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ABSTRACT
Many problems arising in computational social choice are
of high computational complexity, and some are located at
higher levels of the Polynomial Hierarchy. We argue that a
parameterized complexity analysis provides valuable insight
into the factors contributing to the complexity of these prob-
lems, and can lead to practically useful algorithms. As a case
study, we consider the problem of agenda safety for the ma-
jority rule in judgment aggregation, consider several natural
parameters for this problem, and determine the parameter-
ized complexity for each of these. Our analysis is aimed
at obtaining fixed-parameter tractable (fpt) algorithms that
use a small number of calls to a SAT solver. We identify
several positive results, including several results where the
problem can be fpt-reduced to a single SAT instance. In
addition, we identify several negative results. We hope that
this work may help initiate a structured parameterized com-
plexity investigation of problems arising in the field of com-
putational social choice that are located at higher levels of
the Polynomial Hierarchy.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Theory

Keywords
Judgment Aggregation; Agenda Safety; Complexity Theory;
Parameterized Complexity; Treewidth

1. INTRODUCTION
The field of computational social choice studies the inter-
face of social choice theory and computer science. In par-
ticular, it is concerned with investigating properties of com-
putational tasks related to procedures for collective decision
making. Some of these computational tasks have a compu-
tational complexity that is ‘beyond NP’, and are thus con-
sidered to be highly intractable (cf. [2, 11, 27, 28]). We argue

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

that the complexity analysis of problems arising in compu-
tational social choice that are ‘beyond NP’ benefits from a
parameterized complexity approach [17, 18, 21, 35]. Recent
advances in parameterized complexity theory [26] enable an
investigation of the restrictions that allow an encoding of
problems ‘beyond NP’ into the Boolean satisfiability prob-
lem (SAT). With the success that modern SAT solving al-
gorithms have had in many practical settings over the last
two decades [32, 37], this might lead to practically useful
algorithms for problems that are traditionally considered to
be highly intractable.

As a case study to underpin our argument, we consider the
computational complexity of the problem of agenda safety,
which is a computational problem that arises in the domain
of judgment aggregation. Judgment aggregation studies the
properties of procedures that combine the individual judg-
ments on a set of related propositions (the agenda) of the
members of a group into a collective judgment reflecting the
views of the group as a whole [31]. Such procedures might,
in general, yield inconsistent combined judgments. An ex-
ample of a procedure whose outcome can be inconsistent is
the majority rule, where for each issue the collective judg-
ment agrees with the majority of the individual judgments
on this issue. Because of such possible inconsistencies, it is
useful to determine for a given agenda and some aggregation
procedure whether there exists no combination of individual
judgments such that the outcome of the procedure is incon-
sistent (we say that the agenda is safe if this is the case).
This is relevant, for instance, in the setting of multiagent
systems where agents need to coordinate their beliefs, in-
tentions and actions repeatedly [39]. In this scenario, we
might have to check whether the logical structure of the is-
sues to be decided upon collectively is such that the majority
decision can be guaranteed to be consistent for any combi-
nation of consistent choices made by the individual agents.
The problem of agenda safety for the majority rule is com-
plete for the second level of the Polynomial Hierarchy (PH)
[19], and is thus ‘beyond NP.’

Instances of hard computational problems that occur in
practice often exhibit some kind of structure. A classical
complexity analysis is insensitive to any such structure. A
parameterized complexity analysis, on the other hand, can
take into account different forms of structure in the prob-
lem instances, by means of problem parameters. The idea
underlying parameterized complexity theory is that such pa-
rameters are expected to be small in problem instances oc-
curring in practice. By restricting the high complexity of a
problem to the parameter only, these structured instances
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of hard computational problems can often be solved reason-
ably efficiently. There has been a lot of research in the field
of parameterized complexity over the last two decades [10].
Most of this research is aimed at problems that are in NP.
Recently, tools have been developed to analyze the parame-
terized complexity of problems that are located higher in the
PH [24, 25, 26]. The paradigm of parameterized complexity
has been used to examine many problems in computational
social choice [3, 4, 5, 16].

Contributions.
Concretely, we investigate what kind of structure helps to
decrease the computational complexity of the problem of
agenda safety for the majority rule. We do this by studying
several natural parameterizations of the problem. The main
concept of tractability that we have in mind is based on
algorithms that run efficiently for small parameter values,
and that use only a small number of SAT calls (depend-
ing on the parameter value only), preferably only a single
call. Such parameterized algorithms are an improvement
over polynomial-time algorithms, because the problem can-
not be solved by a polynomial-time algorithm that can make
calls to a SAT solver (unless the PH collapses). This no-
tion of tractability is motivated by the enormous practical
success of modern SAT solvers [8, 22, 32, 37]. For precise
definitions, we refer to Section 2.

Several parameterizations that we consider correspond to
simple syntactic restrictions on the agenda (i.e., bounds on
the size of formulas, bounds on variable occurrence, and
bounds on the number of formulas). Another several param-
eterizations that we consider capture structure in the agenda
in terms of the ‘tree-likeness’ of various graphs associated to
the agenda. Yet another parameterization corresponds to a
bound on the size of counterexamples (to the logical charac-
terization of agenda safety). These parameterizations have
been applied successfully in other domains [6, 7, 23]. An
overview of complexity results for these parameterizations
can be found in Table 1.

We identify several positive cases, where structure present
in the problem input allows us to solve the problem in fixed-
parameter tractable time (using a small number of SAT
calls). These positive results could lead to algorithms that
perform well in practice. Additionally, our parameterized
complexity analysis allows us to pinpoint exactly what as-
pects of the problem play what role in the high computa-
tional complexity of the problem, and it helps to determine
what algorithmic approach is well suited to solve the prob-
lem in practical settings. We hope that this work can help
initiate a structured parameterized complexity investigation
of problems arising in the field of computational social choice
that are located at higher levels of the PH.

2. PRELIMINARIES
In this section, we formally define the problem of agenda
safety and we provide a logical characterization of the prob-
lem for a particular aggregation procedure. Moreover, we
review notions from complexity theory.

Propositional Logic and Agenda Safety.
A literal is a propositional variable x or a negated vari-
able ¬x. A clause is a finite set of literals, not contain-
ing a complementary pair x, ¬x, and is interpreted as the

disjunction of these literals. A formula in conjunctive nor-
mal form (CNF) is a finite set of clauses, interpreted as the
conjunction of these clauses. We define the size ||ϕ|| of a
CNF formula ϕ to be

∑
c∈ϕ |c|; the number of clauses of ϕ

is denoted by |ϕ|. For a CNF formula ϕ, the set Var(ϕ)
denotes the set of all variables x such that some clause of ϕ
contains x or ¬x. We say that a clause is a Horn clause
if it contains at most one positive literal; a CNF formula
is a Horn formula if it contains only Horn clauses. We let
the degree of a CNF formula ϕ be the maximum number of
times that any variable x ∈ Var(ϕ) occurs in ϕ. We use the
standard notion of (truth) assignments α : Var(ϕ)→ {0, 1}
for Boolean formulas and truth of a formula under such an
assignment. We let SAT denote the problem of deciding
whether a given propositional formula is satisfiable, and we
let UNSAT denote its co-problem, i.e., deciding whether a
given formula is unsatisfiable. We say that a propositional
formula is doubly-negated if it is of the form ¬¬ψ. For every
propositional formula ϕ, we let ∼ϕ denote the complement
of ϕ, i.e., ∼ϕ = ¬ϕ if ϕ is not of the form ¬ψ, and ∼ϕ = ψ
if ϕ is of the form ¬ψ.

An agenda is a finite nonempty set Φ of formulas that does
not contain any doubly-negated formulas and that is closed
under complementation. Moreover, if Φ = {ϕ1, . . . , ϕn,
¬ϕ1, . . . ,¬ϕn} is an agenda, then we let [Φ] = {ϕ1, . . . , ϕn}
denote the pre-agenda associated to the agenda Φ. A judg-
ment set J for an agenda Φ is a subset J ⊆ Φ. We call a
judgment set J complete if ϕ ∈ J or ∼ϕ ∈ J for all ϕ ∈ Φ;
we call it complement-free if for all ϕ ∈ Φ it is not the
case that both ϕ and ∼ϕ are in J ; and we call it consistent
if there exists an assignment that makes all formulas in J
true. Let J (Φ) denote the set of all complete and consis-
tent subsets of Φ. Let N be a set of agents, with |N | = n.
We call a sequence J ∈ J (Φ)n of complete and consistent
subsets a profile. A (resolute) judgment aggregation proce-
dure for the agenda Φ and the set of individuals N is a
function F : J (Φ)n → 2Φ. An example is the majority
rule Fmaj, where ϕ ∈ Fmaj(J) if and only if ϕ occurs in the
majority of judgment sets in J , for all ϕ ∈ Φ. We call F
complete, complement-free and consistent, if F (J) is com-
plete, complement-free and consistent, respectively, for ev-
ery J ∈ J (Φ)n. An agenda Φ is safe with respect to a class
of aggregation procedures F , if every procedure in F is con-
sistent when applied to profiles of judgment sets over Φ. We
say that an agenda Φ satisfies the median property (MP) if
every inconsistent subset of Φ has itself an inconsistent sub-
set of size at most 2. An agenda Φ is safe for the majority
rule if and only if Φ satisfies the MP [19, 34]. There exist
similar properties that characterize agenda safety for other
aggregation procedures [19].

As an example, we consider the discursive dilemma, which
concerns an agenda that is not safe for the majority rule.
Consider the agenda Φdd = {p,¬p, q,¬q, (p → q),¬(p →
q)}. Moreover, consider the profile J = (J1, J2, J3),
where J1 = {p, q, (p → q)}, J2 = {p,¬q,¬(p → q)},
and J3 = {¬p,¬q, (p→ q)}. Each of these judgment sets are
consistent. However, Fmaj(J) = {p,¬q, (p → q)} is incon-
sistent. In other words, Φdd is not safe for the majority rule.
Also, Φdd does not satisfy the MP, as it contains the sub-
set Fmaj(J) ⊆ Φ that is inconsistent, but that itself contains
no inconsistent subset of size 2. Intuitively, for each agenda
that does not satisfy the MP, a similar discursive dilemma
can be constructed, where the majority rule is forced to in-
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Parameter Complexity

maximum formula size (`) para-ΠP
2 -complete, even when restricted to 2CNF ∩Horn (Proposition 3)

maximum variable degree (d) para-ΠP
2 -complete, even when restricted to 2CNF ∩Horn (Proposition 3)

agenda size solvable in fpt-time with f(k) many SAT calls, with f(k) = 2O(k) (Theorem 1)
and f(k) = Ω(log k) (Theorem 2)

counterexample size ∀k∃∗-hard (Theorem 3)

formula primal treewidth fixed-parameter tractable (Proposition 6)

clausal primal treewidth para-ΠP
2 -complete (Proposition 7)

formula incidence treewidth para-ΠP
2 -complete (Proposition 8)

clausal incidence treewidth para-ΠP
2 -complete (Proposition 9)

Table 1: Complexity results for different parameterizations of agenda safety.

clude an inconsistent subset (of size larger than 2), whereas
the individual profiles remain consistent.

