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This work presents a steady-state genetic algorithm enhanced by a complete trie-based solution archive
for solving the generalized vehicle routing problem with stochastic demands using a preventive restocking
strategy. As the necessary dynamic programming algorithm for the solution evaluation is very time consum-
ing, considered candidate solutions are stored in the solution archive. It acts as complete memory of the
search history, avoids re-evaluations of duplicate solution candidates and is able to efficiently transform them
into guaranteed new ones. This increases the diversity of the population and reduces the risk of premature
convergence. Similar to a branch-and-bound algorithm, the tree structure of the solution archive is further
exploited to compute lower bounds on the nodes to cut off parts of the solution space which evidently do
not contain good solutions. Since in each iteration a not yet considered solution candidate is generated and
completeness can be efficiently checked, the overall method is in principle an exact enumeration algorithm,
which leads to guaranteed optimal solutions for smaller instances. Computational results of this algorithm
show the superiority over the so far state-of-the-art metaheuristic.
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1. Introduction
Vehicle Routing Problems (VRPs) are among the most important and widely studied transportation
and logistics problems in the field of combinatorial optimization. In the classical variants a set of
delivery or pick-up routes for a capacity constrained fleet of vehicles starting from a central depot has
to be designed in order to satisfy customers’ demands. In this work we consider two generalizations
of this basic problem:
• In some applications specific delivery locations are not of importance but requested goods can be

brought to any delivery points in the surrounding areas of the customers. In practice, the redistribu-
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tion within each area is then carried out by the customers. Practical examples of this generalization
are disaster relief operations to distribute medical staff or equipment to damaged sites (Afsar et al.
2014) and the distribution of goods over sea to a number of customers in an archipelago, where each
island has several ports from which the actual point of delivery can be chosen (Ghiani and Improta
2000). Ghiani and Improta (2000) originally introduced this VRP variant and named it Generalized
Vehicle Routing Problem.
• The actual demand of the customers may not be precisely known in advance, resulting in the

vehicle routing problem with stochastic demands (VRPSD). This situation can occur in urban waste
collection, where garbage trucks need to collect the waste from certain collection points to deliver it
to a central landfill site (Yang et al. 2000), or in the delivery of petrol to petrol stations (Bianchi
et al. 2006). In practical applications the demands are usually not uniformly random but specific
probability distributions can be deduced from historical data.

The generalized vehicle routing problem with stochastic demands (GVRPSD), which is considered
in this work and has been introduced in (Biesinger et al. 2015b,c), considers both above extensions
at once. A cluster of delivery points is given for each customer, as well as a stochastic demand, which
is modeled by a random variable with a certain probability distribution. The aim of this problem is
to plan so-called a-priori routes with minimum expected length or costs, respectively.

An important characteristic of stochastic routing problems is that the planned routes may not be
followed as planned. Since the demand of the visited clusters may be higher than expected the vehicle
may be depleted before the tour is finished. Then, a recourse action must be executed in order to
satisfy the remaining demand of the tour. The most widely used recourse action in the literature,
which we call standard restocking henceforth, sends the vehicle back to the depot whenever it is not
able to service a current customer, e.g., Bertsimas (1992), Laporte and Louveaux (1998), Gendreau
et al. (1996), Hjorring and Holt (1999), Rei et al. (2010). However, this strategy is sub-optimal with
respect to the expected length of the routes as shown by Yang et al. (2000). A recourse action which
may result in shorter routes is the preventive restocking strategy which allows return trips to the
depot before the vehicle is fully depleted. Although expected costs can frequently be significantly
lower by employing such a strategy, the computational overhead for computing them is substantial.
A dynamic programming algorithm can be used for this purpose. In this work we consider such a
preventive restocking policy and a relatively efficient computation of the expected costs is explained
in Section 4.1.

Since this problem is a generalization of the classical VRP, it is NP-hard and also tough to solve
in practice. An existing exact algorithm is limited to small instances. In this work a genetic algo-
rithm with solution archive (GASA) and variable neighborhood descent (VND) is introduced which
solves the GVRPSD heuristically. The main feature of GASA is the complete solution archive, which
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efficiently detects already generated solution candidates and transforms them into new, yet unvis-
ited ones. The solution archive combines the heuristic search with an in principle complete, tree
search approach which is further exploited by computing dual bounds in the nodes to cut off solution
sub-spaces that evidently do not contain promising solution candidates.

The main contributions of this article are thus: (1) A new combination of tree search methods with
genetic algorithms in the context of problems with permutation encodings; (2) efficiently reducing the
search space by applying bounding and avoiding search space areas of inferior solution candidates;
(3) a state-of-the-art metaheuristic for a rather new variant of the vehicle routing problem.

This article is structured as follows. In Section 2 a formal problem description of the GVRPSD
under the preventive stocking strategy is presented. Section 3 gives an overview of the related and
previous work to the GVRPSD and in Section 4 the developed algorithm is described. A computa-
tional study is presented in Section 5, after which conclusions are drawn and an outlook is given in
Section 6.

2. Problem Definition
The GVRPSD is defined on a complete undirected graph G= (V,E) with node set V and edge set
E. The nodes are partitioned into disjoint clusters C = {C0,C1, . . . ,Cm}, Ci ⊆ V , ∀i= 0, . . . ,m, such
that C0 ∪ C1 ∪ · · · ∪ Cm = V . Each edge (i, j) ∈ E has a distance or cost value dij ≥ 0. Node v0

represents the depot node and is the only node contained in C0. Each other cluster Cj , j = 1, . . . ,m
has an associated stochastic demand ξj which is modeled as a random variable with a known discrete
probability distribution and has r possible values ξ1

j , . . . , ξ
r
j . Thus, we know for each cluster Cj the

probability mass function given by values pjk for all k = 0, . . . ,Q denoting the probability that cluster
j has an actual demand of k. Furthermore, we are given one vehicle with a limited capacity Q.
Situations where the demand exceeds the vehicle capacity are not considered, so we assume that
pjk = 0, ∀j = 1, . . . ,m, ∀k > Q. The goal is to find a tour starting from the depot which visits one
node from each cluster exactly once and returns to the depot with minimum expected costs. During
the route the clusters’ actual demands, which depend on the realization of the random variables ξj ,
get revealed upon arrival and the load of the vehicle reduces by exactly these amounts. Intermediate
visits of the depot are always allowed and become necessary when the vehicle cannot satisfy the
demand of a cluster. Note that without further restrictions the planning of only one tour is sufficient
because by employing the preventive restocking strategy the capacity constraints cannot be violated
as the restocking trips are dynamically planned.

Figure 1 shows an example of a solution candidate for a small instance. In this example the vehicle
capacity Q = 10, and all clusters except C1 have a constant demand of 6 for cluster C4 and 1 for
the other clusters C2, C3, and C5. Depending on the realization of ξ1 a tour without an intermediate
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C0={v0}

v2

v1

C1

C2

C4

C3

C5

P(ξ4=6)=1

P(ξ1=1)=0.1
P(ξ1=5)=0.9

P(ξ2=1)=1

P(ξ3=1)=1

P(ξ5=1)=1

Q=10

Figure 1 Example of a solution for an instance of the GVRPSD.

return to the depot could be planned (if ξ1 = 1) or a restocking has to be performed (if ξ1 = 5).
However, as the actual demand only becomes known upon arrival at C1 a restocking trip back to the
depot would be needed with a high probability of 0.9. Therefore, as we use the preventive restocking
strategy an anticipatory restocking trip from v1 back to the depot v0 is beneficial because its cost is
significantly lower than the cost of the likely needed restocking trip from v2.

3. Literature Survey
As the generalized vehicle routing problem with stochastic demands is a relatively new variant of a
VRP, there is not much specific literature available yet. It was introduced by Biesinger et al. (2015b,c)
who presented an initial attempt to solve small instances of the problem with up to 40 nodes and
14 clusters exactly by using an integer L-shaped method (Biesinger et al. 2015b) and a variable
neighborhood search to tackle larger instances with up to 101 nodes and 34 clusters (Biesinger et al.
2015c). The authors also presented a multi-level evaluation scheme which significantly reduces the
time needed for the solution evaluations.

When each generalization is considered separately, the literature for the GVRP and the VRPSD is
richer. Since the introduction of the GVRP by Ghiani and Improta (2000), several exact and heuristic
methods have been proposed for solving the problem. Exact methods include the compact mixed
integer programming formulations by Kara and Bektaş (2003), by which they solved instances with
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up to 50 nodes and 25 clusters. More elaborate exact methods include branch-and-cut algorithms

by Bektaş et al. (2011) and Hà et al. (2014), with the latter being based on a two-commodity

flow model, and a column generation approach by Afsar et al. (2014). The latter presents also two

heuristics based on a route-first, cluster-second approach, in which the split procedure is executed

using an iterated local search. Other heuristic methods for the GVRP include a genetic algorithm (Pop

et al. 2010), a variable neighborhood search (Pop et al. 2014), and a hybrid metaheuristic combining

a greedy randomized adaptive search procedure with an evolutionary local search (Hà et al. 2014).

The largest instance which is tackled by all of these algorithms contains 262 vertices and 131 clusters.

In the area of vehicle routing problems with stochastic demands most works use the standard

restocking approach. There is much literature for exact methods, e.g., Gendreau et al. (1995), Hjorring

and Holt (1999), Laporte et al. (2002), Christiansen and Lysgaard (2007), Jabali et al. (2014) and

heuristic approaches, e.g., Gendreau et al. (1996), Rei et al. (2010), Goodson et al. (2012). Current

state-of-the-art exact solution approaches based on the integer L-shaped method are able to solve

instances with up to 100 customers and 2 vehicles (Laporte et al. 2002) or instances with up to 4

vehicles but only 60 customers (Jabali et al. 2014). Christiansen and Lysgaard (2007) complement

the L-shaped method by introducing a branch-and-price algorithm for solving the VRPSD and are

able to solve instances with up to 60 customers and 16 vehicles with tighter capacity constraints.

The situation changes when preventive restocking is considered. To the best of our knowledge there

is no exact algorithm described for the VRPSD with preventive restocking. However, the L-shaped

method for the GVRPSD with preventive restocking from Biesinger et al. (2015b) can also be used

to solve the non-generalized version. Several authors developed metaheuristics. Yang et al. (2000)

were the first to introduce the preventive restocking strategy and a dynamic programming (DP)

procedure to compute the expected costs of a tour using this strategy. The authors also describe two

heuristics for solving a variant of the VRPSD in which the maximum planned expected route length is

limited. Based on that DP Bianchi et al. (2006) developed several metaheuristics and approximative

algorithms for move evaluations in the Or-opt local search neighborhood structure. Marinakis et

al. presented a particle swarm optimization (PSO) algorithm (Marinakis et al. 2013), extended it

with a combinatorial expanding neighborhood topology (CENTPSO) (Marinakis and Marinaki 2013)

and a memetic differential evolution algorithm (Marinakis et al. 2015) for solving the VRPSD with

preventive restocking. The latest heuristic solution method is a glowworm swarm optimization which

makes use of path relinking and a variable neighborhood search (Marinaki and Marinakis 2015)

which, together with a hybrid clonal selection algorithm (Marinakis et al. 2014) and the CENTPSO,

constitute the current state-of-the-art algorithms.
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4. Algorithm Description
This section describes the proposed genetic algorithm with solution archive (GASA) for the GVRPSD.
We note here that this algorithm is also suited to solve the VRPSD and computational tests have been
performed for this problem as well; they will be shown in Section 5. The overall algorithmic framework,
which also uses a variable neighborhood descent (VND) procedure, is depicted in Algorithm 1.

