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Abstract. We show that the traces of recently introduced dynamic pro-
gramming algorithms for #SAT can be used to construct structured de-
terministic DNNF (decomposable negation normal form) representations
of propositional formulas in CNF (conjunctive normal form). This allows
us prove new upper bounds on the complexity of compiling CNF formu-
las into structured deterministic DNNFs in terms of parameters such as
the treewidth and the clique-width of the incidence graph.

1 Introduction

The aim of knowledge compilation is to succinctly represent propositional knowl-
edge bases in a format that allows for answering a number of queries in polyno-
mial time [6]. Choosing a representation language generally involves a trade-off
between succinctness and the range of queries that can be efficiently answered.
Constraints arising in various domains can often be conveniently modeled by
propositional formulas in conjunctive normal form (CNFs), but most queries of
interest, such as model counting, are intractable for CNF formulas.

Decomposable Negation Normal Forms (DNNFs) are a restricted form of
Boolean circuits in negation normal form (NNF) such that the subcircuits lead-
ing into an AND gate are defined on disjoint sets of variables [4]. DNNFs—which
generalize variants of binary decision diagrams such as ordered binary decision
diagrams (OBDDs)—are among the most succinct representation languages con-
sidered in knowledge compilation. Although CNFs do not have DNNF represen-
tations of polynomial size in general [6, 1] they can be efficiently compiled into
DNNFs when certain structural parameters are small, see [4, 5, 13–15, 11].

Among the key properties of DNNFs is that they allow for clause entailment
queries in polynomial time. By imposing further restrictions, one obtains lan-
guages that efficiently support a wider range of queries and operations. A DNNF
is deterministic (a d-DNNF, for short) if the subcircuits leading into an OR gate
do not have satisfying assignments in common, and structured if its variables
can be associated with the leaves of a binary tree so that, for each AND gate,
one can find a tree node whose principal subtrees contain the variables occurring
in the subcircuits leading into that gate. Deterministic DNNFs support model
counting in linear time [5], and structured DNNFs allow for an efficient conjoin
operation [13].
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In this paper, we prove the following result (Theorem 1):

Theorem. A CNF formula with n variables, m clauses, and PS-width k can be
compiled into a structured d-DNNF of size O(k3(n+m)).

PS-width is a parameter that was introduced to characterize CNF formulas
for which the model counting problem (#SAT) can be solved efficiently by means
of recently developed dynamic programming algorithms [16, 17]. We prove The-
orem 1 by showing that the traces of these algorithms can be used to construct
structured d-DNNF representations of CNF formulas.

Our rationale for stating and proving the above theorem in terms of PS-width
is that this parameter generalizes most width measures of formulas commonly
considered in the literature [16]. Accordingly, we are able to immediately derive
a number of corollaries. For instance, a CNF formula with m clauses and an inci-
dence graph4 of clique-width k has PS-width at most mk [16]. This allows us to
state an upper bound in terms of incidence clique-width as follows (Corollary 2):

Corollary. A CNF formula with n variables, m clauses, and incidence clique-
width k can be compiled into a structured d-DNNF of size O(m3k(n+m)).

In particular, any class of formulas of bounded incidence clique-width admits
compilation into structured d-DNNFs of polynomial size. Such classes can have
unbounded incidence treewidth, effectively putting them out of reach of known
compilation algorithms generating DNNFs of size exponential in the incidence
treewidth [15].

One can further show that a formula with incidence treewidth k has PS-width
at most 2k+1 (see Proposition 1). Accordingly, the upper bound of Theorem 1
translates into the following bound in terms of incidence treewidth (Corollary 1):

Corollary. A CNF formula with n variables, m clauses, and incidence treewidth
k can be compiled into a structured d-DNNF of size O(8k(n+m)).

This comes close to the best known upper bound of O(3kn) on the complex-
ity of compiling CNFs with incidence treewidth k into structured DNNFs [11],
while allowing us to compile into the more restrictive language of structured
deterministic DNNFs.

As far as compilation of CNFs into d-DNNFs is concerned, the best known
result using a structural parameter is an upper bound of O(2kn) for CNF formu-
las with n variables and decision-width k [12]. As the decision-width of a formula
is no greater than the treewidth of its primal graph, this bound translates into
an upper bound of O(2kn) for formulas with n variables and primal treewidth k.
The incidence treewidth of a formula is at most its primal treewidth plus one, but
there are classes of formulas with bounded incidence treewidth and unbounded
primal treewidth, so Corollary 1 yields an improvement whenever the difference
between primal treewidth and incidence treewidth is sufficiently large.

