Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TU Wien, Vienna, Austria

ac I I I [ALGORITHMS AND
COMPLEXITY GROUP

Technical Report AC-TR-16-003
April 2016

Positive and Negative
Results for Parameterized
Compilability

Simone Bova, Ronald de Haan, Neha Lodha,
and Stefan Szeider

www.ac.tuwien.ac.at/tr

Technical Report AC-TR-16-003

Positive and Negative Results for Parameterized Compilability

Simone Bova, Ronald de Haan, Neha Lodha, Stefan Szeider
Algorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract

Most relevant computational tasks are not polynomial-size compilable, even though they

are compiled rather efficiently in practice. Parameterized compilability offers a framework
to narrow this gap between theoretical incompilability and practical compilation by relaxing
the size bound posed on compilations.
We study various computational problems (related to clause entailment, the classical prob-
lem of checking whether a CNF formula entails a clause) in the framework of parameterized
compilability. We establish several positive and negative results. On the positive side we
show, for instance, that clause entailment is fixed-parameter compilable parameterized by
the minimum incidence treewidth over all equivalent CNF formulas. On the negative side
we show, for instance, that the size of any compilation of the clause entailment problem
restricted to clauses of bounded size has an exponential dependency on the size bound
posed on the clauses.

1 Introduction

Most reasoning tasks in artificial intelligence involve querying some knowledge base. These tasks are
usually computationally intractable. The idea of knowledge compilation is to deal with this intractability
using the fact that, in many applicative scenarios, the knowledge base is known in advance and is queried
multiple times. The knowledge base can therefore be compiled (that is, preprocessed in an offline, typically
computationally hard phase) to obtain an equivalent knowledge base verbose enough to support upcoming
queries in polynomial time. To support practical use of this method the compilation must be succinct,
which is typically enforced by asking for the compiled knowledge to have polynomial size in the size of
the original knowledge base.

Unfortunately, most relevant reasoning tasks do not admit a compilation having polynomial size
in the worst case. Selman and Kautz [24] first observed that a fundamental such task is the clause
entailment problem (deciding whether a CNF formula entails a clause), a result that started the theoretical
investigation of the compilability of intractable problems, systematized by Cadoli et al. [3] within classical
compilability theory. At the same time, researchers have developed many compilation algorithms that can
be used to transform CNF formulas into different representations in order to facilitate entailment queries
to be performed tractably. These compilation algorithms produce exponential-size results in the worst
case, but can be used efficiently in practice [6, 8, 14, 17, 21, 22].

This discrepancy between theoretical incompilability and practical algorithms leads to a gap between
theory and practice. Chen [4] proposed and developed the idea of using parameterized complexity theory
to narrow this gap, an idea recently revisited by De Haan [13]. In parameterized complexity one measures
the instances of a computational problem not only by their size but also by a parameter, and aims for
fized-parameter tractable algorithms, whose running time depends polynomially on the size and arbitrarily
(say, exponentially) on the parameter [9, 10, 12, 20]. Intuitively, a fixed-parameter tractable running time
is computationally feasible for small parameter values.

Fized-parameter compilability naturally arises in this setting as the relaxation of polynomial-size
compilability obtained by allowing an arbitrary dependence on the parameter in the compilation size;
it presents itself as the central notion of a parameterized compilability theory, which generalizes both
classical compilability and parameterized complexity.! Parameters can be ordered with respect to their

IRecently, the combination of knowledge compilation and parameterized complexity has been studied from a different
angle [5]. Unlike this paper and Chen’s earlier work [4], where the notion of compilability is extended by means of a
parameterized perspective, Chen’s recent work [5] investigates the (classical) theory of compilability using parameterized
complexity tools.

Technical Report AC-TR-16-003

generality in terms of the dominance relation, such that any positive fixed-parameter compilability result
with respect to one parameter extends to any parameter that it dominates, and negative results extend
in the other direction.

Contribution. In this paper, we investigate the potential and limits of parameterized compilability by
establishing parameterized compilation and parameterized incompilability results for several compilation
problems related to clause entailment. Under standard assumptions in complexity theory, not only is
clause entailment not polynomial-time tractable but, as already mentioned, it also does not admit a
polynomial-size compilation [24].

On the other hand, clause entailment is (unsurprisingly) fixed-parameter compilable under basic
parameterizations where the satisfiability problem is fixed-parameter tractable, for instance incidence
treewidth. We therefore consider parameterizations of CNF formulas for which the satisfiability problem
is not fixed-parameter tractable (under standard assumptions in complexity theory, see Proposition 3). In
particular, we consider incidence treewidth modulo equivalence and incidence treewidth modulo backbones,
the former strictly dominating the latter (which, in turn, strictly dominates incidence treewidth), Therefore
fixed-parameter compilability results for these (and alike) parameterizations effectively extend the realm
of feasibility indicated by polynomial-size compilability and fixed-parameter tractability for the clause
entailment problem.

Relative to the above two incidence treewidth measures, we obtain positive results of two types.

(1) We prove that clause entailment parameterized by incidence treewidth modulo equivalence is fixed-
parameter linear compilable (Theorem 1). Here we exploit an algorithm by Oztok and Darwiche
[21] that compiles CNF formulas into DNNFs (decomposable negation normal form, [7]) of fixed-
parameter tractable size with respect to incidence treewidth.

We also prove that this compilation result is optimal in the sense that clause entailment is not
fixed-parameter sublinear compilable under “natural parameterizations” (Proposition 4), including
incidence treewidth modulo equivalence.

(2) By the dominance relation, the previous fixed-parameter linear compilability result extends to the
parameter incidence treewidth modulo backbones (Corollary 2). The special interest of incidence
treewidth modulo backbones relies in its being, in contrast to incidence treewidth modulo equivalence,
practically measurable using existing tools.

We therefore can present CNF formulas, originating from practical settings, where the incidence
treewidth modulo backbones is significantly smaller than the incidence treewidth (Table 1), indicating
that the considered parameters are stronger not only in theory, but also in practice.

We contrast the above contributions on the positive side with two contributions on the negative side.

(3) Using the parameterized incompilability framework by Chen [4], we show that clause entailment
is not fixed-parameter compilable (a) when parameterized by the size of the smallest backdoor
to the fragment of CNF formulas whose satisfiability can be decided by pure literal elimination
(Proposition 5), nor (b) when parameterized by the weight of assignments for a notion of entailment
restricted to assignments of bounded weight (Proposition 6).

(4) Building forth on the recent work of De Haan [13], we show that the clause entailment problem is
not fixed-parameter compilable when parameterized by the size of clauses for which entailment is to
be checked (Proposition 7).

2 Parameterized Compilation

Throughout the paper, X denotes an alphabet (a nonempty finite set), 3* denotes the set of strings over
¥, and |z| denotes the length of 2 € ¥*. For technical reasons, we assume that ¥ contains a designated
symbol, O, called placeholder. We freely view pairs of strings (z,y) € £* x X* as represented by strings
in ¥* by a (reasonable) encoding.