In this paper, we consider several parameterizations of the
following decision problem Maj-AS, which is khown to be
ΠP

2 -complete [19]. The problem Maj-AS consists of, given
an agenda Φ, deciding whether Φ is safe for the majority
rule. For our results, we will use the fact that deciding
safety of an agenda Φ for the majority rule is equivalent
to checking whether Φ satisfies the median property. In
fact, the technical details behind our results involve only
this alternative characterization.

The Boolean and Polynomial Hierarchies.
There are many natural decision problems that are appar-
ently not contained in the classical complexity classes P or
NP. The Boolean Hierarchy (BH) [12, 13, 29] consists of
a hierarchy of complexity classes BHi for all i ≥ 1. Each
class BHi can be characterized as the class of problems that
can be reduced in polynomial time to the problem BHi-Sat,
which is defined inductively as follows. The problem BH1-
Sat consists of all sequences (ϕ), where ϕ is a satisfiable
propositional formula. For even i ≥ 2, the problem BHi-Sat
consists of all sequences (ϕ1, . . . , ϕi) of propositional formu-
las such that both (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-Sat and ϕi is
unsatisfiable. For odd i ≥ 2, the problem BHi-Sat consists
of all sequences (ϕ1, . . . , ϕi) of propositional formulas such
that (ϕ1, . . . , ϕi−1) ∈ BH(i−1)-Sat or ϕi is satisfiable. The
class BH2 is also denoted by DP, and the problem BH2-Sat
is also denoted by SAT-UNSAT.

The Polynomial Hierarchy (PH) [33, 36, 40, 42] consists of
a hierarchy of complexity classes, including the classes Σp

i ,
for all i ≥ 0. The class Σp

2 already contains the entire BH.
We give a characterization of these classes based on the sat-
isfiability problem of various classes of quantified Boolean
formulas. A (prenex) quantified Boolean formula is a for-
mula of the form Q1X1Q2X2 . . . QmXmψ, where each Qi
is either ∀ or ∃, the Xi are disjoint sets of propositional
variables, and ψ is a Boolean formula over the variables
in

⋃m
i=1 Xi. The quantifier-free part of such formulas is

called the matrix of the formula. Truth of such formulas
is defined in the usual way. We let ψ[α] denote the for-
mula obtained from ψ by instantiation variables by their
truth values given by a (partial) truth assignment α. For
each i ≥ 1 we define the decision problem QSati, where
the problem is to decide whether a given quantified Boolean
formula ϕ = ∃X1∀X2∃X3 . . . QiXiψ is true, where Qi is a
universal quantifier if i is even and an existential quanti-

fier if i is odd. For each nonnegative integer i ≥ 0, the
complexity class Σp

i is the class of problems that can be
reduced to QSati in polynomial time [40, 42]. The Σp

i -
hardness of QSati holds already when the matrix of the in-
put formula is restricted to 3CNF for odd i, and restricted
to 3DNF for even i. Note that Σp

0 = P, and that Σp
1 = NP.

For each i ≥ 1, the class ΠP
i is defined as co-Σp

i .

Parameterized Complexity.
We introduce some core notions from parameterized com-
plexity theory that we will use in this paper. For an in-
depth treatment we refer to other sources [17, 18, 21, 26,
35]. A parameterized problem L is a subset of Σ∗ × N for
some finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N,
we call I the main part and k the parameter. The fol-
lowing generalization of polynomial time computability is
commonly regarded as the tractability notion of parameter-
ized complexity theory. A parameterized problem L is fixed-
parameter tractable if there exists a computable function f
and a constant c such that there exists an algorithm that
decides whether (I, k) ∈ L in time O(f(k)||I||c), where ||I||
denotes the size of I. Such an algorithm is called an fpt-
algorithm, and this amount of time is called fpt-time. FPT
is the class of all fixed-parameter tractable parameterized
decision problems. If the parameter is constant, then fpt-
algorithms run in polynomial time where the order of the
polynomial is independent of the parameter. This provides
a good scalability in the parameter in contrast to running
times of the form ||I||k, which are also polynomial for fixed k,
but are already impractical for, say, k > 3. By XP we de-
note the class of all problems L for which it can be decided
whether (I, k) ∈ L in time O(||I||f(k)), for some fixed com-
putable function f .

Let L ⊆ Σ∗×N and L′ ⊆ (Σ′)∗×N be two parameterized
problems. An fpt-reduction from L to L′ is a mapping R :
Σ∗ × N → (Σ′)∗ × N from instances of L to instances of L′

such that there exist some computable function g : N → N
such that for all (I, k) ∈ Σ∗ × N: (i) (I, k) is a yes-instance
of L if and only if (I ′, k′) = R(I, k) is a yes-instance of L′,
(ii) k′ ≤ g(k), and (iii) R is computable in fpt-time.

Let C be a classical complexity class, e.g., NP. The pa-
rameterized complexity class para-C is then defined as the
class of all parameterized problems L ⊆ Σ∗×N, for some fi-
nite alphabet Σ, for which there exists an alphabet Π, a com-
putable function f : N → Π∗, and a problem P ⊆ Σ∗ × Π∗

such that P ∈ C and for all instances (x, k) ∈ Σ∗×N of L we
have that (x, k) ∈ L if and only if (x, f(k)) ∈ P . Intuitively,
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the class para-C consists of all problems that are in C after
a precomputation that only involves the parameter [20].

In particular, the class para-NP contains those parameter-
ized problems that can be fpt-reduced to a single instance
of SAT. Another class containing problems that can be con-
sidered fpt-reducible to SAT is the class para-DP, based
on the classical complexity class DP = {L1 ∩ L2 : L1 ∈
NP, L2 ∈ co-NP }. An instance of a parameterized problem
in para-DP can be solved in fpt-time by firstly reducing it to
an instance of the problem SAT-UNSAT = { (ϕ1, ϕ2) : ϕ1 ∈
SAT, ϕ2 ∈ UNSAT }, and then solving this resulting in-
stance by invoking a SAT oracle twice.

In addition to many-one fpt-reductions to SAT, we are also
interested in Turing fpt-reductions. A Turing fpt-reduction
from a problem P to SAT is an fpt-algorithm that has ac-
cess to a SAT oracle and that decides P . We are mainly
interested in fpt-algorithms that only use a small number of
queries to the SAT oracle (SAT calls). We let FPTNP[few]
denote the class of all parameterized problems P for which
there exists an fpt-algorithm that decides if (x, k) ∈ P by
using at most f(k) many SAT calls, for some computable
function f .

The notion of para-Σp
2-hardness can be employed to pro-

vide evidence against the existence of fpt-reductions to SAT.
However, for many interesting parameterized problems for
which we want to investigate the (non-)existence of fpt-
reductions to SAT, hardness for para-Σp

2 cannot be used.
The class para-Σp

2 contains problems that cannot be reduced
to SAT in polynomial time if the parameter value is a con-
stant (unless the Polynomial Hierarchy collapses at the first
level), i.e., problems in para-Σp

2 do not allow an xp-reduction
to SAT. Since many problems we are interested in do allow
such xp-reductions to SAT, it is unlikely that these problems
can be shown to be hard for the complexity class para-Σp

2 .
Recent work in parameterized complexity theory has re-

sulted in complexity classes that can be used to provide ev-
idence for the non-existence of fpt-reductions to SAT also
for problems that do allow an xp-reduction to SAT [24, 26].
The parameterized complexity class ∀k∃∗ consists of all pa-
rameterized problems that can be fpt-reduced to the follow-
ing variant of quantified Boolean satisfiability that is based
on truth assignments of restricted (Hamming) weight (the
Hamming weight of an assignment is the number of variables
that it assigns to 1). The problem ∀k∃∗-WSat consists of de-
ciding, for a given quantified Boolean formula ϕ = ∀X.∃Y.ψ
and a given integer k, whether for all truth assignments α
to X of weight k there exists a truth assignment β to Y such
that the assignment α ∪ β satisfies ψ. The parameter is k.

For any problem in ∀k∃∗ there exists an xp-reduction to
SAT. However, there is evidence that problems that are
hard for ∀k∃∗ do not allow an fpt-reduction to SAT [24,
26]. Many natural parameterized problems from various do-
mains are complete for the class ∀k∃∗, and for none of them
an fpt-reduction to SAT has been found [24]. If there ex-
ists an fpt-reduction to SAT for any ∀k∃∗-complete problem
then this is the case for all ∀k∃∗-complete problems. For an
overview of parameterized complexity classes that are rele-
vant to the results in this paper, we refer to Figure 1 (for a
definition of the classes W[1], co-W[1] and ∆p

2 , referred to
in this figure, we refer to other sources [17, 18, 21]). For a
more detailed discussion on this topic, we refer to previous
work in parameterized complexity [24, 26].

para-Σp
2 para-ΠP

2

para-NP para-co-NP

para-∆p
2

FPTNP[few]

para-DP
∃k∀∗ ∀k∃∗

W[1] co-W[1]
FPT = para-P

Figure 1: Parameterized complexity classes relevant
to the results in this paper. Arrows indicate inclu-
sion relations.

Treewidth.
Let G = (V,E) be a graph. A tree decomposition of G is
a pair (T , (Bt)t∈T ) where T = (T, F ) is a rooted tree and
(Bt)t∈T is a family of subsets of V such that (1) for every
v ∈ V , the set B−1(v) = { t ∈ T : v ∈ Bt } is nonempty and
connected in T ; and (2) for every edge {v, w} ∈ E, there is a
t ∈ T such that v, w ∈ Bt. The width of the decomposition
is the number max{ |Bt| : t ∈ T } − 1. The treewidth of G
is the minimum of the widths of all tree decompositions of
G. Let G be a graph and k a positive integer. There is
an algorithm that computes a tree decomposition of G of
width k, if it exists, and fails otherwise; this algorithm runs
in linear time for fixed k [9].

