
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-15-008
April 2015

First-Order Queries on
Finite Abelian Groups

Simone Bova and BarnabyMartin

This is the authors’ copy of a paper that appears in the Proceedings of CSL, 2015.

www.ac.tuwien.ac.at/tr

First-Order Queries on Finite Abelian Groups∗

Simone Bova1 and Barnaby Martin2

1 Vienna University of Technology
Vienna, Austria
simone.bova@tuwien.ac.at

2 Middlesex University
London, United Kingdom
b.martin@mdx.ac.uk

Abstract
We study the computational problem of checking whether a logical sentence is true in a finite
abelian group. We prove that model checking first-order sentences on finite abelian groups is
fixed-parameter tractable, when parameterized by the size of the sentence. We also prove that
model checking monadic second-order sentences on finite abelian groups finitely presented by
integer matrices is not fixed-parameter tractable (under standard assumptions in parameterized
complexity).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Computa-
tions on Discrete Structures, F.4.1 Mathematical Logic – Model theory, G.2.1 Combinatorics –
Combinatorial Algorithms.

Keywords and phrases Finite Abelian Groups, First-Order Logic, Monadic Second-Order Logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.41

1 Introduction

The model checking problem for first-order logic is the problem of deciding whether a
given first-order sentence is true in a given finite structure; it encompasses a wide range of
fundamental combinatorial problems. The problem is trivially decidable in O(nk) time, where
n is the size of the structure and k is the size of the sentence, but it is not polynomial-time
decidable or even fixed-parameter tractable when parameterized by k (under complexity
assumptions in classical and parameterized complexity, respectively).

Restrictions of the model checking problem to fixed classes of structures have been
intensively investigated from the perspective of parameterized algorithms and complexity.
Starting from seminal work by Courcelle [4] and Seese [18], structural properties of graphs
sufficient for fixed-parameter tractability of model checking have been identified, culminating
in the recent result by Grohe, Kreutzer, and Siebertz that model checking first-order logic
on classes of nowhere dense graphs is fixed-parameter tractable [10]. On graph classes
closed under subgraphs the result is known to be tight; at the same time, there are classes
of somewhere dense graphs (not closed under subgraphs) with fixed parameter tractable
first-order (and even monadic second-order) logic model checking; the prominent examples
are graph classes of bounded clique-width solved by Courcelle, Makowsky, and Rotics [5].

In contrast to its mature understanding on graphs, the model checking problem has been
very little investigated on classes of structures characterized by mathematical properties,

∗ The first author was supported by FWF grant P26200. The second author was supported by EPSRC
grant EP/L005654/1.

© Simone Bova and Barnaby Martin;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 41–59

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

42 First-Order Queries on Finite Abelian Groups

such as ordered structures or algebraic structures [9]. Recent work has redressed the former,
ordered case [1, 2, 8], but hitherto little has been done in the latter, algebraic case.

Finite groups are fundamental in mathematics and computer science, and are perhaps
the most prominent candidate to propose an investigation in this domain. Computational
problems on finite groups are important and challenging. The notorious group isomorphism
problem has long been known to be solvable in quasipolynomial time; it remains a huge open
problem whether this can be improved to polynomial [16].

In contrast to general finite groups, the nice structure of finite abelian groups makes their
associated problems simpler, both technically and computationally; isomorphism queries can
be answered in linear time [13]. Yet, abelian groups remain a very important subclass; in
finite model theory they appear in the literature on constraint satisfaction problems since
the seminal work of Feder and Vardi [6].

Contribution. In this paper, we study the problem of model checking first-order logic on
finite abelian groups. Our first contribution is a positive answer to a question posed by
Grohe [9, Problem 8.2].

I Result 1. Model checking first-order sentences on finite abelian groups, parameterized by
the size of the sentence, is fixed-parameter tractable in linear time with a nonelementary
parameter dependence.

The proof is based on a revisiting of Baur-Monk’s theorem on quantifier elimination in
modules [11, Theorem A.1.1], which provides fresh insight into this classical result, both on
important computational aspects of the class of sentences where quantifiers are eliminated,
and on the mechanics the elimination procedure itself.

The theorem provides an effective procedure for reducing a first-order sentence ψ to
a boolean combination of invariant sentences that is equivalent to ψ on abelian groups;
formally, invariant sentences are first-order sentences, in the prefix class Σ2, of the form

∃x1 . . . ∃xk(
∧

1≤i≤k

φ1(xi) ∧
∧

1≤i<j≤k

¬φ2(xi − xj))

where φ1 = ∃y1 . . . ∃yl

∧
i αi and φ2 = ∃z1 . . . ∃zm

∧
j βj are primitive positive formulas in

one free variable (and k, l, and m grow with ψ).
It is unclear whether invariant sentences can be model checked in polynomial time on

finite abelian groups;1 if true, this would immediately imply a fixed-parameter tractable
algorithm for model checking first-order logic on finite abelian groups. However, invariant
sentences express bounds on the index of primitively positively definable subgroups (of an
abelian group) into each other; for instance, the example above states that the index of the
subgroup defined by φ1 ∧ φ2 in the subgroup defined by φ1 is at least k. Therefore, if the
underlying (abelian) group is finite, by Lagrange’s theorem checking an invariant sentence
reduces to computing the ratio between the orders of φ1 and φ1 ∧ φ2, which is in turn the
problem of counting the number of elements satisfying a primitive positive formula in one
free variable in a finite abelian group.

The latter is feasible in polynomial time, and indeed in two ways: either by reducing to a
linear number of calls to the algorithm by Bulatov and Dalmau for constraint satisfaction

1 Owing to Szmielew [20], we can even assume l = m = 1. In this case, we can eliminate y1 and z1 by
instantiating on all elements in the target structure, and then reduce to (a disjunction of) existentially
closed conjunctions of equalities and inequalities. But this syntactic form is readily verified to be
computationally hard in general.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 43

problems on Maltsev constraints [3]; or, more directly, by reducing to a quadratic check of a
formula in 2-variable logic (that is, built using only two variable symbols) using algebraic
techniques.

We conclude the commentary of our first result remarking that the actual implementation
of the elimination procedure, described in Section 4, is technically nontrivial, and is explicit
enough to enlighten an upper bound (albeit a nonelementary one) on its complexity (which
remains fairly hidden in the rather concise presentations of Baur-Monk elimination available
in the literature).

In a quest to provide a measure of tightness for our first result, we investigated the problem
of model checking monadic second-order logic on finite abelian groups, yet another question
posed by Grohe [9]. Unfortunately we cannot answer this question, but at least we can prove
the following.

I Result 2. Model checking monadic second-order sentences on succinctly presented finite
abelian groups, parameterized by the size of the sentence, is not fixed-parameter tractable
(unless W[1] ⊆ FPT).

In this setup, the group is not given as usual by its multiplication table (whose size is
quadratic in the order of the group), but instead it is given by what we call a succinct
presentation. This is a finite presentation in the usual sense [17], encoded by an integer
matrix whose entries are encoded in binary as it is customary, for instance, in computational
group theory and computer algebra systems. Roughly, a finite presentation is a formula
of size O(logn) capable of representing a group of size n; in succinct presentations, such a
representation power is already attained by formulas of size O(log logn).

It is clear that checking formulas on structures represented succinctly is, in principle,
harder. Indeed, we establish our second result by giving a fixed-parameter tractable reduction
from the clique problem (parameterized by the size of the clique) to the problem of model
checking monadic second-order sentences on succinctly presented finite abelian groups
(parameterized by the size of the sentence).