Algorithm GASA
begin

Initialize Population;
while unconsidered solutions remaining according to the solution archive

Select parent solutions xP1 and xP2 ;
Derive child xC from xP1 and xP2 using a crossover operator;
Perform mutation of xC with probability pmut;
if f(xC)<αf(xbest) then

Improve xC by executing VND(xC);
else

if xC is not yet contained in the solution archive then
Insert xC into the solution archive;

else
Convert xC ;

Delete the worst individual of the population;
Add xC to the population;

end while
Return best found solution;

end
Algorithm 1: Genetic algorithm with solution archive

The genetic algorithm is a steady-state GA, which replaces in each iteration the worst solution of
the current population with the newly created solution. Within the GA a VND procedure is executed
for promising solution candidates whose objective value, which is computed by the function f(·),
is close to the best solution found so far, where closeness is defined by the parameter α. After the
genetic operators produced the new solution candidate, it is either inserted into the solution archive
or converted if the archive already contains the new solution. This step is skipped when VND was
performed on this solution because then the insertion / conversion procedure is carried out within
the VND. The algorithm terminates after a specific time limit Tmax.

The individual components of GASA are described in the following subsections. First, in Sec-
tion 4.1, the solution representation and the corresponding solution evaluation method is described.
Section 4.2 addresses the framework of the GA which includes the initial population generation
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method and its operators. The VND is presented in Section 4.3 and the solution archive with its
bounding extension is explained in Section 4.4.

4.1. Solution Representation and Evaluation
Each solution candidate is represented by a permutation of the clusters which encodes the sequence
of the clusters visited in the tour excluding the depot cluster C0 at the beginning and end. To this
cluster representation a dynamic programming (DP) algorithm is applied for computing the expected
costs of the tour using the preventive restocking strategy. The DP, which runs in O(|V | Q2) time, is
based on the approach by Biesinger et al. (2015c) and adapted from the DP for the VRPSD (Yang
et al. 2000).

Before the DP recursion is presented we explain the used notation. Function fij(q) is defined for all
q = 0, . . . ,Q, j = 0, . . . ,m, i= 1, . . . , |Cj| and represents the remaining cost of the tour after servicing
the i-th node of cluster j with the residual vehicle capacity q. The auxiliary function bj(l) returns the
l-th node of cluster j, ∀j = 0, . . . ,m, l= 1, . . . , |Cj|. When we assume that the cluster permutation is
relabeled such that the tour is t= (C1, . . . ,Cm), the DP algorithm is given by the following recursion:

fij(q) = min{fpij(q), f rij(q)}

fpij(q) = min
l=1,...,|Cj+1|

{dbj(i),bj+1(l) +
∑

k:ξk
j+1≤q

fl,j+1(q− ξkj+1)pj+1,ξk
j+1

+
∑

k:ξk
j+1>q

[
2dbj+1(l),0 + fl,j+1(q+Q− k)

]
pj+1,k}

f rij(q) = dbj(i),0 + min
l=1,...,|Cj+1|

{d0,bj+1(l) +
r∑

k=1
fl,j+1(Q− ξkj+1)pj+1,ξk

j+1
}

∀q = 0, . . . ,Q, j = 0, . . . ,m, i= 0, . . . , |Cj|

with the boundary condition

fim(q) = dbm(i),0, ∀q = 0, . . . ,Q, i= 0, . . . , |Cm|

This algorithm computes for each node i and each vehicle load q if it is more cost-efficient to
proceed directly to the next cluster with cost fpij(q) or to perform a preventive restock with cost
f rij(q). The total expected cost of t is then given by f0,0(Q).

Such an expensive evaluation procedure is inconvenient and therefore Biesinger et al. (2015c)
suggest a multi-level evaluation scheme (ML-ES) procedure to significantly reduce the run-time for
solution evaluations within the presented metaheuristic. We apply this ML-ES also here. Its basic
principle is to scale down Q and to adapt the probability distributions of the clusters accordingly to

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
6-
00
1



Biesinger, Hu, and Raidl: A Genetic Algorithm for the GVRPSD
8

get a fast approximation of the exact objective value. Starting from Q on each level of approximation

the vehicle capacity is divided by two and rounded to the upper integer, which reduces the time

for evaluation by approximately a factor of four. This can be repeated up to dlog2Qe times so

that on the last level Q= 1 and therefore the worst case complexity of the run-time for evaluation

reduces to O(n). Biesinger et al. (2015c) also showed that the approximated objective value on level

i∈ {1, . . . , dlog2Qe} is a lower bound to the objective value of level i− 1. By using this theorem the

iterative evaluation procedure ML-ES starts by evaluating at the highest approximation level and

iteratively continues with the next lower level until it is either shown that

• the solution candidate is worse than the best solution found so far and thus can be discarded or

• an exact evaluation is performed.

Algorithm ML-ES(t, bestObj)
begin

obj = 0
i = dlog2Qe
while obj < bestObj ∧ i ≥ 0
Qi = dQ

2i e
for all j = 1, . . . ,m and k= 0, . . . ,Qi

pi
jk =

2ik+2i−1∑
l=2ik

pjl

obj = DP(t,Qi, pi)
i = i − 1

Return obj
end

Algorithm 2: Multi-level evaluation scheme

Algorithm 2 shows the ML-ES in pseudocode. In each iteration of the ML-ES the dynamic pro-

gramming algorithm is executed on tour t with the adapted vehicle capacity Qi and the adapted

probability distribution pi. Note that the scaled down probability distributions do not have to be

computed during each solution evaluation but can precomputed once at the start of the algorithm.

4.2. Genetic Algorithm
The proposed genetic algorithm has a fixed population size of Psize and uses several types of solution

construction heuristics and genetic operators which are described in the following.

4.2.1. Initial Population The choice of the generation method for the initial population of this

GA is important and the aim here is to include both diverse and high quality individuals. Therefore,

three different methods for solution initialization are applied with specific particular purpose:
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1. High quality: To get one initial solution candidate of typically relatively high quality we solve
the generalized travelling salesman problem (GTSP) with the given instance ignoring the demands
as underlying graph. The Integer Linear Programming (ILP) model by Fischetti et al. (1997), which
is based on an undirected cut-set formulation, is solved with a branch-and-cut algorithm based on
CPLEX. After an optimal solution to this model is obtained a VND is performed starting from this
solution to obtain a typically even better initial solution candidate; see Section 4.3 for a detailed
description of the VND. Note that due to the relatively high computational effort for solving the
ILP, this solution generation method is aborted after 120 seconds with the best solution found so
far. If no solution could be obtained within that time a randomly generated solution is used instead.

2. Medium quality / medium diversity: For Euclidean instances the next bPsize−1
2 c initial

solutions are generated by using a farthest insertion heuristic based on cluster distances. We compute
the distances between every pair of two clusters by taking the Euclidean distances between their
geometric centers, which are obtained by taking the arithmetic mean of the Euclidean coordinates of
their nodes. Then a starting cluster is chosen at random and the other clusters are iteratively inserted
at the best possible position of the current tour by always taking the farthest, not yet inserted cluster
from the last inserted one. Ties are broken randomly.

3. Low quality / high diversity: The remaining dPsize−1
2 e, or Psize − 1 for non-Euclidean

instances, individuals are generated uniformly at random.

4.2.2. Genetic Operators For selecting the crossover candidates a tournament selection is
employed. The GA uses a cyclic crossover operator to generate one child solution out of two parent
solutions (A and B). This operator takes a randomly chosen sub-tour of the parent A and successively
appends clusters from parent B starting from the last node of the sub-tour, skipping any already
considered clusters. For diversification a swap-mutation operator is developed which swaps two ran-
domly chosen cluster positions. This move is repeated for nMut times, where nMut is a parameter
of the algorithm.

4.3. Variable Neighborhood Descent
To intensify the search a variable neighborhood descent (VND) algorithm with four different neigh-
borhood structures is used:
N1 1-shift: One cluster is shifted to another position.
N2 2-opt: A sequence of clusters between two positions is inversed.
N3 Or-opt: Two or three consecutive clusters are shifted to another position.
N4 SAConv: One solution conversion based on the solution archive is performed.
The VND is executed during the GA for each solution candidate x whose objective value is at

most α times larger than the best solution found so far where α is an exogenous parameter. The
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first three neighborhood structures are well-known for routing problems with permuation encoding

and are also used within the variable neighborhood search by Biesinger et al. (2015c). The fourth is

new and based on the solution archive, which is described in detail in Section 4.4. Having defined

the neighborhood structures, the complete VND with the solution archive is shown in Algorithm 3

as pseudcode.

procedure VND(x)
begin
l← 1;
repeat
x∗ = x;
f∗ = f(x);
for all x′ ∈Nl(x)

if x′ is already contained in the solution archive then
if SAconv then Convert x′;
else continue;

else
Insert x′ into the solution archive;

if f(x′)< f∗ then
f∗ = f(x′);
x∗ = x′;

if f∗ < f(x) then
x← x∗;
l← 1;

else
l← l+ 1;

until l > lmax;
return x;

end
Algorithm 3: Variable neighborhood descent with solution archive

The VND systematically searches the given neighborhoods and basically follows the standard

procedure as described by Hansen and Mladenović (2001) using a best improvement step function

for N1 to N3. However, before each neighboring solution is evaluated it is checked if it is already

contained in the solution archive. Depending on a binary parameter SAconv this solution is either

converted into a new solution or its evaluation is skipped and the search continues as if it is already

contained in the archive.
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4.4. Solution Archive
An important part of the presented genetic algorithm is the employed solution archive (SA). Com-
plete trie-based solution archives have been introduced for evolutionary algorithms by Raidl and Hu
(2010). Such an archive stores all generated solution candidates in order to efficiently detect duplicate
solutions which are subsequently converted into guaranteed new and usually similar ones. It has been
shown that duplicates in genetic algorithms frequently have a negative effect on the performance
(Ronald 1998, Mauldin 1984) and therefore adding them to the population should be avoided. As
shown in Algorithm 1 and 3 the SA is used in all parts of the algorithm and is attached to the
GA after mutation and after each neighborhood move in the VND. Several applications to different
kinds of combinatorial optimization problems showed that especially for problems that have a costly
solution evaluation and a compact representation, which we are exactly facing with the GVRPSD,
such a complete solution archive is frequently able to boost the performance of a pure genetic algo-
rithm significantly. Examples of such problems where solution archives have already been successfully
applied are benchmark problems like NK landscapes and Royal Road functions (Raidl and Hu 2010)
but also more practical relevant problems like the generalized minimum spanning tree problem (Hu
and Raidl 2012a,b), the rooted delay-constrained minimum spanning tree problem (Ruthmair and
Raidl 2012) and several variants of competitive facility location problems (Biesinger et al. 2015a,
2014a,b).

