∈ Ñ I , (39)
s[i] ∈ {j | (i, j) ∈ AI} ∀i ∈ Ñ I \ {2 · |I|+ 1}, (40)
domain(b[i], eπ−1(i), lπ−1(i)) ∀i ∈ Ñ I , (41)
domain(q[i], q̃i, Qk) ∀i ∈ P̃ I , (42)
domain(q[i], 0, Qk + q̃i) ∀i ∈ D̃I , (43)
q[0] = 0, (44)
q[2 · |I|+ 1] = 0. (45)

Constraints (34) ensure that each node has a unique successor. Assuming that the
triangle inequality holds, we know that the beginning-of-service times at the pick-up
location and the corresponding drop-off location differ at least by the direct travel time
(35). Constraints (36) model the time needed to travel from a node to its immediate suc-
cessor. Inequalities (37) and (38) restrict the ride time and tour duration appropriately.
The load restrictions are considered by constraints (39). The remaining constraints
specify the variable domains.

3.3.1. Benders Cuts

If a subproblem turns out to be infeasible, we need to add a cut preventing that the
requests that caused the infeasibility are again assigned to the same route in subsequent
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iterations. The easiest way to do this is to add a Benders cut preventing the exact same
assignment and any superset of it.

In iteration j we denote by Ikj the requests assigned to vehicle k ∈ K and by Kj =
{k ∈ K | sub(k, Ikj ) is infeasible} the set of vehicles for which the subproblem turns out
to be infeasible. The corresponding Benders cuts are:

∑

i∈Ik
j

yki ≤ |Ikj | − 1 ∀k ∈ Kj . (46)

These basic cuts, however, frequently can be strengthened as it is likely that the
infeasibility is caused by a proper subset of the assigned requests. Similar to the notation
used in [9] we classify sets Ikj as follows:

Definition 3. We call a set of requests Ikj infeasible iff subproblem sub(k, Ikj ) is infeasible
and feasible otherwise.

Definition 4. We call an infeasible set of requests Ikj irreducible infeasible set (IIS) iff
the removal of any request turns it into a feasible set. Otherwise, we call Ikj reducible
infeasible set.

Reducible infeasible sets lead to unnecessarily weak Benders cuts. Therefore, we
never want to add cuts that are based on reducible infeasible sets. In general, there exist
several IISs of smaller cardinality for each reducible infeasible set Ikj . All such sets are
by definition minimal and, thus, lead to non-dominated cuts within this class of cuts.
Note that the IISs with respect to a given base set can have different cardinality. For
practical reasons it makes sense to prefer smaller sets when the number of IISs gets large.
Moreover, each Benders cut prevents assignments that are supersets with respect to its
underlying IIS. Hence, IISs of minimum cardinality are in general able to cut-off larger
parts of the search space.

Unfortunately, there is neither an efficient way to compute all IISs nor those of min-
imum cardinality. However, by means of a greedy strategy (similar to what is done in
[26]) we are at least able to reduce a given base set to an IIS efficiently, see Algorithm 3.1.
The algorithm tries to remove requests one after another and checks each time if the
resulting set is still infeasible. If this is the case, we keep the smaller set, otherwise we
proceed with the next request.

Note that the order in which the requests are considered has in general a strong
influence on the outcome of the algorithm. As mentioned before, smaller IISs are usually
preferable as they cut off larger parts of the search space. The greedy strategy cannot
guarantee to compute a set of minimum cardinality. Consequently, we should attempt
to order the requests heuristically to increase the chances of ending up with a small set.
Unfortunately, it is not trivial to find an appropriate ordering that can be computed
quickly. One strategy would be to prioritize the removal of requests that are unlikely
to be the cause of the infeasibility. Unfortunately, identifying these requests is again
difficult. Following preliminary experiments, we finally decided in favor of low running
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Input: Set I of requests and vehicle k ∈ K such that sub(k, I) is infeasible.
1 foreach i ∈ I do
2 if sub(k, I \ {i}) is infeasible then
3 I = I \ {i};
4 end
5 end
6 return I; // I is now an IIS

Algorithm 3.1: Greedy Set Reduction

times by just keeping the natural order of the requests. However, to decrease the chances
of ending up with bad results we apply the greedy reduction twice, the second time in
reverse order and add both obtained cuts if they are distinct. To analyze the impact of
heuristically computed sets, we also consider adding cuts for all IISs as well as only for
those of minimum cardinality.

Cuts obtained for one vehicle can also be added to the master problem for other
vehicles with equally or more restrictive characteristics:

Definition 5. We define a partial order on the vehicles denoted by ≤k:

k1 ≤k k2 ⇔ (Qk1 ≤ Qk2) ∧ (T k1 ≤ T k2) k1 ∈ K, k2 ∈ K.

We can add Benders cuts for all vehicles with at most the capacity and the maximum
tour length of the vehicle for which the infeasibility has been detected:

∑

i∈Ik
j

yk
′
i ≤ |Ikj | − 1 ∀k ∈ Kj , ∀k′ ∈ K : k′ ≤k k. (47)

4. Algorithmic Framework
We start with some remarks on preprocessing that help to reduce the size of the prob-
lem instances in certain cases. Then, we present details of our algorithms and further
techniques for speeding up the solving process.

4.1. Preprocessing
In this section we describe the used preprocessing techniques. They are based on the
concepts introduced in [10]. We point out our modifications.

4.1.1. Time-Window Tightening

In [10] several techniques for time-window tightening are introduced. For outbound
requests we can set the time window at the pick-up location to ei ← max{ei, en+i−L−di}
and li ← min{ln+i−ti,n+i−di, li}. Similarly, we set the time windows for drop-off nodes of
inbound requests to en+i ← max{en+i, ei+di+ti,n+i} and to ln+i ← min{li+di+L, ln+i}.
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The time windows on depot copies 0 and (2n+1) are set to e0 = e2n+1 ← mini∈P∪D{ei−
t0i} and l0 = l2n+1 ← maxi∈P∪D{li + di + ti,2n+1}.

We modify this slightly since this might lead to unwanted effects when requests are too
close to the depot, i.e., t0i > ei or li + ti,2n+1 > T . In these cases we might end up with
increasing the time horizon [0, T ]. To avoid this we additionally apply ei ← max{ei, t0i}
and ln+i ← min{ln+i, T − tn+i,2n+1} for i ∈ P . Afterwards it is safe to tighten the time
windows at the depot nodes as described. Alternatively, this can be taken into account
during the following arc elimination.

4.1.2. Arc Elimination

As done in [10] we also eliminate arcs from A that cannot be part of a feasible solution.
The following situations are considered:

• arcs (0, n + i), (i, 2n + 1), and (n + i, i) are infeasible for i ∈ P (this is already
considered by the definition of the arc set)

• arc (i, j) is infeasible if ei + di + tij > lj

• arcs (i, j) and (j, n+ i) with i ∈ P , j ∈ N are both infeasible if tij +dj + tj,n+i > L

• arc (i, n+ j) with i, j ∈ P is infeasible if path (j, i, n+ j, n+ i) is infeasible as there
is no other feasible path using that arc while serving i and j

• symmetric to the previous condition arc (n+ i, j) with i, j ∈ P is infeasible if path
(i, n+ i, j, n+ j) is infeasible

• arc (i, j) with i, j ∈ P is infeasible if paths (i, j, n+ i, n+ j) and (i, j, n+ j, n+ i)
are both infeasible as the path can only be infeasible due to the arc itself or a time
window violation when reaching either of the drop-off locations; visiting further
nodes may only increase the degree of violation

• symmetric to the previous condition arc (n+ i, n+ j) with i, j ∈ P is infeasible if
paths (i, j, n+ i, n+ j) and (j, i, n+ i, n+ j) are both infeasible

When checking the feasibility of paths, we also need to compute the forward time
slack. In [12] the forward time slack Fi at node i in a path from i to q is computed as
follows:

Fi = min
i≤j≤q





∑

i<p≤j
Wp + max {0,min {lj −Bj , L− Pj}}



 , (48)

where Wi denotes the waiting time at node i and Pi represents the ride time for the
request with destination node i ∈ D. For the remaining i we define Pi = −∞. The
second term of the inner minimum-function, i.e., L − Pj , is required to prevent any
requests from exceeding the maximum user ride time.
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If time windows of the requests do not prevent vehicles from returning too late to
the depot, i.e., li + ti,2n+1 > T for i ∈ P , we augment the paths considered above by
including the depot (2n + 1) as final node. Similarly, it makes sense to add depot 0 as
first node if t0i > ei can be the case for some pick-up locations i ∈ P . If this is not
done, we might miss detecting some infeasibilities. This can happen due to a too early
beginning-of-service time in the former case and due to a too high forward time slack in
the latter case.

4.1.3. Infeasible Request Pairs

As stated in [10] two requests (i, n + i) and (j, n + j) cannot be served by the same
vehicle if all possible paths serving the two requests turn out to be infeasible. According
to the precedence constraints the following paths have to be considered:

(i, j, i+ n, j + n),
(i, j, j + n, i+ n),
(i, i+ n, j, j + n),
(j, i, i+ n, j + n),
(j, i, j + n, i+ n),
(j, j + n, i, i+ n).

Observe that a request is only feasible (assuming that the triangle inequality holds)
if the direct connection between pick-up and drop-off is feasible. Therefore, we assume
that both (i, i+ n) and (j, j + n) are feasible since it makes no sense to consider per se
infeasible requests. Thus, it is sufficient to check if at least one of the following options
is available:

(i, j) ∧ (j, i+ n) ∧ (i+ n, j + n),
(i, j) ∧ (j + n, i+ n),
(i+ n, j),
(j, i) ∧ (i+ n, j + n),
(j, i) ∧ (i, j + n) ∧ (j + n, i+ n),
(j + n, i).

If none of them is possible, these two requests cannot be served by the same vehicle.
As a consequence, this allows the removal of all arcs between the nodes associated with
the pick-up and drop-off locations of requests i and j.

Let C be the set of all incompatible request pairs identified by their pick-up locations,
i.e., C ⊆ {(i, j) | (i, j) ∈ P × P, i < j}. Then, we can add the following constraints to
the master problem:

yki + ykj ≤ 1 ∀k ∈ K,∀(i, j) ∈ C. (49)
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These constraints are essentially instances of Benders cuts for which the set of infea-
sible requests has cardinality two. Therefore, these are the strongest cuts of this type.
They are enumerated exhaustively and added to the initial formulation. We also add
this type of constraints to the compact model using the sum of outgoing arcs for nodes
i and j instead of the assignment variables.

In [10] the incompatible request pairs are used to fix certain requests to vehicles. This
cannot be done here since it is unknown which requests will be served and which will be
rejected.