4 The incidence graph of a formula is the bipartite graph whose vertex classes consist
of variables and clauses, and a variable is adjacent to the clauses it occurs in.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
6



The degree of the polynomial in the upper bound of Corollary 2 depends on
the incidence clique-width k, and one may wonder whether this can be improved
to a bound of the form, say, 2O(k)(n + m)c for some constant c. We show that
such an improvement is impossible, subject to a complexity-theoretic assumption
(Theorem 2).

The remainder of the paper is structured as follows. In Section 2 we intro-
duce basic notation and terminology. Section 3 proves Theorem 1 by showing how
ideas implemented in recently introduced dynamic programming algorithms for
#SAT can be used for compilation into structured d-DNNFs. We present corol-
laries of this result in Section 4. Section 5 provides evidence that our upper bound
on the DNNF size of formulas in terms of incidence clique-width (Corollary 2)
cannot be substantially improved. We conclude in Section 6.

2 Preliminaries

Formulas. A literal is a variable x or a negated variable ¬x. A clause is a finite
set of literals. A clause is tautological if it contains the same variable negated
as well as unnegated. A (CNF) formula (or CNF, for short) is a finite set of
non-tautological clauses. If x is a variable, we let var(x) = var(¬x) = x. The
set of variables occurring in a clause C is var(C) = { var(`) | ` ∈ C }, and
the set of variables occurring in a formula F is var(F ) =

⋃
C∈F var(C). The

length of a formula F is
∑

C∈F |C|. The incidence graph of a formula F is the
bipartite graph I(F ) = (F, var(F ), E) such that there is an edge xC ∈ E joining
a variable x ∈ var(F ) and a clause C ∈ F if and only if x ∈ var(C).

A truth assignment (assignment, for short) is a mapping τ : X → {0, 1},
where X is a set of variables. Extending assignments to literals in the usual way,
we say that an assignment τ satisfies a clause C if there is a literal ` ∈ C such
that τ(`) = 1. An assignment satisfies a formula F if it satisfies every clause
C ∈ F .

DNNFs. A (Boolean) circuit in negation normal form (or NNF ) is a directed
acyclic graph (DAG) with a single sink node (outdegree 0) where each source
node (indegree 0) is labelled by a constant (0 or 1) or by a literal, and each other
node is labelled by ∧ (AND) or ∨ (OR). If ϕ is an NNF and v is a vertex of
ϕ, the sub-NNF of ϕ rooted at v is the NNF obtained from ϕ by deleting every
vertex from which v cannot be reached along a directed path. We write var(ϕ)
for the set of variables occurring in an NNF ϕ. Let ϕ be an NNF and let τ be an
assignment to X ⊇ var(ϕ). Relative to τ , we associate each vertex v of ϕ with
a value valϕ(v, τ) ∈ {0, 1} as follows. If v is labelled with a constant c ∈ {0, 1}
then valϕ(v, τ) = c, and if v is labelled with a literal ` then valϕ(v, τ) = τ(`).
If v is an AND node then we let valϕ(v, τ) = min{ valϕ(w, τ) | w is a child
of v }, and if v is an OR node we define valϕ(v, τ) = max{ valϕ(w, τ) | w is
a child of v }. We say that τ satisfies ϕ if valϕ(s, τ) = 1, where s denotes the
(unique) sink of ϕ. An NNF ϕ is said to compute a CNF formula F if the
satisfying assignments of ϕ and F coincide. Similarly, we say that two NNFs ϕ
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and ψ are equivalent, in symbols ϕ ≡ ψ, if they have the same set of satisfying
assignments. For convenience, we interpret propositional expressions over literals
and {0, 1,∧,∨} as NNFs. We also use the names of NNFs in expressions involving
logical connectives, writing, for instance, ϕ ∧ ψ to denote the NNF constructed
from ϕ and ψ by adding a new AND node as a sink that has incoming edges
from the sinks of ϕ and ψ.

An NNF ϕ is decomposable (in short, a DNNF ) if every AND node v of ϕ
satisfies the following property: if v has incoming edges from v1 and v2, and ϕ1

and ϕ2 denote the sub-NNFs of ϕ rooted at v1 and v2, respectively, then var(ϕ1)
and var(ϕ2) are disjoint. A DNNF ϕ is deterministic (a d-DNNF ) if, for every
pair of distinct children v1 and v2 of an OR node, the sub-NNFs rooted at v1
and v2 do not have satisfying assignments in common.

3 From Dynamic Programming to Structured d-DNNFs

In this section, we show how ideas implemented in #SAT algorithms by Slivovsky
and Szeider [17] and Saether et. al. [16] can be used for compiling CNF formulas
into structured d-DNNFs.