4.4.1. Trie Structure The underlying data structure of the solution archive is a trie, which is
a tree data structure often used for storing strings, e.g., in natural language dictionary applications
or for string retrieval in general (Stephen 1994). In contrast to those applications where the look-up
time is crucial and the stored strings are more or less fixed, in our application this data structure is
highly dynamic with a lot of insertions, searches and conversions. Using an indexed trie each of these
operations can be performed efficiently, i.e., independently of the number of contained elements.

In Figure 2 the trie structure for the proposed solution archive is shown. Each level i represents
a position in the permutation based solution representation whereas each trie node of a level corre-
sponds to a specific variable assignment of the first i positions. The size of each trie node is decreasing
with increasing depth and has m possible child nodes on the first level. Each node q on level l has the
same structure consisting of m− l+ 1 entries q[0], . . . , q[m− l+ 1]. Each entry can either be a pointer
to another trie node on level l+ 1 (denoted by an arrow), a null-pointer (denoted by a slash), or a
complete-pointer (denoted by a C ). Now let (i1, . . . , im) be the cluster permutation representing a
solution candidate which should be inserted. Then, each variable il is related to a node q of level l in
the trie. This node q splits the solution space into m− l+1 parts, where in all subspaces the variables
i1 to il−1 are fixed according to the path from the root node to q. Figure 2 shows two already inserted
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root
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. . .

. . .

. . .

i2

/ /

. . . .
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. . .

. . .

. . .

j2

. . . .
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C

/ /

index

entrylevel 1

level 2

level m

. . . .

Figure 2 Solution archive with two solution candidates (i1, i2, . . . , im) and (j1, j2, . . . , jm).

solution candidates (i1, . . . , im) and (j1, . . . , jm). Here we see, that the decision of the node on the
first level i1 or j1, respectively, fixes the first variable so that on the second level only m−1 decisions
remain. This number of decisions, which corresponds to deciding which cluster is visited next in the
sequence, decreases on each level so that on level m the last decision, i.e., the last remaining cluster,
is already fixed. Therefore a complete-pointer is set to the associated entry, which denotes that all
permutations of the corresponding subtrie have already been considered. Contrary, a null-pointer
denotes that this is a yet completely unexplored subspace. In order to reduce the memory consump-
tion of such a solution archive, trie nodes which exclusively contain complete-pointer are deleted and
the corresponding parent pointer is set to complete.

This structure is similar to an explicitly stored branch-and-bound tree which is further exploited in
Section 4.4.3 when lower bounds on partial solutions are computed to cut off subtries which evidently
cannot contain good solution candidates.

4.4.2. Solution Conversion Whenever the insertion procedure detects a duplicate solution
a conversion is performed. Assume that the solution x = (x1, . . . , xm) is inserted and on level l ∈
{1, . . . ,m} a complete-pointer is encountered. Let P = {q1, . . . , ql} be the trie nodes visited during
the insertion. Then, a conversion is performed by choosing a conversion node q′ ∈ P randomly which
has at least one other entry whose value is not a complete-pointer. If there is no such node we
know that the whole solution space has been covered and we can stop the optimization with the so
far best solution candidate being a proven optimum. Otherwise we pick a non-complete entry q′[k],
k ∈ {0, . . . ,m− l+1} uniformly at random and swap its index x′l with xl in the solution. If the value at
q′[k] was a null-pointer we know that this new solution obtained by the swap has not been considered
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Figure 3 Example of a conversion operation in the solution archive transforming the duplicate solution
(C4,C1,C2,C3,C5) into the new solution candidate (C4,C3,C2,C5,C1).

so far and therefore we insert it from node q on, which completes the conversion. Otherwise if the

value at q′[k] was a pointer to another trie node we could end up in a complete-pointer again. Then,

analogously, another swap is performed. This procedure is repeated until level m is reached, at which

point a guaranteed new and usually similar solution after at most m− l swaps has been derived.

An example of a solution conversion for an instance with five clusters is shown in Figure 3. The

sequence of visited trie nodes is denoted by the enumeration of the arcs starting from the root

node and ending at the node where the conversion ends. The solution archive contains already two

solutions s1 = (C4,C1,C2,C3,C5) and s2 = (C4,C3,C2,C1,C5) before the duplicate s1 is inserted

again into the archive by following the first four arcs. On node q4 the duplicate is detected and

consequently a conversion is performed. The node q2 is chosen for conversion among all the visited

nodes {q1, . . . , q4}. On that level a swap of C1 and C3 is performed leading to the intermediate solution

s2. However, while inserting the remaining solution it is observed that it is still not a new solution

yet, so another conversion on level 4 has to be performed leading to the final converted solution

candidate (C4,C3,C2,C5,C1).
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4.4.3. Computing Lower Bounds for Partial Solutions As an additional feature of the
solution archive a bounding extension is added, which is similar to the one described by Hu and
Raidl (2012b) for the generalized minimum spanning tree problem. It is based on one of the basic
ideas of a tree search like branch-and-bound: as mentioned in Section 4.4.1 each node of the trie
represents a subspace of all solutions. If meaningful lower bounds for the objective values of the
solutions associated with trie nodes can be computed, some of these nodes can likely be pruned in a
branch-and-bound manner.

Before we compute lower bounds on trie nodes, we reverse the order of the variables as they are
considered in the trie, i.e., for a given solution x= (x1, . . . , xm) the variable order is xm, xm−1, . . . , x1.
This order is beneficial for the bound computation as we will see next. To compute a lower bound for
a particular subtrie represented by entry k of a trie node q on level l, we partition the set of clusters
into three disjoint subsets C0, Cf , and Co as shown in Figure 4. Cf denotes the set of fixed clusters,
which is given by the fixed part of the solution (xm, . . . , xm−l+1). Assume that the last fixed cluster
of Cf is cluster Cl. Co =C \ (Cf ∪C0) is the set of open clusters, for which the sequence of visit is
still unknown. For these clusters four conditions are relaxed:

1. Capacity constraints of the vehicle.
2. Connectivity constraints for avoiding subtours.
3. Constraints ensuring that exactly one node from each cluster must be chosen
4. Degree constraints of the nodes (the degree of each node must be either zero or two).

In the following we use the notation a(Ck), ∀Ck ∈ 2C to determine all inter-cluster edges of the
clusters in Ck. Then, a valid lower bound on the partial solution (xm, . . . , xm−l+1) can be computed
by summing up costs of five different components:

1. The dynamic programming algorithm for the solution evaluation is adapted to work correctly
for partial solutions and is executed on the fixed set of clusters, which results in the value lbf . Note
that lbf already contains an arc from C0 to Cl, although Cl is definitely not the first visited cluster, so
the arc weight af = max

j∈Cl

c0j is subtracted from lbf resulting in a lower bound on Cf of lb1 = lbf −af .
2. The total cost of the |Co| − 1 cheapest edges in Co is denoted by lb2. While there are methods

that can produce better bounds, e.g., computing a minimum spanning tree, we choose to use this
simple computation to keep the time consumption low.

3. A lower bound on the restocking costs for the clusters in Co is computed by first taking the total
sum of the expected demand E[Co] of these clusters. Then, lb3 is given by multiplying the cheapest
edge from the depot to any node in Co, bE[Co]

Q
c times.

4. To connect Co to Cf the cheapest edge from Co to Cl determines lb4.
5. Finally, lb5 is given by the cheapest edge from C0 to any node in Co.
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C0

Cl

Co

Cf

Figure 4 Example of the computation of a lower bound on a partial solution.

These individual parts form the lower bound lb=
5∑
i=1

lbi, which is stored at the corresponding trie
node. Directly after this computation or whenever this trie node is visited again, this lower bound is
compared to the value of the best solution found so far, which corresponds to a global upper bound,
to possibly cut off this node and the corresponding solution subspace. Figure 4 shows an example
of the bounding procedure, where the position of three clusters are already fixed as denoted by the
arrows. The dotted lines represent the lowest-cost edges which form lb2, lb4, and lb5.

To speed up the computation of lb1 at the cost of potentially worsening the bound, any approxi-
mation level from the multi-level evaluation (see Section 4.1) can be chosen for the DP algorithm. In
our preliminary tests it turned out that even at the highest approximation level dlog2Qe the bound
was reasonably good so that this level is chosen for the remaining computational tests. However,
even with this speed-up computing bounds on each new trie node would be too time consuming and
therefore this procedure is only applied with a certain probability whenever a trie node is accessed.

5. Computational Results
To evaluate the developed algorithm a computational study is performed. We rely on a set
of 158 benchmark instances for the GVRPSD (https://www.ac.tuwien.ac.at/research/

problem-instances/#Generalized_Vehicle_Routing_Problem_with_Stochastic_Demands),
which is also used by Biesinger et al. (2015c) and Biesinger et al. (2015b). These instances are based
on (deterministic) instances for the generalized vehicle routing problem generated by Bektaş et al.
(2011). They modified instances from the CVRP-library (http://branchandcut.org/VRP/data/),
having 16 to 262 nodes and partitioned them into m= bn

θ
c clusters, where θ= {2,3}. Biesinger et al.
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(2015c,b) adapted these instances to the GVRPSD by setting the expected demand of each cluster
to the deterministic demand of the corresponding cluster. Then the clusters are divided into low
spread and high spread clusters uniformly at random. The possible demand values for each cluster
lie in ±10% of the expected demand for low spread clusters and ±30% for high spread clusters.
Values lower than zero or larger than Q are not considered. A uniform distribution is used for the
set of possible demands. The algorithm is implemented in C++ using CPLEX 12.6 for solving the
GTSP in the initial solution creation phase. All runs were executed on a single core of an Intel Xeon
processor with 2.54 GHz and 20 GB RAM.

Each run of all tested configurations was repeated 30 times and terminated after a maximum of
300 CPU seconds (Tmax=300). Preliminary tests showed that the parameters for the basic GA were
not particularly sensitive to changes, therefore the population size is fixed to 100, pmut to 0.1, and
nMut to 10.