4.2. Subproblem Relaxations
In this section we describe the used subproblem relaxations which are incorporated into
the master problem in terms of valid inequalities. The purpose of these constraints is to
add subproblem knowledge to the master problem to avoid poor assignments in earlier
iterations where only few Benders cuts are present.

4.2.1. Capacities

We consider pairs of requests that are guaranteed to be together on the vehicle if served
within the same tour. Based on these “overlapping requests” we construct a conflict
graph to derive clique inequalities.

Definition 6. Request (i, n+ i) overlaps with request (j, n+j) for i, j ∈ P if there exists
a feasible path serving the two requests but paths (i, i+ n, j, j + n) and (j, j + n, i, i+ n)
are both infeasible.

Informally this means that two requests overlap if they can be served by a single
vehicle but not in strict succession.

We then define graph GC = (V C, EC) with V C = P and EC = {{i, j} | request (i, i+
j) overlaps with request (j, n + j), i ∈ P, j ∈ P}. In this graph we identify all maximal
cliques. This can be done by the Bron-Kerbosch algorithm, see [7]. The cliques in GC

define sets of requests that have to be on board together when served by the same vehicle.
We now need to determine whether all of them fit in the vehicle simultaneously. For
each maximal clique and each vehicle k ∈ K we sum up the loads of the corresponding
requests, starting with the smallest one until we exceed the vehicle capacity. Then, we
know the maximum number of requests in the clique that can be served by this vehicle.

Let C be the set of all maximal cliques in GC. For each C ∈ C let kkC be the maximum
number of requests in C that fit into vehicle k ∈ K. Then, we can add the following
inequalities to the master problem:

∑

i∈C
yki ≤ kkC ∀C ∈ C : kkC < |C|. (50)

Observe that these cuts are similar to the Benders cuts introduced before. However,
the difference between kkC and |C| can be larger than one and thus these cuts are in
general distinct.
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Note that if there are several vehicles with the same capacity, these constraints need
only be computed once per capacity variant. As the graph GC is typically sparse, it is
reasonable to search for all maximal cliques. Since the number of these cuts is usually
not that large, we add all of them to the initial formulation.

Again, we also add this type of constraints to the compact model using the sum of
outgoing arcs instead of the assignment variables.

4.2.2. Computing a Lower Bound on the Tour Duration

We compute for each node i ∈ N the minimal time required to reach the next node,
i.e., tmin

i = min(i,j)∈A tij . If we consider a subset I ⊆ P of the requests (given by the
respective pick-up nodes), we can compute a lower bound on the time required to serve
all requests as follows:

tmin
R = tmin

0 +
∑

i∈I
(tmin
i + di + tmin

n+i + dn+i). (51)

This relaxation gives us a (frequently weak) lower bound on the time required to serve
the requests in I. We use this value to state the following constraints in the Benders
master problem:

tmin
0 +

∑

i∈P
yki (tmin

i + di + tmin
n+i + dn+i) ≤ T k ∀k ∈ K. (52)

This bound can be improved in certain cases. If tmin
i and tmin

n+i refer to the same target
node v′ (i.e., tmin

i = tiv′ and tmin
n+i = tn+i,v′), we consider the closest successors for i

and (n+ i) excluding v′. We then choose the successor nodes resulting in the combined
shorter distance tmin

i +tmin
n+i and update the tmin values accordingly. If neither i nor (n+i)

has an outgoing arc to a node different from v′, then the request is infeasible. This type
of constraints is not considered for the compact model since tour duration restrictions
are already explicit there.

4.3. Implementation of the Decomposition Approaches
The decomposition approach introduced in Section 3.3 can be implemented using logic-
based Benders decomposition (LBBD) or branch-and-check (BaC). Algorithm 4.1 shows
the basic functionality of the LBBD algorithm (ignoring Lines 12 to 15 for the mo-
ment). Remember that our decomposition approach uses only feasibility cuts, i.e., the
subproblems do not directly contribute to the master problem’s objective function. As
already discussed, this means that LBBD either terminates with an optimal solution or
no solution at all. BaC, on the other hand, relies on regular B&C which means that it
computes lower and upper bounds and tries to close the gap between them. Therefore,
it usually provides a feasible solution prior to proving optimality. To make this also
possible for LBBD we employ a repair heuristic (Line 13) to derive feasible solutions
from intermediate infeasible master assignments, possibly even closing the optimality
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1 j ← 0; // Iteration counter
2 repeat
3 j ← j + 1;
4 feasible ← true;
5 solve master problem;
6 foreach k ∈ K do
7 if sub(k, Ikj ) is infeasible then
8 add Benders cuts to the master problem;
9 feasible ← false;

10 end
11 end
12 if feasible = false then
13 repair(); // construct feasible solution heuristically

// check whether optimality gap could be closed
14 if obj(master problem) = obj(repair) then feasible ← true ;
15 end
16 until feasible = true ∨ time limit reached;

// if feasible=true then optimal solution found
// else potentially suboptimal, repaired solution

Algorithm 4.1: Logic-based Benders Algorithm

gap allowing premature termination. Details on the used repair heuristic will be given
in Section 4.3.2.

In Figure 1 we illustrate a simple iteration of the Benders algorithm. We consider three
requests and one vehicle. The instance properties are shown in Figure 1a. To keep the
example simple without terminating immediately we do not consider valid inequalities
for the master problem here. Time window tightening and arc elimination have been
applied to obtain a smaller graph, see Figure 1b. Initially the master problem assigns all
requests to the single vehicle. This turns out to be infeasible. Once we try to reduce the
identified infeasible assignment {1, 2, 3}, we find out that subsets {2, 3} (Figure 1c) and
{1, 3} (Figure 1d) are IISs of minimum cardinality. However, subset {1, 2} (Figure 1e)
is feasible. Therefore, we add Benders cuts that prevent requests 2 and 3 as well as 1
and 3 to be in the same tour, respectively. In the second master iteration requests 1
and 2 are assigned to the vehicle. Now we are able to identify a feasible tour for the
subproblem (Figure 1f) and the algorithm terminates with an optimal solution serving
requests 1 and 2 but rejecting request 3.

4.3.1. Benders Cuts

In our experiments in Section 5 we will consider four strategies for constructing Benders
infeasibility cuts: variant simple uses the unmodified master assignment, aIIS uses all
IISs that can be obtained from the initial assignment, mIIS uses all IISs of minimal
cardinality, and gIIS uses heuristically computed IISs. The IISs for variants aIIS and
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Coordinates Time Windows

Node x y e l q d

depot 0 0 0 60 0 0
p1 -2 2 17 30 1 3
d1 -6 3 40 55 -1 3
p2 6 7 12 25 1 3
d2 -2 -5 35 50 -1 3
p3 4 -5 32 41 1 3
d3 -7 -6 45 50 -1 3

|K| = 1, T 1 = 60, Q1 = 3, L = 20
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d2 p3
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(a) Input Data (b) Preprocessed Graph
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(c) Considering Requests 2 and 3 (d) Considering Requests 1 and 3
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(e) Considering Requests 1 and 2 (f) Optimal Solution

Figure 1: A simple Benders iteration without valid inequalities for the master problem.
There exists no feasible tour visiting all three requests. The combination of
request 3 with either of the remaining two turns out to be infeasible. Requests
1 and 2 can be served together which also constitutes the unique optimal
solution.
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mIIS are computed using bottom-up enumeration by extending an initially empty set
with the assigned requests until it becomes infeasible (including appropriate pruning for
the minimum cardinality variant). Variant gIIS applies Algorithm 3.1 once in ascending
and once in descending natural order of the request indices to obtain two IISs. If both
turn out to be equivalent, the second set is discarded. As there is no connection between
the order of request indices and their properties, this means that there is no strategic
decision involved.

4.3.2. Repair Heuristic

Similarly as done in [8] we use a repair heuristic to construct feasible solutions based
on infeasible assignments obtained from the Benders master problem. To this end we
consider the input sets Ik, k ∈ K, with some of them possibly being infeasible. We
construct a solution for each vehicle by assigning requests to it one at a time. If a
request can be served by the vehicle, it is assigned to that vehicle, otherwise skipped.
We first try to insert the requests selected by the Benders master problem. This step
simplifies if the related subproblem turned out to be feasible because we can directly
add all requests in this case. Afterwards we consider the unassigned requests. Requests
that could not be served are added to the pool of unassigned requests and might be used
by the remaining vehicles. Algorithm 4.2 provides details.

Note that the order in which the requests are considered has a significant impact on
the outcome of the algorithm. However, the Benders master problem already makes a
selection which provides (especially in later iterations) a reasonable starting assignment
from which typically only few requests need to be removed. Hence, we avoid sorting the
requests to save computation time since repair operations need to be performed rather
frequently and thus execution speed is critical. For the same reasons we avoid a second
pass over the vehicles that might be profitable due to freed-up requests.

4.3.3. Subproblem

In Section 3.3 we introduced the MILP and CP formulations for the Benders subprob-
lems. The former is a compact model and can be implemented in a straightforward
way. For the CP model we additionally incorporated the custom branching heuristic
presented by Berbeglia et al. [5]. Their approach branches on the successor variables
s[i], prioritizing variables with minimum cardinality domains. Ties are broken by count-
ing the number of appearances of each value within all minimum cardinality domains,
choosing the variable for which the sum of appearance counts of the values of its domain
is maximal. We use no custom value selection heuristic and always pick the minimum
value of the domain of the variable on which is branched.

4.4. Heuristic Boosting
Empirical tests have shown that the master problem of the LBBD approach frequently
finds good or even optimal solutions fast. Afterwards, a significant amount of time is
typically spent to close the relative gap between lower (LB) and upper (UB) bound, i.e.,
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Input: Set P of requests, identified by the pick-up locations
Input: Sets Ik, k ∈ K of potentially infeasible assignments
Output: Pairwise disjoint feasible sets Ik, k ∈ K of requests assigned to the

vehicles
1 F ← P \⋃

k∈K I
k; // set of unassigned requests

2 foreach k ∈ K do
3 if sub(k, Ik) is feasible then
4 Ĩk ← Ik;
5 Ik ← ∅;
6 else
7 Ĩk ← ∅;
8 foreach i ∈ Ik do
9 if sub(k, Ĩk ∪ {i}) is feasible then

10 Ik ← Ik \ {i};
11 Ĩk ← Ĩk ∪ {i};
12 end
13 end
14 end
15 foreach i ∈ F do
16 if sub(k, Ĩk ∪ {i}) is feasible then
17 F ← F \ {i};
18 Ĩk ← Ĩk ∪ {i};
19 end
20 end
21 F ← F ∪ Ik; // unused requests might be assigned to the other

vehicles
22 Ik ← Ĩk;
23 end

Algorithm 4.2: Repair Heuristic
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the optimality gap (UB − LB)/LB. However, closing the gap might not be required to
obtain an intermediate solution yielding high quality Benders cuts. Note the similarity to
BaC which also derives Benders cuts from potentially suboptimal solutions encountered
during the B&C search. The following sections describe our approaches exploiting this
observation.