The idea of the reduction is as follows. By the fundamental theorem [17], every finite
abelian group admits a canonical decomposition as a direct sum of prime power order cyclic
groups. Now, each vertex of the given graph is associated to a prime number and each
edge to a positive integer; and the finite abelian group derived from the graph has a direct
summand for each edge leaving each vertex (hence the direct summands are twice as much
as the edges), whose prime power order is equal to the prime associated to the vertex raised
to the positive integer associated to the edge (this group has a succinct presentation of linear
size).

Then the key technical observation is that, despite monadic second-order logic cannot
express that two sets have the same size, it can indeed express that two subsets of two cyclic
subgroups of a group have the same size. Building on this, we can express by monadic
second-order formulas that two direct summands of the group have the same base, or the
same exponent, and therefore easily reduce a clique query on the given graph to an equivalent
monadic second-order query (only depending on the size of the clique) on the derived group.

Organization. The paper is organized as follows. In Section 2, we prepare terminology
and notation. In Section 3, we establish the crucial lemmas in preparation of the result
on first-order logic, presented in Section 4. In Section 5, we present the result on monadic
second-order logic.

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

44 First-Order Queries on Finite Abelian Groups

2 Preliminaries

We recall some basic terminology and notation on logic, groups, and complexity, and refer
the reader to any standard textbook for further details [17, 7].

For n ≥ 1 integer, we let [n] denote {1, . . . , n}.

Logical Formulas. Throughout the paper, we work on the vocabulary γ = {+,−, 0}, where
+ is a binary operation symbol, − is a unary operation symbol, and 0 is a constant symbol.
An atom has the form t = s where t and s are terms built using the operation symbols in γ.
We freely use the shortcut nx for the term x+ · · ·+ x if n > 0, or the term −(x+ · · ·+ x) if
n < 0, where x occurs n times; we also write x− y instead of x+ (−y). A literal is an atom
or a negated atom. For every set {x1, . . . , xl} of variables, we let FO(x1, . . . , xl) denote the
class of all first-order formulas (with equality) built over γ and having free variables among
x1, . . . , xl. We let FO denote the class of all first-order sentences (with equality) built over
γ. A first-order formula in FO(x1, . . . , xl) is primitive positive if it is built from atoms using
conjunction (∧) and existential quantification (∃). We let PP(x1, . . . , xl) denote the class of
all primitive positive formulas in FO(x1, . . . , xl), and PP denote the class of all primitive
positive sentences in FO. Similarly, for every set {X1, . . . , Xm} of set variables and every
set {x1, . . . , xl} of individual variables, we letMSO(X1, . . . , Xm, x1, . . . , xl) denote the class
of all monadic second-order formulas (with equality) built over γ and having free variables
among X1, . . . , Xm, x1, . . . , xl. We letMSO denote the class of all monadic second-order
sentences (with equality) built over γ. We freely use standard shortcuts, for instance X ⊆ Y
instead of (∀x)(x ∈ X → x ∈ Y), et cetera, and occasionally write




φ1
...
φn




instead of (φ1 ∧ · · · ∧ φn).
If A is a structure and ψ(X1, . . . , Xm, x1, . . . , xl) is a formula, both on the same vocabulary,

and f is an assignment of X1, . . . , Xm in P(A) and x1, . . . , xl in A, we write A, f |= ψ if ψ is
true in A under the assignment f . We also liberally write A |= ψ(A1, . . . , Am, a1, . . . , al) to
indicate that ψ is true in A under the assignment sending Xi to Ai ∈ P(A) and xi to ai ∈ A.
Moreover, we write ψ(X1, . . . , Xm, x1, . . . , xl)A, or ψA in short, to denote the set of all tuples
((A1, . . . , Am), (a1, . . . , al)) in P(A)m ×Al such that A |= ψ(A1, . . . , Am, a1, . . . , al).

Group Theory. We view a group as a structure G = (G,+G,−G, 0G) on vocabulary γ where
+G is an operation satisfying the group axioms, 0G denotes its identity element, and −Gg
denotes the inverse element of g ∈ G. The group is finite if its order, |G|, is finite.

Let G be a group. A nonempty subset S ⊆ G is (the universe of) a subgroup S of G if
0G ∈ S, −Gs ∈ S for all s ∈ S, and s+G s′ ∈ S for all s, s′ ∈ S. It is known that S ⊆ G is a
subgroup of G if and only if S is nonempty and s −G s′ ∈ S for all s, s′ ∈ S; in the finite,
S ⊆ G is a subgroup of G if and only if S is nonempty and s+G s′ ∈ S for all s, s′ ∈ S.

Let G be a group, let S be a subgroup of G, and let g ∈ G. The (right) coset of S in G
with respect to g, denoted by S + g, is the set {s+G g : s ∈ S}. It is known that the cosets
of S in G are either identical or disjoint, and all have the same size (equal to the order of S,
as S is itself a coset). Hence, the set of all cosets of S in G forms a partition of G. Consider
the case where G is finite. Then, by Lagrange’s theorem, the order of S divides the order of
G, and |G|/|S| is the number of cosets of S partitioning G, known as the index of S in G.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 45

A group G is abelian if the operation +G is commutative. We let AGfin denote the class
of finite abelian groups. Let Z(p, e) denote the cyclic group of order pe (or equivalently
the additive group modulo pe, that is {0, 1, . . . , pe − 1} equipped with addition modulo pe),
where p is a prime number and e a positive integer. Every finite abelian group is isomorphic
to a direct sum of prime power order cyclic groups, called primary decomposition,

Z(p1, e1,1)⊕ · · · ⊕ Z(p1, e1,n1)⊕ · · · ⊕ Z(pm, em,1)⊕ · · · ⊕ Z(pm, em,nm
),

where the pi are prime numbers and the exponents ei,j are positive integers uniquely
determined by the isomorphism type of the group.

A succinct presentation of an abelian group is a finite presentation of an abelian group
encoded by an integer matrix, whose entries are encoded in binary, as customary in com-
putational group theory. The abelian group finitely presented by the m× n integer matrix
A ∈ Zm×n is the abelian group generated by the n generators x1, . . . , xn, subject to the
m relations ai,1x1 + . . .+ ai,nxn = 0 for i ∈ [m]. Intuitively, a binary (instead of a unary)
encoding for the integer entries of the matrix corresponds to encode a term ax in size
logarithmic (instead of linear) in the absolute value of a, which motivates our terminology.
We let AGspfin denote the class of all succinctly presented finite abelian groups.

Model Checking. We study the parameterized complexity of the following two computa-
tional problems. First, the problem of model checking first-order logic on finite abelian
groups, in symbols MC(AGfin,FO), that is the problem of deciding, given A ∈ AGfin and
ψ ∈ FO, whether A |= ψ. Second, the problem of model checking monadic second-order
logic on succinctly presented finite abelian groups, in symbols MC(AGspfin,MSO), that is
the problem of deciding, given a succinct presentation A ∈ Zm×n of a finite abelian group
A and a sentence ψ ∈MSO, whether A |= ψ. We regard both problems as parameterized
problems, where instance (A, ψ) is parameterized by the size of ψ.

3 Basic Facts

In this section we collect some crucial facts about the combinatorics of cosets in finite groups
and about primitive positive logic over abelian groups.

We start mining, from the proof of Baur-Monk quantifier elimination theorem [11,
Theorem A.1.1], a nice combinatorial property of cosets in finite groups. Roughly, in a finite
group, the size of a union of cosets equals the size of the corresponding union of subgroups,
hence computing the size of a union of cosets reduces to an elementary counting problem on
the corresponding subgroups.