Treewidth is often used as a parameter to represent the
amount of structure present in CNF formulas. There are
several ways of associating treewidth to a CNF formula.
Two of the most common ways are the primal and incidence
treewidth. Let ϕ be a CNF formula. The primal graph of ϕ
has as vertices the variables occurring in ϕ, and two variables
are connected by an edge if there exists a clause in which
they both occur. The incidence graph of ϕ is a bipartite
graph whose vertices consist of (1) the variables occurring
in ϕ and (2) the clauses of ϕ. A variable x is connected by
an edge to a clause c if x occurs in c. The primal treewidth
of ϕ is the treewidth of its primal graph, and the incidence
treewidth of ϕ is the treewidth of its incidence graph.

3. COMPLEXITY RESULTS
We start with showing that we can restrict our attention to
agendas containing only formulas in CNF. We show how to
transform any agenda Φ to an agenda Φ′ of size polynomial
in the size of Φ, containing only formulas in CNF (and their
negations), that is safe if and only if Φ is safe. For this, we
will need the following lemma and proposition.

Lemma 1. Let ϕ be a propositional formula. We can
construct a CNF formula ϕ′ such that Var(ϕ′) ⊇ Var(ϕ)
and for each truth assignment α : Var(ϕ) → {0, 1} we
have that α satisfies ϕ if and only if there exists an assign-
ment β : (Var(ϕ′)\Var(ϕ)) → {0, 1} such that the assign-
ment α ∪ β satisfies ϕ′.

Proof. Assume without loss of generality that ϕ contains
only the connectives ∧ and ¬. Let Sub(ϕ) denote the set of
all subformulas of ϕ. We let Var(ϕ′) = Var(ϕ) ∪ { zχ : χ ∈
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Sub(ϕ) }, where each zχ is a fresh variable. We then de-
fine ϕ′ to be the formula χϕ ∧

∧
χ∈Sub(ϕ) σ(χ), where we de-

fine the formulas σ(χ), for each χ ∈ Sub(ϕ) as follows. If χ =
l is a literal, we let σ(χ) = (zl → l)∧(l→ zl); if χ = ¬χ′, we
let σ(χ) = (zχ → ¬zχ′)∧(zχ′ → ¬zχ); and if χ = χ1∧χ2, we
let σ(χ) = (zχ → zχ1)∧ (zχ → zχ2)∧ (¬zχ1 ∨¬zχ2 → ¬zχ).
Let α : Var(ϕ) → {0, 1} be an arbitrary truth assign-
ment. We claim that α satisfies ϕ if and only if there
exists an assignment β : (Var(ϕ′)\Var(ϕ)) → {0, 1} such
that α ∪ β satisfies ϕ′. Define the assignment β′ as follows.
For each χ ∈ Sub(ϕ), we let β(zχ) = 1 if and only if α satis-
fies χ. Clearly, if α satisfies ϕ, then α∪ β′ satisfies ϕ′. Con-
versely, for any assignment β : (Var(ϕ′)\Var(ϕ)) → {0, 1}
that does not coincide with β′, clearly, the assignment α∪β
does not satisfy some clause of ϕ′. Moreover, if α ∪ β′ sat-
isfies ϕ′, then α satisfies ϕ.

Proposition 1. Let Φ be an agenda with [Φ] =
{ϕ1, . . . , ϕn}. We can construct in polynomial
time an agenda Φ′ with [Φ′] = {ϕ′1, . . . , ϕ′n} such
that each ϕ′i is in CNF and any subset Ψ =
{ϕi1 , . . . , ϕim1

,¬ϕj1 , . . . ,¬ϕjm2
} of Φ is consistent if

and only if Ψ′ = {ϕ′i1 , . . . , ϕ′im ,¬ϕ′j1 , . . . ,¬ϕ′jm2
} is

consistent.

Proof. Let Φ be an agenda with [Φ] = {ϕ1, . . . , ϕn}. By
using the well-known Tseitin transformation [41], we can
transform each ϕi in linear time to a CNF formula ϕ′i such
that Var(ϕ′i) ⊇ Var(ϕi) and for each truth assignment α :
Var(ϕi) → {0, 1} we have that α satisfies ϕi if and only if
there exists an assignment β : (Var(ϕ′i)\Var(ϕi)) → {0, 1}
such that the assignment α∪ β satisfies ϕ′i. Because we can
introduce fresh variables for constructing each ϕ′i, we can as-
sume without loss of generality that for each 1 ≤ i < i′ ≤ n it
is the case that (Var(ϕ′i)\Var(ϕi))∩(Var(ϕ′i′)\Var(ϕi′)) = ∅.
Let Ψ = {ϕi1 , . . . , ϕim1

,¬ϕj1 , . . . ,¬ϕjm2
} be an arbitrary

subset of Φ. We show that Ψ is consistent if and only
if Ψ′ = {ϕ′i1 , . . . , ϕ′im1

,¬ϕ′j1 , . . . ,¬ϕ′jm2
} is consistent.

(⇒) Let α : Var(Ψ) → {0, 1} be an assignment that
satisfies all formulas in Ψ. By construction of the formu-
las ϕ′i, by Lemma 1, and by the fact that for each 1 ≤
i < i′ ≤ n it is the case that (Var(ϕ′i)\Var(ϕi)) ∩
(Var(ϕ′i′)\Var(ϕi′)) = ∅, we know that there exists an as-
signment β : (Var(Ψ′)\Var(Ψ)) → {0, 1} such that α ∪ β
satisfies all formulas in Ψ.

(⇐) Conversely, assume that there exists an assign-
ment α : Var(Ψ′) → {0, 1} that satisfies all formulas
in Ψ′. Then, by construction of the formulas ϕ′i, we know
that Var(Ψ′) ⊆ Var(Ψ). Now, by Lemma 1, we know that α
satisfies all formulas in Ψ as well.

Intuitively, the above results show that, using additional
auxiliary variables, each agenda can be rewritten into an-
other agenda that contains only formulas in CNF (or their
negation) that are equivalent (with respect to satisfiability)
to the formulas in the original agenda.

3.1 Simple Syntactic Restrictions
We consider the following parameterizations of the agenda
safety problem that correspond to syntactic restrictions
on the agenda Φ. We parameterize on the size of for-
mulas ϕ ∈ Φ, on the maximum number of times any
variable occurs in Φ (i.e., the degree of Φ), and on the
number of formulas occurring in Φ. Concretely, we con-
sider the parameterized problems Maj-AS(formula-size),

where the parameter is ` = max{ ||ϕ|| : ϕ ∈ Φ }; Maj-
AS(degree), where the parameter is the degree d of Φ; Maj-
AS(degree + formula size), where the parameter is ` + d;
and Maj-AS(ag.-size), where the parameter is |Φ|. Here
we define the degree of an agenda Φ to be the maximum
number of times that any variable x ∈ Var(Φ) occurs in [Φ],
i.e., maxx∈Var(Φ)(

∑
ϕ∈[Φ] occ(x, ϕ)), where occ(x, ϕ) denotes

the number of times that x occurs in ϕ.
The assumption that the size of formulas in an agenda is

small corresponds to the expectation that the separate state-
ments that the individuals are judging are in a sense atomic,
and therefore of bounded size. The assumption that the de-
gree of an agenda is small corresponds to the expectation
that each proposition that occurs in the statements to be
judged occurs only a small number of times. The assump-
tion that the number of formulas in the agenda is small is
based on the fact that the individuals need to form an opin-
ion on all formulas in the agenda.

Agendas with Small Formulas and Small Degree.
We start by showing that parameterizing on (the sum of) the
maximum formula size and the degree of the agenda Φ does
not decrease the complexity of deciding whether the agenda
is safe, even when (the pre-agenda associated to) Φ contains
only formulas in 2CNF ∩ Horn. Intuitively, these restric-
tions on the form and size of the formulas in the agenda do
not rule out the complex interactions between the formulas
in the agenda that involve many formulas simultaneously,
and that give rise to the ΠP

2 -hardness of the problem.

Proposition 2. Maj-AS(formula-size) is para-ΠP
2 -

complete.

Proof. Membership in para-ΠP
2 follows from the ΠP

2 -
membership of Maj-AS. We show para-ΠP

2 -hardness by
giving a polynomial-time reduction from ∀∃-Sat(3CNF) to
the problem {x : (x, c) ∈ Maj-AS(formula-size) }, where c
is bounded by the size of formulas of the form ¬((¬x1 ∨
¬x2 ∨ ¬x3) ∧ ¬z). This reduction is a modified variant of a
reduction given by Endriss et al. [19, Lemma 11]. Let ϕ =
∀X.∃Y.ψ be an instance of ∀∃-Sat, where ψ = c1 ∧ · · · ∧ cm
is in 3CNF, and where X = {x1, . . . , xm}. We may assume
without loss of generality that none of the ci is a unit clause.
We construct the agenda Φ = {x1,¬x1, . . . , xn,¬xn, (c1 ∧
¬z1),¬(c1∧¬z1), . . . , (cm∧¬zm),¬(cm∧¬zm)}, where Z =
{z1, . . . , zm} is a set of fresh variables. We show that Φ
satisfies the median property if and only if ϕ is true.

(⇒) Suppose that ϕ is false, i.e., there exists some α :
X → {0, 1} such that ∀Y.¬ψ[α] is true. Let L = {xi : 1 ≤
i ≤ n, α(xi) = 1 } ∪ {¬xi : 1 ≤ i ≤ n, α(xi) = 0 }. We know
that α is the unique assignment to the variables in X that
satisfies L. Now consider Φ′ = L∪{(c1∧z1), . . . , (cm∧zm)}.

We firstly show that Φ′ is inconsistent. We proceed in-
directly and assume that Φ′ is consistent, i.e., there exists
an assignment β : Y ∪ Z → {0, 1} such that α ∪ β satis-
fies Φ′. Then α ∪ β must satisfy each ci. Therefore, β sat-
isfies ψ[α], which contradicts our assumption that ∀Y.¬ψ[α]
is true. Therefore, we can conclude that Φ′ is inconsistent.