4.4.1. Gap Boosting

To reduce the time spent on closing the optimality gap of the Benders master problem we
terminate the solving process when the optimality gap falls below a certain threshold.
This is done until no further Benders cuts can be found with this strategy. Then,
we proceed with regular Benders iterations without premature termination, i.e., using a
threshold of zero, until no additional Benders cuts can be identified. Thus, we still obtain
an optimal solution but might save time that is “wasted” on closing the optimality gap.

The difficulty is to choose a suitable threshold for premature termination, especially
in earlier iterations. Using a large threshold has higher potential for speedup but can
also lead to significantly worse intermediate solutions. Correspondingly, we might obtain
weaker Benders cuts, implying a larger number of master iterations.

To overcome the limitations of using a single threshold, we consider a more sophisti-
cated adaptive approach based on a decreasing sequence of thresholds. Initially we start
with the largest threshold and then switch to the subsequent smaller one every time no
further cuts can be identified. Apart from this iterative variant we consider an up-and-
down approach that allows the gap threshold to adjust in both directions. As before,
we switch to the next smaller threshold whenever no further cuts can be identified. In
addition, we now also switch back to the previous larger threshold if cuts could be added,
for details see Algorithm 4.3. To preserve optimality the smallest threshold needs to be
zero (or a sufficiently small numerical constant). For the used threshold values see Sec-
tion 5.2.2. Preliminary experiments have shown that using a small sequence of specific
values is superior to a more fine-grained approach, e.g., based on a geometric/arithmetic
series.

Input: Decreasing sequence of gap thresholds g = (gm, gm−1, . . . , g1) with
gi > gi−1 for 1 < i ≤ m

1 i← m;
2 while termination criteria not met do
3 solve Benders master problem until a relative optimality gap ≤ gi is reached;
4 derive and add Benders cuts;
5 if no Benders cuts found ∧ i > 1 then i← i− 1 ;
6 else if no Benders cuts found ∧ i = 1 then terminate ; // optimal
7 else if Benders cuts found ∧ i < m then i← i+ 1 ;
8 end

Algorithm 4.3: Adaptive Gap Boosting (up-and-down)

A similar—yet different—approach is considered in Tran and Beck [43]. There the
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authors also terminate the master problem prematurely according to a threshold on
the optimality gap. However, their motivation is to complete at least a single master
iteration from which a heuristic solution is derived. In contrast, our approach is designed
in an optimality preserving way while speeding up the overall computation.

Observe that the considered objective function is integral. Thus, it is also possible to
specify a threshold for the absolute optimality gap (UB − LB) instead of the relative
one. Preliminary experiments have shown that the behavior is roughly the same when
choosing comparable thresholds.

4.4.2. Time Limit Boosting

Early termination based on the optimality gap helps to reduce time spent in the Benders
master problem. However, the amount of time that is used still might vary substantially.
As an alternative we may directly limit the time allowed to be spent on finding a solution
to each master problem instance. However, a fixed time limit might not accommodate
for the increasing size of the master problem due to the Benders cuts. To deal with
this we again consider a more flexible adaptive approach. In the beginning we use the
smallest value of an increasing sequence of time limits and switch to the next larger
one whenever no additional cuts can be found. Again, we consider a variant in which
the time limit is adjusted in both directions. Optimality is preserved by using the total
remaining time as final value of the sequence. For the used time limits see Section 5.2.2.

4.4.3. Solving the Subproblems Heuristically

We further tried to improve the solving of the subproblems by first using heuristics as
done in [36]. To this end we employed a simple iterative algorithm that attempts to find
a feasible route for the requests assigned to a vehicle during the Benders iterations. The
algorithm constructs a route by inserting nodes sequentially, prioritizing those with the
smallest amount of time left in their service window or the least remaining ride time.
Due to the heuristic nature of the algorithm we can accept the result if a feasible route
has been found. However, if no valid route can be computed, we still have to check with
an exact approach whether this result is correct. Preliminary tests have shown that the
employed heuristic required such exact reevaluations quite frequently, outweighing the
provided speedup from the positive cases.

5. Computational Study
In this section we are going to present the computational results for the considered
algorithms with their variants. We start by giving details on the used test instances
and the motivation for their selection. Then, we provide details on the actually used
configuration. Finally, we present the obtained results.
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5.1. Test Instances
The most commonly used benchmark instances for the classical DARP are those by
Cordeau and Laporte [12] and Cordeau [10]. The first set is mainly interesting for
testing with heuristics due to the large number of requests considered. Therefore, we
decided to use the latter. The mentioned work considers instances of up to 48 requests
and 4 vehicles. In Ropke et al. [39] this set got extended with instances of up to 96
requests and 8 vehicles. The properties of this instance set are shown in Table 1.

Berbeglia et al. [5] consider variants of these instances with modified maximum user
ride times of L = 30 and L = 22, respectively, and a variant with 75% of the originally
available vehicles. We consider the original instances and two of the modified variants
excluding the one with L = 22 because it turned out that this modification makes some
requests infeasible, i.e., not even a tour containing no other requests is feasible1. The
unmodified instances are guaranteed to be feasible, i.e., it is known in advance that
all requests can be served. Therefore, they are only of minor relevance for testing our
algorithms. As shown in Berbeglia et al. [5] and Häme and Hakula [24] also most of the
modified instances are feasible.

Under these premises we decided to generate further, for our scenario more relevant,
instances. We aim at two aspects: First, we require instances that are more challenging
from the “packing” perspective. This means that it is not guaranteed that all requests
can be served. We accomplish this by choosing the number of requests large in relation to
the length of the time horizon. Second, the existing instance set is too diverse to precisely
measure the impact of certain instance properties. In particular, we are interested in
instances with different degrees of utilization, i.e., the number of requests compared to
the number of available vehicles. To this end, we consider scenarios with four and five
vehicles and a (small) fixed time horizon while only varying the number of available
requests.

The new instance are generated according to the procedure mentioned in [10]. We
first place nodes randomly on a 20 × 20 grid; the depot is located in the center of this
grid at coordinates (0, 0). Travel times between the nodes are set to the Euclidean
distances between the corresponding points. For each instance with n requests the first
n/2 requests are considered to be outbound requests and the remaining ones are inbound
requests. For the former we fix the time window at the drop-off location and derive the
time window at the pick-up location and for the inbound requests we fix the time window
at the pick-up location and derive the time window at the drop-off location.

We consider a time horizon of T = 240 which corresponds to a half working day
(assuming minutes as unit of time). For outbound requests we set the time window
at the drop-off location (n + i) by first choosing en+i uniformly at random from the
interval [t0i + di + ti,n+i, T − tn+i,2n+1 − dn+i − 15] and then set ln+i = en+i + 15. This
guarantees that the time window has a fixed length of 15. Furthermore, it ensures
that we can always return feasibly to the depot. Similarly, we choose for inbound
requests ei of pick-up node i from the interval [t0i, T − tn+i,2n+1− dn+i− ti,n+i− di− 15]
and set li = ei + 15. The remaining time windows are then tightened as described

1For an example see request 21 in instance a6-60.
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Instance n |K| L Q T Instance n |K| L Q T

a2-16 16 2 30 3 480 b2-16 16 2 45 6 480
a2-20 20 2 30 3 600 b2-20 20 2 45 6 600
a2-24 24 2 30 3 720 b2-24 24 2 45 6 720
a3-18 18 3 30 3 360 b3-18 18 3 45 6 360
a3-24 24 3 30 3 480 b3-24 24 3 45 6 480
a3-36 36 3 30 3 720 b3-36 36 3 45 6 720
a4-16 16 4 30 3 240 b4-16 16 4 45 6 240
a4-24 24 4 30 3 360 b4-24 24 4 45 6 360
a4-32 32 4 30 3 480 b4-32 32 4 45 6 480
a4-40 40 4 30 3 600 b4-40 40 4 45 6 600
a4-48 48 4 30 3 720 b4-48 48 4 45 6 720
a5-40 40 5 30 3 480 b5-40 40 5 45 6 480
a5-50 50 5 30 3 600 b5-50 50 5 45 6 600
a5-60 60 5 30 3 720 b5-60 60 5 45 6 720
a6-48 48 6 30 3 480 b6-48 48 6 45 6 480
a6-60 60 6 30 3 600 b6-60 60 6 45 6 600
a6-72 72 6 30 3 720 b6-72 72 6 45 6 720
a7-56 56 7 30 3 480 b7-56 56 7 45 6 480
a7-70 70 7 30 3 600 b7-70 70 7 45 6 600
a7-84 84 7 30 3 720 b7-84 84 7 45 6 720
a8-64 64 8 30 3 480 b8-64 64 8 45 6 480
a8-80 80 8 30 3 600 b8-80 80 8 45 6 600
a8-96 96 8 30 3 720 b8-96 96 8 45 6 720

Table 1: Properties of the instances by Ropke et al. [39]. Per instance vehicle capacities
as well as the maximum route durations are the same for all vehicles. The
maximum route durations are the same as the time horizon. In group “a” all
requests have a load of qi = 1 and a service time of di = 3. For group “b” the
loads are chosen uniformly at random from {1, . . . , 6} with proportional service
times di = qi.
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Instance n |K| L Q T Instance n |K| L Q T

30N 4K A 30 4 30 3 240 44N 5K A 44 5 30 3 239
30N 4K B 30 4 30 3 240 44N 5K B 44 5 30 3 240
30N 4K C 30 4 30 3 240 44N 5K C 44 5 30 3 240
30N 5K A 30 5 30 3 240 50N 4K A 50 4 30 3 240
30N 5K B 30 5 30 3 240 50N 4K B 50 4 30 3 240
30N 5K C 30 5 30 3 240 50N 4K C 50 4 30 3 240
40N 4K A 40 4 30 3 240 50N 5K A 50 5 30 3 240
40N 4K B 40 4 30 3 240 50N 5K B 50 5 30 3 240
40N 4K C 40 4 30 3 232 50N 5K C 50 5 30 3 240
40N 5K A 40 5 30 3 240 60N 4K A 60 4 30 3 240
40N 5K B 40 5 30 3 240 60N 4K B 60 4 30 3 240
40N 5K C 40 5 30 3 240 60N 4K C 60 4 30 3 240
44N 4K A 44 4 30 3 240 60N 5K A 60 5 30 3 240
44N 4K B 44 4 30 3 240 60N 5K B 60 5 30 3 240
44N 4K C 44 4 30 3 240 60N 5K C 60 5 30 3 240

Table 2: Properties of the newly generated SDARP instance set. Per instance vehicle
capacities as well as the maximum route durations are the same for all vehicles.
The maximum route durations are the same as the time horizon. All requests
have a load of qi = 1 and a service time of di = 3.

in Section 4.1.1. For each request we assume a unit load of qi = −qn+i = 1 and
the service duration is di = dn+i = 3 for i ∈ P . The maximum user ride time is
set to L = 30. We consider different numbers of homogeneous vehicles with capacity
Qk = 3 and maximum route duration T k = T . Table 2 provides an overview of the
properties of the generated test instances. In the following we are going to refer to
this instance set as “SDARP” instances. The SDARP instances are available at https:
//www.ac.tuwien.ac.at/research/problem-instances/#Dial-a-Ride_Problem.