I Lemma 1. Let A be a finite group. Let G and Hi (i ∈ I) be subgroups of A. Let C be a
coset of G in A and let Di be a coset of Hi in A (i ∈ I). Then C ⊆ ⋃i∈I Di if and only if

0 =
∑

J

(−1)|J|
|G ∩⋂i∈J Hi|
|G ∩⋂i∈I Hi|

where J ranges over all subsets of I such that C ∩⋂i∈J Di 6= ∅.

Proof. Let N denote the subgroup of A with universe N = G ∩ ⋂i∈I Hi. Let C/N =
{N + c : c ∈ C}. In words, C/N is the set of (right) cosets of N in A with respect to elements
in C ⊆ A. Similarly, let Di/N = {N + d : d ∈ Di}, i ∈ I.

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

46 First-Order Queries on Finite Abelian Groups

Since C is a coset of G in A, and N is a subgroup of G, C is a (disjoint) union of cosets
of N in A. Similarly, Di is a (disjoint) union of cosets of N in A (i ∈ I), and hence

⋃
i∈I Di

is a (disjoint) union of cosets of N in A. Therefore, C ⊆ ⋃i∈I Di if and only if

C/N ⊆
⋃

i∈I

Di/N .

Since A is finite, C/N and Di/N for all i ∈ I are finite. By elementary combinatorics, if
B,B1, . . . , Bn are finite sets, then B ⊆ ⋃i∈[n]Bi if and only if 0 =

∑
I⊆[n](−1)|I||B∩⋂i∈I Bi|

[12, Proposition 3.2]. Hence, C/N ⊆ ⋃i∈I Di/N if and only if

0 =
∑

J⊆I

(−1)|J||C/N ∩
⋂

i∈J

Di/N |.

Moreover, C/N ∩⋂i∈J Di/N = (C ∩⋂i∈J Di)/N for all J ⊆ I, hence we reduce to

0 =
∑

J⊆I

(−1)|J||(C ∩
⋂

i∈J

Di)/N |.

If C ∩ ⋂i∈J Di = ∅ for some J ⊆ I, then the corresponding term does not contribute to
the sum. Otherwise, |(C ∩⋂i∈J Di)/N | = |(G ∩

⋂
i∈J Hi)/N |, and by Lagrange’s theorem

|(G ∩⋂i∈J Hi)/N | = |G ∩
⋂

i∈J Hi|/|N |, thus reducing to

0 =
∑

J

(−1)|J|
|G ∩⋂i∈J Hi|
|G ∩⋂i∈I Hi|

where J ranges over all subsets of I such that C ∩⋂i∈J Di 6= ∅. J

We now make a few observations about primitive positive logic on abelian groups, starting
from the folklore fact that, on abelian groups, primitive positive formulas in one free variable
(respectively, with parameters) define subgroups (respectively, cosets).

I Proposition 1. Let A be an abelian group.
Let π ∈ PP(x). Then πA is a subgroup of A.
Let π ∈ PP(x1, . . . , xl) and f : {x1, . . . , xl−1} → A. If πA,f 6= ∅, then πA,f is a coset in
A of the subgroup π(0, . . . , 0, xl)A of A.

We conclude the section describing an algorithm that, given a primitive positive formula
in one free variable, returns a primitive positive formula, equivalent on abelian groups,
written using only two distinct variable symbols. The algorithm is based on the computation
of the Smith normal form of an integer matrix [15]; this algebraic technique is known to
improve the syntactic form of primitive positive formulas [11, Lemma A.2.1], but its link
with 2-variable logic is firstly and fruitfully observed here.

I Proposition 2. There exists a single exponential time algorithm that, given a formula
π ∈ PP(x), returns a formula ρ ∈ PP(x) of the form

ρ =
∧

i

∃y(cix = diy), (1)

ci, di ∈ Z, such that ρ is equivalent to π on abelian groups.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 47

Proof. Note that π ∈ PP(x) is equivalent on abelian groups to

∃z1 . . . ∃zm

∧

i∈[n]

(rix =
∑

j∈[m]

sijzj)

where ri, sij ∈ Z, which can be displayed in matrix notation as

∃z1 . . . ∃zm


R

(
x
)

= S




z1
...
zm





 (2)

where R ∈ Zn×1 and S ∈ Zn×m. By Smith’s theorem, there exist invertible (square) matrices
X and Y of orders m and n respectively such that XSY is diagonal. Therefore, upon
replacing R by XR = C, S by XSY = D, and (z1, . . . , zm)T by Y −1(z1, . . . , zm)T , we have
that (2) is equivalent on abelian groups to

∃w1 . . . ∃wm


C

(
x
)

= D




w1
...
wm





 (3)

where C ∈ Zn×1 and D ∈ Zn×m is diagonal.
Putting (3) back in formula notation and proceeding by logical principles, we have the

following chain of equivalences on abelian groups, leading to the desired form:

π ≡ ∃z1 . . . ∃zm

∧

i∈[n]

(rix =
∑

j∈[m]

sijzj)

≡ ∃w1 . . . ∃wm

∧

i∈[n]

(cix =
∑

j∈[m]

dijwj)

≡ ∃w1 . . . ∃wm

∧

i∈[n]

(cix = diiwi)

≡
∧

i∈[n]

∃wi(cix = diiwi)

≡
∧

i∈[n]

∃y(cix = diiy).

We conclude showing that ρ is computable in time single exponential in the size of
π. There is an algorithm that computes D, X, and Y in time polynomial in m, n, and
s∗ = maxi∈[m],j∈[n] |sij |; the integer entries in D and X have (absolute) value bounded above
singly exponentially in max{m,n} and log s∗ [19, Proposition 7.20 and Proposition 8.10].
2 Since m, n, and s∗, as well as the entries in R, are bounded above by the size of π, it
follows that the integers entries in C and D are bounded singly exponentially by the size
of π. Hence ρ has size single exponential in the size of π, and is computable in time single
exponential in the size of π. J

The nice algorithmic consequence of Proposition 2 is that we reduce the problem of
computing |πA|, where π is a primitive positive formula on one free variable, to the problem

2 The model of computation is an arithmetic RAM, but the algorithm translates into a polynomial-time
algorithm on a standard RAM.

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

48 First-Order Queries on Finite Abelian Groups

of computing |ρA|, where ρ is a formula using only two variables. The latter merely requires
quadratic work in the size of the structure: namely, there exists an algorithm that, given a
finite abelian group A and a primitive positive formula ρ(x) as in (1), computes the size of
ρA = {a ∈ A : A |= ρ(a)} in O(k|A|2) time, where k is the size of ρ.

Alternatively, for primitive positive formulas π(x) on one free variable, it is possible to
show that the problem of determining |πA| is solvable in time polynomial in the size of A
and π by calling |A| times the algorithm by Bulatov and Dalmau for constraint satisfaction
problems on Maltsev constraints [3]. We prefer the elementary approach of Proposition 2, as
for our algorithmic result the exponential increase in size of ρ with respect to π is negligible.

4 First-Order Queries

In this section, we prove that model checking first-order logic on finite abelian groups is
fixed-parameter tractable. Let A be a finite abelian group and let ψ be a first-order sentence
in prenex form,

ψ = Q1x1 . . . Qmxmφ (4)

where the Qi are quantifiers, ∃ or ∀, and φ is a boolean combination of atoms.
We describe the algorithm referring to the pseudocode below (where B denotes a comment,

and � denotes an assignment). The subprocedure FO2(·) on Lines 7 and 10 is the algorithm
in the statement of Proposition 2. The input is a pair (A, ψ), where A is a finite abelian
group and ψ is a first-order sentence specified as above (Line 1).