3.1 Branch Decompositions, Projections, and PS-width

Given a formula F , the algorithms of [17, 16] perform dynamic programming on
a branch decomposition of F ∪ var(F ). Here, a branch decomposition of a finite
set S is a binary tree whose leaves are in one-to-one correspondence with S
(see the left-hand side of Figure 1 for an illustration). Formally, we will think
of a branch decomposition as a pair (T, δ) consisting of a rooted binary tree T
and a bijection δ from the set of leaves of T to the set S. Accordingly, if (T, δ)
is a branch decomposition of the set F ∪ var(F ) for some formula F , then δ
bijectively maps each leaf of T to a variable or a clause of F .5

Partial solution counts computed by dynamic programming in [17, 16] are
stored in tables indexed by pairs of projections. Here, the projection of a truth
assignment τ : X → {0, 1} onto a formula F is the set F (τ) of clauses of F
satisfied by τ . Observe that the projection of the union of two assignments σ
and τ (that agree on the intersection of their domains) onto F satisfies F (σ∪τ) =
F (σ)∪F (τ), and that τ is a satisfying assignment of F if, and only if, F (τ) = F .
For a formula F and a set X of variables we write proj (F,X) for the set of
projections of truth assignments τ : X → {0, 1} onto F , formally

proj (F,X) = {F (τ) | τ : X → {0, 1} }.

Let F be a CNF formula and let T = (T, δ) be a branch decomposition of
F ∪ var(F ). For a node v of T , let Tv denote the subtree of T rooted at v, and

5 Such decompositions can be thought of as generalizations of vtrees, which are binary
trees whose leaves are in one-to-one correspondence with a set of variables and that
have been studied before in knowledge compilation [13].
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let L(Tv) denote the set of leaves of Tv. We write XT
v for the set of variables in

the image of L(Tv) under δ, and FT
v for the set of clauses in the image of L(Tv)

under δ. We write XT
v = var(F ) \XT

v for the set of variables and FT
v = F \FT

v

for the set of clauses outside the subtree rooted at v. When T is clear from the
context (as will be the case) we will omit T from the superscript.

Our main result states that a CNF formula can be represented by a structured
d-DNNF of size polynomial in the number of clauses and a parameter called PS-
width, which is defined as follows [16]: let F be a formula and let T = (T, δ) be
a branch decomposition of F ∪ var(F ). The PS-width of T is defined

psw(T ) = max
v∈V (T )

max(|proj (Fv, Xv)|, |proj (Fv, Xv)|).

That is, the PS-width of T is the maximum number of projections “across” one
of the bipartitions of F and var(F ) induced by a node of T . The PS-width of a
formula F is the minimum PS-width of a branch decomposition of F ∪ var(F ).

3.2 Records and Dynamic Programming

We now describe the “records” used by the dynamic programming algorithms
for #SAT [17, 16].

Let F be a formula, let T = (T, δ) be a branch decomposition of F ∪ var(F ),
and let v be a node of T . A shape (for v, with respect to T ) is a pair S = (S, S′)
of subsets of F such that S ∈ proj (Fv, Xv) and S′ ∈ proj (Fv, Xv). We say that
an assignment τ : Xv → {0, 1} has shape S if

(A) Fv(τ) = S, and
(B) Fv(τ) ∪ S′ = Fv.

We write NT
v (S) for the set of assignments of shape S (again, we drop T from the

superscript if it is clear which branch decomposition we are using). The interme-
diate values for dynamic programming computed at node v are the cardinalities
|Nv(S)| for each shape S for v.

The reason for using shapes rather than just computing the number of as-
signments τ : Xv → {0, 1} with projection F (τ) = S for each S ∈ proj (F,Xv) is
that, in some cases of interest (such as formulas of bounded clique-width [17]),
the cardinality |proj (F,Xv)| can be exponential in the number m of clauses
while the number of shapes is bounded by a polynomial in m. This reduction
in the amount of information required to represent partial solution counts is
achieved by the use of an “expectation from the outside”: by Condition (B), an
assignment τ of shape (S, S′) satisfies Fv when combined with an assignment
σ : Xv → {0, 1} such that Fv(σ) = S′. Since we are interested in satisfying
assignments of F we expect τ to be paired with such an assignment σ and do
not have to keep track of the projection Fv(τ).