To deal consistently with the Euclidean distances in the MILP and CP algorithms we
restrict the precision to two fractional digits for both instance sets.

5.2. Computational Experiments
In this section we are going to present the computational results of our algorithms
obtained on the introduced benchmark instances. The test runs have been executed
on an Intel Xeon E5540 with 2.53 GHz. The execution time limit has been set to
7200 seconds and the memory limit up to 8GB. Test runs have been executed using
CPLEX 12.7.1 with a single thread using dual simplex and traditional B&C. The CP
part has been implemented using Gecode 5.1.0 [21], also utilizing only a single thread
for each test run. For the Bron-Kerbosch algorithm we used the implementation from
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BaC branch-and-check
LBBD logic-based Benders decomposition
simple unrefined Benders cuts
aIIS Benders cut per irreducible infeasible set (IIS)
mIIS Benders cut per minimum cardinality IIS
gIIS Benders cuts for up to two greedily computed IISs
MIP MILP subproblems
CPMIP combined CP-MILP subproblems
Hgaprel it heuristic boosting with thresholds for the relative optimality gap (iterative)
Hgaprel ud heuristic boosting with thresholds for the relative optimality gap (up-and-down)
Htime it heuristic boosting with time limits (iterative)
Htime ud heuristic boosting with time limits (up-and-down)
Compact compact MILP model

Table 3: Summary of the abbreviations used to identify the tested algorithms.

Boost 1.63.0. Since objective values are known to be integral, runs terminate once the
absolute optimality gap falls below a threshold of 1− n · ε, where ε is the reduced-cost
optimality tolerance of the MILP solver.

We start by investigating the different approaches for solving the subproblems and
generating Benders cuts. Then, we evaluate the heuristic boosting techniques before
providing further insights regarding specific properties of our algorithms. For these parts
we rely on our newly generated SDARP instances. Afterwards, we test our algorithms
on the instances used in the previous literature and provide a comparison to the compact
MILP reference model.

We try to condense the presented results as much as possible to highlight the core re-
sults. For more details we provide additional tables in the appendix. Table 3 summarizes
the abbreviations used to identify the algorithm variants.

5.2.1. Evaluation of Subproblem Algorithms and Cut Generation Strategies

In several of the upcoming figures we provide sums of the total number of served requests
per algorithm. Due to the integrality of the objective function value, it is sometimes
difficult to distinguish the marks when the time limit is reached. To resolve this issue we
provide the respective numbers in Table 4. In addition, this table also provides results
for algorithms that have been omitted from the figures to improve readability.

Figure 2 gives an overview of the computation times and lower bounds of the algo-
rithms without the use of heuristic boosting techniques. The subproblems are solved
using the MILP model.

A first observation is that the relative performance of the variants for computing
Benders cuts is quite similar for both decomposition approaches. As expected, the näıve
strategy performs quite poorly. It solves the fewest instances to optimality and also
takes much longer to find results comparable to the other variants. Also, the strategy
adding all IISs does not work well. Regarding the final number of served requests, it is
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Algorithm ∑ LB # Algorithm ∑ LB #
Compact 773 24 BD-gIIS-CP 1189 30
BaC-simple-CP 808 30 BD-mIIS-CP 1192 30
BD-aIIS-CP 938 27 BD-gIIS-MIP 1193 30
BD-aIIS-CPMIP-Htime ud 947 26 BD-gIIS-CPMIP 1193 30
BD-aIIS-CPMIP-Htime it 952 26 BD-mIIS-MIP 1200 30
BD-aIIS-CPMIP-Hgaprel ud 953 26 BD-mIIS-CPMIP 1201 30
BD-aIIS-CPMIP-Hgaprel it 954 26 BD-mIIS-CPMIP-Hgaprel it 1209 30
BD-aIIS-CPMIP 972 27 BD-mIIS-CPMIP-Hgaprel ud 1209 30
BaC-simple-CPMIP 978 30 BaC-gIIS-CP 1212 30
BaC-simple-MIP 983 30 BaC-mIIS-CP 1212 30
BD-aIIS-MIP 1011 29 BD-gIIS-CPMIP-Hgaprel it 1213 30
BaC-aIIS-MIP 1092 28 BD-gIIS-CPMIP-Hgaprel ud 1213 30
BaC-aIIS-CPMIP 1096 28 BaC-mIIS-MIP 1221 30
BaC-aIIS-CP 1097 28 BaC-gIIS-MIP 1223 30
BD-simple-CP 1150 30 BaC-gIIS-CPMIP 1224 30
BD-simple-CPMIP-Htime it 1155 30 BD-gIIS-CPMIP-Htime it 1224 30
BD-simple-CPMIP-Htime ud 1155 30 BaC-mIIS-CPMIP 1225 30
BD-simple-MIP 1156 30 BD-gIIS-CPMIP-Htime ud 1226 30
BD-simple-CPMIP 1157 30 BD-mIIS-CPMIP-Htime it 1232 30
BD-simple-CPMIP-Hgaprel it 1170 30 BD-mIIS-CPMIP-Htime ud 1233 30
BD-simple-CPMIP-Hgaprel ud 1170 30

Table 4: Summary of the total number of served requests (∑ LB) across all tested algo-
rithms for the SDARP instances. Column # denotes the number of instances
for which the respective algorithm computed a feasible solution. Algorithms
that could not solve all 30 instances terminated prematurely due to the mem-
ory limit.
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(a) Logic-based Benders Decomposition
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(b) Branch-and-Check
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Figure 2: Comparison of different strategies for generating Benders cuts for LBBD and
BaC with MILP subproblems in terms of served requests on the SDARP in-
stances. Marks are placed whenever an algorithm terminated, i.e., due to
solving an instance to optimality or due the time limit of two hours. Both
charts use a logarithmic x-axis.
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even dominated by the simple approach for the LBBD. This is primarily due to several
instances hitting the memory limit resulting in missing lower bounds (cf. Table 4). The
bad performance of strategy aIIS compared to the more successful variants has two
reasons: First, it takes a large amount of time to compute all the IISs. Second, the
number of added cuts is typically rather large which increases the size of the master
problem quite fast. Strategies gIIS and mIIS work much better in this respect. Of these
two, the greedy variant exhibits slightly better results since the cuts it provides turned
out to perform reasonably well but can be computed much faster than the minimum
cardinality IISs. Nevertheless, our results show that the mIIS variant has large potential.
Given the computational overhead for computing the minimum cardinality IISs, it is
quite impressive that the approach is still competitive. This shows that the stronger
cuts provide indeed a considerable improvement on the cuts obtained from the greedy
approach. Having identified gIIS and mIIS as superior strategies for computing Benders
cuts we focus on those two in the following.

Comparing the decomposition approaches we observe a slight advantage for BaC. It
turned out that solutions are found faster by evaluating all integral solution candidates—
instead of only optimal ones like LBBD does. For both algorithms finding good or even
optimal solutions becomes harder the scarcer the available resources become compared
to the demand. This relation can be expected as the number of combinatorial possi-
bilities from which the algorithm needs to find an optimal one increases. In particular,
the Benders algorithms are required to exclude a much larger number of infeasible as-
signments until only feasible options remain. Relaxations that bound the tour size (see
Sections 4.2.1 and 4.2.2) help to reduce this effect.

In addition to solving the subproblems via an MILP solver we also investigated the
CP approach from Section 3.3. In general, computation times are superior but for
some instances severe outliers occurred, including situations in which single subproblems
required more time than half an hour. Some of these difficult subproblems appear at
the very beginning of the solution process due to unbalanced assignments. However,
they also continue to occur later on for request subsets with cardinalities similar to
those in optimal solutions. To still profit from the mostly faster CP variant we further
investigated a combination working as follows. We start with the CP solver using a time
limit of half a second. If no result is obtained, we apply the MILP approach which is
in general slightly slower but much more consistent featuring no practically noticeable
outliers. Of course, we do not want to waste the work done by the CP solver. Therefore,
we build the MILP model using the variable domains of the CP model. Thus, we can take
advantage of the outcome of constraint propagation at the root node of CP search, which
possibly yields a smaller model. The results for the combined CP-MILP subproblems
are shown in Figure 3.

It can be seen that adding CP for solving the subproblems helps to find solutions
faster than when using the pure MILP approach. In general the relation among the
decomposition approaches and the cut generation techniques stays the same. However,
the mIIS algorithms profit more since they spend more time on solving subproblems,
see also Figure 4. As the addition of CP provides a clear improvement we selected the
combined variant as subproblem algorithm for the remaining experiments.
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(a) Logic-based Benders Decomposition
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(b) Branch-and-Check
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Figure 3: Comparison of MILP and combined CP-MILP subproblems for LBBD and
BaC in terms of served requests on the SDARP instances. Marks are placed
whenever an algorithm terminated, i.e., due to solving an instance to optimality
or due the time limit of two hours. Both charts use a logarithmic x-axis.
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5.2.2. Evaluation of the Heuristic Boosting Techniques

In the following we compare the heuristically boosted LBBD algorithms to their basic
counterparts. We consider the adaptive boosting in the pure iterative variant (it) and also
the variant with adjustments in both directions (ud). As criteria for early termination
we use a set of thresholds with respect to the relative optimality gap and a set of time
limits, see Section 4.4. For the time limit variant we consider time limits of 5, 10, and 30
seconds in ascending order. As final value we use the total remaining time according to
the overall time limit. The gap variant uses relative optimality gaps of 0.1, 0.05, 0.025,
and 0 in descending order.