In the first set of experiments the VND is examined more closely to evaluate the effectiveness of the
used neighborhood structures. Then, extensive tests regarding the solution archive are performed.
Therefore, the algorithm is run with and without the solution archive and results are compared. After
that, the bounding extension is investigated in detail.

5.1. Variable Neighborhood Descent
In a first step tests with various values for α, which determines the frequency of VND executions,
are performed. In preliminary tests it turned out that when α is higher than 0.1 the run-time spent
in the VND dominates the other parts of the algorithm too much. Therefore, we consider here α ∈
{0.01,0.05,0.1}. Table 1 shows a summary of the results grouped by the instance set. In this table as
well as in other tables in this chapter obj stands for the average objective value over 30 independent
runs using all instances of the respective group, objg is the geometric mean over these runs, and gap
to BKS is the average percentage gap to the best known solution (BKS). The BKS is determined
by taking the best objective value of each instance separately over all runs and configurations which
are tested here. The row #Best results indicates the number of instances, for which this configura-
tion yields the best average objective value of the configurations under comparison. The next three
rows show the p-Values of one-sided paired Wilcoxon rank sum tests which were performed over all
instances.

The results in Table 1 show that obj, objg, and the gap to the BKS for α= 0.05 and α= 0.1 are
lower than for α= 0.01. The conclusion that the configuration with α= 0.01 is worse than the other
values for α is also confirmed by the statistical tests, which showed that both α= 0.05 and α= 0.1 are
significantly better with an error level of less than 1%. Considering the number of best results both
configurations with α ∈ {0.05,0.1} have similar values and the gap to the BKS is lower for α= 0.05
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Table 1 Performance of the GA+VND with different values for α.
Instances with θ= 2 Instances with θ= 3

α= 0.01 α= 0.05 α= 0.1 α= 0.01 α= 0.05 α= 0.1

obj 696.32 695.53 695.23 492.59 490.74 490.74
objg 540.19 539.58 539.75 399.48 399.19 398.97

gap to BKS 1.31% 1.19% 1.25% 0.77% 0.70% 0.64%
# Best results 61 65 72 67 74 83

p-Value (<α= 0.01) - 0.000011 <0.000001 - 0.000002 <0.000001
p-Value (<α= 0.05) 0.999989 - 0.006113 0.999998 - 0.082960
p-Value (<α= 0.1) >0.999999 0.993892 - >0.999999 0.917141 -

when instances with θ = 2 are considered but higher for the instance set with θ = 3. However, the
statistical test revealed that α= 0.1 is significantly better for instances with θ= 2 and therefore this
value is used for the remaining tests.

To investigate the effectiveness of each of the used neighborhood structures within the VND the
number of times where an improvement could be achieved was counted for each neighborhood N1 to
N4. For this test we include the solution archive as it is the basis for N4. The number of conversions,
which corresponds to the size of this neighborhood structure, is set to n2 to have a comparable size
to the other neighborhoods. Table 2 shows the number of improvements for each instance, which
are referred to by their name, the number of nodes n, the number of clusters m, and the expected
number of restocks E[nr].

As we see in Table 2 the number of improvements achieved in a specific neighborhood structure is
usually smaller than the number in the preceding neighborhood structure. This can be explained by
the design of the employed VND: each time an improvement in any neighborhood is found, the search
restarts with the first neighborhood structure, so the earlier neighborhood structures are searched
more often. But still it can be observed that for most but the largest instances even N4 was useful as
it sometimes led to an improvement where the other neighborhood structures did not. Note that the
numbers for the smallest instances are very small compared to the larger instances. This is because
by using the solution archive the optimal solution was found within seconds after which the algorithm
terminated. In Section 5.3 this issue is further discussed.

5.2. Solution Archive
The next experiments are performed to investigate the impact of the solution archive to the overall
results. Therefore, the algorithm with the parameters described before (without SA) is compared to
the algorithm with the solution archive and no conversion within the VND (GASA SAconv=0 ) and to
the configuration with solution archive and conversion (GASA SAconv=1 ). Furthermore, the relative
number of identified duplicate solutions per instance (dups) is recorded.

The results of these tests are shown in Table 3 for instances with θ= 2 and in Table 4 for instances
with θ = 3. The average objective values (obj) and corresponding standard deviations (sd) over 30
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Table 2 Average number of improvements in the different neighborhood structures of the VND.
θ= 2 n m E[nr] N1 N2 N3 N4 θ= 3 n m E[nr] N1 N2 N3 N4

P1 16 8 4.20 38 8 5 48 P1 16 6 3.00 3 0 0 1
P2 19 10 1.08 10 13 1 2 P2 19 7 0.71 0 0 0 0
P3 20 10 1.04 28 16 3 6 P3 20 7 0.68 0 0 0 0
P4 21 11 1.04 268 110 26 46 P4 21 7 0.64 0 0 0 0
P5 22 11 1.04 147 47 14 21 P5 22 8 0.73 0 0 0 0
P6 22 11 3.87 380 166 110 40 P6 22 8 2.82 6 3 1 2
P7 23 12 4.53 11907 2694 2339 2652 P7 23 8 2.55 34 13 6 41
B1 31 16 2.03 8779 2648 953 951 B1 31 11 1.38 8701 3000 1034 3189
A1 32 16 2.00 10100 2741 706 887 A1 32 11 1.39 117 47 14 32
A2 33 17 2.33 9333 3272 722 736 A2 33 11 1.52 43 25 2 9
A3 33 17 2.74 9436 4039 818 658 A3 33 11 1.91 98 39 9 15
A4 34 17 2.25 9099 3345 778 666 A4 34 12 1.66 793 265 79 122
B2 34 17 2.05 7243 2395 521 791 B2 34 12 1.34 748 423 59 151
B3 35 18 2.23 7421 1946 505 621 B3 35 12 1.54 4596 1630 432 973
A5 36 18 1.98 6572 2860 484 494 A5 36 12 1.34 771 223 52 125
A6 37 19 2.10 2552 1127 151 163 A6 37 13 1.43 147 57 6 16
A7 37 19 2.93 6754 2520 575 571 A7 37 13 1.95 6282 1949 719 906
A8 38 19 2.42 7011 2513 518 430 A8 38 13 1.71 257 133 25 33
B4 38 19 2.75 5291 1989 447 758 B4 38 13 1.93 8167 2799 702 1708
A9 39 20 2.47 6163 1995 494 350 A9 39 13 1.48 1478 449 101 184

A10 39 20 2.68 6002 1971 491 456 A10 39 13 1.83 1743 897 185 335
B5 39 20 2.33 5753 1660 153 508 B5 39 13 1.45 3 4 0 0
P8 40 20 2.26 5956 2021 325 284 P8 40 14 1.51 215 118 13 29
B6 41 21 2.88 5344 1922 243 339 B6 41 14 1.82 4751 1654 210 584
B7 43 22 2.78 5037 1359 350 296 B7 43 15 1.81 2355 1171 238 265

A11 44 22 2.91 4818 1526 371 367 A11 44 15 2.00 6241 1921 508 802
B8 44 22 3.16 4030 1255 303 332 B8 44 15 2.24 5579 1726 361 785

A12 45 23 3.12 4234 1528 335 275 A12 45 15 2.09 6596 2174 439 732
A13 45 23 3.16 3749 1265 401 328 A13 45 15 2.06 5538 1682 450 860
B9 45 23 2.45 5486 1344 213 211 B9 45 15 1.51 602 200 51 76

B10 45 23 3.05 3865 1361 367 338 B10 45 15 1.96 6417 2155 353 673
P9 45 23 2.35 3529 1123 190 220 P9 45 15 1.61 1202 457 73 140

A14 46 23 3.12 3856 1379 309 270 A14 46 16 2.08 5478 1816 409 635
A15 48 24 3.25 3474 1070 329 331 A15 48 16 2.13 4531 1188 352 709
B11 50 25 3.01 3260 1223 155 283 B11 50 17 2.05 3539 1195 121 301
B12 50 25 4.26 2336 282 210 274 B12 50 17 2.72 4624 1508 385 716
P10 50 25 4.77 3364 994 298 280 P10 50 17 3.32 4934 1437 336 725
P11 50 25 3.18 2952 803 169 208 P11 50 17 2.21 3689 1264 171 452
P12 50 25 3.98 3059 966 203 217 P12 50 17 2.77 4266 1164 239 586
B13 51 26 3.56 2693 866 234 239 B13 51 17 2.44 5710 1249 282 454
P13 51 26 5.04 3123 862 275 237 P13 51 17 3.31 4964 1255 350 617
B14 52 26 3.12 2799 872 161 224 B14 52 18 2.18 3622 1412 266 474
A16 53 27 3.38 2688 687 197 164 A16 53 18 2.09 4178 1176 253 348
A17 54 27 3.43 2477 812 226 227 A17 54 18 2.19 3966 939 220 356
A18 55 28 4.18 2344 639 189 147 A18 55 19 2.75 3818 1362 294 353
P14 55 28 4.72 2244 702 186 169 P14 55 19 3.21 3353 830 215 400
P15 55 28 7.76 2094 257 258 253 P15 55 19 5.27 3580 402 344 763
P16 55 28 3.19 2189 654 127 115 P16 55 19 2.17 2983 859 134 253
P17 55 28 3.39 2260 661 122 118 P17 55 19 2.31 3041 771 149 269
B15 56 28 3.19 1753 413 91 111 B15 56 19 2.20 4013 1134 123 279
B16 57 29 3.68 2394 543 119 107 B16 57 19 2.39 2724 598 104 188
B17 57 29 4.19 1831 511 144 161 B17 57 19 2.55 2928 840 256 445
A19 60 30 4.11 1700 589 173 135 A19 60 20 2.80 3010 875 229 330
P18 60 30 4.83 1748 521 143 126 P18 60 20 3.19 2728 694 179 331
P19 60 30 7.23 1684 530 195 165 P19 60 20 4.78 3306 871 284 474
A20 61 31 4.51 1528 423 143 115 A20 61 21 3.09 2801 897 202 322
A21 62 31 3.66 1605 504 127 78 A21 62 21 2.59 2586 577 185 300
A22 63 32 4.69 1372 420 137 92 A22 63 21 3.14 2493 826 219 308
A23 63 32 4.52 1384 477 135 119 A23 63 21 2.96 2437 723 205 344
B18 63 32 4.41 1589 422 129 107 B18 63 21 2.90 2611 740 184 363
A24 64 32 4.11 1342 357 138 107 A24 64 22 2.55 2409 592 169 276
B19 64 32 4.17 1361 427 105 114 B19 64 22 3.17 2951 701 159 256
A25 65 33 4.14 1092 397 122 89 A25 65 22 2.89 2472 701 166 266
P20 65 33 4.78 1189 375 116 90 P20 65 22 3.23 2592 562 143 241
B20 66 33 4.36 1458 376 93 85 B20 66 22 2.80 2427 625 156 251
B21 67 34 4.59 1425 298 90 71 B21 67 23 3.14 2217 563 153 240
B22 68 34 4.17 1303 383 81 77 B22 68 23 2.87 2257 552 121 232
A26 69 35 4.30 940 302 89 69 A26 69 23 2.94 2340 542 116 196
P21 70 35 4.79 946 299 82 64 P21 70 24 3.36 2062 478 111 206
P22 76 38 1.95 529 172 12 12 P22 76 26 1.33 659 210 25 30
P23 76 38 2.44 697 204 29 18 P23 76 26 1.67 966 237 26 39
B23 78 39 4.89 1056 183 45 37 B23 78 26 3.31 1798 358 79 132
A27 80 40 4.43 627 150 56 37 A27 80 27 3.04 1388 267 83 116
M1 101 51 4.73 197 38 7 6 M1 101 34 3.20 1071 81 11 16
P24 101 51 1.83 179 33 4 1 P24 101 34 1.25 318 50 6 12
M2 121 61 3.54 113 14 1 1 M2 121 41 2.44 226 52 11 12
M3 151 76 5.69 87 3 0 0 M3 151 51 3.71 119 19 3 3
M4 200 100 7.92 46 0 0 0 M4 200 67 5.29 63 0 0 0
G1 262 131 11.79 7 0 0 0 G1 262 88 8.13 9 0 0 0
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Table 3 Results for the configurations without the solution archive (without SA), with the SA and no
conversion in the VND (GASA SAconv=0), and with the SA and with conversion (GASA SAconv=1) for instances