The algorithm loops on l = m, . . . , 1 and constructs a first-order sentence

ψl−1 = Q1x1 . . . Rl−1xl−1φl−1,

where Rl−1 ∈ {∃,¬∃}, such that A |= ψl−1 if and only if A |= ψ, and φl−1 is a boolean
combination of primitive positive formulas with free variables among x1, . . . , xl−1 (Lines 2-23).
Intuitively, the algorithm computes ψl−1 from ψl by “eliminating” the quantifier on variable
xl (Lines 6-14).

It follows that ψ0 is a boolean combination, denote it by bool(µ1, . . . , µL), of primitive
positive sentences µ1, . . . , µL (Line 24). Moreover, A |= ψ if and only if A |= ψ0. Since each
primitive positive sentence is true in A, it holds that A |= ψ0 if and only if A |= bool(>, . . . ,>),
which is easily checked (Lines 25-26).

ModelCheck(A, ψ)
1 B ψ as in (4)
2 if Qm = ∃ then ψm � Q1x1 . . . Qm−1xm−1∃xmdnf(φ)
3 else ψm � Q1x1 . . . Qm−1xm−1¬∃xmdnf(¬φ)
4 for l = m, . . . , 1
5 B ψl = Q1x1 . . . Ql−1xl−1Rlxl

∨
i∈I(πi ∧

∧
j∈Ji
¬πij) where πi, πij ∈ PP(x1, . . . , xl)

6 forall i ∈ I,M ⊆ Ji, X ⊆ P(M)
7 σi,M � FO2((πi ∧

∧
j∈M πij)(0, . . . , 0, xl))

8 Ci,M � |σA
i,M |

9 forall Y ∈ X
10 ρi,Y � FO2((πi ∧

∧
j∈Y πij)(0, . . . , 0, xl))

11 Ci,Y � |ρAi,Y |
12 if 0 =

∑
Y ∈X(−1)|Y |(Ci,Y /Ci,M) then θi,M,X � > else θi,M,X � ⊥

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 49

13 θi,M �
∧

X⊆P(M)

((∧
Y ∈X ∃xl(πi ∧

∧
j∈Y πij)∧

Y ∈P(M)\X ¬∃xl(πi ∧
∧

j∈Y πij)

)
→ θi,M,X

)

14 φl−1 � ¬
∧

i∈I

∧
M⊆Ji







∃xlπi∧
j∈M ∃xlπij∧

j∈Ji\M ¬∃xlπij


→ θi,M




15 B φl−1 boolean combination of primitive positive formulas with x1, . . . , xl−1 free
16 case Ql−1 = ∃, Rl = ∃ :
17 ψl−1 � Q1x1 . . . ∃xl−1dnf(φl−1)
18 case Ql−1 = ∃, Rl = ¬∃ :
19 ψl−1 � Q1x1 . . . ∃xl−1dnf(¬φl−1)
20 case Ql−1 = ∀, Rl = ∃ :
21 ψl−1 � Q1x1 . . .¬∃xl−1dnf(¬φl−1)
22 case Ql−1 = ∀, Rl = ¬∃ :
23 ψl−1 � Q1x1 . . .¬∃xl−1dnf(φl−1)
24 B ψ0 = bool(µ1, . . . , µL) boolean combination of primitive positive sentences
25 if A |= bool(>, . . . ,>) then accept
26 reject

We now prove that the algorithm is correct.

I Lemma 2. Let A be a finite abelian group and ψ be a first-order sentence specified as in
(4). Then A |= ψ if and only if ModelCheck(A, ψ) accepts.

Proof. Let ψ = Q1x1 . . . Qmxmφ, where φ is a boolean combination of atoms. For l ∈
{0, 1, . . . ,m}, let

ψl = Q1x1 . . . Ql−1xl−1Rlxlφ
′
l,

be the formula computed by ModelCheck(A, ψ) either on Line 2 or 3 (l = m), or on
Line 16, 18, 20, or 22 (l < m). Here, Rl ∈ {∃,¬∃}.

By induction on l = m, . . . , 0, we prove that:
(I1) A |= ψ if and only if A |= ψl;
(I2) φ′l =

∨
i∈I(πi ∧

∧
j∈Ji
¬πij), where the πi and πij are primitive positive formulas on

free variables x1, . . . , xl.

It follows that A |= ψ if and only if A |= ψ0. Since ψ0 is a boolean combination of primitive
positive sentences, each true in A, the correctness of the algorithm follows (Lines 24-26). We
now give the inductive argument.

Base Case (l = m). Invariants (I1) and (I2) clearly hold if ψm is set as in Line 2 or 3.
The operator dnf(·), given a boolean combination of atoms, returns a logically equivalent
disjunctive normal form.

Inductive Step (l − 1, l ≤ m). By (I1) and (I2), we have inductively

ψl = Q1x1 . . . Ql−1xl−1Rlxlφ
′
l,

Rl ∈ {∃,¬∃}, such that A |= ψ if and only if A |= ψl. Intuitively, the algorithm constructs
the first-order sentence

ψl−1 = Q1x1 . . . Rl−1xl−1φ
′
l−1,

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

50 First-Order Queries on Finite Abelian Groups

satisfying invariants (I1) and (I2), by “eliminating” the quantifier on variable xl in ψl, as
follows.

Consider the case where Ql−1 = Rl = ∃ (Line 16), so that

ψl = Q1x1 . . . ∃xl−1∃xlφ
′
l

= Q1x1 . . . ∃xl−1∃xl

∨

i∈I

(πi ∧
∧

j∈Ji

¬πij)

where the πi and πij are formulas in PP(x1, . . . , xl) by the induction hypothesis on ψl. The
remaining cases (Line 18, Line 20, and Line 22) reduce to this case by handling negations as
described in the pseudocode (Lines 18-23).

For readability, we first introduce the following notation. The operator P(·), given a
finite set, returns its powerset. For i ∈ I, M ⊆ Ji, and X ⊆ P(M) let:

αi,M = ∃xlπi ∧
∧

j∈M

∃xlπij ∧
∧

j∈Ji\M
¬∃xlπij (5)

βi,M,X =
∧

Y ∈X

∃xl(πi ∧
∧

j∈Y

πij) ∧
∧

Y ∈P(M)\X
¬∃xl(πi ∧

∧

j∈Y

πij) (6)

We now claim that,

∃xlφ
′
l = ∃xl

∨

i∈I

(πi ∧
∧

j∈Ji

¬πij) (7)

≡
∨

i∈I

∃xl(πi ∧
∧

j∈Ji

¬πij) (8)

≡ ¬
∧

i∈I

∀xl(πi →
∨

j∈Ji

πij) (9)

≡ ¬
∧

i∈I

∧

M⊆Ji

(αi,M → ∀xl(πi →
∨

j∈M

πij)) (10)

≡A ¬
∧

i∈I

∧

M⊆Ji

(αi,M →
∧

X⊆P(M)

(βi,M,X → θi,M,X)) (11)

= φl−1 (12)

where θi,M,X ∈ {⊥,>}.
Before proving the claim, note that φl−1 in (12) is the formula on Line 14. By the above

chain of equivalences, φl−1 is equivalent in A to ∃xlφ
′
l. Therefore, the formula ψl−1 defined

on Line 17 is equivalent to ψ on A. Hence ψl−1 satisfies invariant (I1). Moreover, since
θi,M,X is either ⊥ or > (Line 12), by inspection of Lines 13 and 14 (or (5) and (6), where we
observe that the variable xl is existentially quantified in each πi and πij), φl−1 is a boolean
combination of formulas in PP(x1, . . . , xl−1). Therefore, the formula ψl−1 defined on Line 17
by taking the disjunctive normal form of φl−1 also satisfies invariant (I2), as desired.