Table 5 shows the comparison for the heuristic boosting techniques. With both boost-
ing techniques our algorithms could solve additional instances to optimality and also
serve more requests in total. In general, we can observe that the time limit boosting
technique works better than the gap boosting. It is mostly faster and also serves more re-
quests overall. Compared to the un-boosted algorithms the time limit boosting is always
at least as good in terms of the number of served requests. Except for one instance it
provides improvements in all cases where the basic algorithm does not prove optimality.
The highest improvements could be achieved by the up-and-down variants for which 33
(gIIS) and 32 (mIIS) additional requests could be served in total. In several cases also
the computation times decreased, however, if already the basic variant works well, we
sometimes observe a slowdown. To some extent this is related to the potentially worse
cuts. The other reason are the required re-solves for proving optimality, which are not
needed for the un-boosted algorithms. The gap boosting approaches feature a few out-
liers at which they serve fewer requests than the reference algorithm. Since the boosting
is only a heuristic technique, such outliers are not unexpected. In certain cases it pays
off to solve the master problem to optimality to obtain better cuts. However, considering
the number of served requests in total, we still observe a reasonable improvement for
the gap boosting technique.

In addition to the adaptive approaches presented above, we conducted preliminary
tests using a single value as gap threshold or time limit. However, these variants turned
out to be much less robust. For some instances they work exceptionally well but this is
paid for exceedingly on the remaining ones.

5.2.3. Discussion of the Algorithm Properties

In Figure 4 we display the amount of time spent in the master problem, the subproblems,
and the repair algorithm for the different decomposition approaches. The first thing to
note is that the time spent in the subproblems decreases significantly when switching
from the pure MILP algorithm to the combination with CP. This is most notable for
the mIIS algorithms where the reduction is the largest due to the high number of solved
subproblems.

The idea of the heuristic boosting techniques is to reduce the time spent in the master
problem. Most of this time is really saved. However, part of it also shifts into the
subproblems or the repair algorithm. In particular for the time limit boosting we observe
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∆LB ∆computation time [s]
mIIS gIIS mIIS gIIS

gap time gap time gap time gap time
Instance LB∗ it ud it ud it ud it ud it ud it ud it ud it ud
30N 4K A 30 - - - - - - - - -3 -3 - - - - - -
30N 4K B 29 - - - - - - - - - - - - - - - -
30N 4K C 30 - - - - - - - - 11 17 - - 9 12 - -
30N 5K A 30 - - - - - - - - - - - - - - - -
30N 5K B 30 - - - - - - - - - - - - - - - -
30N 5K C 30 - - - - - - - - -3 3 - - 3 1 - -
40N 4K A 38 - - - - - - - - 34 122 2 2 18 44 6 2
40N 4K B 38 - - - - - - - - 18 18 1 2 -139 -131 -64 -75
40N 4K C 37 - - - - - - - - -379 -341 -237 -237 -587 -495 -89 -301
40N 5K A 40 - - - - - - - - 17 17 - - - - - -
40N 5K B 40 - - - - - - - - 28 228 4 3 26 242 1 2
40N 5K C 40 - - - - - - - - -1 -1 - - -1 -1 - -
44N 4K A 40 1 1 1 1 2 2 2 2 - - - - - - - -
44N 4K B 42 - - - - - - - - 923 2099 504 452 -95 1075 199 639
44N 4K C 41 - 1 1 1 1 2 2 2 - -2772 -2761 -666 - -4261 -4479 -3640
44N 5K A 44 - - - - - - - - 169 897 -2 1 124 431 1 3
44N 5K B 44 - - - - - -1 - - -151 -59 -2 2 -2 208 1 2
44N 5K C 44 - - - - - - - - 190 1136 -4 6 121 1297 1 2
50N 4K A 41 1 1 3 3 - - 1 2 - - - - - - - -
50N 4K B 43 1 1 4 4 1 1 3 3 - - - - - - - -
50N 4K C 44 1 1 3 3 3 3 4 4 - - - - - - - -
50N 5K A 48 3 2 2 3 1 2 1 1 - - - - - - - -
50N 5K B 49 - - - - - - - - 95 2007 302 104 86 1442 127 345
50N 5K C 50 - - - - - -1 - - 212 135 -492 -471 -240 6267 517 -288
60N 4K A 44 1 1 5 5 3 3 4 4 - - - - - - - -
60N 4K B 45 -2 -2 1 1 3 3 3 3 - - - - - - - -
60N 4K C 44 - - 3 3 -1 -1 2 2 - - - - - - - -
60N 5K A 56 -1 -1 - - - - - 1 - - - - - - - -
60N 5K B 50 2 2 4 4 3 3 4 4 - - - - - - - -
60N 5K C 53 1 1 4 4 4 4 5 5 - - - - - - - -
Total 8 8 31 32 20 20 31 33 1161 3504 -2685 -799 -677 6132 -3779 -3310

Table 5: Results of the heuristic boosting techniques. Column LB∗ denotes the best lower
bound, provably optimal values marked bold. Columns ∆LB and “∆column
computation time” report the difference of the lower bounds and computation
times, respectively, to the un-boosted algorithm variants. For the lower bound,
positive values indicate that additional requests could be served and negative
values indicate the contrary. Negative values for the computation times indicate
a speedup and positive values a slowdown. Cells that contain “-” indicate that
the respective value did not change. The largest improvements per column and
instance are marked bold.
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Figure 4: Average computation time spent in the master problem, the subproblem, and
the repair algorithm for different LBBD and BaC approaches on the SDARP
instances.

a significant increase regarding the time spent for repairing solutions. The advantage of
the time limit boosting is that it consistently reduces the time spent per master iteration.
However, for more challenging master iterations this might lead to worse solutions that
leave more work for the repair algorithm.

Figure 5 provides details on the gaps with respect to the best known bounds. We
compute lower bound gaps by 100 · (LB∗ − LB)/LB∗ and upper bound gaps by 100 ·
(UB − UB∗)/UB∗ where LB and UB are the lower and upper bound obtained by the
considered algorithm and LB∗ and UB∗ are the respective best bounds known.

Observe that the heuristically boosted LBBD as well as the BaC algorithms perform
particularly well with respect to the lower bound gaps. However, they mostly do not
perform so well when it comes to finding good upper bounds. In general, the heuristically
boosted LBBD provides the better balance, featuring an acceptable performance for
both parts. The un-boosted LBBD works not so well for the lower bounds but in general
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provides the best upper bounds. According to the design of the algorithms this is exactly
what one would expect. BaC as well as the heuristically boosted LBBD both derive cuts
from potentially suboptimal master solutions. On the one hand, this helps to reduce the
time spent for solving the master problem and to derive feasible solutions earlier. On
the other hand, this typically slows down progress with respect to the upper bound. In
contrast, the un-boosted LBBD solves the master problem always to optimality which
helps to find tight upper bounds and strong Benders cuts while taking longer to find
good feasible solutions—even with the repair heuristic.

5.2.4. Comparison to the Literature

In the following we test our algorithms on the instances by Ropke et al. [39] including
the modified variants by Berbeglia et al. [5] to establish a connection to the existing
literature. Different from the SDARP instances, the instances by Ropke et al. [39]
feature a significantly larger time horizon relative to the number of available requests.
The unmodified instances are guaranteed to be feasible, i.e., all requests can be served.
For most of the modified instances it is also possible to serve all requests. In case
not all requests can be served, only few have to be rejected. This means that the
master problem is much easier to solve than for the SDARP instances. We illustrate
this behavior in Figure 6. To improve readability we omitted the mIIS variants of BaC
with quite excessive computation times of 218 (CP-MILP subproblems) and 793 (MILP
subproblems) seconds on average since their relative time distribution is similar to the
BaC algorithms included in the figure.

Observe that the Benders algorithms spend almost no time on solving the master
problem, little time is spent in the repair routine, and most of the time is spent in the
subproblems. The behavior on the modified instances is quite similar, except that the
overall computation times increase and that a little more time is spent in the repair
routine. Due to this distribution the heuristic boosting techniques do not have a notice-
able effect. Moreover, solving the subproblems is more challenging since they typically
involve a higher number of requests. This leads to advantages for the gIIS approach
that still provides a reasonable guidance for the master problem but solves considerably
fewer subproblems than the mIIS variant. Therefore, we focus on the gIIS algorithms
without heuristic boosting for the upcoming comparison.

Figures 7 and 8 provide an overview regarding the results of the obtained lower bounds
and computation times. The investigated algorithms solve all instances to optimality.
The performance with respect to the original instances and those with restricted ride
time is quite similar, which is not unexpected because half of the instances (group “a”)
is not affected by the modification. In contrast, the instances with a reduced number of
vehicles are significantly more challenging. This is due to the higher number of requests
that have to be rejected. The success of LBBD on the unmodified and the L = 30
instances has two reasons. First, the master problem is much easier to solve than for
the SDARP instances. Therefore, it is more affordable to always solve it to optimality
allowing the LBBD algorithm to converge faster. Second, the repair heuristic turned out
to be particularly successful: For the unmodified instances it is often possible to prove
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Figure 5: Lower and upper bound gaps for different LBBD and BaC algorithms on the
SDARP instances. For each algorithm the length of the bar at coordinate yi
corresponds to the largest gap among the yi instances with the smallest gaps.

36

Tec
hn
ica
lRe
po
rtA
C-T
R-1
6-0
07



B
D
-m
II
S-
M
IP

B
D
-g
II
S-
M
IP

B
D
-m
II
S-
C
PM

IP

B
D
-g
II
S-
C
PM

IP

B
D
-m
II
S-
C
PM

IP
-H
tim

e
it

B
D
-g
II
S-
C
PM

IP
-H
tim

e
it

B
D
-m
II
S-
C
PM

IP
-H
tim

e
ud

B
D
-g
II
S-
C
PM

IP
-H
tim

e
ud

B
aC
-g
II
S-
C
PM

IP

B
aC
-g
II
S-
M
IP

0

5

10

15

20

25

30

35

40

45

C
P
U
-t
im

e
[s
]
(m

ea
n
)

t-total-sub t-total-master t-total-repair

Figure 6: Average computation time spent in the master problem, the subproblem, and
the repair algorithm for different LBBD and BaC algorithms on the instances
by Ropke et al. [39].
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Figure 7: Comparison of LBBD and BaC with different types of MILP and combined
CP-MILP subproblems in terms of served requests on the instances by Ropke
et al. [39]. Marks are placed whenever an algorithm terminated, i.e., due to
solving an instance to optimality.

optimality after the repair operation in the very first iteration, i.e., without adding any
Benders cuts and resolving the master problem. For the instances with only 75% of the
original vehicles this is usually not possible which makes BaC the superior algorithm
here.

Another interesting observation is that using pure MILP subproblems turned out to
work better here when using the greedy approach for computing Benders cuts. The
reason is that the subproblems are typically less constrained than for the SDARP in-
stances. Moreover, the initial subproblems tend to be larger due to the higher number of
requests. However, the mIIS algorithm in general works better with the combined CP-
MILP approach due to the bottom-up construction of the IISs, which involves solving
many small subproblems.