with θ= 2
without SA GASA SAconv=0 GASA SAconv=1

θ= 2 obj sd obj sd dups[%] obj sd dups[%]

P1 245.34 0.00 245.34 0.00 39.89 245.34 0.00 33.48
P2 146.82 0.00 146.82 0.00 93.01 146.82 0.00 92.86
P3 149.02 0.00 149.02 0.00 92.64 149.02 0.00 92.92
P4 160.48 0.00 160.48 0.00 86.81 160.48 0.00 85.24
P5 162.95 0.00 161.36 0.00 86.75 161.36 0.00 87.48
P6 323.59 0.01 323.59 0.00 24.28 323.59 0.01 21.64
P7 312.51 0.00 312.51 0.01 17.76 312.51 0.01 15.81
B1 419.91 0.00 419.91 0.00 11.95 419.91 0.00 11.06
A1 538.49 3.49 520.04 0.00 41.98 520.40 0.94 24.93
A2 455.15 0.00 455.15 0.00 39.80 455.15 0.00 26.17
A3 468.10 0.19 467.95 0.00 45.02 467.96 0.07 23.23
A4 503.34 2.07 498.15 0.00 46.05 498.35 1.09 26.59
B2 466.80 0.00 466.80 0.00 13.40 466.80 0.00 12.53
B3 619.24 0.00 619.24 0.00 12.89 619.24 0.00 11.52
A5 506.95 0.00 506.40 0.79 58.80 506.68 0.63 40.58
A6 454.29 3.95 447.86 0.00 76.72 447.86 0.00 57.30
A7 609.17 3.78 590.59 3.49 15.18 595.03 8.16 11.05
A8 481.97 0.00 481.97 0.00 29.78 481.97 0.00 20.95
B4 479.92 0.00 479.92 0.00 10.18 479.87 0.26 9.50
A9 567.41 0.00 567.41 0.00 16.84 567.41 0.00 11.75

A10 561.25 0.00 560.61 0.40 15.91 561.02 0.39 11.52
B5 356.43 0.00 356.43 0.00 16.33 356.43 0.00 16.44
P8 296.44 0.00 296.36 0.05 17.50 296.35 0.04 18.46
B6 483.26 0.00 483.22 0.15 9.58 483.26 0.00 9.08
B7 485.46 0.00 485.46 0.00 9.22 485.46 0.00 8.61

A11 627.86 0.00 627.86 0.00 10.66 627.86 0.00 8.93
B8 563.95 0.00 563.95 0.00 8.19 563.95 0.00 7.81

A12 621.23 0.00 621.23 0.00 10.29 621.23 0.00 8.44
A13 692.89 0.00 692.89 0.00 8.24 693.09 1.09 7.47
B9 502.02 0.00 502.02 0.00 10.76 502.02 0.00 10.52

B10 482.91 0.00 482.91 0.00 7.95 482.91 0.00 7.44
P9 340.68 0.00 340.50 0.06 10.16 340.53 0.09 9.60

A14 624.05 0.00 622.84 1.32 8.03 622.75 1.32 7.54
A15 686.42 0.00 686.42 0.00 7.62 686.42 0.00 7.25
B11 454.09 0.00 454.09 0.00 7.92 454.09 0.00 7.68
B12 923.53 0.00 923.53 0.00 6.81 923.53 0.00 6.49
P10 423.34 0.57 422.24 1.50 7.06 421.86 1.45 6.58
P11 354.47 0.00 354.47 0.00 8.51 354.47 0.00 8.12
P12 377.66 0.00 377.62 0.21 7.39 377.62 0.21 6.97
B13 682.70 0.00 682.70 0.00 6.85 682.70 0.00 6.47
P13 451.79 0.00 451.79 0.00 6.86 451.79 0.00 6.51
B14 458.66 0.33 458.39 0.34 7.00 458.34 0.33 6.65
A16 633.47 0.00 632.78 2.79 6.55 632.03 4.48 6.21
A17 722.02 2.62 721.54 3.63 6.50 722.38 0.60 6.12
A18 718.26 0.51 718.11 0.06 6.33 718.45 1.80 6.03
P14 420.69 0.00 420.69 0.00 6.30 420.69 0.00 5.97
P15 560.92 0.01 560.86 0.30 6.21 560.69 0.60 5.93
P16 361.87 0.00 361.87 0.00 6.84 361.87 0.00 6.53
P17 362.07 0.03 362.04 0.02 7.03 362.03 0.00 6.70
B15 474.92 0.00 474.92 0.00 6.09 474.89 0.15 5.84
B16 779.30 0.41 778.60 0.91 5.94 778.76 0.92 5.69
B17 967.33 0.00 967.33 0.00 5.91 967.33 0.00 5.72
A19 815.86 0.00 815.86 0.00 5.79 815.86 0.00 5.59
P18 452.86 0.00 452.86 0.00 5.78 452.86 0.00 5.45
P19 572.08 0.00 572.08 0.00 5.85 572.06 0.37 5.50
A20 658.06 8.24 653.64 9.18 5.60 653.30 8.81 5.46
A21 755.75 0.00 755.75 0.00 5.81 755.75 0.00 5.51
A22 830.88 0.53 830.88 0.53 5.45 830.80 0.66 5.25
A23 946.39 0.00 946.39 0.00 5.44 946.39 0.00 5.22
B18 852.87 0.00 852.87 0.00 5.54 852.87 0.00 5.28
A24 837.31 0.00 837.31 0.00 5.41 837.31 0.00 5.12
B19 514.92 0.00 514.92 0.00 5.32 514.92 0.00 5.05
A25 712.14 0.00 712.14 0.00 5.42 712.14 0.00 5.11
P20 501.39 0.00 501.34 0.30 5.43 501.39 0.00 5.25
B20 818.42 0.00 818.42 0.00 5.15 818.42 0.00 4.92
B21 672.40 0.00 672.40 0.00 4.93 672.42 0.05 4.80
B22 738.48 0.00 738.48 0.00 4.97 738.13 1.91 4.76
A26 706.39 6.91 707.90 6.07 4.85 707.67 6.52 4.68
P21 504.96 0.00 504.96 0.00 4.90 504.96 0.00 4.69
P22 394.20 0.00 392.81 1.01 8.55 392.89 0.89 8.43
P23 409.93 0.00 409.93 0.00 6.08 409.93 0.00 5.96
B23 873.27 12.83 863.99 18.93 4.00 865.28 18.52 3.80
A27 1049.26 0.71 1049.26 0.71 3.79 1049.39 0.00 3.60
M1 569.06 17.30 569.15 19.41 3.47 572.23 18.08 3.44
P24 462.25 3.27 458.43 0.35 28.98 458.37 0.28 24.97
M2 896.42 83.21 860.22 112.30 3.09 886.63 148.42 2.88
M3 966.97 102.47 983.18 209.26 2.39 993.70 211.74 2.20
M4 1967.18 166.82 1680.24 605.77 2.02 1740.09 545.62 1.71
G1 8709.61 775.64 8669.10 741.93 1.52 8526.76 550.58 1.21
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Table 4 Results for the configurations without the solution archive (without SA), with the SA and no
conversion in the VND (GASA SAconv=0), and with the SA and with conversion (GASA SAconv=1) for instances

with θ= 3
without SA GASA SAconv=0 GASA SAconv=1

θ= 3 obj sd obj sd dups[%] obj sd dups[%]

P1 170.37 0.00 170.37 0.00 7.46 170.37 0.00 10.36
P2 112.10 0.00 112.10 0.00 70.94 112.10 0.00 72.02
P3 117.31 0.00 117.31 0.00 72.52 117.31 0.00 72.00
P4 117.07 0.00 117.07 0.00 71.52 117.07 0.00 70.90
P5 111.19 0.00 111.19 0.00 87.77 111.19 0.00 87.66
P6 245.83 0.00 245.83 0.00 31.92 245.83 0.00 29.28
P7 183.59 0.00 183.59 0.00 20.44 183.59 0.00 19.78
B1 355.73 0.00 355.73 0.00 28.09 355.73 0.00 24.59
A1 386.91 0.00 386.91 0.00 85.45 386.91 0.00 85.33
A2 318.03 0.00 318.03 0.00 89.28 318.03 0.00 88.76
A3 364.59 0.00 364.59 0.00 86.83 364.59 0.00 87.40
A4 419.12 0.00 419.12 0.00 71.34 419.12 0.00 70.76
B2 363.09 0.00 363.09 0.00 72.98 363.09 0.00 73.14
B3 501.47 0.00 500.87 0.00 45.85 500.87 0.00 47.17
A5 399.90 0.00 399.90 0.00 74.41 399.90 0.00 71.99
A6 359.13 0.00 359.13 0.00 83.34 359.13 0.00 83.65
A7 430.99 0.00 430.99 0.00 48.11 430.99 0.00 48.19
A8 371.80 0.00 371.80 0.00 80.60 371.80 0.00 78.99
B4 389.04 0.77 386.25 0.30 28.90 386.25 0.30 24.60
A9 371.41 0.00 371.41 0.00 63.80 371.41 0.00 64.09