We now explain how shapes for an inner node can be related to shapes for
its child nodes in order to perform dynamic programming. Let F be a formula
and let (T, δ) be a branch decomposition of F ∪ var(F ). Let S = (S, S′) be a
shape for an inner node v of T , and let S1 = (S1, S

′
1), S2 = (S2, S

′
2) be shapes

for its children v1 and v2, respectively. We say that S1 and S2 generate S if
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(a) S = (S1 ∪ S2) ∩ Fv,
(b) S′

1 = (S′ ∪ S2) ∩ Fv1 , and
(c) S′

2 = (S′ ∪ S1) ∩ Fv2 .

The following result relates the shapes for an inner node to the generating shapes
for its children (here, t denotes the disjoint union).

Lemma 1. Let F be a formula, let T = (T, δ) be a branch decomposition of
F ∪ var(F ), and let v be an inner node of T with children v1 and v2. Let S be a
shape for v, and let G denote the set of pairs of shapes S1 for v1 and S2 for v2
such that S1 and S2 generate S. Then

Nv(S) =
⊔

(S1,S2)∈G

{ τ1 ∪ τ2 | τ1 ∈ Nv1(S1), τ2 ∈ Nv2(S2) }.

Lemma 1 is an easy consequence of the following two lemmas (cf. [17]).

Lemma 2. Let v be a node of T with children v1 and v2. Let S1 = (S1, S
′
1) be

a shape for v1, let S2 = (S2, S
′
2) be a shape for v2, and let S = (S, S′) be a

shape for v generated by S1 and S2. If τ1 ∈ Nv1(S1) and τ2 ∈ Nv2(S2) then
τ1 ∪ τ2 ∈ Nv(S).

Proof. Let τ1 ∈ Nv1(S1) and τ2 ∈ Nv2(S2). As Fv1(τ1) = S1 and Fv2(τ2) = S2,
we get Fv(τ1 ∪ τ2) = (S1 ∪ S2) ∩ Fv. This shows that Condition (A) is satisfied.
Consider a clause C ∈ Fv and assume without loss of generality that C ∈ Fv1 .
Suppose C /∈ Fv(τ1 ∪ τ2). Then τ1 does not satisfy C and thus C ∈ S′

1 by
Condition (B). But τ2 does not satisfy C either, so C /∈ S2. The shapes S1

and S2 generate S, so S′
1 ⊆ S′ ∪ S2 and thus C ∈ S′ by Condition (b). This

proves that Condition (B) is satisfied. We conclude that τ1 ∪ τ2 has shape S as
claimed. ut
Lemma 3. Let v be a node of T with children v1 and v2, let S = (S, S′) be a
shape for v, and let τ ∈ Nv(S). Let τ1 and τ2 denote the restrictions of τ to Xv1

and Xv2 , respectively. There is a unique pair of shapes S1 for v1 and S2 for v2
generating S such that τ1 ∈ Nv1(S1) and τ2 ∈ Nv2(S2).

Proof. Let S1 = Fv1(τ1) and S2 = Fv2(τ2). Let τ ′ : Xt → {0, 1} be the
assignment such that S′ = Fv(τ). Then the sets S′

1 = (S′ ∪ S2) ∩ Fv1 and
S′
2 = (S′ ∪ S1) ∩ Fv2 are the projections of the assignments τ ′ ∪ τ2 and τ ′ ∪ τ1

onto Fv1 and Fv2 , respectively. It follows that S1 = (S1, S
′
1) is a shape for v1

and that S2 = (S2, S
′
2) is a shape for v2. We verify that τ1 has shape S1. Con-

dition (A) is satisfied by construction. To see that Condition (B) is satisfied as
well, let C ∈ Fv1 and suppose C is not satisfied by τ1. There are two cases. If τ2
does not satisfy C either then τ = τ1 ∪ τ2 does not satisfy C and C ∈ S′ since τ
has shape S. Otherwise we have C ∈ Fv2(τ2), that is, C ∈ S2. In either case
we have C ∈ S′

1 by choice of S′
1. The proof that τ2 has shape S2 is symmetric.

Let R1 = (R1, R
′
1) and R2 = (R2, R

′
2) be shapes for v1 and v2 such that R1

and R2 generate S and such that τ1 ∈ Nv1(R1) and τ2 ∈ Nv2(R2). We have
R1 = Fv1(τ1) = S1 and R2 = Fv2(τ2) = S2 by Condition (A). As R1 and R2

generate S, we further have R′
1 = (S′ ∪ R2) ∩ Fv1 and R′

2 = (S′ ∪ R1) ∩ Fv2
.

That is, R′
1 = S′

1 and R′
2 = S′

2, so R1 = S1 and R2 = S2. ut
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3.3 Constructing a Structured d-DNNF

Lemma 1 can be turned into a recurrence for determining the model count of F
by dynamic programming [17, 16]. It can also be used to construct a structured
d-DNNF for F .