Next, we show that each subset Φ′′ ⊆ Φ′ of size 2 is con-
sistent. Let Φ′′ ⊆ Φ′ be an arbitrary subset of size 2. We
distinguish three cases: either (i) Φ′′ = {li, lj} for some 1 ≤
i < j ≤ n; (ii) Φ′′ = {li, (cj ∧ ¬zj)} for some 1 ≤ i ≤ n and
some 1 ≤ j ≤ m; or (iii) Φ′′ = {(ci ∧ ¬zi), (cj ∧ ¬zj)} for
some 1 ≤ i < j ≤ m. In case (i), clearly Φ′′ is consistent. In
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case (ii) and (iii), Φ′′ is consistent because ci and cj are not
unit clauses.

(⇐) Conversely, suppose that Φ does not satisfy the me-
dian property, i.e., there exists an inconsistent subset Φ′ ⊆ Φ
that itself does not contain an inconsistent subset of size 2.
We show that ϕ is false. Firstly, we show that Ψ′ =
Φ′\{¬(c1 ∧¬z1), . . . ,¬(cm ∧¬zm)} is inconsistent. We pro-
ceed indirectly, and assume that Ψ′ is consistent, i.e., there
exists an assignment γ : Var(Ψ′) → {0, 1} such that γ sat-
isfies Ψ′. Now let Z′ = { zi : 1 ≤ i ≤ m,¬(ci ∧ ¬zi) ∈ Φ′ }
and let γ′ : Z′ → {0, 1} be defined by letting γ′(z) = 0
for all z ∈ Z′. Since Ψ′ contains no negated pairs of for-
mulas, we know that Z′ ∩ Var(Ψ′) = ∅. Then the assign-
ment γ ∪ γ′ satisfies Φ′, since γ satisfies all ψ ∈ Ψ′ and γ′

satisfies all ϕ ∈ Φ′\Ψ′. This is a contradiction with our as-
sumption that Φ′ is inconsistent, so we can conclude that Ψ′

is inconsistent.
Now let the assignment α : X → {0, 1} be defined as

follows. For each x ∈ X, we let α(x) = 1 if x ∈ Ψ′, we
let α(x) = 0 if ¬x ∈ Ψ′, and we (arbitrarily) define α(x) = 1
otherwise. We now show that ¬∃Y.ψ[α] is true. We proceed
indirectly, and assume that there exists an assignment β :
Y → {0, 1} such that ψ[α ∪ β] is true. Now consider the
assignment γ : Z → {0, 1} such that γ(z) = 0 for all z ∈
Z. We claim that the assignment α ∪ β ∪ γ satisfies Ψ′.
Let χ ∈ Ψ′ be an arbitrary formula. We distinguish two
cases: either (i) χ ∈ {xi,¬xi} for some 1 ≤ i ≤ n; or
(ii) χ = (ci ∧ ¬zi) for some 1 ≤ i ≤ m. In case (i), we
know that α satisfies χ. For case (ii), we know that α ∪
β satisfies ci, since α ∪ β satisfies ψ. Moreover, we know
that γ satisfies ¬zi. Therefore, α ∪ β ∪ γ satisfies χ. This
is a contradiction with our previous conclusion that Ψ′ is
inconsistent, so we can conclude that ¬∃Y.ψ[α] is true. From
this, we know that ∀X.∃Y.ψ is false.

Next, using the following technical lemma, and the reduc-
tion given in the proof of Proposition 2, we get para-ΠP

2 -
completeness of Maj-AS(degree + formula size). The hard-
ness result holds even when we restrict the formulas to be
in Horn ∩ 2CNF.

Lemma 2. The problem ∀∃-Sat(3CNF) is ΠP
2 -hard even

when restricted to instances ϕ = ∀X.∃Y.ψ where each x ∈ X
occurs at most 2 times in ψ and each y ∈ Y occurs at most 3
times in ψ.

Proof. Let ϕ = ∀X.∃Y.ψ be an instance
of ∀∃-Sat(3CNF). We construct in polynomial time
an equivalent instance ϕ′ = ∀X ′.∃Y ′.ψ′ of ∀∃-Sat(3CNF)
such that each x ∈ X ′ occurs at most 2 times in ψ′ and
each y ∈ Y ′ occurs at most 3 times in ψ′.

Firstly, we construct an equivalent formula ϕ1 =
∀X.∃Y1.ψ1 such that each x ∈ X1 occurs at most 2 times
in ψ1. We do this by repeatedly applying the following trans-
formation. Let z ∈ X be any variable that occurs m > 3
times in ψ. We create m many copies z1, . . . , zm of z,
that we add to the set Y of existentially quantified vari-
ables. We replace each occurrence of z in ψ by a distinct
copy zi. Finally, we ensure equivalence of ψ1 and ψ by let-
ting ψ1 = ψ ∧ ψzequiv, where we define ψzequiv to be the con-
junction of binary clauses (zi → zi+1) for each 1 ≤ i < m,
the binary clause (zm → z1), and the binary clauses (z → z1)
and (z1 → z). Repeated application of this transformation
results in a formula ϕ1 that satisfies the required properties.

Then, we transform ϕ1 into an equivalent formula ϕ2 =
∀X.∃Y2.ψ2 such that each y ∈ Y2 occurs at most 3 times
in ψ2. Moreover, each x ∈ X occurs as many times in ψ2 as
it did in ψ1 (i.e., twice). We use a similar strategy as we did
in the first phase: we repeatedly apply the following trans-
formation. Let y ∈ Y1 be any variable that occurs m > 3
times in ψ1. We create m many copies y1, . . . , ym of y, that
we add to the set Y1 of existentially quantified variables.
Then we replace each occurrence of y in ψ by a distinct
copy yi. Finally, we ensure equivalence of ψ2 and ψ1 by
letting ψ2 = ψyequiv ∧ ψ1, where we define ψyequiv to the con-
junction of the binary clauses (yi → yi+1) for all 1 ≤ i < m
and the binary clause (ym → y1). Again, repeated appli-
cation of this transformation results in a formula ϕ2 that
satisfies the required properties.

Proposition 3. Maj-AS(degree + formula size) is
para-ΠP

2 -hard even when restricted to agendas Φ such that
all formulas ϕ ∈ [Φ] are in Horn ∩ 2CNF.

Proof. We consider the reduction used to show Propo-
sition 2. The agenda Φ that we constructed contains only
formulas of the form xi or their negation, and formulas of
the form (ci ∧ ¬zi), where ci is a clause, or their nega-
tion. Clearly, the formulas xi and ¬xi are (equivalent to
formulas) in Horn ∩ 2CNF. It suffices to show that each
formula ϕ ∈ Φ with ϕ = (ci ∧ ¬zi) is equivalent to a for-
mula ϕ′ ∈ Horn ∩ 2CNF. Let ci = (li1 ∨ li2 ∨ li3). Observe
that (ci ∧ ¬zi) = ((li1 ∨ li2 ∨ li3) ∧ ¬zi) ≡ (li1 ∨ ¬zi) ∧ (li2 ∨
¬zi) ∧ (li3 ∨ ¬zi). Thus, we can construct Φ in such a way
that [Φ] contains only formulas in Horn ∩ 2CNF.

Agendas with Few Formulas.
Next, we parameterize the agenda safety problem on the
number of formulas occurring in the agenda. We will show
that instances (x, k) of the problem Maj-AS(ag.-size) can be
solved by an fpt-algorithm that uses f(k) many SAT calls.
Intuitively, the fpt-algorithm that we construct will exploit
the fact that the agenda only contains few formulas, by con-
sidering all possible inconsistent subsets of the agenda, and
using a SAT solver to verify that these all have an inconsis-
tent subset of size at most 2. In particular, we will prove
the following result.

Theorem 1. There exists an algorithm that decides Maj-
AS(ag.-size) in fpt-time using at most 2O(k) SAT calls,
where k is the parameter value.

Moreover, we give evidence that this is the best one can
do, i.e., there exists no fpt-algorithm that uses a signifi-
cantly smaller number of SAT calls, assuming some widely
believed complexity-theoretic assumptions (Theorem 2). In
order to perform our lower-bound analysis, we will consider
the parameterized complexity class FPTNP[few]. We will
show that Maj-AS(ag.-size) is complete for this class.

We begin with considering the following auxiliary problem
BH(level)-Sat, and showing that it is FPTNP[few]-complete.
Given a positive integer k and a sequence ϕ = (ϕ1, . . . , ϕk) of
propositional formulas, the problem is to decide whether ϕ ∈
BHk-Sat. The parameter is k.

Lemma 3. BH(level)-Sat is FPTNP[few]-complete.

Proof. We first show membership. Let (x, k) be an in-
stance of BH(level)-Sat, where x = (ϕ1, . . . , ϕk′). Then,
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for each 1 ≤ i ≤ k, it decides whether ϕi is satisfiable by
a single SAT call. Since (x, k) corresponds to a Boolean
combination of statements concerning the satisfiability of
the formulas ϕi, the algorithm can then decide in fpt-time
whether (x, k) ∈ BH(level)-Sat.

We can prove hardness by showing the following. Let P
be a parameterized problem and let A be an algorithm
that decides P in fpt-time using at most g(k) many SAT
calls, where k is the parameter value and g is some com-
putable function. We show that there exists an fpt-reduction
that reduces an instance (x, k) of P to an instance (x′, k′)
of BH(level)-Sat, where k′ ≤ 2g(k)+1.

We use the algorithm A to construct an fpt-reduction
from P to BH(level)-Sat. We will use the known fact that
a disjunction of m many SAT-UNSAT instances can be re-
duced to a single instance of BH2m-Sat [12]. Let (x, k)
be an instance of P . We may assume without loss of gen-
erality that A makes exactly g(k) many SAT calls on any

input (x, k). Consider the set B = {0, 1}g(k). We interpret
each sequence b = (b1, . . . , bg(k)) ∈ B as a sequence of an-
swers to the SAT calls made by A; a 0 corresponds to the
answer of the SAT call being “unsatisfiable” and a 1 corre-
sponds to the answer being “satisfiable.” For each b ∈ B, we
simulate the algorithm A on input (x, k) by using the answer
specified by bi to the i-th SAT call. Let us write Ab(x, k)
to denote the simulation of A on input (x, k) where the an-
swers to the SAT calls are specified by b. By performing this
simulation for each b ∈ B, we can determine in fpt-time the
set B′ ⊆ B of sequences b such that Ab(x, k) accepts.