A10 416.03 0.00 416.03 0.00 59.30 416.03 0.00 60.26
B5 281.48 0.00 281.48 0.00 88.47 281.48 0.00 88.64
P8 214.75 0.00 214.75 0.00 80.90 214.75 0.00 78.42
B6 404.26 0.00 404.26 0.00 39.34 404.26 0.00 39.92
B7 347.65 0.00 347.65 0.00 57.08 347.65 0.00 55.01

A11 508.85 0.70 506.60 1.09 26.19 506.48 1.03 24.82
B8 402.02 0.00 402.02 0.00 14.85 402.02 0.00 14.13

A12 478.22 0.00 478.22 0.00 26.14 478.22 0.00 24.67
A13 488.02 0.00 488.02 0.00 11.66 488.02 0.00 11.53
B9 417.03 0.00 417.03 0.00 66.42 417.03 0.00 67.98

B10 358.99 0.00 358.99 0.00 16.81 358.99 0.00 15.99
P9 239.36 0.00 239.36 0.00 59.32 239.36 0.00 58.08

A14 470.96 0.00 466.82 2.22 18.53 466.34 1.85 18.58
A15 462.55 0.00 462.55 0.00 15.58 462.55 0.00 14.26
B11 398.38 0.00 398.38 0.00 15.97 398.38 0.00 14.11
B12 600.66 0.00 600.64 0.05 7.87 600.65 0.03 7.63
P10 302.37 0.00 302.37 0.00 8.00 302.37 0.00 8.30
P11 261.31 0.00 261.31 0.00 21.17 261.31 0.00 17.35
P12 273.12 0.80 268.91 0.00 18.91 268.91 0.00 16.08
B13 513.02 0.00 513.02 0.00 12.84 513.02 0.00 12.34
P13 313.41 0.00 313.41 0.00 7.57 313.41 0.00 7.87
B14 360.50 0.00 360.50 0.00 22.16 360.50 0.00 18.56
A16 443.87 0.00 443.87 0.00 17.87 443.87 0.00 17.86
A17 490.54 0.00 490.54 0.00 10.00 490.54 0.00 9.86
A18 474.05 0.00 474.05 0.00 10.24 474.05 0.00 9.24
P14 316.65 0.00 313.37 2.18 6.99 313.67 2.25 6.72
P15 396.20 0.00 396.20 0.00 6.38 396.12 0.44 6.10
P16 274.22 0.00 274.22 0.00 12.14 274.22 0.00 12.97
P17 276.33 0.00 276.33 0.00 10.92 276.33 0.00 11.55
B15 358.81 0.26 357.91 0.26 10.65 357.84 0.00 10.44
B16 565.26 1.06 564.53 0.55 9.42 564.37 0.12 9.09
B17 689.78 8.96 681.73 11.45 6.35 682.01 11.30 6.14
A19 620.10 3.03 616.92 5.72 6.67 616.68 8.13 6.28
P18 328.89 0.00 328.83 0.05 6.41 328.83 0.05 5.94
P19 372.63 0.00 372.63 0.00 5.83 372.63 0.00 5.66
A20 482.51 0.00 482.51 0.00 6.11 482.51 0.00 5.96
A21 617.56 0.00 617.56 0.00 6.31 617.56 0.00 6.02
A22 611.54 0.00 611.54 0.00 5.86 611.66 0.68 5.69
A23 665.59 1.46 664.95 1.64 5.84 664.66 1.61 5.67
B18 604.67 0.07 604.66 0.09 6.80 604.62 0.10 6.53
A24 564.46 0.00 564.46 0.00 6.44 564.33 0.73 6.25
B19 457.24 0.00 457.24 0.00 8.13 457.24 0.00 7.62
A25 525.03 0.00 525.03 0.00 6.06 525.03 0.00 5.78
P20 378.48 0.00 378.48 0.00 5.68 378.48 0.00 5.56
B20 627.36 0.00 627.22 0.35 7.29 627.29 0.26 7.14
B21 561.71 0.00 561.71 0.00 5.74 561.71 0.00 5.58
B22 538.59 1.91 539.25 1.46 6.01 538.70 1.89 5.74
A26 523.77 0.00 523.77 0.00 7.94 523.77 0.00 7.84
P21 386.15 0.00 385.82 0.19 5.28 385.88 0.21 4.93
P22 310.40 0.00 310.40 0.00 34.38 310.40 0.00 32.96
P23 310.40 0.00 310.40 0.00 23.82 310.40 0.00 27.64
B23 620.11 0.00 620.11 0.00 7.73 620.11 0.00 7.48
A27 748.99 6.03 751.46 6.18 5.25 752.06 6.15 5.09
M1 468.10 14.60 463.48 8.51 5.32 463.06 5.95 5.33
P24 378.68 0.00 371.93 0.00 18.22 372.74 2.15 18.26
M2 578.24 18.02 561.00 18.40 4.87 566.74 18.97 4.57
M3 538.05 30.39 532.71 44.21 4.13 523.75 33.84 4.04
M4 936.83 113.82 834.52 158.87 2.89 829.13 163.78 2.59
G1 3769.61 317.90 3843.03 324.70 2.31 3898.56 302.18 2.09
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runs are given along with the number of duplicate solutions relative to all generated solutions. The
bold numbers in the column for the configuration without the SA mean that on these instances the
algorithm without the SA achieved statistically better results (using a pairwise Wilcoxon rank sum
test as described before) than either GASA SAconv=0 or GASA SAconv=1. The bold numbers in the
other columns indicate statistically better results for the respective configuration compared only to
the GA without the SA. These tables show that through all instance sizes the SA is able to improve
the algorithm as it produces in 20 out of 79 instances with θ = 2 and in 14 out of 79 instances
with θ = 3 significantly better results whereas the GA without the archive was never significantly
better. When considering the number of duplicate solutions, it is observed that generally the larger
the instances the fewer duplicates are produced and the average number of duplicates is 16.30% for
instances with θ = 2 and 28.29% for instances with θ = 3 (for SAconv=0). A summary of the results
is given in Table 5 where it becomes more obvious that both configurations using the SA achieve
significantly better results than the GA without the SA at a significance level of 1%. However, when
comparing SAconv=0 to SAconv=1 the results do not show a clear indication which one performed
better, but SAconv=0 is used for the remaining tests since the total average gap to the BKS and the
geometric mean is lower for this configuration.

Table 5 Performance of the GA with different variants of the SA.
Instances with θ= 2 Instances with θ= 3

no SA SAconv=0 SAconv=1 no SA SAconv=0 SAconv=1

obj 679.91 674.57 674.12 460.92 459.77 460.36
objg 545.15 542.90 543.41 398.58 397.42 397.42

gap to BKS 3.22% 2.58% 2.72% 1.37% 1.02% 1.02%
# Best results 43 60 55 56 62 65

p-Value (< no SA) - <0.000001 <0.000001 - <0.000001 <0.000001
p-Value (< SAconv=0) >0.999999 - 0.949769 >0.999999 - 0.641107
p-Value (< SAconv=1) >0.999999 0.050273 - >0.999999 0.359077 -

5.3. Bounding Extension
For the evaluation of the bounding extension the probability of a bound computation on the visit of
a trie node is set to 5% and as already stated in Section 4.4.3 the coarsest approximation of the DP
is used for computing lb1.

To investigate the impact of the bounding extension on the algorithm first it is determined how
successful the bound computations are. In this context successful means that after the bound com-
putation the subtrie could actually be cut off, i.e., the computed lower bound on this partial solution
is already higher than the global upper bound given by the best solution found so far. To get an
overview of the results the relative number of bound cuts is grouped by the trie levels which are
divided into four quarters in which the bounds are computed.
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Table 6 Successful bound cuts grouped by instance and part of the trie where they were computed.
θ= 2 0-25[%] 26-50[%] 51-75[%] 76-100[%] θ= 3 0-25[%] 26-50[%] 51-75[%] 76-100[%]

P1 0.00 0.00 0.00 0.00 P1 0.00 0.00 0.00 0.00
P2 24.36 68.98 94.08 98.62 P2 23.10 85.17 97.84 100.00
P3 16.35 58.85 91.73 98.70 P3 7.04 55.04 96.43 100.00
P4 8.64 56.54 91.24 98.87 P4 2.11 56.65 98.20 99.77
P5 8.64 61.21 93.34 99.26 P5 26.20 69.65 95.93 98.44
P6 0.00 5.97 36.61 58.74 P6 0.66 10.95 38.90 52.22
P7 0.00 0.00 0.60 1.48 P7 0.00 1.51 12.33 22.65
B1 2.04 5.70 19.93 52.47 B1 0.55 5.82 42.14 75.16
A1 18.51 29.46 55.61 81.62 A1 16.36 61.68 92.43 99.06
A2 13.59 26.76 57.28 82.25 A2 10.27 63.27 94.08 99.53
A3 11.83 28.28 57.13 82.00 A3 6.73 65.43 92.35 99.12
A4 20.76 35.39 60.46 84.44 A4 29.18 52.41 80.32 95.01
B2 3.34 13.65 49.10 77.29 B2 27.58 61.50 88.67 96.21
B3 0.46 9.85 42.46 76.86 B3 22.92 44.71 75.78 89.48
A5 19.48 35.85 64.10 88.70 A5 10.22 52.40 84.36 96.48
A6 23.82 48.40 68.69 92.24 A6 16.09 55.16 85.11 96.95
A7 1.58 9.65 39.31 77.19 A7 14.90 36.45 72.13 87.82
A8 9.48 27.05 48.70 83.96 A8 33.88 62.06 85.18 96.72
B4 0.33 8.27 35.36 63.84 B4 21.58 34.48 68.48 84.00
A9 1.69 11.78 38.91 73.40 A9 11.22 41.05 77.66 93.15

A10 2.77 12.80 40.60 74.55 A10 17.42 44.38 77.05 91.96
B5 14.93 27.88 58.20 82.91 B5 59.44 82.71 97.39 99.78
P8 9.79 21.41 45.14 77.91 P8 23.69 53.42 74.92 94.77
B6 1.42 7.33 44.00 80.95 B6 29.05 45.74 74.50 91.72
B7 0.03 3.35 32.67 73.67 B7 31.74 57.65 77.59 94.08

A11 0.53 6.60 36.27 73.91 A11 2.17 24.03 54.29 84.30
B8 0.01 1.31 24.68 64.77 B8 1.60 15.38 52.98 80.71

A12 1.60 9.32 39.19 76.30 A12 3.32 21.33 47.93 81.74
A13 0.02 1.37 20.29 60.32 A13 0.32 6.15 36.58 73.74
B9 2.24 11.99 46.06 85.50 B9 53.73 63.08 81.45 96.77