To simplify matters, for the remainder of this subsection let F be an arbi-
trary, but fixed, formula, and let T = (T, δ) be an arbitrary, but fixed, branch
decomposition of F ∪ var(F ). Starting at the leaves of T , we are going to con-
struct a DNNF ϕv(S) for each node v and each shape S for v. For a leaf node
v of T , we have to consider two cases:

1. Suppose δ(v) = x for a variable x of F . For ` ∈ {x,¬x}, let τ` denote the
assignment τ` : {x} → {0, 1} such that τ(`) = 1. The pairs Sx = (F (τx), ∅)
and S¬x = (F (τ¬x), ∅) are the only shapes for v, and Nv(Sx) = {τx} as well
as Nv(S¬x) = {τ¬x}. Accordingly, we let ϕv(Sx) ≡ x and ϕv(S¬x) ≡ ¬x.

2. Let δ(v) = C for a clause C ∈ F . The pairs S⊥ = (∅, ∅) and S> = (∅, {C})
are the only shapes for v. Since Xv = ∅ it suffices to determine whether
the empty assignment ε : ∅ → {0, 1} has one of these shapes. Because the
empty assignment does not satisfy any clause we get Nv(S>) = {ε} and
Nv(S⊥) = ∅, so we define ϕv(S⊥) ≡ 0 and ϕv(S>) ≡ 1.

Let v be an inner node of T with children v1 and v2, and assume we have
constructed ϕv1(S1) for each shape S1 for v1 and ϕv2(S2) for each shape S2

for v2. Let S be a shape for v and let G denote the set of pairs of shapes S1

for v1 and S2 for v2 that generate S. We construct ϕv(S) as

ϕv(S) ≡
∨

(S1,S2)∈G

ϕv1(S1) ∧ ϕv2(S2). (1)

That is, we create an AND node conjoining every pair ϕv1(S1) and ϕv2(S2) such
that S1 and S2 generate S, and then add an OR node that has an incoming
edge from each AND node thus created. We assume that the resulting DNNF
has been simplified by propagating constants.

Lemma 4. For each node v of T and shape S for v, ϕv(S) is a d-DNNF such
that var(ϕv(S)) ⊆ Xv and such that an assignment τ : Xv → {0, 1} satisfies
ϕv(S) if, and only if, τ ∈ Nv(S).

Proof. It is easy to check that the statement holds for each leaf node v of T . Let v
be an inner node and suppose the statement holds for its children v1 and v2. Let S
be a shape for v. By assumption, var(ϕv1(S1)) ⊆ Xv1 and var(ϕv2(S2)) ⊆ Xv2

for every shape S1 for v1 and every shape S2 for v2. We have Xv = Xv1 ∪Xv2

and since Xv1 and Xv2 are disjoint it follows that ϕv(S) is a DNNF satisfying
var(ϕv(S)) ⊆ Xv. Let τ : Xv → {0, 1} be a satisfying assignment of ϕv(S), and
let τ1 and τ2 denote the restrictions of τ to Xv1 and Xv2 , respectively. There
is a pair of shapes S1 and S2 generating S such that τ satisfies the disjunct
ϕv1(S1)∧ϕv2(S2). By assumption, the lemma holds for v1 and v2. In particular,
var(ϕv1(S1)) ⊆ Xv1 and var(ϕv2(S2)) ⊆ Xv2 , so τ1 satisfies ϕv1(S1) and τ2
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x1 x2 x3C1 C2 C3 C4 x1 x2 x3

Fig. 1. The tree on the left is a branch decomposition of a formula F = {C1, C2, C3, C4}
with var(F ) = {x1, x2, x3}. To obtain the vtree on the right, we first delete each leaf
node associated with a clause, as well inner nodes turned into leaf nodes by these
deletions (the corresponding vertices are shown in grey). The resulting tree is turned
into a binary tree by contracting edges incident to nodes of degree two (these edges
are represented by dashed lines).

satisfies ϕv2(S2), which in turn implies that τ1 ∈ Nv1
(S1) and τ2 ∈ Nv2(S2). It

now follows from Lemma 1 that τ has shape S. In addition to that, Lemma 1
tells us that (S1,S2) is the unique pair of shapes generating S such that τ1 has
shape S1 and τ2 has shape S2. Thus ϕv1(S1) ∧ ϕv2(S2) is the unique disjunct
satisfied by τ . By assumption, ϕv1(S′