Parameterized Problems. Let g: ¥* — ¥* be a partial function. We say that g is computable if there
is an algorithm A computing g for all = in the domain of g. We say that g is poly-time computable if A
runs in at most poly(|z|) time.2

2The behavior of A in terms of correctness and termination is arbitrary on instances € £* not in the domain of g.

Technical Report AC-TR-16-003

A parameterization is a computable function k: ¥* — N.3 Parameterizations are partially ordered
as follows: k' < k (in words, k dominates k') if and only if there exists a computable function g over
nonnegative integers such that k(z) < g(k'(z)) for all x € ¥*. We say that k strictly dominates k' if k
dominates k' and k' does not dominate k.

We say that g is fpt-time computable with respect to a parameterization k if there exist a computable
function f and a polynomial function p, both over nonnegative integers, and an algorithm A computing g
in time at most f(k(x))p(|z|), for all z € £* in the domain of g.

A (decision) problem is a language L C ¥*. An algorithm A (on input alphabet X) decides a problem
L if A computes the characteristic function of L. A problem L is polynomial-time decidable if the
characteristic function of L is poly-time computable. A parameterized problem is a pair (L, k) where
L C ¥* is a problem and k is a parameterization that is fpt-time computable with respect to itself. A
parameterized problem (L, k) is fized-parameter tractable with respect to the parameterization k if the
characteristic function of L is fpt-time computable with respect to k.

For convenience, we make the following technical assumptions on the considered problems. For every
problem L C ¥*, we assume that € L if and only if zs € L, for any s € {O}*; in words, we assume that
suffixing placeholders is irrelevant.

The assumption is justified by the observation that if the problem L', obtained by deleting placeholder
suffixes from strings in L, is decidable in time #(|z|) by an algorithm A’, then L is decidable in time
O(|zs|) + t(|z|) by an algorithm A that reads the input xs, deletes the placeholder suffix, and invokes A’
on z. Similarly, if L C ¥* x ¥*, we assume that (x,y) € L if and only if (xr,ys) € L, where r,s € {O}*.

Analogously, for every parameterized problem (L, k), we assume that € L if and only if zs € L,
where s € {O}*, and that k(xs) = k(z) for every s € {O}*. It is readily verified that if (L', k) is decidable
in time t(k(x))t'(Jz|), then (L, k) is decidable in time O(|zs|) + t(k(x))t'(Jz|).

Parameterized Compilation Problems. Throughout the paper, we refer to a problem C' consisting
of pairs, C C ¥* x ¥*, as a compilation problem; moreover, we view pairs (z,y) € X* x £* as instances of
a compilation problem, and call x and y, respectively, the offline and online instance.

A function c: ¥* — ¥* is poly-size if there exists a polynomial function p over nonnegative integers
such that |e(x)| < p(|z|) for all z € ¥*. A compilation problem C'is “compilable” in the classical sense if it
has a poly-size compilation (into a polynomial-time computable problem), that is, if there is a computable
function ¢: ¥* — ¥* (a compilation) and a polynomial-time computable problem L such that ¢ is poly-size
and (x,y) € C if and only if (¢(x),y) € L.

A parameterized compilation problem is a pair (C, k) where C is a compilation problem and k is a
parameterization that only depends on the offline instance, that is, k((z,y)) = k(z) for all (z,y) € &* x X.
A function c: ¥* — X* is called fpt-size with respect to a parameterization k if there exist a computable
function f and a polynomial function p, both over nonnegative integers, such that |c(x)| < f(k(z))p(|x|)
for all x € ¥X*. If p is a linear function, we call ¢ fpt-linear-size.

Fpt-Size Compilability. We are now ready to define the notion of a “compilable” problem in the
parameterized setting.

Definition 1. Let (C, k) be a parameterized compilation problem. We say that (C, k) is fpt-size compilable
if there exist a computable function c: ¥* — ¥* (a compilation) and a poly-time problem L such that c is
fpt-size with respect to k and (x,y) € C if and only if (c(z),y) € L.

Let (C, k) and (C, k") be parameterized compilation problems. It is readily verified that, if & dominates
k" and (C, k) has an fpt-size compilation, then so does (C, k').

In our formalization, both the classical and parameterized frameworks refer to the same notion
of compilation, and require an unparameterized, poly-time tractable problem in the online phase.
Nevertheless, allowing fpt-time in the online phase does not deliver additional computational power, in
the following sense.

Proposition 1. Let (C,k) be a parameterized compilation problem. Then (C,k) is fpt-size compilable
if and only if there exist an fpt-size compilation ¢, a fized-parameter tractable problem (L,k'), and a
computable function g such that, for all (x,y) € ¥* x X*, it holds that k' (c(x),y) < g(k(x)) and (x,y) € C
if and only if (c(x),y) € L.

31n [12], parameterizations are denoted by » instead of k; here, we reserve lowercase greek letters for formulas.

Technical Report AC-TR-16-003

Proof. The forward direction is clear. For the backward direction, note that there exist functions f and
h over nonnegative integers (without loss of generality, h is increasing) such that, for all (z,y) € ¥* x ¥*,
it holds that

|e(x)] < f(k(x))poly(|x)

and there exists an algorithm A deciding whether (¢(x),y) is in L in time at most

h(K' (c(z),y))poly(|(c(x), y)]);

hence, putting b’ = ho g, A decides (¢(z),y) € L in time at most

W' (k(x))poly (| (c(z), y)])-

It follows that there exist a computable function A” and polynomials p; and ps (A", p1, and py over
nonnegative integers, p; increasing) such that A decides (¢(z),y) € L in time at most

W' (k(x)) + pi(le(@)]) + p2(lyl)-

Let ¢’ be the compilation sending = € ¥* to the concatenation of ¢(z) and A" (k(x)) + p1(Jc(x)|) many
placeholders. Hence, for a suitable function f’ over nonnegative integers,

| ()] = |e(z)] + " (k(z)) + pi(|c(x)])
< f'(k(z))poly(|z|),

that is, ¢’ is an fpt-size compilation with respect to the parameterization k.

Since /() is obtained by suffixing placeholders to ¢(z), by our technical assumptions it holds that
(d(z),y) € L if and only if (¢(z),y) € L. Moreover, algorithm A decides the instance (¢/(z),y) in time
bounded above by O(|(¢'(z),y)|) plus the runtime of A on instance (¢(x),y), that is,

W' (k(x)) + pr(le(@)]) + p2(lyl) < I (@)] + p2(ly]),

which is poly(](¢/(x),y)|) time. Hence L is polynomial-time decidable. O

3 Positive Results

In this section, we illustrate the potential of parameterized compilation using the clause entailment
problem as a case study: Given a CNF formula ¢ and a clause §, does ¢ entail 67 We view clause
entailment as a compilation problem on instances (¢, d), where the offline instance is ¢ and the online
instance is §.