B10 0.38 3.58 22.70 66.08 B10 3.68 15.53 47.88 81.54
P9 5.20 17.22 41.87 81.12 P9 14.92 42.35 59.49 90.87

A14 0.38 5.55 33.19 72.75 A14 6.72 19.84 46.65 76.94
A15 0.12 2.80 21.94 59.50 A15 3.73 14.90 44.38 75.62
B11 2.54 10.94 45.15 77.34 B11 10.57 19.04 57.26 84.89
B12 0.00 0.02 5.66 37.12 B12 0.00 1.24 29.63 60.06
P10 0.06 1.74 24.28 61.04 P10 0.32 3.76 33.82 65.34
P11 1.73 7.19 35.85 73.10 P11 7.13 19.16 46.49 76.01
P12 0.55 5.01 33.22 68.40 P12 5.18 16.18 45.38 74.69
B13 0.20 4.94 32.80 66.08 B13 8.01 24.95 56.29 82.17
P13 0.03 1.56 21.64 60.19 P13 0.11 2.22 28.23 61.43
B14 0.68 7.17 40.21 74.88 B14 14.54 27.65 60.58 87.43
A16 0.42 4.92 30.92 71.31 A16 7.38 18.42 49.76 82.64
A17 0.03 1.57 20.36 64.63 A17 1.94 10.90 41.67 76.49
A18 0.25 3.45 25.48 64.52 A18 4.70 15.58 44.44 79.71
P14 0.15 2.83 21.75 59.34 P14 0.10 3.02 25.61 67.13
P15 0.00 0.16 7.35 39.64 P15 0.00 0.24 13.44 49.72
P16 1.45 8.56 32.95 69.56 P16 2.40 11.29 35.00 75.81
P17 1.75 8.84 33.94 70.90 P17 1.98 10.80 35.30 75.28
B15 0.61 5.57 31.63 66.08 B15 4.68 15.89 48.02 84.96
B16 0.02 0.91 19.40 60.83 B16 0.35 7.42 39.14 79.63
B17 0.00 0.09 7.49 36.96 B17 0.01 1.92 17.44 59.09
A19 0.01 0.92 16.79 58.12 A19 0.13 3.15 26.76 64.46
P18 0.10 2.77 24.13 62.89 P18 0.31 3.47 25.64 61.94
P19 0.00 0.34 10.13 47.70 P19 0.01 1.32 18.72 51.65
A20 0.17 2.92 23.89 64.39 A20 0.43 4.09 32.11 68.87
A21 0.13 2.75 23.80 68.27 A21 0.15 3.76 29.69 67.98
A22 0.02 1.33 16.55 54.39 A22 0.10 2.50 30.90 66.13
A23 0.00 0.62 10.36 45.26 A23 0.04 1.52 20.93 57.48
B18 0.03 1.99 16.62 53.05 B18 1.45 10.06 38.99 73.59
A24 0.02 1.13 15.13 53.13 A24 0.38 5.70 31.05 70.06
B19 0.86 6.54 24.01 60.17 B19 0.68 6.38 34.56 74.20
A25 0.34 4.48 28.94 63.92 A25 1.04 6.89 34.28 71.82
P20 0.10 1.81 22.24 61.10 P20 0.11 2.12 23.11 63.25
B20 0.00 0.71 13.62 51.56 B20 0.18 5.68 31.98 72.01
B21 0.07 2.27 19.61 58.78 B21 0.20 3.65 30.50 72.79
B22 0.01 0.80 14.97 54.15 B22 0.21 4.30 30.09 73.62
A26 0.15 2.65 23.24 65.45 A26 0.93 6.18 30.37 74.23
P21 0.07 1.38 17.69 60.77 P21 0.22 2.21 20.72 60.28
P22 4.94 11.84 38.76 79.72 P22 18.93 28.92 47.04 80.43
P23 1.86 8.18 34.45 77.95 P23 15.82 24.08 45.51 79.60
B23 0.01 0.37 9.88 51.07 B23 0.14 2.87 28.00 70.48
A27 0.01 0.55 9.56 45.63 A27 0.03 1.25 13.42 59.07
M1 0.41 2.51 14.68 45.68 M1 0.30 2.35 19.23 64.11
P24 9.74 14.03 36.32 80.61 P24 7.23 14.18 35.56 75.67
M2 0.12 0.34 12.33 46.12 M2 0.55 1.70 24.17 63.63
M3 0.20 0.61 8.73 33.08 M3 0.43 1.22 12.03 52.82
M4 0.00 0.00 0.00 17.81 M4 0.04 0.05 0.84 27.47
G1 0.00 0.00 0.00 8.43 G1 0.00 0.00 0.00 13.10
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Table 6 shows the number of successful bound cuts. Column 0-25 corresponds to the top quarter
of the trie, column 26-50 to the second quarter and so on. As expected, this value increases on
higher levels as more of the solution is already fixed. However, also for the lower levels this number
is surprisingly high for some of the smaller instances. Even if the number of bound cuts on the first
quarter of the trie is often less than 1% for the larger instances, one successful cut on a top level
drastically reduces the search space, as a cut on level i removes (m− i+1)! solution candidates, which
are not considered in later iterations anymore. On average the successful bound cuts for instances
with θ = 2 are, starting from the first quarter, 3.22%, 10.42%, 31.75%, and 64.47% and for the
instances with θ= 3, 8.25%, 22.55%, 47.79%, 75.31%.

5.4. Optimal Solutions
Using the solution archive and the bounding extension within the GA has the side effect to enhance
the algorithm into an exact bounded enumeration method. This is basically a theoretic result but
if the computed bounds are strong enough it may be sufficient to solve smaller instances to proven
optimality. Therefore, a set of experiments is conducted in which the global run-time was not limited
but instead a memory limit of 20 GB is used.

Table 7 List of the instances which could be solved optimally within the memory limit of 20 GB with and
without the bounding extension of the solution archive.

GASA GASA GASA GASA
+bounding +bounding

θ= 2 obj* t[s] t[s] θ= 3 obj* t[s] t[s]

P1 245.34 1.16 0.86 P1 170.37 0.06 0.06
P2 146.82 63.56 22.30 P2 112.10 0.11 0.08
P3 149.02 63.34 31.48 P3 117.31 0.13 0.11
P4 160.48 756.62 282.02 P4 117.07 0.13 0.11
P5 161.36 756.54 300.48 P5 111.19 0.72 0.46
P6 323.59 1445.44 1335.61 P6 245.83 6.31 7.20
P7 312.48 13334.70 14126.00 P7 183.59 0.98 0.79

B1 355.73 782.63 721.70
A1 386.91 835.08 288.87
A2 318.03 842.92 332.92
A3 364.59 832.20 306.27
A4 419.12 10697.70 2538.82
B2 363.09 10595.70 1959.18
B3 500.87 10740.90 3144.64
A5 399.90 10702.10 3802.57
A8 371.80 - 13415.50
B5 281.48 - 6535.06

Table 7 shows the instances, along with their optimal objective values and the needed time, which
could be solved within the memory limit with and without the bounding extension. We observe that
all instances with up to 12 clusters could be solved optimally. The largest instance which could be
solved was B5 with θ= 3, 39 nodes, and 13 clusters, which is solved in less than two hours. For most
of the solved instances the bounding extension is able to reduce the needed run-time by up to a
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factor of more than 5.0 (for instance B2) and for the largest two instances it is even able to find the
optimal solution whereas the GA with the solution archive alone could not.

5.5. Final Results
Finally, the GASA and the GASA with the bounding extension are compared to each other and to
the only already existing heuristic algorithm for the GVRPSD, the VNS by Biesinger et al. (2015c).
All algorithms are terminated after 300 seconds and in Table 8 the average objective values over 30
runs and the corresponding standard deviations are shown. As in Section 5.2 bold values indicate
that the corresponding algorithm performed significantly better than the other two methods on a 1%
error level according to a one-sided paired Wilcoxon rank sum test.

The results show that both GASA and GASA + bounding outperform the VNS on most of the
instances. Specifically, GASA found on 35 instances with θ = 2 and on 28 instances with θ = 3
significantly better results and GASA + bounding on 38 instances with θ = 2 and on 30 instances
with θ = 3 better results than the VNS. The VNS, however, achieved only in five instances better
results than any of the other two algorithms. When we compare GASA with GASA + bounding in
Table 8 it is not clear which should be preferred. Therefore, an overall summary of all three algorithms
is given in Table 9, which is constructed like the previous summaries. Although GASA + bounding
has a higher arithmetic mean than GASA, the geometric mean, the average gap to the BKS, and
the number of best results are better which is also reflected in the statistical tests which showed that
GASA + bounding performs significantly better on the given problem instances. Additionally it has
the property that for smaller instances it can actually find proven optimal solutions which makes
GASA + bounding the superior algorithm.

6. Conclusions and Outlook
In this work an evolutionary algorithm using a complete trie-based solution archive was developed to
solve the generalized vehicle routing problem with stochastic demand using the (optimal) preventive
restocking strategy. The genetic algorithm was enhanced by a variable neighborhood search using
four neighborhood structures in order to intensify the search. The solution archive was enhanced
by a bounding extension such that the considered solution space could be significantly pruned. All
components were analyzed to show their individual contribution to the performance of the overall
algorithm.

Extensive computational experiments were conducted to analyze the effectiveness of the presented
algorithm. The results show the superiority of the GASA method compared to an existing VNS. By
the fast calculation of lower bounds on partial solutions the search space can be significantly reduced
which lead to even better solutions on some instances. Furthermore, by using the solution archive
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Table 8 Results of the GASA with and without the bounding extension and the VNS from the literature.
VNS GASA GASA + bounding VNS GASA GASA + bounding

θ= 2 obj sd obj sd obj sd θ= 3 obj sd obj sd obj sd

P1 245.34 0.00 245.34 0.00 245.34 0.00 P1 170.37 0.00 170.37 0.00 170.37 0.00
P2 146.82 0.00 146.82 0.00 146.82 0.00 P2 112.10 0.00 112.10 0.00 112.10 0.00
P3 149.02 0.00 149.02 0.00 149.02 0.00 P3 117.31 0.00 117.31 0.00 117.31 0.00
P4 160.48 0.00 160.48 0.00 160.48 0.00 P4 117.07 0.00 117.07 0.00 117.07 0.00
P5 161.36 0.00 161.36 0.00 161.36 0.00 P5 111.19 0.00 111.19 0.00 111.19 0.00
P6 323.95 0.91 323.59 0.00 323.59 0.00 P6 245.83 0.00 245.83 0.00 245.83 0.00
P7 312.51 0.00 312.51 0.01 312.51 0.01 P7 183.59 0.00 183.59 0.00 183.59 0.00
B1 419.91 0.00 419.91 0.00 419.91 0.00 B1 355.73 0.00 355.73 0.00 355.73 0.00
A1 521.92 5.73 520.04 0.00 520.04 0.00 A1 386.91 0.00 386.91 0.00 386.91 0.00
A2 455.34 0.25 455.15 0.00 455.15 0.00 A2 318.03 0.00 318.03 0.00 318.03 0.00
A3 468.76 0.08 467.95 0.00 467.95 0.00 A3 364.59 0.00 364.59 0.00 364.59 0.00
A4 498.15 0.00 498.15 0.00 498.15 0.00 A4 419.12 0.00 419.12 0.00 419.12 0.00
B2 466.80 0.00 466.80 0.00 466.80 0.00 B2 363.09 0.00 363.09 0.00 363.09 0.00
B3 619.24 0.00 619.24 0.00 619.24 0.00 B3 501.39 0.21 500.87 0.00 500.87 0.00
A5 506.95 0.00 506.40 0.79 506.46 0.77 A5 399.90 0.00 399.90 0.00 399.90 0.00
A6 447.86 0.00 447.86 0.00 447.86 0.00 A6 359.13 0.00 359.13 0.00 359.13 0.00
A7 608.39 0.86 590.59 3.49 589.70 0.71 A7 430.99 0.00 430.99 0.00 430.99 0.00
A8 481.98 0.00 481.97 0.00 481.97 0.00 A8 371.80 0.00 371.80 0.00 371.80 0.00
B4 479.44 0.69 479.92 0.00 479.92 0.00 B4 388.84 1.05 386.25 0.30 386.25 0.30
A9 567.91 0.00 567.41 0.00 567.41 0.00 A9 371.41 0.00 371.41 0.00 371.41 0.00