We now prove the claim. The equivalences (8)-(9) hold by logical principles, and the
equivalence (10) is readily verified. It remains to show that (11) holds, which is the crucial
step of the construction. Here, the notation ≡A means that this equivalence is relative to the
structure A (as opposed to the previous equivalences, that are logical equivalences holding
for all structures).

By inspection of (11), it is sufficient to show that for all i ∈ I, M ⊆ Ji, and all

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 51

f : {x1, . . . , xl−1} → A such that A, f |= αi,M , the following are equivalent:

A, f |= ∀xl(πi →
∨

j∈M

πij) (13)

A, f |=
∧

X⊆P(M)

(βi,M,X → θi,M,X) (14)

First we show that (13) is equivalent to a certain combinatorial statement involving
cosets of primitive positive definable subgroups of A, next we show that (14) is equivalent to
A, f |= θi,M,X∗ for a suitably chosen X ∈ P(P(M)), and we conclude showing the equivalence
of the combinatorial statement and A, f |= θi,M,X∗ .

First, since A, f |= αi,M , we have that πA,f
i and πA,f

ij are nonempty for all j ∈M . Hence,
by Proposition 1, πA,f

i is a coset in A of the subgroup πi(0, . . . , 0, xl)A, and πA,f
ij is a coset in

A of the subgroup πij(0, . . . , 0, xl)A for all j ∈M . We therefore have that (13) is equivalent
to

πA,f
i ⊆

⋃

j∈M

πA,f
ij (15)

where πA,f
i and πA,f

ij are the described cosets in A.
Next, observe that there exists exactly one X ⊆ P(M) such that A, f |= βi,M,X . Indeed,

note that P(M) is partially ordered by the inclusion relation. Then the unique choice of
X in P(P(M)) is determined as follows: X contains exactly those Y ∈ P(M) contained in
some Y ′ ∈ P(M) that is maximal with the property that A, f |= ∃xl(πi ∧

∧
j∈Y ′ πij). Let

X∗ denote this unique choice of X in P(P(M)). It follows that (14) is equivalent to

A, f |= θi,M,X∗ (16)

We are now in a position to conclude the argument. By Lemma 1, it holds that (15) is
equivalent to

0 =
∑

Y

(−1)|Y |
|(πi ∧

∧
j∈Y πij)(0, . . . , 0, xl)A|

|(πi ∧
∧

j∈M πij)(0, . . . , 0, xl)A|
(17)

where Y ranges on all subsets of M such that (πi ∧
∧

j∈Y πij)A,f 6= ∅. Since A, f |= βi,M,X∗ ,
it holds that X∗ is exactly the set of all subsets Y of M such that (πi ∧

∧
j∈Y πij)A,f 6= ∅.

Hence (17) is equivalent to

0 =
∑

Y ∈X∗

(−1)|Y |
|(πi ∧

∧
j∈Y πij)(0, . . . , 0, xl)A|

|(πi ∧
∧

j∈M πij)(0, . . . , 0, xl)A|
(18)

By Proposition 2, the subprocedure FO2(·), given a primitive positive formula in one
free variable, returns a primitive positive formula written using only 2 distinct variable
symbols that is equivalent on abelian groups. Then, σi,M on Line 7 is equivalent in A to (πi∧∧

j∈M πij)(0, . . . , 0, xl), and ρi,Y on Line 10 is equivalent in A to (πi ∧
∧

j∈Y πij)(0, . . . , 0, xl).
It follows that, on Line 8 and 11, we have that Ci,M = |(πi ∧

∧
j∈M πij)(0, . . . , 0, xl)A| and

Ci,Y = |(πi ∧
∧

j∈Y πij)(0, . . . , 0, xl)A|. Hence (18) is equivalent to

0 =
∑

Y ∈X∗

(−1)|Y |(Ci,Y /Ci,M) (19)

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

52 First-Order Queries on Finite Abelian Groups

which happens exactly when θi,M,X∗ is settled to > on Line 12, which is in turn equivalent
to (16).

Summarizing, (13) is equivalent to (14), which settles (11), and hence the claim. The
proof is complete. J

We analyze the runtime of the algorithm. We let expi+1
b (·) = expb(expi

b(·)) = bexpi
b(·).

I Lemma 3. Let A be a finite abelian group and ψ be a first-order sentence in prenex form
with m quantifiers. Then ModelCheck(A, ψ) runs in expm+2

2 (O(k)) · |A|2 time, where k is
the size of ψ.

Proof. For l = m, . . . , 1, let

ψl = Q1x1 . . . Ql−1xl−1Rlxl

∨

i∈Il

(πi ∧
∧

j∈Jl,i

¬πij) (20)

where Rl ∈ {∃,¬∃}, and πi and πij are in PP(x1, . . . , xl) for all i ∈ Il and j ∈ Jl,i. Note
that ψl is the formula created on Lines 2-3 and Lines 16-23. For l = m, . . . , 1, we define a set
El ⊆ PP(x1, . . . , xl) as follows

El = {πi, πij : i ∈ Il, j ∈ Jl,i},

and we let Sl be the size of the largest formula in El. We now prove by induction on
l = m, . . . , 1 that

|El| ≤ expm−l
2 (k) (21)

Sl ≤ k
m∏

j=l+1
|Ej | (22)

where as usual the empty product equals 1 and exp0
2(k) = k.

The size of Em is bounded above by the number of atoms in the sentence ψ given in
input and the size of a formula in Em is bounded above by the size of ψ, hence

|Em| ≤ k
Sm ≤ k

For l ≤ m, let |El| = expm−l
2 (k) and Sl = k

∏m
j=l+1 |Ej |. Suffices to show that the

following inequalities hold:

|El−1| ≤ 2|El|

Sl−1 ≤ |El|Sl

Indeed, the formula φl−1 obtained in Line 15 (used to build ψl−1 on Lines 16-23) is a boolean
combination of the primitive positive formulas with free variables among x1, . . . , xl−1 created
on Line 13 and 14 by existentially quantify the variable xl in conjunctions of the form

πi ∧
∧

j∈S

πij

where S is a subset (of the index set) of El. Thus there are at most 2|El| formulas in El−1.
Moreover, by the same token, the size of a formula in El−1 is bounded above by the number
of formulas in El times the size Sl of the largest such formula.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 53

We now analyze the runtime of the algorithm. Lines 2-3 are feasible in time single
exponential in the size of the input sentence ψ. We claim that, for l = m, . . . , 1, the time
spent on the corresponding iteration of the loop on Lines 4-23 is in O(expm−l+3

2 (k) · |A|2). It
follows that the whole loop on Lines 4-23 is feasible in expm+2

2 (O(k)) · |A|2 time (note that
m ≤ k), and the statement is settled.

We conclude the proof showing that, for l = m, . . . , 1, the corresponding iteration of the
loop on Lines 4-23 is feasible in O(expm−l+3

2 (k) · |A|2) time.
In view of (20), first note the following (i ∈ Il and j ∈ Jl,i):
|Il| ≤ 3|El|, as there are at most 3c clauses on c distinct variables (here, a formula in El

plays the role of a variable);
|Ji,l| ≤ |El|, because Ji,l is a subset (of indices) of formulas in El.