1) and ϕv2(S′
2) are deterministic DNNFs

for each shape S′
1 for v1 and S′

2 for v2, so ϕv(S) is deterministic as well. Now
let τ : Xv → {0, 1} be an assignment of shape S, and let τ1 and τ2 denote its
restrictions to Xv1 and Xv2 , respectively. By Lemma 1, there has to be a pair
(S1,S2) of shapes S1 for v1 and S2 for v2 generating S such that τ1 ∈ Nv1(S1)
and τ2 ∈ Nv2

(S2). It follows from our assumption that the lemma holds for v1
and v2 that τ1 satisfies ϕv1(S1) and that τ2 satisfies ϕv2(S2). Thus τ satisfies
ϕv1(S1) ∧ ϕv2(S2) and ϕv(S). ut

To show that ϕv(S) is a structured DNNF, we have to provide a vtree respected
by ϕv(S) [13]. A vtree is a binary tree whose leaves are in one-to-one corre-
spondence with a set of variables. We will think of a vtree simply as a branch
decomposition of a set X of variables. A DNNF ϕ respects a vtree (T, δ) if each
AND node v of ϕ has exactly two children and furthermore satisfies the following
property: let v1 and v2 be the children of v in T , and let ϕ1 and ϕ2 denote the
sub-DNNFs of ϕ rooted at v1 and v2, respectively; then there is a node t of T
with children t1 and t2 such that the sub-DNNFs satisfy var(ϕ1) ⊆ δ(L(Tt1))
and var(ϕ2) ⊆ δ(L(Tt2)). Here, L(Tti) denotes the set of leaves in the subtree Tti ,
for i ∈ {1, 2}.

For a node v of T , let vtree(T , v) = (T ′, δ′), where T ′ is the tree obtained
from the subtree Tv by deleting all leaves w such that δ(w) ∈ F , followed—if
necessary—by a sequence of operations to make the resulting tree binary, and δ′

is the restriction of δ to leaves of T ′. Verify that vtree(T , v) is a branch decom-
position of Xv and hence a vtree. We illustrate this construction in Figure 1.
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Lemma 5. For each node v of T and shape S for v, the DNNF ϕv(S) respects
vtree(T , v).

Proof. The lemma trivially holds for each leaf node v of T and shape S for v, as
ϕv(S) does not contain any AND nodes. Let v be an inner node of T with chil-
dren v1 and v2, and assume the lemma holds for v1 and v2 and their respective
shapes. Let S be a shape for v. By construction, each AND node introduced in
ϕv(S) computes a conjunction ϕv1(S1) ∧ ϕv2(S2), where S1 and S2 are shapes
for v1 and v2, respectively, that generate S. Since we assume ϕv(S) to be sim-
plified, both Xv1 and Xv2 have to be nonempty: otherwise, one of the conjuncts
ϕvi(Si) for i ∈ {1, 2} would satisfy var(ϕvi(Si)) = ∅ by Lemma 4 and would
have been simplified to a constant, which in turn would have been propagated
through the AND node. Let vtree(T , v) = (T ′, δ′), let vtree(T , v1) = (T1, δ1),
and let vtree(T , v2) = (T2, δ2). As both Xv1 and Xv2

are nonempty, T ′ is a bi-
nary tree whose principal subtrees are T1 and T2. By Lemma 4, the conjuncts
satisfy var(ϕv1(S1)) ⊆ Xv1 and var(ϕv2(S2)) ⊆ Xv2 . In combination with the
assumption that the DNNF ϕvi(S

′
i) respects vtree(T , vi) for each i ∈ {1, 2} and

shape S′
i for vi, this implies that ϕv(S) respects vtree(T , v). ut

Let r denote the root of T and let ∅ = (∅, ∅). We now prove that our construction
yields a structured d-DNNF representation of F .

Lemma 6. The pair ∅ is the only shape for r and ϕr(∅) is a structured d-DNNF
computing F .

Proof. The first part follows from the fact that Xr = var(F ) and Fr = F , so
that Xr = ∅ and Fr = ∅. By Lemma 4 and Lemma 5, ϕr(∅) is a structured
d-DNNF such that an assignment τ : var(F ) → {0, 1} satisfies ϕr(∅) if, and
only if, τ ∈ Nr(∅). By Condition (B), an assignment τ : var(F ) → {0, 1} has
shape ∅ if, and only if, F (τ) ∪ ∅ = F . That is, Nr(∅) is the set of satisfying
assignments of F . ut

Let n be the number of variables of F , let m be the number of clauses in F , and
let k denote the PS-width of T . The size of the structured d-DNNF constructed
for F can be bounded as follows.

Lemma 7. The DNNF ϕr(∅) has size at most 7k3(n+m).