Encoding Circuits and CNF formulas. Our forthcoming compilation results depend on certain basic
properties satisfied by (any) reasonable encoding of boolean circuits; for the sake of clarity, we start by
making these assumptions explicit.

Let Y be a finite subset of X = {z;: ¢ € N}. A circuit C on input variables Y is built in the usual way.
Its underlying directed acyclic graph (DAG) has source nodes (indegree 0) called input gates, labelled by
a constant (L or T) or a variable in Y, and a unique sink node called output gate. Nodes that are not
sources are called internal gates and are labelled by — (indegree 1), or by A or V (unbounded indegree).

Let C be a circuit whose n input gates are labelled by the n variables z;,, ..., z;, (we write var(C) =
{4, ..., m;, }); moreover, C' has m internal gates and w wires (arcs in the underlying DAG).

We fix an alphabet ¥ and encode C' by the adjacency list representation of its underlying DAG, as
follows. The input gates are encoded by the index of their variable and the internal gates are encoded by
indices from 1 to m (in binary). We denote the size of the encoding of C by |C|. Tt is readily verified
that |C| is in O(logiy + - - - + log i, + wlogm) and moreover that |C| > logiy + - - + log iy,

A CNF formula is a set of sets of literals (clauses) on variables in X = {z;: ¢ € N}. The size of a
CNF formula ¢, denoted by ||, is the size of its encoding when represented as a circuit. Namely, a CNF
formula {Cy,...,C,,} on variables z;,,...,z; corresponds to the circuit with n input gates labelled
Tiy, .-, T;, and m internal V-gates ci,..., ¢, wiring the output A-gate. The input gate z;, wires the
internal gate ¢;, directly or through a —-gate, if x;, occurs, positively or negatively, in C;. For a CNF
formula ¢, and a (partial) truth assignment f : var(¢) — {0,1}, we let ¢[f] denote the CNF formula
obtained from ¢ by (1) deleting all clauses containing a literal that is satisfied by f and (2) deleting
literals falsified by f from all remaining clauses.

Technical Report AC-TR-16-003

Parameterizing Clause Entailment. Clause entailment is not only a basic example of a co-NP-
complete problem (not polynomial-time solvable unless P = NP), but is also a fundamental example of a
classically incompilable problem: it is not poly-size compilable unless the Polynomial Hierarchy (PH)
collapses to the second level [24].

It is readily verified that clause entailment is fixed-parameter tractable for every parameterization of
CNF formulas for which the satisfiability problem (SAT) is fixed-parameter tractable, and that does not
increase when variables are instantiated. An important case is incidence treewidth [25]; the incidence
treewidth of a CNF formula ¢ is the treewidth [2] of its incidence graph, that is the bipartite graph on
variables and clauses of ¢ where a variable is adjacent to a clause if and only if it occurs in a literal in the
clause.

We therefore introduce two parameterizations of CNF formulas, namely incidence treewidth modulo
backbones and incidence treewidth modulo equivalence, both strictly dominating incidence treewidth,
where SAT is not fized-parameter tractable, and hence the quest for parameterized compilability is
interesting: positive fpt-size compilation results indicate the additional computational power of fpt-size
compilation over fixed-parameter tractability (and poly-size compilability).

The incidence treewidth modulo equivalence of a CNF formula ¢ is the minimum incidence treewidth
attained over all CNF formulas that are logically equivalent to ¢. The incidence treewidth modulo backbones
of a CNF formula ¢ is the incidence treewidth of the CNF formula obtained from ¢ by first instantiating
the literals over var(¢) that are entailed by ¢, and next conjoining them to the resulting CNF formula.
As an example, consider the CNF formula ¢ = {{z1, 22}, {—x3, 24}, {23,24}}, which has incidence
treewidth 2. The only entailed literal over var(¢) is x4, and the resulting CNF formula {{x1,z2}, {z4}}
(after instantiation and conjunction of the entailed literals) has incidence treewidth 1. Therefore, the
incidence treewidth modulo backbones of ¢; is 1. Another example is an unsatisfiable CNF ¢5 over
the variables x1,...,x,. Since ¢, entails all the literals over zi,...,z,, the resulting CNF formula
is {{z1},{—21},...,{an}, {-2n}}, which has incidence treewidth 1. In other words, the incidence
treewidth modulo backbones of every unsatisfiable CNF formula is 1.

Proposition 2. Incidence treewidth modulo equivalence strictly dominates incidence treewidth modulo
backbones, which strictly dominates incidence treewidth.

Proof. For the first statement, observe that the CNF obtained from a CNF ¢ by instantiating and
conjoining entailed literals is logically equivalent to ¢; it follows that incidence treewidth modulo
equivalence dominates incidence treewidth modulo backbones. For strictness, take the CNF family

n
On = /\(xl Vo VeV, Vo, Vi Vo),
i=1
where n > 1. Since each ¢,, is logically equivalent to T, the family has incidence treewidth modulo
equivalence bounded above by 1. On the other hand, since ¢,, does not entail any literal, its incidence
treewidth modulo backbones coincides with its incidence treewidth, and the latter is bounded below by n,
the incidence treewidth of the complete bipartite graph K, .

For the second statement, observe that the incidence graph of the CNF obtained by instantiating
and conjoining entailed literals in a CNF ¢ is the disjoint union of a subgraph of the incidence graph of
¢ (obtained by deleting edges and vertices) and a forest; hence its treewidth is bounded above by the
incidence treewidth of ¢. For strictness, take the CNF family (n > 1)

On = /\ (y\/\/xi”),
1=1

(b1,....bn)€{0,1}

where xfl = —x; if b; = 0 and xi” = x; if b; = 1. Note that y is the only literal entailed by ¢,,, and that
instantiating and conjoining y in ¢,, yields the CNF whose only clause is y itself. The latter has incidence
treewidth 1. On the other hand, the incidence treewidth of ¢,, is bounded below by the treewidth of the
complete bipartite graph K,41 2, which is larger than n. O

No parameterization of clause entailment is poly-size compilable (unless the PH collapses to the second
level). Moreover, whereas clause entailment parameterized by incidence treewidth is fixed-parameter
tractable [25], this does not hold for incidence treewidth modulo backbones (unless P = NP), as we now
prove.

Technical Report AC-TR-16-003

Proposition 3. Clause entailment parameterized by incidence treewidth modulo backbones is not fixed-
parameter tractable (unless P = NP).

The assumption P # NP is already in the background (otherwise, clause entailment is poly-time).

Proof. We assume that clause entailment parameterized by incidence treewidth modulo backbones is
fixed-parameter tractable and derive P = NP.