As M ⊆ Ji,l and X ∈ P(P(M)), it follows that the loop on Line 6 is executed at most

|Il| · |P(Ji,l)| · |P(P(Ji,l))| ≤ 3|El| · 2|El| · 22|El|

times which is in O(expm−l+2
2 (k)).

For each iteration, FO2(·) in Line 7 requires time single exponential in the size of the
formula given in input, by Proposition 2; the latter is a formula in El, hence its size is
bounded above by |El+1|Sl+1, in turn in O(|El+1|) by (22). Hence σi,M has size single
exponential in |El+1|. Then Line 8 requires time single exponential in |El+1| and quadratic
in |A|, by the remark following Proposition 2.

Line 9 iterates at most 2|El| times as |X| ≤ |P(M)| ≤ |P(Ji,l)| ≤ 2|El|. Each iteration
requires as above time single exponential in |El+1| and quadratic in |A| on Lines 10 and 11,
again by Proposition 2 and the surrounding discussion.

Line 12 sums at most |X| ≤ 2|El| integer numbers not larger than |A|.
The formula θi,M on Line 13 has size at most |P(P(M))| ≤ 22|El| (the size of the index

set of the outermost conjunction), times |P(M)| ≤ 2|El| (the number of formulas on the left
of the implication symbol in each conjunct), times Sl (the size of the largest such formula,
as they belong in El). Thus θi,M has size at most 22|El|2|El|Sl, which is in O(expm−l+2

2 (k)),
and is computable in the same time.

The formula φl−1 on Line 14 has size at most |Il| ≤ 3|El| times |P(M)| ≤ 2|El| (the
sizes of the index sets of the two outermost conjunctions) times an upper bound on the
size of the conjuncts. Each conjunct has one part on the left and one part on the right of
the implication symbol. The part on the right is θi,M of size O(expm−l+2

2 (k)) by the above
argument. The part on the left has size at most |M | ≤ |El| (the number of formulas on the
left of the implication symbol in each conjunct) times Sl (the size of the largest such formula,
as they belong in El). Hence, each conjunct has size at most O(expm−l+2

2 (k)). Therefore,
φl−1 has size at most O(expm−l+2

2 (k)), and is computable in the same time.
Line 17 (or 19, or 21, or 23) are feasible in time single exponential in the size of the

formula φl−1 on Line 14, hence in O(expm−l+3
2 (k)) time. Summarizing, iteration l is feasible

in O(expm−l+3
2 (k) · |A|2) time. J

As the encoding of A has size quadratic in |A|, we conclude the following.
I Theorem 4. MC(AGfin,FO) is fixed-parameter tractable in linear time (with a nonele-
mentary parameter dependence).

5 Monadic Second-Order Queries

In this section, we prove that model checking monadic second-order logic is not fixed-parameter
tractable on succinctly presented finite abelian groups.

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

54 First-Order Queries on Finite Abelian Groups

We proceed in two steps. First, we define a family of monadic second order formulas.
Next, we use these formulas to define a suitable reduction.

In the scope of this section,

A = Z(p1, e1,1)⊕ · · · ⊕ Z(p1, e1,d1)⊕ · · · ⊕ Z(pn, en,1)⊕ . . .⊕ Z(pn, en,dn) (23)

is a finite abelian group, presented by its primary decomposition, where the pi are pairwise
distinct prime numbers, and the ei,j are positive integers.

We now introduce a family of monadic second order formulas, and describe their meaning
in A. First, we identify subgroups of A as follows. Let:

Sg(X)� 0 ∈ X ∧ (∀x, y ∈ X)(x+ y ∈ X)
Sg(X,Y)� X ⊆ Y ∧ Sg(X) ∧ Sg(Y)

The following is readily verified.
A |= Sg(S) if and only if S ⊆ A is (the universe of) a subgroup of A (a nonempty subset
of a finite group is a subgroup if and only if it is closed under the group operation).
A |= Sg(R,S) if and only if R ⊆ S ⊆ A and R and S are (universes of) subgroups R and
S of A. It follows that R is a subgroup of S.

We now identify cyclic groups and their generators in A as follows. Let:

Cycl(X,x)� (∀Y ⊆ X)((0 ∈ Y ∧ (∀y ∈ Y)(y + x ∈ Y))→ Y = X)
Cycl(X)� (∃x ∈ X)(∀Y)((x ∈ Y ∧ Sg(Y,X))→ Y = X)

I Claim 1. Let S be a subgroup of A with universe S ⊆ A and let g ∈ S. Then A |= Cycl(S, g)
if and only if S is cyclic generated by g.

If S is a subgroup of A with universe S ⊆ A, it follows that A |= Cycl(S) if and only if S
is cyclic. Among cyclic subgroups of A, we identify prime power order cyclic subgroups of A
as follows. Let:

PrPow(X)� (∀Y,Z)((Sg(Y,X) ∧ Sg(Z,X))→ (Y ⊆ Z ∨ Z ⊆ Y))

I Claim 2. Let S be a nontrivial cyclic subgroup of A with universe S ⊆ A. Then A |=
PrPow(S) if and only if |S| = pe for some prime number p and some positive integer e.

Call the prime power order cyclic subgroups of A that do not have proper prime power
order cyclic supergroups in A prime terms of A. Let PrPowCyclSg(X)� Sg(S) ∧Cycl(S) ∧
PrPow(S) and

PrTerm(X)�




PrPowCyclSg(X)

(∀Y)
((

PrPowCyclSg(Y)
X ⊆ Y

)
→ Y = X

)



By the above, it follows immediately that the A |= PrPowCyclSg(S) if and only if S is a
prime power order cyclic subgroup of A, where S ⊆ A. Moreover, for S ⊆ A, it holds that
A |= PrTerm(S) if and only if S is a prime term of A.

We now make a key observation. Despite monadic second order logic cannot express that
two sets have the same size [14, along the lines of Proposition 7.12], indeed it can express
that two subsets of two cyclic subgroups of a group have the same size. The details follow.
Let:

Eq(X,Y) = (∃Z)
(

(∀x ∈ X)(∃!y ∈ Y)(x+ y ∈ Z)
(∀y ∈ Y)(∃!x ∈ X)(x+ y ∈ Z)

)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 55

I Claim 3. Let C ⊆ A and D ⊆ A be subsets (of universes) of prime terms of A.3 Then
A |= Eq(C,D) if and only if |C| = |D|.

Proof. For the sake of notation, let T1 and T2 be respectively the first and second term in the
primary decomposition of A, of order l and m respectively (where l and m are prime powers),
and let C and D be subsets of the prime terms of A isomorphic to T1 and T2, respectively.
Then C = {(c1, 0, . . . , 0), . . . , (cl′ , 0, . . . , 0)} and D = {(0, d1, . . . , 0), . . . , (0, dm′ , . . . , 0)},
where {c1, . . . , cl′} ⊆ {0, 1, . . . , l − 1} and {d1, . . . , dm′} ⊆ {0, 1, . . . ,m− 1}.

Assume |C| = |D|, and let b′ : C → D be a bijection. Clearly, b′ is completely
characterized by a bijection b : {c1, . . . , cl′} → {d1, . . . , dm′}; in particular, l′ = m′. Let
f(Z) = {(c1, b(c1), . . . , 0), . . . , (cl′ , b(cl′), . . . , 0)}. We show that

A, f |= (∀x ∈ C)(∃!y ∈ D)(x+ y ∈ Z) ∧ (∀y ∈ D)(∃!x ∈ C)(x+ y ∈ Z).