We know that A accepts (x, k) if and only if the “correct”
sequence of answers is contained in B′, in other words, A
accepts (x, k) if and only if there exists some b ∈ B′ such
that for each bi it holds that if bi = 0 then ψi is unsatisfi-
able, and if bi = 1 then ψi is satisfiable, where ψi denotes
the formula used for the i-th SAT call made by Ab(x, k).

For each b ∈ B′, we construct an instance I(b) = (ϕ1, ϕ0) of
SAT-UNSAT that is a yes-instance if and only if the above
condition holds for sequence b, as follows. Let (ψ1, . . . , ψg(k))
be the propositional formulas that Ab(x, k) uses for the SAT
calls, i.e., ψi corresponds to the formula used for the i-th
SAT call of Ab(x, k). We may assume without loss of gen-
erality that the formulas ψi are variable disjoint, i.e., for
each 1 ≤ i < i′ ≤ g(k), it holds that Var(ψi)∩Var(ψi′) = ∅.
We construct the instance (ϕ1, ϕ0) as follows:

C1 = { 1 ≤ i ≤ g(k) : bi = 1 };
ϕ1 =

∧
j∈C1

ψj ;

C0 = { 1 ≤ i ≤ g(k) : bi = 0 }; and
ϕ0 =

∨
j∈C0

ψj ;

It is straightforward to verify that I(b) ∈ SAT-UNSAT if and
only if b corresponds to the “correct” sequence of answers for
the SAT calls made by A, i.e., for each bi with bi = 0 it holds
that ψi is unsatisfiable, and for each bi with bi = 1 it holds
that ψi is satisfiable.

We constructed ` many instances I(b1), . . . , I(b`) of SAT-

UNSAT, for some ` ≤ 2g(k), such that the algorithm A ac-
cepts the instance (x, k), and thus (x, k) ∈ P , if and only if
there exists some 1 ≤ i ≤ ` such that I(b`) ∈ SAT-UNSAT.
In other words, we reduced our original instance (x, k) of P

to a disjunction of ` ≤ 2g(k) many instances of SAT-UNSAT.
We know that such a disjunction can be reduced to an in-

stance of BH2`-Sat [12]. This completes our fpt-reduction
from P to BH(level)-Sat.

We now use this completeness result to show the upper
bound on the number of SAT calls needed to solve Maj-
AS(ag.-size).

Proof of Theorem 1. As a first step, we provide an
fpt-algorithm that takes an instance Φ of Maj-AS(ag.-size)
with |Φ| = k and produces f(k) many instances x1, . . . , xf(k)

of co-SAT-UNSAT such that Φ ∈ Maj-AS(ag.-size) if and
only if {x1, . . . , xf(k)} ⊆ co-SAT-UNSAT. Let Φ be an
agenda with [Φ] = {ϕ1, . . . , ϕk}. Let C denote the set of
all complement-free subagendas Φ′ ⊆ Φ that are of size at
least 3. Clearly, |C| = 2O(k). We know that Φ satisfies the
MP if and only if for all Φ′ ∈ C holds that either (1) Φ′ is
satisfiable, or (2) there exists some Φ′′ ⊆ Φ′ of size 2 that is
unsatisfiable.

Firstly, for each Φ′ = {ψ1, . . . , ψ`} ∈ C, we con-
struct an instance I(Φ′) = (ψ1, ψ2) of co-SAT-UNSAT such
that (ψ1, ψ2) ∈ co-SAT-UNSAT if and only if either (1) Φ′

is satisfiable or (2) there exists some Φ′′ ⊆ Φ′ of size 2 that
is unsatisfiable. For any 1 ≤ i < j ≤ ` and any propo-
sitional formula ϕ, we let ϕ(i,j) denote a copy of ϕ where
each variable x ∈ Var(ϕ) is replaced with a copy x(i,j) in-
dexed by the pair (i, j). We define ψ1 =

∧
ϕ∈Φ′ ϕ, and

ψ2 =
∧

1≤i<j≤` (ψ
(i,j)
i ∧ ψ(i,j)

j ). It is straightforward to ver-

ify that I(Φ′) satisfies the required properties.
We now straightforwardly get that Φ ∈Maj-AS(ag.-size)

if and only if { I(Φ′) : Φ′ ∈ C } ⊆ co-SAT-UNSAT. Also,

we know that |C| = f(k) = 2O(k) for a suitable computable
function f . We know that the conjunction of f(k) many
instances of co-SAT-UNSAT can be reduced in polynomial
time to an instance of co-BH2f(k)-Sat [12]. By Lemma 3,

this implies that Maj-AS(ag.-size) is in FPTNP[few]. More-
over, the algorithm that witnesses this decides Maj-AS(ag.-
size) in time O(n · 2k) by making O(2k) many queries to a
SAT solver consisting of formulas of size O(n · k2), where n
is the input size and k is the parameter value.

Next, we will pursue the lower bound. We start with iden-
tifying an easier hardness result, which we will then extend
to a hardness result for the class FPTNP[few].

Lemma 4. Maj-AS(ag.-size) is para-co-DP-hard.

Proof. We prove hardness for para-co-DP by giving a
polynomial-time reduction from SAT-UNSAT to co-Maj-
AS, such that the resulting instance is an agenda of constant
size. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT. We con-
struct the agenda Φ with [Φ] = {ψ1, ψ2, ψ3} by letting ψ1 =
r1 ∧ p1 ∧ ϕ1, ψ2 = r2 ∧ p2, and ψ3 = r3 ∧ ((p1 ∧ p2)→ ϕ2),
where {r1, r2, r3, p1, p2} are distinct fresh variables not oc-
curring in ϕ1 nor in ϕ2. We show that Φ does not satisfy
the MP if and only if (ϕ1, ϕ2) ∈ SAT-UNSAT.

(⇒) Assume that Φ does not satisfy the MP. Then there
exists a satisfiable complement-free subagenda Φ′ ⊆ Φ such
that each subset Φ′′ ⊆ Φ′ of size 2 is satisfiable. We din-
stinguish several cases: either (i) Φ′ = [Φ] = {ψ1, ψ2, ψ3},
or (ii) the above case does not hold and Φ′ contains ψ1, or
(iii) the above two cases do not hold.

We show that in case (i) we can conclude that (ϕ1, ϕ2) ∈
SAT-UNSAT. By assumption, every subset Φ′′ ⊆ Φ of
size 2 is satisfiable. Therefore, we can conclude that the
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formula ψ1 is satisfiable. Hence, ϕ1 is satisfiable. Next, we
show that ϕ2 is unsatisfiable. We proceed indirectly, and
we assume that there exists some assignment α : Var(ϕ2)→
{0, 1} that satisfies ϕ2. We construct a satisfying assign-
ment α′ : Var(Φ)→ {0, 1} for Φ, which leads to a contradic-
tion. We let α′ coincide with α on the variables in Var(ϕ2).
Moreover, we know that there exists some satisfying assign-
ment β : Var(ϕ1)→ {0, 1} for ϕ1. We let α′ coincide with β
on the variables in Var(ϕ1). Finally, we let α′(x) = 1 for
each x ∈ {r1, r2, r3, p1, p2}. Clearly, α′ satisfies all formulas
in Φ then. This leads to a contradiction with the fact that Φ
is unsatisfiable, and therefore we can conclude that ϕ2 is un-
satisfiable.

Next, we show that case (ii) cannot occur. We know
that ψ1 ∈ Φ′, and that each subset Φ′′ ⊆ Φ of size 2 is sat-
isfiable. Therefore, we know that ϕ1 is satisfiable. Let β :
Var(ϕ1)→ {0, 1} be a satisfying assignment for ϕ1. We ex-
tend the assignment β to an assignment β′ : Var(Φ)→ {0, 1}
that satisfies Φ′. We let β′(r1) = β′(p1) = 1. If ψ2 ∈ Φ,
we let β′(r2) = β′(p2) = 1; otherwise, if ¬ψ2 ∈ Φ, we
let β′(r2) = 0. If ψ3 ∈ Φ, we let β′(r3) = 1 and β′(p2) = 0;
otherwise, if ¬ψ3 ∈ Φ, we let β′(r3) = 0. On the other vari-
ables, we let β′ be defined arbitrarily. Since not both ψ2 ∈ Φ
and ψ3 ∈ Φ, we know that β′ is well-defined. It is easy to
verify that β′ satisfies Φ′, which is a contradiction with our
assumption that Φ′ is unsatisfiable. From this we can con-
clude that case (ii) cannot occur.

Finally, we show that case (iii) cannot occur either. We
construct an assignment β : Var(Φ) → {0, 1} that satis-
fies Φ′. We know that ¬ψ1 ∈ Φ′. Let β(r1) = β(p1) = 0.
If ψ2 ∈ Φ′, we let β(r2) = β(p2) = 1; otherwise, if ¬ψ2 ∈ Φ′,
we let β(r2) = 0; If ψ3 ∈ Φ′, we let β(r3) = 1; otherwise,
if ¬ψ3 ∈ Φ′, we let β(r3) = 0. It is easy to verify that β satis-
fies Ψ, which is a contradiction with our assumption that Φ′

is unsatisfiable. From this we can conclude that case (iii)
cannot occur.

(⇐) Conversely, assume that ϕ1 is satisfiable and that ϕ2

is unsatisfiable. Then consider the complement-free sub-
agenda Φ′ ⊆ Φ given by Φ′ = [Φ] = {ψ1, ψ2, ψ3}.
Since ψ1, ψ2 |= p1∧p2 and ϕ2 is unsatisfiable, we get that Φ′

is unsatisfiable. However, since ϕ1 is satisfiable, we get that
each subset of Φ′ of size 2 is satisfiable. Therefore, Φ does
not satisfy the MP.

Proposition 4. Maj-AS(ag.-size) is FPTNP[few]-hard.

Proof. We give an fpt-reduction from BH(level)-
Sat to co-Maj-AS(ag.-size). For the sake of simplic-
ity, we assume that k ≥ 2 is even. Let the se-
quence (ϕ1, . . . , ϕk) specify an instance of BH(level)-Sat.
We know that we can construct in polynomial time a se-
quence of formulas (ϕ1, ψ1, . . . , ϕ`, ψ`), where ` = k/2, such
that (ϕ1, . . . , ϕk) ∈ BHk-Sat if and only if for some 1 ≤ i ≤
` it holds that (χi, ψi) ∈ BH2-Sat = SAT-UNSAT [12].