Let A be an algorithm deciding clause entailment in time at most f(k)poly(|(¢,0)|) where k is the
incidence treewidth modulo backbones of ¢; without loss of generality, f is increasing [12]. Let d = f(1).
Let A’ be the algorithm that, when given a CNF formula ¢ = §; A -+ A 0y, runs d - poly(|(¢', {z})|)
steps of A on input (¢, {x}), returns the output of A if A terminates, and rejects otherwise; here, = is a
variable not in ¢ and ¢’ = (61 V&) A+ A (6 V). We claim that A" decides UNSAT in polynomial time.

Observe that ¢’ = z if and only if ¢ € UNSAT. If A terminates in d - poly(|(¢’,{z})|) steps, it
correctly establishes whether or not ¢’ |= z, that is, whether or not ¢ € UNSAT. Otherwise, it follows
that the incidence treewidth modulo backbones of ¢’ is at least 2, which implies ¢ ¢ UNSAT. Namely, if
¢ € UNSAT, then ¢/ = x and thus the incidence treewidth modulo backbones of ¢’ is 1. In either case,
the output of A’ is correct. O

Since incidence treewidth modulo equivalence dominates incidence treewidth modulo backbones, we
immediately get the following.

Corollary 1. Clause entailment parameterized by incidence treewidth modulo equivalence is not fized-
parameter tractable (unless P = NP).

Treewidth Modulo Equivalence. We now prove that the most general parameter introduced so far,
incidence treewidth modulo equivalence, yields an fpt-size compilation of clause entailment.

Theorem 1. Clause entailment parameterized by incidence treewidth modulo equivalence is fpt-linear-size
compilable.

Proof. Let ¢ be a CNF formula and let k& be the incidence treewidth modulo equivalence of ¢. Let s be
the minimum size attained by a CNF formula equivalent to ¢, and having incidence treewidth k. Let 1
be a CNF formula equivalent to ¢ having size s and incidence treewidth k, and let z;,,...,z;, be the
variables occurring in .

We first observe that every variable z;; occurring in ¢ is essential, otherwise by deleting inessential
variables we decrease the size of ¢ (and perhaps its incidence treewidth as well), contradicting minimality.

It is known that there exists a DNNF* C equivalent to 1 having w = O(3¥n) wires [21, Theorem 2].
We assume that input gates with the same label are identified. Since C' is equivalent to ¢, and z;,, ..., x;,
are essential in ¢, we have n input gates in C' labelled by z;,,...,x;, . Moreover, as the number of gates
is bounded above by the number of wires, we also have that C' has m = O(3*n) internal gates. Thus,
by our stipulations, the size of the encoding of C is |C| = O(logiy + - - - + log i, + wlogm). We claim
that this upper bound on |C] is fpt-linear-size with respect to k. The statement then follows since C'
computes ¢ (which is equivalent to 1), and clause entailment is polynomial-time tractable on DNNF's [7].

To prove the claim, we first observe that

6] > logi; > logj = Q(nlogn), (1)
j=1 j=1

where the first inequality follows from the properties of our encoding of CNF formulas, and the fact that
Xiy,...,x;, must occur in ¢ (it being equivalent to ¢ and x;,,...,x;, being essential in). The last
equality is well known.

By the upper bounds on w and m, we have that wlogm is in O(3¥knlogn), and thus, by (1), in

O(3%k|¢|). We therefore get that |C| = O(3%k|¢]). O

In the proof of Theorem 1, it is crucial that the compilation of CNF formulas into DNNF by Darwiche
and Oztok [21] does not depend on the size of the CNF formula, but only on the number of variables; we
do not know whether or not there exists a CNF class where incidence treewidth modulo equivalence is
minimized by CNF formulas of superpolynomial size.

4A DNNF is a circuit in negation normal form where the input gates of the subcircuits leading into each A-gate are
labelled over disjoint sets of variables [7].

Technical Report AC-TR-16-003

Fpt-Linear-Size Compilation. Interestingly, we can argue that the fpt-linear-size compilation of
the parameter incidence treewidth modulo equivalence is optimal (Thereom 1), in the sense that no
fpt-sublinear-size compilation of clause entailment is possible as long as the parameterization is “natural”.

More specifically, say that two CNF formulas ¢(z1,...,2,) and ¥(y1,...,y,) are isomorphic if there
is a bijection s: var(¢) — var(y) such that ¢(s(z1),...,s(zn)) and ¥(y1,...,yn) are equal (as sets of sets
of literals). Call a parameterization k of clause entailment invariant if k(¢) = k(¢’) whenever ¢ and ¢’
are isomorphic.

Proposition 4. Clause entailment parameterized by any invariant parameterization is not fpt-sublinear-
size compilable, that is, there does not exist a compilation c, a computable function f and a sublinear non-
decreasing function g, and a poly-time problem L such that, for all instances (¢,0), |c(é)] < f(k())g(|o|)
and ¢ =0 if and only if (¢(9),d) € L.

Proof. Assume for a contradiction that clause entailment is fpt-sublinear-size compilable parameterized
by an invariant parameterization k.

Let |X| =r > 2. For all i € N, let ¢; be the CNF formula whose only clause is {z;}. Hence, by our
assumptions on the encoding of CNF formulas, the size of ¢; is dlog,. i for some constant d (depending
only on the encoding and not on 7). Moreover, for all ¢ and j in N, it holds that k(¢;) = k(¢;) since k is
invariant. Let then K = k(¢;).

By assumption, there exist ¢, f, and g specified as in the statement such that, for all i € N|
le(pi)] < fF(k(h:))g(|oi]) = f(K)g(dlog,). By the assumption on g, for sufficiently large S, we have
log, S—1> f(K)g(dlog, S). Thus |c(¢;)| < f(K)g(dlog, i) < f(K)g(dlog, S) <log, S—1forall i <S.
Since there are less than 71°8- % = § strings of length at most log, S — 1 on ¥, there must be i, j < S such
that ¢ # j and ¢(¢;) = c¢(¢;). Then ¢; = z; and ¢; (= x;, and thus (c(¢;), ;) € L and (c(¢;),xi) € L,
which is a contradiction. O

Treewidth Modulo Backbones. We now turn our attention to the parameter incidence treewidth
modulo backbones. Since incidence treewidth modulo equivalence dominates incidence treewidth modulo
backbones, Theorem 1 implies an fpt-linear-size compilation for the latter parameter as well.

Corollary 2. Clause entailment parameterized by incidence treewidth modulo backbones is fpt-linear-size
compilable.

In fact, this parameter has a straightforward fpt-linear-size compilation: namely, the map sending a
CNF formula ¢ to the CNF formula ¢’ A A\, .., li, where l1,..., 1, are all the literals entailed by ¢ and
¢’ is the result of instantiating l1,...,l, in ¢.

In addition to being theoretically easier to handle, the parameter incidence treewidth module backbones
is also practically more manageable than incidence treewidth modulo equivalence. In fact, we can use
existing tools to compute the incidence treewidth module backbones of various CNF instances, and
therefore give a concrete indication of the additional power of this parameter over incidence treewidth.