Let (c, 0, . . . , 0) ∈ C. Then, there exists exactly one d ∈ D such that c+A d ∈ f(Z), namely
d = (c, b(c), . . . , 0). Similarly, let (0, d, . . . , 0) ∈ D. Then, there exists exactly one c ∈ C such
that c+A d ∈ f(Z), namely c = (b−1(d), d, . . . , 0).

Conversely, let B ⊆ A be such that

A |= (∀x ∈ C)(∃!y ∈ D)(x+ y ∈ B) ∧ (∀y ∈ D)(∃!x ∈ C)(x+ y ∈ B). (24)

Then for all c ∈ C, there exists exactly one d ∈ D, such that c+A d ∈ B. Let b : C → D be
the function defined by the above condition, that is b(c) = d if and only if c+A d ∈ B. We
show that b is a bijection.

For injectivity, let c, c′ ∈ C be such that b(c) = b(c′) = d ∈ D. Then, c +A d ∈ B and
c′ +A d ∈ B. By (24), there exists exactly one c′′ ∈ C such that c′′ +A d ∈ B. Hence c = c′.

For surjectivity, let d ∈ D. By (24), there exists c ∈ C such that c+A d ∈ B. Let b(c) = d′.
Then, by definition of b, it holds that c+A d′ ∈ B. Hence, c+A d ∈ B and c+A d′ ∈ B. By
(24), there exists exactly one d′′ ∈ D such that c+A d′′ ∈ B. Hence d = d′. Then b(c) = d,
and b is surjective. J

Let C and D be prime terms of A. We conclude defining formulas that establish whether
the prime power order of C and D have the same base or the same exponent. First, we deal
with the base:

Base(X,Y)�
(

Sg(Y,X) ∧ Y 6= {0}
(∀Z)((Sg(Z, Y) ∧ Z 6= {0})→ Z = Y)

)

EqBase(X,Y)� (∃X ′, Y ′)




Base(X,X ′)
Base(Y, Y ′)
Eq(X ′, Y ′)




I Claim 4. Let C ⊆ A be the universe of a prime term C of A, say isomorphic to Z(p, e),
and let B ⊆ C. Then A |= Base(C,B) if and only if B is (the universe of) the subgroup of C
is isomorphic of Z(p).

Claim 3 and Claim 4 imply the following.

I Claim 5. Let C,D ⊆ A such that C and D are distinct prime terms of A, say isomorphic
to Z(p, e) and Z(q, d) respectively. Then A |= EqBase(C,D) if and only if p = q.

3 Along similar lines, the statement can be proved more generally for cyclic subgroups of A whose
intersection is trivial (contains only the identity).

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

56 First-Order Queries on Finite Abelian Groups

Finally, we deal with exponents:

Exp(X,Y)� (∀Z)(Sg(Z,X)→ (∃!y ∈ Y)Cycl(Z, y))

EqExp(X,Y)� (∃X ′, Y ′)




Exp(X,X ′)
Exp(Y, Y ′)
Eq(X ′, Y ′)




Recall that every subgroup of a cyclic subgroup is cyclic. The following is clear.

I Claim 6. Let C ⊆ A such that C is a prime term of A, say isomorphic to Z(p, e), and
let E ⊆ C. Then A |= Exp(C,E) if and only if E contains exactly one generator for each
(necessarily, cyclic) subgroup of C.

Claim 3 and Claim 6 imply the following.

I Claim 7. Let C,D ⊆ A such that C and D are distinct prime terms of A, say isomorphic
to Z(p, e) and Z(q, d) respectively. Then A |= EqExp(C,D) if and only if e = d.

We now describe the reduction. A graph G = (G,EG) is a relational structure on a
binary relation symbol E, where EG ⊆ G2 is symmetric and irreflexive; we liberally view
EG as a subset of 2-element subsets of G. The clique problem, Clique, is to decide, given a
graph G and an integer k ≥ 0, whether G contains a clique on k vertices. We regard Clique
as a parameterized problem, where instance (G, k) is parameterized by k.

We give a fixed-parameter tractable reduction from Clique to MC(AGspfin,MSO). Let
(G, k) be an instance of Clique. Let G = (G,EG), where G = {v1, . . . , vn} and EG =
{e1, . . . , em}. For vi ∈ G, let {fi,1, . . . , fi,di} = {e ∈ EG : vi ∈ e}, and let degree(vi) = di

denote the degree of vi in G. For each i ∈ [n] and j ∈ [di], let m(i, j) ∈ [m] be such that
fi,j = em(i,j).

We construct an instance (A, φ) of MC(AGspfin,MSO), as follows. The succinct pre-
sentation A is a (square) diagonal integer matrix of order

∑
i∈[n] di defined as follows. Let

p1, . . . , pn be the first n prime numbers.

A = diag(pm(1,1)
1 , . . . , p

m(1,d1)
1 , p

m(2,1)
2 , . . . , p

m(2,d2)
2 , . . . , pm(n,1)

n , . . . , pm(n,dn)
n)

It is readily verified that the abelian group presented by A is (finite and) isomorphic to

A = Z(p1,m(1, 1))⊕ · · · ⊕ Z(p1,m(1, d1))⊕ · · · ⊕ Z(pn,m(n, 1))⊕ . . .⊕ Z(pn,m(n, dn))

I Example 5. Let G = (G,EG) where G = {v1, v2, v3, v4}, EG = {e1, e2, e3, e4, e5}, e1 =
{v1, v2}, e2 = {v1, v4}, e3 = {v2, v3}, e4 = {v2, v4}, and e5 = {v3, v4}. Then p1 = 2, p2 = 3,
p3 = 5, and p4 = 7. Let m(1, 1) = 1, m(1, 2) = 2, m(2, 1) = 1, m(2, 2) = 3, m(2, 3) = 4,
m(3, 1) = 3, m(3, 2) = 5, m(4, 1) = 2, m(4, 2) = 4, and m(4, 3) = 5. We therefore have that
the succinct presentation presents the finite abelian group

Z(2, 1)⊕ Z(2, 2)⊕ Z(3, 1)⊕ Z(3, 3)⊕ Z(3, 4)⊕ Z(5, 3)⊕ Z(5, 5)⊕ Z(7, 2)⊕ Z(7, 4)⊕ Z(7, 5)

We now define a monadic second order formula φ, as follows. Let K = [k]× [k − 1]. Let
ck : K → K be the permutation of K uniquely determined by the following conditions:

ck(i, j) = (i′, j′) if and only if ck(i′, j′) = (i, j), that is, ck decomposes into k(k − 1)/2
disjoint cycles of length 2;
ck(i, j) = (j + 1, i) for all (i, j) ∈ K such that 1 ≤ i ≤ j < k.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 57

Note that the number of pairs (i, j) ∈ K such that 1 ≤ i ≤ j < k is equal to
(

k
2
)
, the number

of edges in a clique on k vertices. The following example illustrates how ck relates to a clique
on k vertices.