Proof. We can assume without loss of generality that T contains at least one
inner node. Let v be an inner node of T with children v1 and v2. Consider the
DNNFs ϕv1(S1) for shapes S1 for v1 and ϕv2(S2) for shapes S2 for v2. We claim
that all DNNFs ϕv(S) for shapes S of v can be constructed from these DNNFs
by introducing at most 5k3 new nodes and edges. If S is a shape for v and S1

and S2 are shapes for v1 and v2 that generate S, we have to introduce an AND
node and two edges to construct the DNNF computing ϕv1

(S1) ∧ ϕv2(S2), as
well an edge from this AND node to the OR node that will eventually compute
ϕv(S). In the worst case, we have to create this OR node first. In total, we have
to introduce at most 5 nodes and edges for each triple (S,S1,S2) of shapes such
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that S1 and S2 generate S. How many such triples are there? For any three
projections S1 ∈ proj (Fv1

, Xv1), S2 ∈ proj (Fv2 , Xv2), and S′ ∈ proj (Fv, Xv),
the projections S′

1 ∈ proj(Fv1 , Xv1), S′
2 ∈ proj(Fv2 , Xv2), and S ∈ proj (Fv, Xv)

such that S1 = (S1, S
′
1) and S2 = (S2, S

′
2) generate S = (S, S′) is uniquely

determined. As there are at most k3 such projections, we have to introduce at
most 5k3 nodes and edges. The tree T has exactly n+m− 1 inner nodes, so we
need at most 5k3(n + m) nodes and edges to construct the DNNF ϕr(∅) from
the DNNFs constructed for leaves of T . For each leaf node there at most two
DNNFs consisting of a single node and there are n+m leaves, so we require at
most 7k3(n+m) nodes and edges in total. ut

Since we did not make any assumptions about the formula F and the branch
decomposition T , Lemma 6 and Lemma 7 yield the following result.

Theorem 1. A CNF formula with n variables, m clauses, and PS-width k can
be compiled into a structured d-DNNF of size O(k3(n+m)).

The above construction leads to an algorithm which, given a formula F and a
branch decomposition T of F ∪ var(F ), computes a structured d-DNNF repre-
sentation of F . The pseudocode listed as Algorithm 1 provides the outlines of
this procedure.6 Using an efficient method for computing the set of shapes for
each node during the initialization phase (for details, see Saether et. al. [16]), this
algorithm can be made to run in time O(k3m(n + m)), where n is the number
of variables of F , m is the number of clauses of F , and k is the PS-width of T .

4 Corollaries

Theorem 1 allows us to derive compilation results for CNF formulas based on
structural properties of their incidence graphs, namely treewidth, directed clique-
width, and clique-width [8].

We first consider treewidth. A tree decomposition of a graph G = (V,E) is a
pair (T, (Bt)t∈V (T )) where T is a tree and (Bt)t∈V (T ) is a family of subsets of V
(called “bags”) such that:

1. For every vertex v ∈ V , the set {t ∈ V (T ) | v ∈ Bt} is non-empty and
connected in T .

2. For every edge uv ∈ E, there is a t ∈ V (T ) such that u, v ∈ Bt.

The width of a tree decomposition (T, (Bt)t∈V (T )) is the maximum size of a bag
minus one, and the treewidth of G is the minimum of width attained over all
tree decompositions of G. The incidence treewidth of a formula F defined as the
treewidth of its incidence graph I(F ).

Proposition 1. A formula of incidence treewidth k has PS-width at most 2k+1.

6 To enhance readability, we suppress double brackets around shapes, writing, for
instance, ϕv(S, S′) instead of ϕv((S, S′)).
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Algorithm 1: Compiling CNFs into structured d-DNNFs.

Input: a CNF F and a branch decomposition (T, δ) of F ∪ var(F )
Output: a structured d-DNNF computing F
// initialization, precomputing shapes

1 for v in T

2 compute proj (Fv, Xv) and proj (Fv, Xv)
// compilation, leaf nodes

3 for v in L(T )
4 if δ(v) in var(F )
5 x = δ(v)
6 Sx = {C ∈ F | x ∈ C }
7 S¬x = {C ∈ F | ¬x ∈ C }
8 ϕv(Sx, ∅) = x
9 ϕv(S¬x, ∅) = ¬x

10 else
11 C = δ(v)
12 ϕv(∅, {C}) = 1
13 ϕv(∅, ∅) = 0

14 mark v as processed

// compilation, inner nodes
15 while T contains an unprocessed node
16 let v be an unprocessed node whose children v1 and v2 have been processed