In Table 1, we provide some preliminary experimental results indicating that there are instances
occurring in practical settings where this additional power of the parameter is visible, i.e., where the
incidence treewidth is significantly lower after instantiating entailed literals. This suggests that the setting
of parameterized compilation does not only offer possibilities for more powerful parameters in theory, but
also in practice.

To compute the parameter values in Table 1, we used an existing implementation of heuristics to
compute upper bounds on the incidence treewidth [1] and algorithmic tools developed for computing
entailed literals [15]. The instances have been used previously in the context of computing entailed unit
clauses [18].

Note that there are sizable instances (e.g., AProVE(09-08) where incidence treewidth modulo backbones
is small enough, for instance, to solve clause entailment by dynamic programming (as the algorithm needs
exponential space in the incidence treewidth, [23]), but incidence treewidth itself is not. Such instances
are interesting, as incidence treewidth could in principle stay large even after the instantiation of many
entailed literals (which is in fact what happens for other instances).

As the values that we computed for the incidence treewidth before and after instantiating backbones
are upper bounds based on heuristics, one cannot be sure that the difference between the exact parameter
values is as large. However, since there are no efficient methods of computing the exact incidence treewidth,
upper bound values such as these are in many cases the best values available to work with in practice.

Technical Report AC-TR-16-003

Therefore the results in Table 1 are relevant when considering the development of algorithms in practical
settings.

File #vars Fclauses itw itwbb
3blocks 283 9690 35 22
4blocksb 410 24758 58 7
AProVE09-07 8567 28936 82 37
AProVE09-08 8564 28927 85 12
AProVE09-13 7606 26317 44 15
bw_large.b 920 11491 236 220
f8h_11 2883 37388 330 120
facts7h 2595 32952 286 163
ferry8_ks99i.renamed-4005 2547 32525 380 65
ferry8_v0li.renamed-4007 1745 31688 324 64
IBM_FV_2004_rule_batch_1 7410 29233 215 174
IBM_FV_2004_rule_batch_2 7416 29254 208 168
IBM_FV_2004_rule_batch_3 7421 29264 198 167
maris-s03-gripper11 3222 27199 305 263
medium 116 953 52 7
roversh_ks99i.renamed-3974 1437 29170 397 235
rovers5_v0la.renamed-3981 981 25949 386 267

satellite2_v01i.shuffled-4055 853 27249 191 31

Table 1: Comparison of the incidence treewidth (itw) and incidence treewidth modulo backbones (itwbb)
on instances of file size not larger than 2MB.

4 Negative Results

We contrast the positive results in the previous section by presenting negative, parameterized incompil-
ability results for (certain variants of) the clause entailment problem.

We use the parameterized complexity framework of Chen [4]. The framework generalizes the classical
compilability framework of Cadoli et al. [3], where one can prove that a compilation problem does not
admit a poly-size compilation unless all problems in NP are solvable in poly-time using poly-size advice
(i.e., NP C P/poly), which further implies a collapse of PH to the second level [16]. Analogously, using
parameterized complexity, one can prove that a parameterized compilation problem does not admit an
fpt-size compilation unless all problems in the class W[1] are solvable in fpt-time using fpt-size advice
(i.e., W[1] C FPT/fpt) or unless all problems in the class para-NP are solvable in fpt-time using fpt-size
advice (i.e., para-NP C FPT/fpt), the latter of which also implies a collapse of the PH to the second
level.

We begin with explaining the basic notions of the parameterized incompilability framework [4], and
how it can be used to show (under complexity-theoretic assumptions) that certain problems are not fpt-size
compilable. In this section, in order to more conveniently apply the framework, we consider parameterized
problems to be subsets of ¥* x N. For an instance (x, k) of a parameterized problem, we say that & is the
parameter value. One can consider this as a shorthand for the parameterization k : ¥* x N — N that
maps any instance (z, k) to the value k. Similarly, we consider parameterized compilation problems as
subsets of ¥* x ¥* x N, where for each instance (z,y, k), the value k denotes the value computed (from x)
by the parameterization.

Formally, a parameterized problem @ is in FPT/fpt, if there exist a computable function f and a
constant ¢ such that for each (n,k) € N x N there exists some «(n, k) € ¥* of size f(k)n® with the
property that the problem { (z, a(|z|, k), k) : (z,k) € Q } is fixed-parameter tractable. This definition
straightforwardly extends to K/fpt for other parameterized complexity classes K. The classes K/fpt
have been defined by Chen under the name K/ppoly [4].% Similarly, if we require the size of the advice
string a(n, k) to be bounded by nf*) (ie., to be of xp-size), we obtain parameterized complexity
classes K/xp.

5We use K/fpt to denote this class, rather than K/ppoly, to avoid confusion with the class K/poly, which has also been
considered [13].

Technical Report AC-TR-16-003

A central element of the parameterized incompilability framework is the concept of hardness for the
incompilability class par-nucomp-W]/1]. Intuitively, this class contains parameterized compilation problems
that can be compiled in fpt-size such that the online problem is in the parameterized complexity class W/[1].
The class W[1] consists of all parameterized problems that can be fpt-reduced to the problem CLIQUE,
where the problem is to decide whether a given graph G = (V, E) contains a clique of a given size k, and
where the parameter is k. The class par-nucomp-W(1] is defined as follows. A parameterized compilation
problem @ belongs to par-nucomp-W/1] if there exists an fpt-size function f : £* x 1* x N — N such that
the parameterized problem { (f(x,1™,k),y,k) : (z,y,k) € Q,m > |y| } is in the class W[1].

In order to define hardness for this class, one needs a notion of reduction. This role is fulfilled
by the concept of fpt-nucomp-reductions. A parameterized compilation problem @ is fpt-nucomp-
reducible to a parameterized compilation problem ' if there exist fpt-size functions fq, fa : 3* x 1* x
N — ¥* an fpt-time computable function g : ¥* x ¥* x N — ¥* and a computable function h :
N — N such that for all inputs (z,y,k) of @ and all m > |y| it holds that (z,y,k) € @ if and only
if (fl('rv 1, k)vg(fQ(xa 1, k)7 Y, k)v h(k)) € Q/'

Intuitively, the function f; transforms the offline instance x of) into an fpt-size offline instance
of @', and the function f5 transforms the offline instance = of () into an auxiliary offline instance z’. The
function g transforms the online instance y of @ (together with the auxiliary offline instance z’) into an
online instance of)'. Finally, the function h ensures that the parameter value for Q' is not unbounded.

A parameterized compilation problem @ is defined to be hard for par-nucomp-W][1] if each problem
in par-nucomp-WT[1] is fpt-nucomp-reducible to Q. If, additionally, the problem is in par-nucomp-W{1],
then it is said to be par-nucomp-W[1]-complete.

An example of a par-nucomp-W/1]-complete problem is the problem eMCC = { (¢, G, k) : (G, k) €
MCC}, where € denotes the empty string, and MCC (or multicolored clique) is the W[1]-complete
problem of deciding whether a given graph G, whose vertex set is partitioned into k subsets Vi,..., Vi,
contains a clique containing one vertex from each V; [11, 4, Theorem 17].