Now, for each 1 ≤ i ≤ `, we can use the reduction in
the proof of Lemma 4 to construct in polynomial time an
agenda Φi of constant size such that Φi does not satisfy
the median property if and only if (χi, ψi) ∈ SAT-UNSAT.
Moreover, we can ensure that the agendas Φi are variable-
disjoint. We now construct the agenda Φ =

⋃
1≤i≤` Φi. We

claim that Φ does not satisfy the median property if and
only if (χi, ψi) ∈ SAT-UNSAT for some 1 ≤ i ≤ `. We
know this latter condition holds if and only if our original
instance (ϕ1, . . . , ϕk) ∈ BHk-Sat. Moreover, since |Φ| =

O(k), we obtain a correct fpt-reduction.
Finally, we prove our claim that Φ does not satisfy the

median property if and only if (χi, ψi) ∈ SAT-UNSAT for
some 1 ≤ i ≤ `.

Assume that Φ does not satisfy the median property.
Then there exists a subset Φ′ ⊆ Φ that is unsatisfiable such
that each Φ′′ ⊆ Φ′ of size 2 is satisfiable. Moreover, we can
assume Φ′ to be minimal with this property. Since Φ is par-
titioned into the variable disjoint subsets Φi, and since Φ′

is minimal, we know that Φ′ ⊆ Φi, for some 1 ≤ i ≤ `.
Then Φi does not satisfy the median property, from which
we can conclude that (χi, ψi) ∈ SAT-UNSAT. Conversely,
assume that (χi, ψi) ∈ SAT-UNSAT for some 1 ≤ i ≤ `.
Then by construction of Φi, we know that Φi does not sat-
isfy the median property. Therefore, since Φi ⊆ Φ, we know
that Φ does not satisfy the median property.

We will now use the FPTNP[few]-hardness of Maj-AS-
(ag.-size), to obtain lower bounds on the number of SAT
calls needed to solve Maj-AS(ag.-size).

Proposition 5. Let P be any FPTNP[few]-hard prob-
lem. Then P is not solvable by an fpt-algorithm that uses
only O(1) many SAT calls, unless the PH collapses.

Proof. Assume that P is solvable by an fpt-algorithm
that uses only c many SAT calls, where c is a constant. We
will show that the PH collapses. Since P is FPTNP[few]-
hard, we know that there exists an fpt-reduction R1 from
BH(level)-Sat to P . Then, by (the proof of) Lemma 3,
there exists an fpt-reduction R2 from P to BH(level)-Sat,
that reduces any instance (x′, k′) of P to an instance (x′′, k′′)
of BH(level)-Sat, where k′′ ≤ 2c+1. Then, the composi-
tion R of R1 and R2 is an fpt-reduction from BH(level)-
Sat to itself such that any instance (x, k) of BH(level)-Sat
is reduced to an equivalent instance (x′′, k′′) of BH(level)-
Sat, where k′′ ≤ 2c+1. We can straightforwardly modify
this reduction to always produce an instance (x′′, 2c+1) of
BH(level)-Sat, by adding trivial instances of SAT to the
sequence x′′.

We now show that the Boolean Hierarchy collapses to
the m-th level, where m = 2c+1. Let y be an instance
of BHm+1-Sat. We can then see the reduction R as a
polynomial-time reduction from BHm+1-Sat to BHm-Sat:
the fpt-reduction R runs in time f(k) · nO(1), and since k =
m+1 is a constant, the factor f(k) is constant. From this we
can conclude that BHm = BHm+1. Thus, the BH collapses,
and consequently the PH collapses [13, 29].

The above lower bound holds for any FPTNP[few]-hard
problem. We can improve this bound for the particular case
of Maj-AS(ag.-size).

Theorem 2. Deciding whether (x, k) ∈ Maj-AS(ag.-
size) is not solvable by an fpt-algorithm that uses o(log k)
many SAT calls, unless the PH collapses.

Proof. Assume that Maj-AS(ag.-size) is solvable by an
fpt-algorithm that uses h(k) = o(log k) many SAT calls. We
show that the BH collapses, and thus that consequently, the
PH collapses. By Proposition 4, we know that BH(level)-
Sat can be fpt-reduced to the problem Maj-AS(ag.-size) in
such a way that the parameter value k increases at most lin-
early to h′(k) = O(k). By (the proof of) Lemma 3, we know
that Maj-AS(ag.-size) can be fpt-reduced to BH(level)-Sat
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in such a way that the resulting parameter value k′ is
bounded by a function h′′(k) = 2O(k), where k is the original
parameter value. We can now combine these fpt-reductions
to obtain a polynomial-time reduction that witnesses the
collapse of the BH. We know that there exists some inte-
ger ` such that h′′(h′(h(`))) = `′ < `. Applying the com-
posing the fpt-reductions gives us a polynomial-time reduc-
tion from the problem BH`-Sat to the problem BH`′ -Sat.
Since `′ < `, this shows that the BH collapses to the `′-th
level. Since a collapse of the BH implies a collapse of the
PH [29, 13], the result follows.

3.2 Bounded Treewidth
Another type of structure that the agenda Φ can exhibit is
the way in which the formulas ϕ ∈ Φ interact with each
other. As an extreme example, consider the case of an
agenda Φ with [Φ] = {ϕ1, . . . , ϕm}, and where all formu-
las ϕi are variable-disjoint. Clearly, any minimal inconsis-
tent subset of this agenda has size 1, and thus this agenda is
safe for the majority rule. In less extreme cases, the formulas
of the agenda are allowed to interact (i.e., to have variables
in common), but their interaction is structured in a particu-
lar way. The type of structured interaction that we consider
in this section is the ‘tree-likeness’ of various graphs rep-
resenting the interaction between formulas of the agenda,
captured by the treewidth of these graphs. Treewidth is
commonly used in the parameterized complexity analysis
of hard problems in various fields, such as graph theory,
Boolean satisfiability, constraint satisfaction, and Knowl-
edge Representation and Reasoning. Recently, it has also
been used to obtain fpt-reductions to SAT [25]. Intuitively,
one could think of agendas of bounded treewidth as agendas
where the propositional variables are divided into a number
of (thematic) groups, where the interaction between such
groups is tree-like. As an example, one could consider an
agenda occurring in a court case, where propositions are
grouped according to various claims made by the plaintiff,
and where these claims support each other in a tree-shaped
structure.

Let Φ be an agenda with [Φ] = {ϕ1, . . . , ϕm}, where
each ϕi is a CNF formula. We define the following graphs
that are intended to capture the interaction between for-
mulas in Φ. The formula primal graph Gfp(Φ) of Φ has
as vertices the variables Var(Φ) occurring in the agenda,
and two variables are connected by an edge if there exists
a formula ϕi in which they both occur. The formula inci-
dence graph Gfi(Φ) of Φ is a bipartite graph whose vertices
consist of (1) the variables Var(Φ) occurring in the agenda
and (2) the formulas ϕi ∈ Φ. A variable x ∈ Var(Φ) is
connected by an edge with a formula ϕi ∈ Φ if x occurs
in ϕi, i.e., x ∈ Var(ϕi). The clausal primal graph Gfp(Φ)
of Φ has as vertices the variables Var(Φ) occurring in the
agenda, and two variables are connected by an edge if there
exists a formula ϕi and a clause c ∈ ϕi in which they both
occur. The clausal incidence graph Gfi(Φ) of Φ is a bipar-
tite graph whose vertices consist of (1) the variables Var(Φ)
occurring in the agenda and (2) the clauses c occurring in
formulas ϕi ∈ Φ. A variable x ∈ Var(Φ) is connected by an
edge with a clause c of the formula ϕi ∈ Φ if x occurs in c,
i.e., x ∈ Var(c).

Now, we consider the following parameterizations of the
problem Maj-AS. The problem Maj-AS(f-tw) has as pa-

rameter the treewidth of the formula primal graph (the for-
mula primal treewidth). The problem Maj-AS(f-tw∗) has
as parameter the treewidth of the formula incidence graph
(the formula incidence treewidth). Similarly, the parameter-
ized problems Maj-AS(c-tw) and Maj-AS(c-tw∗) have as
parameters the treewidth of the clausal primal graph and
the clausal incidence graph, respectively.

We show that the presence of tree-like structure in only
one of these four graphs leads to a reduction in the complex-
ity of the problem Maj-AS. When parameterized by the
formula primal treewidth, the problem is fixed-parameter
tractable, and in the other cases, the problem is para-ΠP

2 -
complete.

Proposition 6. Maj-AS(f-tw) is fixed-parameter
tractable.

Proof. We will use Courcelle’s Theorem, which states
that checking whether a relational structure A satisfies a
monadic second-order logic (MSOL) sentence ϕ is fixed-
parameter tractable, parameterized by the treewidth of the
Gaifman graph of A plus the size of ϕ (cf. [21]). The Gaif-
man graph of A has as vertices all elements in the universe
of A, and two elements a, b are connected with an edge if
they occur together in some tuple in the interpretation RA

of some relation symbol R.
Let Φ be an instance of Maj-AS, where [Φ] =
{ϕ1, . . . , ϕm} and each ϕi is a CNF formula, that has for-
mula primal treewidth k. That is, there is a tree decompo-
sition of the formula primal graph of Φ of width k + 1. We
construct a relational structure A = (A, ·A) and a (fixed)
MSOL sentence ϕ, such that A |= ϕ if and only if Φ ∈Maj-
AS. We let A = Φ ∪ Var(Φ) ∪ { c ∈ ϕi : 1 ≤ i ≤ m }.
Moreover, we introduce unary relation symbols F, V,C and
binary relation symbols I+, I−, D. We let:

FA = Φ;

V A = Var(Φ);

CA = { c ∈ ϕi : 1 ≤ i ≤ m };
(I+)A = { (c, x) : c ∈ ϕi, 1 ≤ i ≤ m,x occurs pos. in c };
(I−)A = { (c, x) : c ∈ ϕi, 1 ≤ i ≤ m,x occurs neg. in c };

D = { (ϕi, c) : 1 ≤ i ≤ m, c ∈ ϕi }.