A10 561.25 0.00 560.61 0.40 560.73 0.44 A10 417.78 0.33 416.03 0.00 416.03 0.00
B5 356.48 0.00 356.43 0.00 356.43 0.00 B5 281.48 0.00 281.48 0.00 281.48 0.00
P8 296.44 0.00 296.36 0.05 296.33 0.00 P8 214.75 0.00 214.75 0.00 214.75 0.00
B6 483.26 0.00 483.22 0.15 483.20 0.18 B6 404.26 0.00 404.26 0.00 404.26 0.00
B7 487.02 2.20 485.46 0.00 485.46 0.00 B7 347.65 0.00 347.65 0.00 347.65 0.00

A11 627.86 0.00 627.86 0.00 627.86 0.00 A11 508.98 0.00 506.60 1.09 505.32 0.59
B8 563.96 0.00 563.95 0.00 563.95 0.00 B8 402.02 0.00 402.02 0.00 402.02 0.00

A12 621.23 0.00 621.23 0.00 621.23 0.00 A12 478.22 0.00 478.22 0.00 478.22 0.00
A13 692.89 0.00 692.89 0.00 692.89 0.00 A13 488.02 0.00 488.02 0.00 488.02 0.00
B9 502.02 0.00 502.02 0.00 502.02 0.00 B9 419.35 0.79 417.03 0.00 417.03 0.00

B10 482.91 0.00 482.91 0.00 482.91 0.00 B10 358.99 0.00 358.99 0.00 358.99 0.00
P9 340.48 0.00 340.50 0.06 340.49 0.04 P9 239.36 0.00 239.36 0.00 239.36 0.00

A14 623.01 1.16 622.84 1.32 622.58 1.31 A14 471.34 0.50 466.82 2.22 465.62 0.00
A15 686.42 0.00 686.42 0.00 686.42 0.00 A15 462.55 0.00 462.55 0.00 462.55 0.00
B11 454.09 0.00 454.09 0.00 454.09 0.00 B11 398.38 0.00 398.38 0.00 398.38 0.00
B12 923.53 0.00 923.53 0.00 923.53 0.00 B12 604.66 1.64 600.64 0.05 600.62 0.06
P10 431.22 1.31 422.24 1.50 421.36 1.33 P10 302.37 0.00 302.37 0.00 302.37 0.00
P11 354.47 0.00 354.47 0.00 354.47 0.00 P11 261.31 0.00 261.31 0.00 261.31 0.00
P12 377.66 0.00 377.62 0.21 377.62 0.19 P12 273.27 0.00 268.91 0.00 268.91 0.00
B13 682.27 1.32 682.70 0.00 682.70 0.00 B13 513.02 0.00 513.02 0.00 513.02 0.00
P13 451.79 0.00 451.79 0.00 451.64 0.52 P13 313.41 0.00 313.41 0.00 313.41 0.00
B14 458.87 0.14 458.39 0.34 458.57 0.19 B14 360.50 0.00 360.50 0.00 360.50 0.00
A16 636.61 1.89 632.78 2.79 631.10 5.99 A16 443.87 0.00 443.87 0.00 443.87 0.00
A17 721.48 2.64 721.54 3.63 720.96 4.12 A17 490.54 0.00 490.54 0.00 490.54 0.00
A18 730.53 4.91 718.11 0.06 718.12 0.00 A18 474.05 0.00 474.05 0.00 474.05 0.00
P14 424.54 0.19 420.69 0.00 420.69 0.00 P14 316.65 0.00 313.37 2.18 312.14 0.87
P15 560.92 0.00 560.86 0.30 560.62 0.67 P15 395.57 0.76 396.20 0.00 396.16 0.27
P16 370.43 5.70 361.87 0.00 361.87 0.00 P16 274.22 0.00 274.22 0.00 274.22 0.00
P17 362.21 0.00 362.04 0.02 362.03 0.00 P17 276.33 0.00 276.33 0.00 276.33 0.00
B15 478.10 0.00 474.92 0.00 474.92 0.00 B15 358.85 0.19 357.91 0.26 357.84 0.00
B16 779.43 0.19 778.60 0.91 778.69 1.13 B16 567.66 0.23 564.53 0.55 564.35 0.00
B17 967.33 0.00 967.33 0.00 967.33 0.00 B17 692.38 3.10 681.73 11.45 674.93 8.63
A19 816.39 0.00 815.86 0.00 815.86 0.00 A19 617.87 4.70 616.92 5.72 615.61 5.95
P18 455.26 0.00 452.86 0.00 452.86 0.00 P18 328.89 0.00 328.83 0.05 328.79 0.00
P19 572.08 0.00 572.08 0.00 572.07 0.09 P19 372.63 0.00 372.63 0.00 372.63 0.00
A20 662.94 0.00 653.64 9.18 648.92 7.85 A20 482.51 0.00 482.51 0.00 482.51 0.00
A21 755.77 0.00 755.75 0.00 755.75 0.00 A21 617.56 0.00 617.56 0.00 617.56 0.00
A22 830.79 0.00 830.88 0.53 830.88 0.53 A22 611.54 0.00 611.54 0.00 611.54 0.00
A23 946.39 0.00 946.39 0.00 946.39 0.00 A23 666.46 0.00 664.95 1.64 663.65 1.12
B18 852.87 0.00 852.87 0.00 852.87 0.00 B18 604.68 0.06 604.66 0.09 604.59 0.11
A24 837.31 0.00 837.31 0.00 837.31 0.00 A24 563.57 3.39 564.46 0.00 564.02 2.44
B19 514.92 0.00 514.92 0.00 514.92 0.00 B19 457.24 0.00 457.24 0.00 457.24 0.00
A25 712.74 0.00 712.14 0.00 712.14 0.00 A25 525.03 0.00 525.03 0.00 525.03 0.00
P20 501.39 0.00 501.34 0.30 501.39 0.00 P20 378.53 0.00 378.48 0.00 378.48 0.00
B20 818.42 0.00 818.42 0.00 818.42 0.00 B20 627.36 0.00 627.22 0.35 627.22 0.35
B21 674.95 0.00 672.40 0.00 672.40 0.00 B21 561.71 0.00 561.71 0.00 561.71 0.00
B22 738.48 0.00 738.48 0.00 738.48 0.00 B22 539.10 1.63 539.25 1.46 538.88 1.74
A26 711.19 0.00 707.90 6.07 708.78 5.48 A26 523.77 0.00 523.77 0.00 523.77 0.00
P21 504.96 0.00 504.96 0.00 504.96 0.00 P21 386.07 0.17 385.82 0.19 385.69 0.00
P22 394.16 0.20 392.81 1.01 392.46 1.12 P22 310.40 0.00 310.40 0.00 310.40 0.00
P23 409.93 0.00 409.93 0.00 409.93 0.00 P23 310.40 0.00 310.40 0.00 310.40 0.00
B23 840.94 0.52 863.99 18.93 839.53 0.00 B23 620.11 0.00 620.11 0.00 620.11 0.00
A27 1064.86 0.00 1049.26 0.71 1049.13 0.98 A27 757.24 1.70 751.46 6.18 743.00 0.00
M1 590.38 0.03 569.15 19.41 544.82 0.55 M1 467.14 0.03 463.48 8.51 463.96 0.00
P24 462.18 0.83 458.43 0.35 458.31 0.23 P24 371.93 0.00 371.93 0.00 371.93 0.00
M2 769.86 0.00 860.22 112.30 745.93 0.01 M2 565.77 0.00 561.00 18.40 545.87 1.25
M3 732.85 0.80 983.18 209.26 692.56 0.41 M3 530.05 3.73 532.71 44.21 506.51 20.49
M4 3372.85 97.94 1680.24 605.77 1398.44 69.30 M4 2338.33 45.86 834.52 158.87 646.41 17.22
G1 13817.9 252.8 8669.10 741.93 10741.71 338.27 G1 8544.93 161.56 3843.03 324.70 4435.65 345.10
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Table 9 Summary of the performance of the GASA with and without the bounding extension compared to the
VNS.

Instances with θ= 2 Instances with θ= 3

VNS GASA GASA+bounding VNS GASA GASA+bounding

obj 758.17 674.57 691.39 539.00 459.77 464.08
objg 549.48 542.90 539.14 407.29 397.42 396.28

gap to BKS 5.66% 2.58% 1.70% 6.14% 1.02% 0.72%
# Best results 31 53 66 48 56 74

p-Value ( < VNS) - <0.000001 <0.000001 - <0.000001 <0.000001
p-Value (< GASA) >0.999999 - <0.000001 >0.999999 - 0.000948

p-Value (< GASA+bounding) >0.999999 >0.999999 - >0.999999 0.999053 -

and the bounding extension the algorithm is able to find proven optimal solutions for 24 instances
with up to 39 nodes and 13 clusters.

Ideas for future work include the application of this method to similar problems, e.g., when a
maximum route duration is given such that more than one tour has to be planned. Also a more
in-depth analysis when the GASA is applied to the VRPSD could be interesting. For the solution
archive another promising research direction is the utilization of the computed bounds for making a
more intelligent branching decision.
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Afsar, H Murat, Christian Prins, Andréa Cynthia Santos. 2014. Exact and heuristic algorithms for solving the

generalized vehicle routing problem with flexible fleet size. International Transactions in Operational
Research 21(1) 153–175.
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Fischetti, Matteo, Juan José Salazar González, Paolo Toth. 1997. A branch-and-cut algorithm for the
symmetric generalized traveling salesman problem. Operations Research 45(3) 378–394.
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