In Tables 6 and 7 we provide the results for the modified instances by Berbeglia et al.
[5], restricted to those cases in which not all requests can be served. The feasibility
checking algorithm by Häme and Hakula [24] also provides a partial solution in case
not all requests can be served. We compare our results to theirs showing that further

38

Tec
hn
ica
lRe
po
rtA
C-T
R-1
6-0
07



(a) L=30
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(b) 75% vehicles
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Figure 8: Comparison of LBBD and BaC with different types of MILP and com-
bined CP-MILP subproblems in terms of served requests on the instances by
Berbeglia et al. [5]. Marks are placed whenever an algorithm terminated, i.e.,
due to solving an instance to optimality.
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Instance Opt.
b2-16 L30 15
b2-20 L30 19
b3-24 L30 23

Table 6: Summary of the number of served requests for the instances by Ropke et al.
[39] with L = 30. We only list the instances for which not all requests can be
served. Column “Opt.” provides the maximal number of requests that can be
served.

Instance Opt. Prev. Best Instance Opt. Prev. Best
a2-16 K75 12 - b4-24 K75 22 -
a2-20 K75 18 - b4-40 K75 39 38
a2-24 K75 21 - b4-48 K75 47 47
a3-36 K75 32 - b5-40 K75 39 39
b2-16 K75 12 - b5-50 K75 47 44
b2-20 K75 14 - b5-60 K75 58 56
b2-24 K75 20 - b6-48 K75 46 46
b3-24 K75 23 - b7-84 K75 83 82
b3-36 K75 32 -

Table 7: Summary of the number of served requests for the instances by Ropke et al.
[39] with only 75% of the original vehicles. We only list the instances for which
not all requests can be served. Column “Opt.” provides the maximal number
of requests that can be served according to our experiments. Column “Prev.
Best” reports the results by Häme and Hakula [24]; instances not considered by
them are marked with “-”. Provably optimal solution values are marked bold.

requests can be served in an optimal solution for some instances. Considering the pure
feasibility checking task, our algorithms are not as fast in terms of computation times.
The maximum cluster algorithm by Häme and Hakula [24] computes the feasibility status
in less than a second for most instances, except for a few outliers for the modification
with the reduced fleet size taking up to 47 seconds. Our algorithms are able to solve all
instances in up to 35 seconds (BaC-gIIS-MIP). Given that our main goal is to determine
the maximum number of requests that can be served—the feasibility status is only
obtained as a side result—the computational performance appears to be reasonable.

5.2.5. Comparison to the Compact MILP Model

In the following we compare our decomposition approaches to the compact MILP model
provided in Section 3.2. Since ease of implementation is often a major concern, we
selected algorithm variants as competitors that are most comparable in this respect.
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Therefore, we choose BaC with unrefined Benders cuts and Benders cuts computed
by the greedy approach. Note that, using, e.g., CPLEX, BaC can be implemented in
terms of a model with a lazy constraint-callback that solves a compact MILP model as
subproblem. The subproblem is solved exactly once for the näıve approach and multiple
times according to Algorithm 3.1 when using the greedy strategy.

Figures 9 and 10 compare the BaC algorithms and the compact MILP model. Already
the näıve strategy for generating Benders cuts turns out to perform better in terms of
optimally solved instances. However, considering the finally obtained lower bounds it is
only superior on the SDARP instances. The greedy Benders cut generation approach,
on the other hand, dominates the compact model in all aspects. It is not only much
faster but its final solutions in general also serve significantly more requests. Across
all instances BaC-gIIS-MIP solves 45 more instances to optimality than the compact
model: 14 of the SDARP instances, 11 of the original Cordeau instances, 7 of the
Cordeau instances with reduced user ride time, and 13 of the Cordeau instances with
reduced fleet size.

6. Conclusion
In this work we considered a variant of the dial-a-ride problem (DARP) that aims at serv-
ing a maximal number of requests rather than minimizing routing costs. We proposed
a simple compact reference model and a decomposition approach. The master problem
was formulated as mixed integer linear programming (MILP) model and the subprob-
lems were stated as MILP model and also as constraint programming (CP) model. We
reviewed preprocessing techniques from the literature and suggested improvements. The
master problem of the decomposition approach is supplemented by inequalities repre-
senting subproblem relaxations.

In the computational study we solved the decomposition model using logic-based Ben-
ders decomposition (LBBD) and branch-and-check (BaC). Subproblems have been solved
using MILP and a combination with CP. The latter hybrid turned out to be most suc-
cessful. We considered four strategies to construct Benders feasibility cuts. Experiments
have shown that a fast greedy approach and the enumeration of all minimum cardinality
irreducible infeasible sets (IISs) work best. It is most crucial to base the Benders cuts on
IISs to avoid unnecessarily weak cuts. Interestingly, it turned out that the rather time-
consuming approach for constructing the minimum cardinality IISs is still competitive.
This shows that the mIIS approach has significant potential. The Benders cuts obtained
this way are the best we can hope for and our experiments show that computing them
is worthwhile. We think that using them might also be interesting for other applications
of LBBD.

To speed up solving the Benders master problems we considered heuristic boosting
techniques: Instead of always solving the master problem to optimality, we stop once
a certain time limit or threshold with respect to the relative optimality gap has been
reached. In particular the time limit boosting helped to improve the Benders algorithm,
making it possible to find better solutions and to reduce computation times. The sug-
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Figure 9: Comparison of BaC with the compact reference MILP model in terms of served
requests on the SDARP instances and the instances by Ropke et al. [39]. Marks
are placed whenever an algorithm terminated, i.e., due to solving an instance
to optimality or reaching the time limit. Both charts use a logarithmic x-axis.
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(a) Ropke et. al (L=30)
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(b) Ropke et. al (75% vehicles)
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Figure 10: Comparison of BaC with the compact reference MILP model in terms of
served requests on the instances by Ropke et al. [39] with the modifications
by Berbeglia et al. [5]. Marks are placed whenever an algorithm terminated,
i.e., due to solving an instance to optimality or reaching the time limit. Both
charts use a logarithmic x-axis.
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gested boosting techniques are conceptually simple and more generally promising also
in the context of LBBD approaches for other applications.

Comparing LBBD and BaC we observed that in general the former excels at computing
good dual bounds whereas the latter is superior for computing primal bounds. This
effect can be reduced by including an algorithm for repairing infeasible master solutions
obtained by LBBD. In situations where solving the master problem is time-consuming the
boosting techniques may provide a middle way. For the SDARP instances, they slightly
decrease progress with respect to the dual bound but provide a significant speedup for
finding good primal bounds.

In general, we can draw the conclusion that the decomposition approach works best
if the proportion of requests that can be accepted is not too low.

6.1. Future work
In practical applications not all requests might be equally important. Thus, a natural
extension of the considered DARP variant would be to consider weights for the requests.
Due to the focus on request selection we do not consider routing costs in the objec-
tive. The easiest extension would be to consider cost-optimal routing for each vehicle
separately, keeping the problem complexity more or less the same. However, this may
lead to globally suboptimal solutions since selecting different requests might reduce the
routing costs while retaining the number of served requests. Considering globally opti-
mal routing costs makes the problem much more challenging since the objectives of the
subproblems now influence the master problem and thus also Benders optimality cuts
are needed. Moreover, also other second-level objectives might be worth considering
like additional user-inconvenience considerations, e.g., limiting the direct route to actual
route ratio. Additionally, investigating further strategies and testing with heterogeneous
vehicles would be interesting.

In our experiments heuristic boosting techniques turned out to be beneficial for solving
the master problem. Applying a similar strategy for the subproblems did not work that
well. However, by replacing the basic heuristic we considered with a more sophisticated
approach it might be possible to also speed up solving the subproblems.

We considered four strategies for constructing Benders feasibility cuts. Our algorithms
are based on enumeration and a greedy approach. In this respect it would be interest-
ing to design problem specific approaches that are able to find structures close to the
minimum cardinality IISs requiring less time than enumeration. The work by Häme and
Hakula [24] could serve as a starting point for research in this direction.
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[17] M. Gansterer, M. Küçüktepe, and R. F. Hartl. The multi-vehicle profitable pickup
and delivery problem. OR Spectrum, 39(1):303–319, 2017.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[19] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric
problems. In Proceedings of the Eighth Annual ACM Symposium on Theory of
Computing, STOC ’76, pages 10–22, New York, NY, USA, 1976. ACM.

[20] M. Garg and J. C. Smith. Models and algorithms for the design of survivable
multicommodity flow networks with general failure scenarios. Omega, 36(6):1057–
1071, 2008.

[21] Gecode Team. Gecode: Generic constraint development environment, 2017. Avail-
able from http://www.gecode.org.

[22] A. M. Geoffrion. Generalized Benders decomposition. Journal of optimization theory
and applications, 10(4):237–260, 1972.

[23] I. Hamdi and T. Loukil. Logic-based Benders decomposition to solve the permu-
tation flowshop scheduling problem with time lags. In Modeling, Simulation and
Applied Optimization (ICMSAO), 2013 5th International Conference on, pages 1–7,
2013.
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Computation Time [s] LB
Instance Properties LBBD BaC LBBD BaC