We can transform a tree decomposition T of width k+1 for
the formula primal graph of Φ into a tree decomposition T ′

of the Gaifman graph of A of width k + 3. Because all
variables occurring in any formula ϕi ∈ Φ form a clique
in the formula primal graph, they must occur in some bag
of T , we can extend this bag to a subtree where all edges
between ϕi, all clauses c ∈ ϕi and the variables in Var(ϕi)
are covered as well. This can be done in such a way that T ′

has width k + 3.
We then use the following MSOL sentence ϕ (that does
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not depend on Φ):

ϕ = ¬∃P1 ⊆ F.∃P2 ⊆ F.
[∀p ∈ P1.¬P2(p) ∧ (|P1 ∪ P2| ≥ 3) ∧
¬ϕsat(P1, P2) ∧ ϕmin(P1, P2);

ϕsat(P1, P2) = ∃S.[∀p ∈ P1.∀c.[C(c) ∧D(p, c)]→
[∃s.(S(s) ∧ I+(c, s)) ∨ (¬S(s) ∧ I−(c, s))]] ∧
[∀p ∈ P2.∃c.[C(c) ∧D(p, c) ∧ ∀s.
(I+(c, s)→ ¬S(s)) ∧ (I−(c, s)→ S(s))]];

ϕmin(P1, P2) = ∀P ′1 ⊆ P1.∀P ′2 ⊆ P2.

((P ′1 ∪ P ′2) ( (P1 ∪ P2))→ ϕsat(P
′
1, P

′
2).

Here we use the abbreviation ∃P ⊆ F.ψ to denote the for-
mula ∃P.∀p(P (p) → F (p)) ∧ ψ. Moreover, we also use the
abbreviation (|P | ≥ q) and (P ( P ′) with the usual mean-
ing.

Intuitively, the second-order quantification ∃P1 guesses a
subset of [Φ] and the second-order quantification ∃P2 guesses
a subset of {¬ϕ : ϕ ∈ [Φ] }, such that P1 ∪ P2 is a min-
imally unsatisfiable subset of Φ of cardinality ≥ 3. The
formula ¬ϕsat(P1, P2) enforces that P1 ∪ P2 is unsatisfiable,
and the formula ϕmin encodes that it is minimally so, i.e.,
that all strict subsets of P1 ∪ P2 are satisfiable.

It is readily verified that A |= ϕ if and only if Φ ∈ Maj-
AS. Therefore, since the size of ϕ is constant and A has
treewidth at most k+ 2, we get that Maj-AS(f-tw) is fixed-
parameter tractable by Courcelle’s Theorem.

Proposition 7. Maj-AS(c-tw) is para-ΠP
2 -complete.

Proof. We show para-ΠP
2 -hardness by showing that the

problem is already ΠP
2 -hard for constant values of the param-

eter. We do so by giving a reduction from ∀∃-Sat(3CNF).
This reduction is a modified variant of a reduction given by
Endriss et al. [19, Lemma 11]. Let ϕ = ∀X.∃Y.ψ be an in-
stance of ∀∃-Sat, where ψ = c1 ∧ · · · ∧ cm is in 3CNF, and
where X = {x1, . . . , xm}. Moreover, for each 1 ≤ i ≤ m,
let ci consist of the literals li1, li2 and li3. We may assume
without loss of generality that none of the ci is equivalent
to a unit clause.

We construct the agenda Φ as follows. We introduce fresh
variables zij for 1 ≤ i ≤ m and 1 ≤ j ≤ 3. Let Z denote the

set of all such variables zij . Then, we let [Φ] = {x1, . . . , xn}∪
{ (zi1 ∨ ¬li1) ∧ (zi2 ∨ ¬li2) ∧ (zi3 ∨ ¬li3) : 1 ≤ i ≤ m }. It is
straightforward to verify that the clausal primal graph of Φ
is a tree, and thus that Φ has clausal primal treewidth 1.
We show that Φ satisfies the median property if and only
if ϕ is true.

(⇒) Suppose that ϕ is false, i.e., there exists some α :
X → {0, 1} such that ∀Y.¬ψ[α] is true. Let L = {xi : 1 ≤
i ≤ n, α(xi) = 1 } ∪ {¬xi : 1 ≤ i ≤ n, α(xi) = 0 }. We know
that α is the unique assignment to the variables in X that
satisfies L. Now consider Φ′ = L ∪ {¬((zi1 ∨ ¬li1) ∧ (zi2 ∨
¬li2) ∧ (zi3 ∨ ¬li3)) : 1 ≤ i ≤ m }.

We firstly show that Φ′ is inconsistent. We proceed indi-
rectly and assume that Φ′ is consistent, i.e., there exists an
assignment β : Y ∪ Z → {0, 1} such that α ∪ β satisfies Φ′.
Then α ∪ β must satisfy each ci, since ¬((zi1 ∨ ¬li1) ∧ (zi2 ∨
¬li2)∧(zi3∨¬li3)) |= ci. Therefore, β satisfies ψ[α], which con-
tradicts our assumption that ∀Y.¬ψ[α] is true. Therefore,
we can conclude that Φ′ is inconsistent.

Next, we show that each subset Φ′′ ⊆ Φ′ of size 2 is con-
sistent. Let Φ′′ ⊆ Φ′ be an arbitrary subset of size 2. We
distinguish three cases: either (i) Φ′′ = {li, lj} for some 1 ≤
i < j ≤ n; (ii) Φ′′ = {li,¬((zj1∨¬lj1)∧(zj2∨¬lj2)∧(zj3∨¬lj3))}
for some 1 ≤ i ≤ n and some 1 ≤ j ≤ m; or (iii) Φ′′ =
{¬((zi1 ∨ ¬li1) ∧ (zi2 ∨ ¬li2) ∧ (zi3 ∨ ¬li3)),¬((zj1 ∨ ¬lj1) ∧ (zj2 ∨
¬lj2) ∧ (zj3 ∨ ¬lj3))} for some 1 ≤ i < j ≤ m. In case (i),
clearly Φ′′ is consistent. In case (ii) and (iii), Φ′′ is consis-
tent because ci and cj are not equivalent to unit clauses.

(⇐) Conversely, suppose that Φ does not satisfy the me-
dian property, i.e., there exists an inconsistent subset Φ′ ⊆ Φ
that itself does not contain an inconsistent subset of size 2.
We show that ϕ is false. Firstly, we show that Ψ′ =
Φ′\{ (zi1∨¬li1)∧ (zi2∨¬li2)∧ (zi3∨¬li3) : 1 ≤ i ≤ m } is incon-
sistent. We proceed indirectly, and assume that Ψ′ is con-
sistent, i.e., there exists an assignment γ : Var(Ψ′)→ {0, 1}
such that γ satisfies Ψ′. Now let Z′ = { zi1, zi2, zi3 : 1 ≤
i ≤ m, (zi1 ∨ ¬li1) ∧ (zi2 ∨ ¬li2) ∧ (zi3 ∨ ¬li3) ∈ Φ′ } and
let γ′ : Z′ → {0, 1} be defined by letting γ′(z) = 1 for
all z ∈ Z′. Since Ψ′ contains no negated pairs of formulas,
we know that Z′ ∩Var(Ψ′) = ∅. Then the assignment γ ∪ γ′
satisfies Φ′, since γ satisfies all ψ ∈ Ψ′ and γ′ satisfies
all ϕ ∈ Φ′\Ψ′. This is a contradiction with our assump-
tion that Φ′ is inconsistent, so we can conclude that Ψ′ is
inconsistent.

Now let the assignment α : X → {0, 1} be defined as
follows. For each x ∈ X, we let α(x) = 1 if x ∈ Ψ′, we
let α(x) = 0 if ¬x ∈ Ψ′, and we (arbitrarily) define α(x) = 1
otherwise. We now show that ¬∃Y.ψ[α] is true. We pro-
ceed indirectly, and assume that there exists an assign-
ment β : Y → {0, 1} such that ψ[α ∪ β] is true. Con-
sider the assignment γ : Z → {0, 1} such that γ(z) = 0
for all z ∈ Z. We claim that the assignment α∪ β ∪ γ satis-
fies Ψ′. Let χ ∈ Ψ′ be an arbitrary formula. We distinguish
two cases: either (i) χ ∈ {xi,¬xi} for some 1 ≤ i ≤ n;
or (ii) χ = ¬((zi1 ∨ ¬li1) ∧ (zi2 ∨ ¬li2) ∧ (zi3 ∨ ¬li3)) for
some 1 ≤ i ≤ m. In case (i), we know that α satisfies χ.
For case (ii), we know that α ∪ β satisfies ci, since α ∪ β
satisfies ψ. Moreover, we know that γ sets each zij to 0.
Therefore, we know that α ∪ β ∪ γ satisfies χ. This is a
contradiction with our previous conclusion that Ψ′ is incon-
sistent, so we can conclude that ¬∃Y.ψ[α] is true. From this,
we know that ∀X.∃Y.ψ is false.

Proposition 8. Maj-AS(f-tw∗) is para-ΠP
2 -complete.

Proof. We observe that the ΠP
2 -hardness proof of Maj-

AS given by Endriss, Grandi and Porello [19, Lem-
mas 22 and 24] shows that the problem Maj-AS is already
ΠP

2 -hard for agendas with formula incidence treewidth 1.
This implies that Maj-AS(f-tw∗) is para-ΠP

2 -hard.

Proposition 9. Maj-AS(c-tw∗) is para-ΠP
2 -complete.

Proof. The agenda Φ used in the construction in the
proof of Proposition 7 also has clausal incidence treewidth 1.
Therefore, para-ΠP

2 -hardness also holds for this case.

3.3 Small Counterexamples
Another commonly identified “hidden” structure in problem
instances is a restriction on the size of counterexamples.
Many computational problems ask for the non-existence of
a particular counterexample, and many of such problems
show a decrease in complexity if attention can be restricted
to counterexamples of a particular bounded size only.
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One prominent example of a decrease in complexity in-
duced by a restriction on the size of counterexamples is the
method of Bounded Model Checking [6, 7]. In a nutshell,
model checking is the problem of verifying whether a model
of a system meets a given specification. This problem finds
applications in a myriad of domains. A commonly used for-
malization is the problem of deciding whether a given tran-
sition systems satisfies a specification given in the form of
a linear-time temporal logic (LTL) formula. This variant of
the problem is PSPACE-complete (cf. [1, 14]). The prob-
lem is equivalent to deciding whether there exists no path
(potentially of exponential length) in the transition system
that serves as a counterexample to the specification. If the
size of such counterexamples to consider is bounded (by an
upper bound given in the input), the complexity of the prob-
lem decreases to NP [6, 7]. This result has been successfully
applied in practice, by implementing algorithms that itera-
tively search for counterexamples of increasing size (cf. [6]).
In the worst-case, there can be a counterexample of expo-
nential size, but in many instances occurring in practice,
small counterexamples can be found efficiently this way.