Fundamental to the use of this incompilability class to give evidence for the incompilability of certain
problems, is the result that if a par-nucomp-W/1]-hard parameterized compilation problem is fpt-size
compilable, then W[1] € FPT/fpt [4, Theorem 18]; for a proof, see [13, Proposition 57]. For any
parameterized complexity class K, the incompilability class par-nucomp-K is defined analogously to
par-nucomp-W/[1].

Moreover, for many classes par-nucomp-K, it can be shown that par-nucomp-K-hard problems are
not fpt-size compilable, under complexity-theoretic assumptions; for more details, see [4].

Backdoor Size to Pure Literals. The first parameter that we consider is based on a measure of
distance to a fragment of CNF formulas for which deciding satisfiability is tractable. The fragment PL
that we consider consists of all CNF formulas whose satisfiability can be decided by iterative instantiation
of pure literals, that is, literals that appear only positively or only negatively in the formula. The notion
of distance that we use is based on (strong) backdoors [26]. A strong backdoor to PL for a CNF formula ¢
is a subset Y of var(¢) such that ¢[f] is in the fragment PL for every assignment f: Y — {0,1}. This
parameter is motivated by the observation that propositional satisfiability, parameterized by the size of a
given strong backdoor to PL, is fixed-parameter tractable.

Observe that instantiating variables in a CNF formula ¢ can increase the size of the smallest strong
backdoor to PL by an arbitrary amount. Suppose, for instance, that all clauses of ¢ contain some literal x
positively. Then the smallest strong backdoor to PL for ¢ is (}, but for ¢[xz — 0] it can be arbitrarily large.
For this reason, fixed-parameter tractability of SAT for this parameter does not lead to fixed-parameter
tractability for clause entailment. In fact, we get the following parameterized incompilability result for
clause entailment.

Proposition 5. Clause entailment parameterized by the size of the smallest strong backdoor to PL is not
fot-size compilable, unless the PH collapses to the second level.

Proof. We describe how to transform an arbitrary instance of CE (in fpt-time) to an instance that
has a constant-size strong backdoor to PL. Fpt-size compilability of the problem would thus result
in poly-size compilability of clause entailment, which in turn results in the collapse of the PH at the
second level [24]. Formally, this transformation can be seen as an fpt-nucomp-reduction from the
par-nucomp-coNP-complete parameterized compilation problem { (z,y,0) : (z,y) € CE }.

Let ¢ be an arbitrary CNF formula, and let é be an arbitrary clause. Take a fresh variable z & var(¢).
Without loss of generality, we can assume that z does not occur in . We construct the CNF formula ¢’ =

Technical Report AC-TR-16-003

{cU{z}:c€ ¢}, and the clause 6’ = 6 U{z}. We have that ¢ = § if and only if ¢’ | ¢'. Moreover,
because ¢’ is in PL, it has a strong backdoor to PL of size 0. Since the construction of ¢’ does not depend
on the clause 4, this transformation can be used to obtain a poly-size compilation for CE from an fpt-size
compilation of clause entailment parameterized by the size of the smallest strong backdoor to PL. [

Weighted Clause Entailment. Next, we consider the following (parameterized) variant of the clause
entailment problem, weighted clause entailment. Offline instances consist of a pair (¢, w) and online
instances consist of a clause d, where (¢, J) is an instance of clause entailment and w € N. The parameter
is w, and the question is whether ¢ |= § holds relative to all truth assignments f to var(¢) of weight w
(written ¢ |=,, 0). The weight of an assignment f is |{x € var(¢) : f(z) =11}

In the foundations of parameterized complexity, truth assignments of restricted weight play an
important role, providing the basis for the weighted satisfiability problems that are canonical for the Weft
hierarchy (see, e.g., [12]). Therefore, the variant of weighted clause entailment is natural to study in the
setting of parameterized compilability.

In this variant of the problem, the space of all truth assignments is significantly restricted (only
assignments of weight w play a role). As a result, for constant values of the parameter w, weighted clause
entailment is polynomial-time decidable (and thus also poly-size compilable). However, we show that
under the assumption that W[1] € FPT/fpt, an fpt-size compilation is not possible; in any poly-size
compilation of clause entailment restricted to weight w, the order of the polynomial depends on w.

Proposition 6. Weighted clause entailment parameterized by the weight of assignments is not fpt-size
compilable, unless W[1] C FPT/fpt.

Proof. We show that the problem is par-nucomp-coW[1]-hard. This suffices, since any parameterized
compilation problem is fpt-size compilable if and only if its co-problem (the problem consisting of all
the no-instances) is fpt-size compilable. We do so by giving an fpt-nucomp-reduction from the problem
ecoMCC = {(¢,G, k) : (G, k) ¢ MCC}. Let (¢,G,k) be an instance of ecoMCC, where G is a graph
whose vertex set is partitioned into Vi,..., Vi, and let m > |G|. Moreover, without loss of generality we
may assume that all sets V; have the same cardinality; for each 1 <i <k, let V; = {v;1,...,v;n}. To
describe the fpt-nucomp-reduction, we specify suitable functions f1, f2, g, h. We let fi(e, 1™, k) be the
CNF formula ¢ that we will define below. Moreover, we let fa(e, 1™, k) = 1™ and we let g(1™, G, k) be
the clause § that we will define below. Finally, we let h(k) = k' =k + (g)

We let var(¢) = Uy <;<p Xi UU <icj<, Yij- Here, for each i we let X; = {x;0:1<¢<m}. Also,
foreach 1 <i<j <k, weletY;; ={vie je 1<t <k 1</l <k} Intuitively, the variables z;
encode the choice of vertices in a clique, and the variables y; ¢, ; ¢, encode the choice of edges. Then,
for each set Z € {X;,Y; ;: 1 <i<k,i <j <k} of variables, and for each two variables 21,2, € Z, we
add the clause (—z1 V —22) to ¢. This enforces that each satisfying truth assignment of ¢ of weight &’
must satisfy exactly one variable in each set Z. Moreover, for each 1 <i < j <k, each 1 </{; <m and
each 1 < {5 < m, we add the clauses (—i ¢, j e, V i) and (Wi e, je, V Tje,) to ¢. Intuitively, these
clauses enforce that the choice of edges is compatible with the choice of vertices.

We define the clause § = ¢(1™,G, k) as follows. Let n be the number of vertices in G. For
each 1 <i<j<k,each1l</¢; <m, and each 1 < {3 < m, we add the literal y; ¢, j.¢, to d if one of the
following cases holds: (i) either ¢; > n or ¢5 > n, or (ii) there is no edge in G between v; ¢, and vjg,.