I Example 6. We have c4(1, 1) = (2, 1), c4(1, 2) = (3, 1), c4(1, 3) = (4, 1), c4(2, 1) = (1, 1),
c4(2, 2) = (3, 2), c4(2, 3) = (4, 2), c4(3, 1) = (1, 2), c4(3, 2) = (2, 2), c4(3, 3) = (4, 3). c4
decomposes into 6 disjoint cycles,

c4 = ((1, 1)(2, 1))((1, 2)(3, 1))((1, 3)(4, 1))((2, 2)(3, 2))((2, 3)(4, 2))((3, 3)(4, 3)),

and the edges of a 4-clique on vertices {1, 2, 3, 4} are obtained by projecting the pairs in each
cycle onto their first coordinate: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

We now define φ as follows:

φ = (∃
(i,j)∈K

Xi,j)




∧
(i,j),(i′,j′)∈K,(i,j)6=(i′,j′)Xi,j ∩Xi′,j′ = {0}

∧
(i,j)∈K PrTerm(Xi,j)

∧
i∈[k]

∧
j,j′∈[k−1] EqBase(Xi,j , Xi,j′)∧

(i,j)∈K EqExp(Xi,j , Xck(i,j))




(25)

I Claim 8. (G, k) ∈ Clique if and only if (A, φ) ∈MC(AGspfin,MSO).

Proof. Recall that the number of pairs (i, j) ∈ K = [k]× [k − 1] such that 1 ≤ i ≤ j < k is
equal to

(
k
2
)
, the number of edges in a clique on k vertices.

(⇒) Let the vertices {ui : i ∈ [k]} ⊆ G and the edges {f(i,j) : (i, j) ∈ K} ⊆ EG form a
clique on k vertices in G such that the following holds:

f(i,j) ∩ f(i,j′) = ui,
f(i,j) = {ui, ck(i, j)1},

where ck(i, j)1 denotes the projection of ck(i, j) onto the first coordinate. For i ∈ [k],
let n(i) ∈ [n] be such that ui = vn(i), and for (i, j) ∈ K, let m(i, j) ∈ [m] be such that
f(i,j) = em(i,j).

For (i, j) ∈ K, let Ci,j be (the universe of) the subgroup Ci,j of A satisfying the following:
Ci,j is isomorphic to Z(pn(i),m(i, j));
Ci,j has no prime power order cyclic proper supergroup in A.

By construction such subgroup Ci,j of A exists and is unique, hence the above definition is
sound. It is easy to verify that the family of Ci,j ’s witnesses the truth of (25) in A.

(⇐) Let Ci,j ⊆ A for (i, j) ∈ K witnesses that φ holds in A. Therefore, the Ci,j form
a family of

(
k
2
)
prime terms of A (by the first two lines in (25)). By the third line in (25),

the Ci,j ’s partition into k blocks V1, . . . , Vk such that the orders of groups in block Vl are all
powers of the same prime pil

∈ {p1, . . . , pn}.
Let vi1 , . . . , vik

⊆ G be the vertices of G corresponding to the primes pi1 , . . . , pik
. We

claim that there are
(

k
2
)
edges between the vertices vi1 , . . . , vik

; since G does not contain
loops nor multiedges, it follows that the vertices vi1 , . . . , vik

form a clique of size k in G.
We first observe that for all l, l′ ∈ [k], l 6= l′, there is an edge between vil

and vil′ . By
the fourth line in (25) and the definition of ck, we have that V1 ∪ · · · ∪ Vk partitions into

(
k
2
)

2-element sets {C,C′} such that C in Vl and C′ in Vl′ (l, l′ ∈ [k], l 6= l′) such that the orders
of C and C′ have the same exponent. By construction, such exponent is the index of an edge
between the vertices corresponding to the (prime) base of the orders of C and C′. Since, by
construction, the index of each edge is the exponent of exactly two prime terms of A, distinct
2-element sets of the form above contribute distinct edges, thus contributing

(
k
2
)
edges in

total between vertices vi1 , . . . , vik
. J

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

58 First-Order Queries on Finite Abelian Groups

The construction of φ only depends on k. The complexity of constructing A is determined
by:

the time to generate the first |G| = n prime numbers p1, . . . , pn which is roughly in O(n3)
as the nth prime is bounded above by n2 and the sieve of Eratosthenes finds all primes
not larger than l in time O(l log log l);
the size of A, a square integer matrix of order at most n(n− 1) whose integer entries are
bounded above by pm

n ≤ n2n2 , thus at most n4 entries each of size in O(n2 logn).
Therefore (A, φ) is computable from (G, k) in time f(k)poly(n) for some computable function
f over the natural numbers. We thus conclude the following.

I Theorem 7. MC(AGspfin,MSO) is not fixed-parameter tractable (unless W[1] ⊆ FPT).

6 Discussion

We proved that first-order logic is fixed-parameter tractable on finite abelian groups, and
monadic second-order logic is W[1]-hard on succinctly presented finite abelian groups. What
is the complexity of model checking monadic second-order logic on finitely presented abelian
groups (without the succinctness condition)? On finite abelian groups?

Our work suggests some questions on general groups, reasonable in that they do not settle
the isomorphism problem. For example, model checking the conjunctive positive fragment
(first-order sentences on the group vocabulary built using ∀, ∃, ∧, and =) on finite abelian
groups is polynomial-time tractable; this fact can be derived from the literature or established
directly by our elimination technique. How hard is model checking conjunctive positive
queries on finite groups? Yet, the outstanding open question concerns the parameterized
complexity of first-order (and monadic second-order) properties of finite groups.

Acknowledgments. The authors thank Carlo Toffalori for a clarification on Baur-Monk
theorem.

References
1 S. Bova, R. Ganian, and S. Szeider. Model Checking Existential Logic on Partially Ordered

Sets. In CSL-LICS, 2014.
2 S. Bova, R. Ganian, and S. Szeider. Quantified Conjunctive Queries on Partially Ordered

Sets. In IPEC, 2014.
3 A. A. Bulatov and V. Dalmau. A Simple Algorithm for Mal’tsev Constraints. SIAM J.

Comput., 36(1):16–27, 2006.
4 B. Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite

Graphs. Inform. Comput., 85(1):12–75, 1990.
5 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear Time Solvable Optimization Problems

on Graphs of Bounded Clique-Width. Theory Comput. Syst., 33(2):125–150, 2000.
6 T. Feder and M. Vardi. The Computational Structure of Monotone Monadic SNP and

Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput.,
28:57–104, 1999.

7 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2010.
8 J. Gajarský, P. Hliněný, J. Obdržálek, and S. Ordyniak. Faster Existential FO Model

Checking on Posets. In ISAAC, 2014.
9 M. Grohe. Logic, Graphs, and Algorithms. Technical Report in ECCC, TR07-091, 2007.

10 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding First-Order Properties of Nowhere Dense
Graphs. In STOC, 2014.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

S. Bova and B. Martin 59

11 W. Hodges. Model Theory. Cambridge University Press, 1993.
12 S. Jukna. Extremal Combinatorics. Springer, 2001.
13 T. Kavitha. Linear Time Algorithms for Abelian Group Isomorphism and Related Problems.

J. Comput. Syst. Sci., 73:986–996, 2007.
14 L. Libkin. Elements of Finite Model Theory. Springer, 2010.
15 C.C. MacDuffee. The Theory of Matrices. Dover, 2004.
16 G. L. Miller. On the nlog n Isomorphism Technique: A Preliminary Report. In STOC, 1978.
17 J. Rotman. An Introduction to the Theory of Groups. Springer, 1999.
18 D. Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical

Structures in Computer Science, 6(6):505–526, 1996.
19 A. Storjohann. Algorithms for Matrix Canonical Forms. Ph. D. Thesis, ETH Zürich, 2000.
20 W. Szmielew. Elementary Properties of Abelian Groups. Fundamenta Math., 41:203–271,

1955.

CSL 2015

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
8