A natural question to investigate is whether we could ap-
ply a similar approach to deciding whether an agenda is safe
for the majority rule. In order to do so, we would like to
get an improvement in the computational complexity for the
case where the size of counterexamples is bounded. There-
fore, we consider the following parameterized variant Maj-
AS(c.e.-size) of the problem Maj-AS. The problem consists
of deciding, given an agenda Φ, and an integer k, whether
every inconsistent subset Φ′ of Φ of size k has itself an in-
consistent subset of size at most 2? The parameter is k.

Assuming that counterexamples to the MP are small in
practice corresponds to the supposition that whenever sev-
eral statements together imply another statement, this lat-
ter statement is already implied by a small number of the
former statements. In other words, the interaction between
statements is, in a sense, local.

This problem is also related to agenda safety for superma-
jority rules. A supermajority rule accepts any proposition
in the agenda if and only if a certain supermajority of the
individuals, specified by a threshold q ∈ ( 1

2
, 1], accepts the

proposition. Such rules always produce consistent outcomes
if the threshold is greater than k−1

k
, where k is the size of

the largest minimally inconsistent subagenda (cf. [15, 30]).
Unfortunately, it turns out that this parameterization

does not lead to a significant (practically exploitable) im-
provement in the computational complexity. In order to
prove this, we will need the following technical lemma.

Lemma 5. Let (ϕ, k) be an instance of ∀k∃∗-WSat.
In polynomial time, we can construct an equivalent in-
stance (ϕ′, k) of ∀k∃∗-WSat such that: (1) for every assign-
ment α : X → {0, 1} of weight m > k, the formula ∃Y.ψ[α]
is false; and (2) for every assignment α : X → {0, 1} of
weigth m < k, the formula ∃Y.ψ[α] is true.

Proof. Let (ϕ, k) be an instance of ∀k∃∗-WSat,
with ϕ = ∀X.∃Y.ψ. We construct the instance ϕ′ =
∀X.∃Y ∪ Z.ψ′ as follows. We define the set Z of vari-
ables by letting Z = { zx,i : x ∈ X, 1 ≤ i ≤ k }.
Intuitively, these variables keep track of how many
variables in X are set to true. We define the for-
mula ψ′ = ψZproper ∧ (ψZfew ∨ ψ), where ψZproper =∧
x∈X

∨
1≤i≤k zx,i ∧ ∧

1≤i≤k
∧
x,x′∈X,x6=x′(¬zx,i ∨

¬zx′,i) ∧
∧
x∈X

∧
1≤i<i′≤k(¬zx,i ∨ ¬zx,i′), and ψZfew =∨

1≤i≤k
∧
x∈X ¬zx,i. The formula ψZproper enforces that for

any x ∈ X that is set to true, there must be some 1 ≤ i ≤ k
such that zx,i is set to true as well. Moreover, it enforces
that for each x ∈ X there is at most one 1 ≤ i ≤ k such
that zx,i is true, and for each 1 ≤ i ≤ k, there is at most
one x ∈ X such that zx,i is true. The formula ψZfew is true
if and only if there exists some 1 ≤ i ≤ k such that zx,i is
false for all x ∈ X.

It is now straightforward to verify that for each assign-
ment α : X → {0, 1} it holds that (i) if α has weight k,
then ∃Y ∪Z.ψ′[α] is true if and only if ∃Y.ψ[α] is true, (ii) if α
has weight less than k, then ∃Y ∪ Z.ψ′[α] is always true,
and (iii) if α has weight more than k, then ∃Y ∪ Z.ψ′[α] is
never true.

Theorem 3. Maj-AS(c.e.-size) is ∀k∃∗-hard.

Proof. In order to show ∀k∃∗-hardness, we provide
an fpt-reduction from ∀k∃∗-WSat to Maj-AS(c.e.-size).
Let (ϕ, k) be an instance of ∀k∃∗-WSat, where ϕ =
∀X.∃Y.ψ is a quantified Boolean formula, X = {x1, . . . , xn},
and k is a positive integer. We may assume without
loss of generality that ϕ satisfies properties (1) and (2)
described in Lemma 5. We define the agenda Φ =
{x1,¬x1, . . . , xn,¬xn, (ψ ∧ z),¬(ψ ∧ z)}, where z is a fresh
variable.

We show that for all assignments α : X → {0, 1} of
weight k it is the case that ∃Y.ψ[α] is true if and only if
every inconsistent subset Φ′ of Φ of size k + 1 has itself an
inconsistent subset of size 2.

(⇒) Assume that there exists an inconsistent subset Φ′

of Φ of size k + 1 that has itself no inconsistent subset of
size 2. It is straightforward to see that for no ϕ ∈ Φ, Φ′

contains both ϕ and ∼ϕ. If Φ′ does not contain (ψ ∧ z), we
can easily satisfy Φ′ by setting z to false and satisfying all
literals in Φ′. Therefore, (ψ ∧ z) ∈ Φ′. We show that Φ′

contains exactly k positive literals xj for some 1 ≤ j ≤ m.
We proceed indirectly, and assume the contrary, i.e., that Φ′

contains at most k−1 many positive literals xj for some 1 ≤
j ≤ m. Let L = Φ′ ∩X. Consider the assignment α : X →
{0, 1} such that α(x) = 1 if and only if x ∈ Φ. Clearly, α
has weight strictly less than k. Therefore, we know that
there exists an assignment β : Y → {0, 1} such that α ∪ β
satisfies ψ. Additionally, consider the assignment γ : {z} →
{0, 1} such that γ(z) = 1. Then α∪β ∪ γ satisfies Φ′, which
contradicts our assumption that Φ′ is inconsistent. From
this we can conclude that |Φ′ ∩X| = k.

Now, again consider the assignment α : X → {0, 1}
such that α(x) = 1 if and only if x ∈ Φ. Clearly, α has
weight k. We show that the formula ∃Y.ψ[α] is false. We
proceed indirectly, and assume that there exists an assign-
ment β : Y → {0, 1} such that α ∪ β satisfies ψ. Consider
the assignment γ : {z} → {0, 1} such that γ(z) = 1. It is
straightforward to verify that α ∪ β ∪ γ satisfies Φ′, which
contradicts our assumption that Φ′ is inconsistent. There-
fore, we conclude that ∃Y.ψ[α] is false, and thus that it is not
the case that for all assignments α : X → {0, 1} of weight k
it is the case that ∃Y.ψ[α] is true.

(⇐) Assume that there exists an assignment α : X →
{0, 1} of weight k such that ¬∃Y.ψ[α] is true. Let L =
{xi : 1 ≤ i ≤ n, α(xi) = 1 }. Consider the sub-
agenda Φ′ = L ∪ {(ψ ∧ z)}. We show that Φ′ is incon-
sistent. We proceed indirectly, and assume that there exists
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an assignment β : X ∪ Y ∪ {z} → {0, 1} that satisfies Φ′.
Clearly, β(xi) = 1 for all xi ∈ L. We show that β(x) = 0 for
all x ∈ X\L. We proceed indirectly, and assume the con-
trary, i.e., β(x) = 1 for some x ∈ X\L. Then the restriction
of β to the variables in X has weight m > k. Therefore,
since for all assignments β′ : X → {0, 1 } of weight strictly
larger than k the formula ∃Y.ψ[β′] is false, we know that β
does not satisfy ψ. From this we can conclude that β(x) = 0
for all x ∈ X\L. We then know that the restriction β|X of β
to the variables in X has weigth k. Also, since (ψ ∧ z) ∈ Φ,
we know that β satisfies ψ. This is a contradiction with our
assumption that ¬∃Y.ψ[β|X ] is true. Therefore, we know
that β cannot exist, and thus that Φ′ is inconsistent.

We now show that each subset Φ′′ of Φ′ of size 2 is con-
sistent. Let Φ′′ ⊆ Φ′ be an arbitrary subset of size 2.
We distinguish two cases: either (i) Φ′′ = {xi, xj} for
some 1 ≤ i < j ≤ n, or (ii) Φ′′ = {xi, (ψ ∧ z)} for
some 1 ≤ i ≤ n. In case (i), clearly Φ′′ is consistent. In
case (ii), we get that Φ′′ is consistent by the fact that for
every assignment α : X → {0, 1} of weight m < k the for-
mula ∃Y.ψ[α] is true. This completes our proof that Φ′ does
not satisfy the median property.

Intuitively, restricting attention to counterexamples of
size k, still leaves a search space of O(nk) many possible
counterexamples (where n is the input size). Moreover, since
there is no restriction on the agenda, searching this space for
a counterexample (or verifying that no such counterexample
exists) is computationally hard.

4. CONCLUSION
Our main aim, in this paper, was to argue that the complex-
ity analysis of problems in computational social choice that
are ‘beyond NP’ benefits from a parameterized complexity
perspective, aiming at obtaining fpt-reductions to SAT in
addition to fixed-parameter tractability results. As a con-
crete case study to kick-off this line of investigation, we pro-
vided a parameterized complexity analysis of the problem
of agenda safety for the majority rule in judgment aggre-
gation. We identified several positive cases, in addition to
several negative cases. In several positive cases, the safety
of the agenda can be decided by reducing the problem to
a single SAT instance. In another positive case, we can
decide whether the agenda is safe for the majority rule in
fpt-time using a small number of SAT calls. Moreover, for
this case, we identified lower bounds on the number of SAT
calls needed to solve the problem in fpt-time.

We hope that the initial results obtained in this paper
prove to be the beginning of a structured parameterized
complexity investigation of problems in the field of com-
putational social choice that are located at higher levels of
the PH. One concrete direction for further research would
be to explicitly develop fpt-reductions to SAT for the cases
where this is possible, and to optimize them for practical
use. In addition, it would be interesting to study the pa-
rameterized complexity of the problem of agenda safety for
other judgment aggregation procedures.
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