We claim that satisfying truth assignments of 1) A —d of weight k" are in one-to-one correspondence with
cliques in G of size k containing exactly one vertex in each V;. For each such clique V' = {v1 ¢,,..., V0, }
in G (with v; 4, € V;), one can obtain the satisfying assignment that sets exactly those variables in
the set X' = {@jp, : 1 < i < k}U{wig e 1 <0 <j <k} totrue. Vice versa, from each
satisfying assignment, one can construct a suitable clique in G. With this correspondence, one can verify
straightforwardly that ¢ =g/ ¢ if and only if (G, k) € MCC. This shows the correctness of our reduction.

For the sake of clarity, we show how this par-nucomp-coW[1]-hardness entails incompilability (under
the assumption that W[1] € FPT/fpt). Suppose that weighted clause entailment is fpt-size compilable.
We show that W[1] C FPT/fpt, by showing that MCC can be solved in fpt-time using fpt-size advice. For
an instance (G, k) of MCC we firstly construct ¢, 6 and &’ according to the construction discussed above.
We showed that ¢ }£y 6 if and only if (G, k) € MCC. Since the offline instance (¢, k) of weighted clause
entailment depends only on the pair (n, k), where n = |G|, we can use the fpt-size compilation ¢(¢, k) as
the advice string to solve the problem MCC in fpt-time. O

10

Technical Report AC-TR-16-003

Small Clauses. Finally we consider parameterizing clause entailment by the size of clauses for which
we want to decide entailment. Formally, we define a (parameterized) variant of clause entailment, small
clause entailment, where offline instances are pairs (¢, s), where ¢ is a CNF formula and s € N, and online
instances are clauses . The question is whether both |§| < s and ¢ |= § and the parameter is s, which
intuitively bounds the size of clauses 4.

For constant values of the parameter s, the problem can straightforwardly be compiled in poly-size,
by creating a lookup table with an entry for each of the polynomially many clauses of size at most s.
However, in this compilation, the order of the polynomial depends on s. We claim that (under the
following complexity-theoretic assumption) small clause entailment parameterized by the clause size is
not fpt-size compilable, and thus that for any poly-size compilation of clause entailment restricted to
clauses of size at most s, the order of the polynomial depends on s.

Proposition 7. Small clause entailment parameterized by the clause size is not fpt-size compilable, unless
few-NP C FPT/fpt.

Before giving a proof, we informally explain the complexity assumption underlying this parameterized
incompilability result. First we introduce the parameterized complexity class few-NP [13], which is a
parameterized complexity counterpart of NP, like W[1]. For 3SAT, the archetypal NP-complete problem,
there are 2™ many possible instances of input size n, and for each of these instances there are 2™
truth assignments that play a role, where m is the number of variables. The class W[1] is based on a
parameterized restriction of 3SAT, where there still are 2" many possible instances of input size n, but
only m* many truth assignments play a role, where k is an explicitly given parameter value. Intuitively,
the class few-NP is based on a dual restriction of 3SAT, where for each instance with m variables, there
are 2™ truth assignments that play a role, but there are only n* many instances for each input size n and
parameter value k.

To formally define the class few-NP we consider the notion of 3CNF generators. A (3CNF') generator
is a function « : N3 — ¥* such that for all (n, ¢, k) € N3 it holds that v(n, ¢, k) is a 3CNF formula (i.e., a
CNF formula with clauses of size 3) with exactly n variables, and if £ > n*, then v(n, ¢, k) =) is the empty
CNF formula. We say that a generator - is fpt-time computable if there exists an algorithm A that, given
an input (n, £, k) € N3, computes (n, £, k) in fpt-time (with respect to n and k). Then, for each generator,
we define the parameterized problem FEWSAT., as follows. Instances consist of triples (n,¢, k) € N3,
where n is given in unary and ¢ and k are given in binary. The parameter is k, and the question is to
decide whether v(n, ¢, k) is satisfiable. The class few-NP then consists of all parameterized problems that
are fpt-reducible to the problem FEWSAT,, for some fpt-time computable generator .

To put the class few-NP in perspective, we describe how it relates to several other parameterized
complexity classes. Like the class W[1] (and other classes of the Weft hierarchy), it contains FPT
and is contained in para-NP. Moreover, similarly to W[1], containment in para-NP is strict, assuming
that P # NP. Both W[1] and few-NP are in the fragment of para-NP that is contained in XP /xp, which
is the class consisting of parameterized problems that can be solved in time n©*) using n®®*)-size advice
for each input size n and parameter value k.

With the definition of the complexity-theoretic assumption in place, we now set out to prove the
incompilability result for small clause entailment. In order to do so, we will use two technical lemmas.
Here we consider the problems FEWSAT, and coFEWSAT, = {(n,{,k) : (n,{,k) ¢ FEWSAT, } (for
generators) as parameterized compilation problems.

Lemma 1. Let v be an fpt-time computable generator. Then coFEWSAT,, is fpt-nucomp-reducible to
small clause entailment, parameterized by the clause size.

Proof (sketch). We describe an fpt-nucomp-reduction by specifying fpt-size functions f1, f2, an fpt-time
computable function g, and a computable function h as follows. We let fo(n, 1™, k) = n. In addition, we
let g(n,¢, k) be a clause 6, that encodes ¢ using k literals over the variables x; ;, for 1 <i<n,1 <j <k.
Then, we let fi(n,1™, k) be a 3CNF formula ¢ that is satisfiable in conjunction with —d, if and only
if v(n, ¢, k) is satisfiable, for each 1 < ¢ < n*. This can be done as follows.

Firstly, the formula ¢ contains clauses to ensure that at most k variables x; ; are true. Then, we
add 8n3 many variables y;, corresponding to the 8n3 possible clauses ci,...,cg,s of size 3 over the
variables 1, ..., x,. Then, since for each (n,k) € N2, the function (n, -, k) is computable in ftp-time,
we can construct (in fpt-time) a set of clauses that ensure that whenever —J, is satisfied the variables y;

11

Technical Report AC-TR-16-003

must be set to true for the clauses ¢; € y(n, ¢, k). We add these clauses to ¢ as well. Finally, for each
such possible clause ¢;, we add clauses to ¢ to ensure that whenever y; is set to true, then the clause ¢;
must be satisfied. O

Lemma 2. Let vy be a generator. If FEWSAT., is fpt-size compilable, then FEWSAT., € FPT/fpt.

Proof. Assume that there exist an fpt-size function fi, an fpt-time function g, a computable function h, and
a parameterized problem @) € FPT such that for each instance (n, ¢, k) of FEWSAT,, and each m > |/] it
holds that (n, ¢, k) € FEWSAT, if and only if (f1(n, 1™, k), g(4, k), h(k)) € Q. We show that FEWSAT,, €
FPT/fpt. Take an arbitrary (n,k) € N2. Consider the string o = f;(n, 1™, k) as advice, for some m >
|¢| = klogn. Then deciding for some 1 < ¢ < n* whether (n, £, k) € FEWSAT,, can be done in fpt-time
using the advice string «, by checking whether («, g(¢, k), h(k)) € Q. O

With these technical lemmas in place, we can now prove the incompilability result for small clause
entailment parameterized by the clause size.