Instance |K| n T Q L LB∗ CM simple aIIS mIIS gIIS simple aIIS mIIS gIIS CM simple aIIS mIIS gIIS simple aIIS mIIS gIIS
30N 4K A 4 30 240 3 30 30 83 3 53 38 6 11 24 23 2 30 30 30 30 30 30 30 30 30
30N 4K B 4 30 240 3 30 29 ML 595 15 12 4 11 12 3 1 ML 29 29 29 29 29 29 29 29
30N 4K C 4 30 240 3 30 30 ML TL 355 202 47 1293 195 192 23 ML 29 30 30 30 30 30 30 30
30N 5K A 5 30 240 3 30 30 79 < 1 112 4 1 21 30 34 2 30 30 30 30 30 30 30 30 30
30N 5K B 5 30 240 3 30 30 23 3 13 4 1 < 1 13 11 1 30 30 30 30 30 30 30 30 30
30N 5K C 5 30 240 3 30 30 6655 406 137 75 19 19 52 25 3 30 30 30 30 30 30 30 30 30
40N 4K A 4 40 240 3 30 38 TL TL TL 343 71 TL 6053 496 101 36 36 38 38 38 36 38 38 38
40N 4K B 4 40 240 3 30 38 ML TL 6798 375 282 TL 3132 540 144 ML 36 38 38 38 29 38 38 38
40N 4K C 4 40 232 3 30 37 TL TL TL 798 802 TL TL 454 142 29 34 36 37 37 28 37 37 37
40N 5K A 5 40 240 3 30 40 TL 35 2669 68 5 568 77 33 3 31 40 40 40 40 40 40 40 40
40N 5K B 5 40 240 3 30 40 TL TL 1499 327 97 TL 430 172 27 39 38 40 40 40 39 40 40 40
40N 5K C 5 40 240 3 30 40 1662 10 29 53 14 308 108 5 2 40 40 40 40 40 40 40 40 40
44N 4K A 4 44 240 3 30 40 TL TL TL TL TL TL TL TL TL 38 36 36 39 38 24 38 40 40
44N 4K B 4 44 240 3 30 42 TL TL TL 1959 1088 TL TL 4279 3191 30 38 40 42 42 34 41 42 42
44N 4K C 4 44 240 3 30 41 TL TL TL TL TL TL TL 4740 5553 32 37 35 40 39 33 40 41 41
44N 5K A 5 44 239 3 30 44 ML TL TL 323 131 TL 429 339 61 ML 42 43 44 44 30 44 44 44
44N 5K B 5 44 240 3 30 44 TL TL 4173 1821 99 TL 872 155 27 42 43 44 44 44 38 44 44 44
44N 5K C 5 44 240 3 30 44 ML TL 5491 938 106 TL 652 514 50 ML 42 44 44 44 40 44 44 44
50N 4K A 4 50 240 3 30 41 TL TL TL TL TL TL TL TL TL 26 37 35 38 39 26 39 40 40
50N 4K B 4 50 240 3 30 43 TL TL ML TL TL TL TL TL TL 35 38 ML 39 39 34 35 42 41
50N 4K C 4 50 240 3 30 44 TL TL TL TL TL TL TL TL TL 30 39 35 41 40 31 41 43 43
50N 5K A 5 50 240 3 30 48 TL TL TL TL TL TL TL TL TL 19 44 39 45 46 40 47 47 47
50N 5K B 5 50 240 3 30 49 TL TL TL 1667 1008 TL TL 1856 621 36 44 42 49 49 30 48 49 49
50N 5K C 5 50 240 3 30 50 TL TL TL 5480 1426 TL 6481 892 80 36 47 48 50 50 43 50 50 50
60N 4K A 4 60 240 3 30 44 TL TL TL TL TL TL TL TL TL 29 40 34 39 39 26 39 42 43
60N 4K B 4 60 240 3 30 45 TL TL TL TL TL TL TL TL TL - 42 0 44 41 25 - 45 44
60N 4K C 4 60 240 3 30 44 TL TL TL TL TL TL TL TL TL 27 41 38 41 41 34 37 43 42
60N 5K A 5 60 240 3 30 56 TL TL TL TL TL TL TL TL TL 37 52 0 54 54 35 - 52 56
60N 5K B 5 60 240 3 30 50 TL TL TL TL TL TL TL TL TL 25 45 44 46 45 30 45 50 49
60N 5K C 5 60 240 3 30 53 TL TL TL TL TL TL TL TL TL 36 47 43 49 47 39 48 51 52

Table 8: Overview of the instance properties and the computation times of the un-
boosted algorithm variants. Column LB∗ shows the best known lower bounds.
Bounds corresponding to provably optimal solution values are marked bold.
Columns CM, LBBD, and BaC show the computation times and lower bounds
for the compact model, the LBBD decomposition algorithm, and the BaC de-
composition algorithm, respectively. For the decomposition approaches four
kinds of sets have been used to obtain Benders cuts: simple uses unrefined
cuts, aIIS uses all IISs, mIIS uses all IISs of minimum cardinality, and gIIS uses
two heuristically computed IISs. Instances that could not be solved within the
time limit of 2 hours are marked with “TL” and test runs that terminated due
to the memory limit are marked with “ML”. For each instance the computation
times of the fastest algorithm(s) and best bounds obtained are marked bold.
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Computation Time [s] LB
LBBD BaC LBBD BaC

Instance LB∗ simple aIIS mIIS gIIS simple aIIS mIIS gIIS simple aIIS mIIS gIIS simple aIIS mIIS gIIS
30N 4K A 30 2 10 4 1 5 4 3 < 1 30 30 30 30 30 30 30 30
30N 4K B 29 467 2 2 1 7 2 < 1 < 1 29 29 29 29 29 29 29 29
30N 4K C 30 TL 95 25 10 754 31 15 3 29 30 30 30 30 30 30 30
30N 5K A 30 < 1 20 < 1 < 1 8 4 4 < 1 30 30 30 30 30 30 30 30
30N 5K B 30 1 2 1 < 1 < 1 2 1 < 1 30 30 30 30 30 30 30 30
30N 5K C 30 349 24 11 3 6 6 2 < 1 30 30 30 30 30 30 30 30
40N 4K A 38 TL 5391 111 63 TL 5670 99 68 36 38 38 38 36 38 38 38
40N 4K B 38 TL 6181 90 209 TL 2908 97 69 36 38 38 38 29 38 38 38
40N 4K C 37 TL TL 589 760 TL TL 125 135 34 36 37 37 28 37 37 37
40N 5K A 40 23 2747 16 1 747 14 4 < 1 40 40 40 40 40 40 40 40
40N 5K B 40 TL 1015 84 57 TL 129 23 9 38 40 40 40 39 40 40 40
40N 5K C 40 5 5 9 7 259 19 1 < 1 40 40 40 40 40 40 40 40
44N 4K A 40 TL TL TL TL TL TL TL TL 36 36 39 38 24 39 40 40
44N 4K B 42 TL TL 750 1025 TL TL 1550 2768 38 40 42 42 34 41 42 42
44N 4K C 41 TL TL TL TL TL TL 3134 5552 37 35 40 39 35 40 41 41
44N 5K A 44 TL 6252 97 104 TL 126 65 21 42 44 44 44 27 44 44 44
44N 5K B 44 TL 3141 520 47 TL 263 18 12 43 44 44 44 38 44 44 44
44N 5K C 44 TL 4576 199 57 TL 252 64 16 42 44 44 44 40 44 44 44
50N 4K A 41 TL TL TL TL TL TL TL TL 37 35 38 39 22 39 41 41
50N 4K B 43 TL ML TL TL TL TL TL TL 38 ML 39 39 34 34 42 41
50N 4K C 44 TL TL TL TL TL TL TL TL 39 35 41 40 31 41 43 43
50N 5K A 48 TL TL TL TL TL TL TL TL 45 39 45 46 40 47 48 48
50N 5K B 49 TL ML 778 791 TL TL 484 447 44 ML 49 49 30 48 49 49
50N 5K C 50 TL TL 1458 933 TL 4343 115 19 47 48 50 50 43 50 50 50
60N 4K A 44 TL TL TL TL TL TL TL TL 40 34 39 39 26 40 42 43
60N 4K B 45 TL TL TL TL TL TL TL TL 42 0 44 41 25 - 45 44
60N 4K C 44 TL TL TL TL TL TL TL TL 41 38 41 41 34 39 43 42
60N 5K A 56 TL TL TL TL TL ML TL TL 52 46 55 54 35 ML 54 56
60N 5K B 50 TL ML TL TL TL TL TL TL 45 ML 46 45 30 46 50 48
60N 5K C 53 TL TL TL TL TL TL TL TL 47 43 49 47 39 48 51 52

Table 9: Overview of the computation times and lower bounds of the un-boosted LBBD
and BaC algorithm variants using a CP-MILP combination for the subproblems.
Column LB∗ shows the best known lower bounds (provably optimal solution
values are marked bold). For the decomposition approaches four kinds of sets
have been used to obtain Benders cuts: simple uses unrefined cuts, aIIS uses all
IISs, mIIS uses all IISs of minimum cardinality, and gIIS uses two heuristically
computed IISs. Instances that could not be solved within the time limit of 2
hours are marked with “TL” and test runs that terminated due to the memory
limit are marked with “ML”. For each instance the computation times of the
fastest algorithm(s) and best bounds obtained are marked bold.
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Computation Time [s] LB
standard gap (rel) - it gap (rel) - ud time - it time - ud standard gap (rel) - it gap (rel) - ud time - it time - ud

Instance LB∗ mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS
30N 4K A 30 4 1 1 1 1 1 4 1 4 1 30 30 30 30 30 30 30 30 30 30
30N 4K B 29 2 1 2 1 2 1 2 1 2 1 29 29 29 29 29 29 29 29 29 29
30N 4K C 30 25 10 36 19 42 22 26 10 25 10 30 30 30 30 30 30 30 30 30 30
30N 5K A 30 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 30 30 30 30 30 30 30 30 30 30
30N 5K B 30 1 < 1 1 < 1 1 < 1 1 < 1 1 < 1 30 30 30 30 30 30 30 30 30 30
30N 5K C 30 11 3 8 7 14 4 11 3 11 3 30 30 30 30 30 30 30 30 30 30
40N 4K A 38 111 63 145 81 233 107 113 69 113 65 38 38 38 38 38 38 38 38 38 38
40N 4K B 38 90 209 108 71 108 79 91 146 92 134 38 38 38 38 38 38 38 38 38 38
40N 4K C 37 589 760 210 173 248 265 352 671 353 460 37 37 37 37 37 37 37 37 37 37
40N 5K A 40 16 1 33 1 33 1 16 1 16 1 40 40 40 40 40 40 40 40 40 40
40N 5K B 40 84 57 112 83 312 298 88 58 87 59 40 40 40 40 40 40 40 40 40 40
40N 5K C 40 9 7 7 6 7 6 8 7 9 7 40 40 40 40 40 40 40 40 40 40
44N 4K A 40 TL TL TL TL TL TL TL TL TL TL 39 38 40 40 40 40 40 40 40 40
44N 4K B 42 750 1025 1674 930 2850 2100 1254 1224 1203 1664 42 42 42 42 42 42 42 42 42 42
44N 4K C 41 TL TL TL TL 4428 2939 4439 2721 6534 3560 40 39 40 40 41 41 41 41 41 41
44N 5K A 44 97 104 266 227 994 534 95 105 98 106 44 44 44 44 44 44 44 44 44 44
44N 5K B 44 520 47 368 45 461 255 517 48 522 49 44 44 44 44 44 43 44 44 44 44
44N 5K C 44 199 57 388 178 1335 1354 195 58 205 59 44 44 44 44 44 44 44 44 44 44
50N 4K A 41 TL TL TL TL TL TL TL TL TL TL 38 39 39 39 39 39 41 40 41 41
50N 4K B 43 TL TL TL TL TL TL TL TL TL TL 39 39 40 40 40 40 43 42 43 42
50N 4K C 44 TL TL TL TL TL TL TL TL TL TL 41 40 42 43 42 43 44 44 44 44
50N 5K A 48 TL TL TL TL TL TL TL TL TL TL 45 46 48 47 47 48 47 47 48 47
50N 5K B 49 778 791 873 878 2785 2234 1079 918 882 1137 49 49 49 49 49 49 49 49 49 49
50N 5K C 50 1458 933 1670 693 1593 TL 965 1449 987 644 50 50 50 50 50 49 50 50 50 50
60N 4K A 44 TL TL TL TL TL TL TL TL TL TL 39 39 40 42 40 42 44 43 44 43
60N 4K B 45 TL TL TL TL TL TL TL TL TL TL 44 41 42 44 42 44 45 44 45 44
60N 4K C 44 TL TL TL TL TL TL TL TL TL TL 41 41 41 40 41 40 44 43 44 43
60N 5K A 56 TL TL TL TL TL TL TL TL TL TL 55 54 54 54 54 54 55 54 55 55
60N 5K B 50 TL TL TL TL TL TL TL TL TL TL 46 45 48 48 48 48 50 49 50 49
60N 5K C 53 TL TL TL TL TL TL TL TL TL TL 49 47 50 51 50 51 53 52 53 52