Proof of Proposition 7. Suppose that small clause entailment parameterized by the clause size is fpt-size
compilable. We show that few-NP C FPT/fpt. Let v be an arbitrary fpt-time computable generator.
We show that FEWSAT., € FPT/fpt. By Lemma 1, we know that coFEWSAT,, is fpt-nucomp-reducible
to small clause entailment parameterized by the clause size. By assumption, we know that the latter
problem is fpt-size compilable. Composing this fpt-nucomp-reduction and the fpt-size compilation gives
us an fpt-size compilation for coFEWSAT,,. Then, we also know that FEWSAT, is fpt-size compilable.
Finally, by Lemma 2, we know that FEWSAT. € FPT/fpt. O

As a final remark, we point out that the incompilability result for small clause entailment in Proposi-
tion 7 can even be shown under the weaker complexity-theoretic assumption that nu-few-NP ¢ FPT /fpt,
where nu-few-NP is defined similarly to few-NP, based on 3CNF generators that are computable in
non-uniform fpt-time. For more details, see the work of [13].

5 Conclusion

We proved parameterized incompilability and compilability results for various computational problems
related to clause entailment. Interestingly, our contributions on compilability and entailment fit exactly
two of the three topics recently selected by Marquis as representative and central in the area of knowledge
compilation [19].

On the negative side, we used the incompilability framework introduced by Chen [4] to establish
fixed-parameter incompilability for variants of clause entailment, including clause entailment restricted to
clauses of bounded size.

On the positive side, we proved that clause entailment is not fixed-parameter tractable but is fixed-
parameter compilable when parameterized by incidence treewidth modulo equivalence and incidence
treewidth modulo backbones; we provided evidence that the investigated parameters are more powerful
than pure incidence treewidth not only in theory but also in practice. These compilability results witness
that the notion of fixed-parameter compilability properly extends both the notions of polynomial-size
compilability and fixed-parameter tractability; we hope this will stimulate future work on parameterized
compilation.

Acknowledgments. This research was supported by the FWF Austrian Science Fund (Parameterized
Compilation, P26200).

References

[1] Bernhard Bliem, Michael Morak, and Stefan Woltran. D-FLAT: declarative problem solving using
tree decompositions and answer-set programming. Theory Pract. Log. Program., 12(4-5):445-464,
2012.

[2] Hans L. Bodlaender. Treewidth: Structure and algorithms. In Giuseppe Prencipe and Shmuel Zaks,
editors, Proceedings of SIROCCO, the 14th International Colloquium on Structural Information
and Communication Complexity, volume 4474 of Lecture Notes in Computer Science, pages 11-25.
Springer Verlag, 2007.

12

Technical Report AC-TR-16-003

3]

[13

[14]

[15]

[16]

[18]

[19]

[20]

Marco Cadoli, Francesco M. Donini, Paolo Liberatore, and Marco Schaerf. Preprocessing of intractable
problems. Information and Computation, 176(2):89-120, 2002.

Hubie Chen. Parameterized compilability. In Proceedings of IJCAI 2005, the 19th International
Joint Conference on Artificial Intelligence, 2005.

Hubie Chen. Parameter compilation. In Proceedings of IPEC, the 10th International Symposium on
Parameterized and Exact Computation, 2015.

Arthur Choi and Adnan Darwiche. Dynamic minimization of sentential decision diagrams. In Marie
desJardins and Michael L. Littman, editors, Proceedings of AAAIL the 27th AAAI Conference on
Artificial Intelligence. AAAT Press, 2013.

A. Darwiche. Decomposable negation normal form. J. of the ACM, 48(4):608-647, 2001.

Adnan Darwiche. New advances in compiling CNF into decomposable negation normal form. In
Proceedings of ECAI the 16th Fureopean Conference on Artificial Intelligence, pages 328-332, 2004.

Rodney G. Downey and Michael R. Fellows. Parameterized Complezity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complezity. Texts in
Computer Science. Springer Verlag, 2013.

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53-61, 20009.

Jorg Flum and Martin Grohe. Parameterized Complezity Theory, volume XIV of Texts in Theoretical
Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

Ronald de Haan. An overview of non-uniform parameterized complexity. Technical Report TR15-130,
Electronic Colloguium on Computational Complezity (ECCC), 2015.

Jinbo Huang and Adnan Darwiche. Using DPLL for efficient OBDD construction. In Proceedings of
SAT, the 7th International Conference on Theory and Applications of Satisfiability Testing, 2004.

Mikolas Janota, Inés Lynce, and Joao Marques-Silva. Algorithms for computing backbones of
propositional formulae. AI Commun., 28(2):161-177, 2015.

Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of STOC, the 12th Annual ACM Symposium on Theory of
Computing, pages 302-309, New York, NY, USA, 1980. Assoc. Comput. Mach., New York.

Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas. Knowledge compilation
for model counting: Affine decision trees. In Francesca Rossi, editor, Proceedings of IJCAI, the 23rd
International Joint Conference on Artificial Intelligence. AAATI Press, 2013.

Joao Marques-Silva, Mikolas Janota, and Inés Lynce. On computing backbones of propositional
theories. In Proceedings of ECAI 2010, the 19th European Conference on Artificial Intelligence. 10S
Press, 2010.

Pierre Marquis. Compile! In Blai Bonet and Sven Koenig, editors, Proceedings of AAAI the 29th
AAAI Conference on Artificial Intelligence, pages 4112-4118. AAAI Press, 2015.

Rolf Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Lecture Series in Mathematics
and its Applications. Oxford University Press, Oxford, 2006.

Umut Oztok and Adnan Darwiche. CV-width: A new complexity parameter for CNF's. In Torsten
Schaub, Gerhard Friedrich, and Barry O’Sullivan, editors, Proceedings of ECAI, the 21st Furopean
Conference on Artificial Intelligence, volume 263 of Frontiers in Artificial Intelligence and Applications,
pages 675-680. IOS Press, 2014.

13

Technical Report AC-TR-16-003

[22]

[26]

Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In
Proceedings of IJCAI, the 24th International Joint Conference on Artificial Intelligence, pages
3141-3148, 2015.

Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete Algorithms,
8(1):50-64, 2010.

B. Selman and H. A. Kautz. Knowledge compilation and theory approximation. J. of the ACM,
43:193-224, 1996.

Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability, 6th International Conference,
SAT 2003, Selected and Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages
188-202. Springer Verlag, 2004.

Ryan Williams, Carla Gomes, and Bart Selman. Backdoors to typical case complexity. In Georg
Gottlob and Toby Walsh, editors, Proceedings of IJCAI, the 18th International Joint Conference on
Artificial Intelligence, pages 1173-1178. Morgan Kaufmann, 2003.

14