Table 10: Results of the heuristic boosting techniques. Column computation time re-
ports the time consumed and column LB provides the value of the lower bound.
Column standard shows results of the algorithms without boosting, “gap (rel)
- it” shows results for boosting with purely iterative adjustments whereas “gap
(rel) - ud” adapts the threshold in both directions. Similarly, “time - it” and
“time - ud” report results for boosting with reduced time limit. Smallest
computation times and best bounds per instance are marked bold.
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Iterations Master-Sub Ratio Cuts
LBBD LBBD LBBD

un-boosted time - it time - ud BaC un-boosted time - it time - ud BaC un-boosted time - it time - ud BaC
Instance mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS
30N 4K A 24 19 24 19 24 19 23 14 0.07 0.17 0.06 0.19 0.06 0.13 0.02 0.07 400 280 400 280 400 280 232 184
30N 4K B 14 16 14 16 14 16 5 19 0.36 1.63 0.39 1.79 0.40 1.66 0.28 0.57 240 208 240 208 240 208 148 152
30N 4K C 86 92 86 92 86 92 69 80 0.28 1.28 0.28 1.29 0.29 1.38 0.01 0.08 1624 1668 1624 1668 1624 1668 1036 1060
30N 5K A 3 3 3 3 3 3 33 17 0.07 0.43 0.02 0.33 0.02 0.43 0.01 0.15 165 45 165 45 165 45 485 220
30N 5K B 4 7 4 7 4 7 10 17 0.09 0.45 0.09 0.43 0.07 0.36 0.02 0.12 230 110 230 110 230 110 260 265
30N 5K C 46 48 46 48 46 48 31 25 0.15 0.97 0.17 1.01 0.16 1.06 0.01 0.34 975 960 975 960 975 960 520 425
40N 4K A 78 97 78 97 78 97 97 142 0.61 1.21 0.64 1.37 0.69 1.21 0.18 2.94 1832 2032 1832 2032 1832 2032 1888 2160
40N 4K B 76 127 76 127 76 127 128 209 0.92 15.26 0.94 9.73 1.02 8.75 0.50 3.80 2096 2604 2096 2604 2096 2604 2408 3060
40N 4K C 86 145 131 195 131 169 155 227 12.60 17.72 3.73 9.37 3.74 8.57 1.03 1.95 2260 3128 2860 3556 2860 3288 3012 3688
40N 5K A 34 15 34 15 34 15 19 18 0.06 0.22 0.07 0.30 0.07 0.32 0.02 0.07 1075 385 1075 385 1075 385 260 240
40N 5K B 124 135 124 135 124 135 100 95 0.54 0.78 0.59 0.85 0.58 0.83 0.03 0.06 3510 3710 3510 3710 3510 3710 2145 2045
40N 5K C 27 37 27 37 27 37 8 11 0.07 0.17 0.08 0.20 0.07 0.20 0.08 0.07 985 1045 985 1045 985 1045 150 170
44N 4K A 83 151 187 299 317 431 297 393 116.49 215.85 42.49 124.35 28.81 100.03 32.64 153.95 3616 4084 5440 6592 6716 8056 6544 7292
44N 4K B 153 225 251 304 244 374 429 391 1.77 14.27 1.84 13.65 1.94 16.67 1.91 29.12 4016 5324 5280 6468 5248 7244 7184 7268
44N 4K C 168 212 239 274 430 383 310 343 28.33 108.24 14.04 30.19 11.92 28.59 10.66 76.03 4988 5340 5632 6020 7216 7084 5716 6200
44N 5K A 94 136 94 136 94 136 112 162 0.22 0.30 0.23 0.29 0.23 0.30 0.02 0.07 3515 4005 3515 4005 3515 4005 2655 3125
44N 5K B 389 144 389 144 389 144 51 103 0.39 0.50 0.38 0.49 0.39 0.51 0.01 0.03 8645 3890 8645 3890 8645 3890 1175 1885
44N 5K C 214 151 214 151 214 151 136 207 0.58 0.69 0.61 0.67 0.62 0.71 0.02 0.22 6905 4870 6905 4870 6905 4870 3045 4265
50N 4K A 67 192 413 632 604 636 738 1183 64.76 38.11 6.45 13.69 4.29 13.87 4.48 13.09 4812 5992 12316 16392 14672 15752 16104 23948
50N 4K B 52 144 407 483 598 433 570 812 87.73 155.20 4.36 32.39 2.74 36.75 4.28 25.16 3292 4416 10796 12548 13576 11364 12188 16860
50N 4K C 46 96 196 288 309 383 499 609 112.90 130.09 16.46 53.28 10.35 43.14 6.65 36.94 2472 2920 5808 7332 7440 8764 9164 11632
50N 5K A 192 298 683 774 959 1391 1221 1563 27.13 112.20 4.30 35.56 3.09 17.11 2.91 18.35 9865 11540 23755 25050 28520 37945 34120 42425
50N 5K B 154 217 231 273 206 310 296 353 3.69 20.97 2.84 20.25 2.97 23.24 1.08 11.24 6085 7425 7895 8745 7335 9355 7820 9245
50N 5K C 513 568 390 687 390 481 173 167 1.00 10.23 0.79 13.36 0.82 8.63 0.02 0.11 14380 16005 12040 18335 12040 14260 4260 4490
60N 4K A 17 93 609 864 586 892 818 915 385.39 67.87 1.25 5.09 1.12 4.41 1.77 12.19 2504 2916 17976 23140 17336 23424 19428 20368
60N 4K B 50 243 528 887 527 921 777 1650 45.90 16.46 0.83 2.73 0.84 3.00 1.14 3.18 5396 7708 21196 26776 21424 27680 24700 39880
60N 4K C 36 123 790 1120 801 1159 908 1378 117.79 89.90 1.65 11.66 1.74 10.45 3.05 15.33 3644 3896 22648 28900 22572 29036 22684 31824
60N 5K A 289 541 619 1183 778 1240 1148 1571 4.49 11.38 1.41 5.59 1.05 5.14 0.83 5.34 17390 24160 28320 45580 33010 46330 33125 50675
60N 5K B 46 150 760 1196 1018 1346 813 1404 181.78 269.00 4.93 24.13 3.10 23.99 6.57 35.34 5820 7170 32975 43680 39225 45890 28525 43365
60N 5K C 50 126 226 791 495 1260 776 742 120.93 320.61 17.22 43.90 6.58 30.95 4.94 59.57 5075 5870 12860 27230 19935 35905 25720 24320

Table 11: Characteristics of the decomposition approaches. Column iterations states the
number of iterations the algorithm completed. For the LBBD approaches this
corresponds to the number of times the master problem has been solved. For
the BaC approaches it is equal to the number of times the separation routine
has been called. Column master-sub ratio provides the relative ratio of time
spent in the master problem compared to those spent in the subproblems
(tmaster/tsub). The last column (cuts) shows the total number of Benders cuts
that have been added.
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LB gap [%] UB gap [%]
LBBD LBBD

un-boosted time - it time - ud BaC un-boosted time - it time - ud BaC
Instance LB∗ UB∗ CM mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS CM mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS
30N 4K A 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N 4K B 29 29 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N 4K C 30 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N 5K A 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N 5K B 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N 5K C 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N 4K A 38 38 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N 4K B 38 38 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N 4K C 37 37 21.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N 5K A 40 40 22.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N 5K B 40 40 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N 5K C 40 40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N 4K A 40 41 5.0 2.5 5.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 3.3 3.9
44N 4K B 42 42 28.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N 4K C 41 41 22.0 2.4 4.9 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N 5K A 44 44 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N 5K B 44 44 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N 5K C 44 44 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50N 4K A 41 44 36.6 7.3 4.9 0.0 2.4 0.0 0.0 0.0 0.0 13.6 0.0 4.5 0.0 6.8 0.0 0.0 9.1 9.1
50N 4K B 43 47 18.6 9.3 9.3 0.0 2.3 0.0 2.3 2.3 4.7 6.4 0.0 0.0 0.0 2.1 2.1 0.0 4.3 4.3
50N 4K C 44 46 31.8 6.8 9.1 0.0 0.0 0.0 0.0 2.3 2.3 8.7 2.2 2.2 2.2 0.0 0.0 2.2 6.2 6.5
50N 5K A 48 49 60.4 6.2 4.2 2.1 2.1 0.0 2.1 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0
50N 5K B 49 49 26.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50N 5K C 50 50 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
60N 4K A 44 56 34.1 11.4 11.4 0.0 2.3 0.0 2.3 4.5 2.3 7.1 0.0 3.6 3.6 5.4 3.6 5.4 5.7 5.4
60N 4K B 45 56 - 2.2 8.9 0.0 2.2 0.0 2.2 0.0 2.2 7.1 0.0 1.8 5.4 5.4 5.4 5.4 6.9 6.5
60N 4K C 44 53 38.6 6.8 6.8 0.0 2.3 0.0 2.3 2.3 4.5 13.2 0.0 1.9 7.5 7.5 7.5 7.5 8.5 9.4
60N 5K A 56 60 33.9 1.8 3.6 1.8 3.6 1.8 1.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
60N 5K B 50 59 50.0 8.0 10.0 0.0 2.0 0.0 2.0 0.0 4.0 1.7 0.0 0.0 0.0 1.7 0.0 1.7 1.7 1.7
60N 5K C 53 58 32.1 7.5 11.3 0.0 1.9 0.0 1.9 3.8 1.9 3.4 0.0 0.0 0.0 1.7 0.0 1.7 3.4 3.4

Table 12: Overview of relative gaps to the best known lower (column LB gap) and upper
(column UB gap) bounds, respectively. Columns LB∗ and UB∗ report the
best known lower and upper bounds obtained across all algorithms. Entries in
column LB∗ are marked bold if the corresponding solution is provably optimal.
Per instance smallest gaps are marked bold.
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