17 for (S1, S2, S
′) in proj (Fv1 , Xv1)× proj (Fv2 , Xv2)× proj (Fv, Xv)

18 S = S1 ∪ S2

19 S′
1 = S′ ∪ S2

20 S′
2 = S′ ∪ S1

21 if ϕv(S, S′) has not been created
// initialize ϕv(S, S′)

22 ϕv(S, S′) = 0

23 ϕv(S, S′) = ϕv(S, S′) ∨ (ϕv1(S1, S
′
1) ∧ ϕv2(S2, S

′
2))

24 propagate constants in ϕv(S, S′)

25 mark v as processed

26 return ϕr(∅, ∅)
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Proof (Sketch). Let F be a formula and let T = (T, (Bt)t∈V (T )) be a tree decom-
position of its incidence graph such that T has width k. We can assume without
loss of generality that T is binary (this can be achieved by copying nodes and
bags of T ). We construct a branch decomposition T ′ = (T ′, δ) of F ∪ var(F )
as follows: for every variable x ∈ var(F ) we introduce a vertex vx and connect
it to the node t of T such that t is closest to the root among nodes whose as-
sociated bags contain the variable x. For each clause C ∈ F we add a vertex
vC in an analogous way. The result is a tree where every vertex has at most
three neighbors. We obtain the desired branch decomposition T ′ by iteratively
deleting all leaves not among the nodes vx and vC introduced in the first step
and contracting paths to edges. We now claim the following.

– For every v ∈ T ′, there are at most k+1 clauses in Fv that contain a variable
from Xv. Each projection Fv(τ) of an assignment τ : Xv → {0, 1} onto Fv

is a subset of these clauses, so |proj (Fv, Xv)| ≤ 2k+1.
– Symmetrically, for every v ∈ T ′, there are at most k+ 1 variables in Xv that

occur in a clause C ∈ Fv. It follows that |proj (Fv, Xv)| ≤ 2k+1 because there
are at most 2k+1 assignments τ : Xv → {0, 1}.

That is, T ′ has PS-width at most 2k+1. ut

Combining Proposition 1 and Theorem 1, we obtain the following result.

Corollary 1. A formula with n variables, m clauses, and incidence treewidth k
can be compiled into a structured deterministic DNNF of size O(8k(n+m)).

Clique-width is a generalization of treewidth defined as follows. A k-graph is
a pair (G,λ) consisting of a graph G = (V (G), E(G)) and a mapping λ : V (G)→
{1, . . . , k}. We call λ(v) the label of vertex v. We define the following operations
for constructing k-graphs:

(i) For i ∈ {1, . . . , k}, we write •i for the k-graph (G,λ) where G contains a
single isolated vertex v and λ(v) = i.

(ii) Let i, j ∈ {1, . . . , k} such that i 6= j, and let G = (G,λ) be a k-graph. Then
ρi→j(G) = (G,λ′), where λ′(v) = λ(v) if λ(v) 6= i, and λ′(v) = j if λ(v) = i,
for each vertex v ∈ V (G).

(iii) Let i, j ∈ {1, . . . , k} such that i 6= j, and let G = (G,λ) be a k-graph. Then
ηi,j(G) = (G′, λ), where G′ is the graph such that V (G′) = V (G), and such
that E(G′) = E(G) ∪ { vw | λ(v) = i, λ(w) = j }. That is, G′ is obtained
from G by adding an edge between any two vertices v and w such that v is
labelled i and w is labelled j.

(iv) We write G tG′ to denote the disjoint union of two k-graphs G = (G,λ)
and G′ = (G′, λ′), that is, G tG′ = (G tG′, λ ∪ λ′).

A k-expression is a well-formed expression using the symbols •i (constant), ρi→j ,
ηi,j (both unary), and t (binary). The k-graph associated with a k-expression t
(and any k-graph isomorphic to it) is called the value of t. If a k-expression t
has the value (G,λ) we say that t is a k-expression of G. The clique-width of a
graph G is the minimum k such that there is a k-expression of G.
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A formula with m clauses and incidence clique-width k has PS-width at most
mk [16]. In combination with Theorem 1, this gives the following result.7

Corollary 2. A formula with n variables, m clauses, and incidence clique-
width k can be compiled into a structured d-DNNF of size O(m3k(n+m)).

The directed clique-width of a directed graph is defined analogously to clique-
width. If F is a CNF formula with a directed incidence graph8 of directed
clique-width k, then F has PS-width at most 4k [2]. By combining this fact
and Theorem 1, we obtain the following.

Corollary 3. A formula with n variables, m clauses, and directed incidence
clique-width k can be compiled into a structured d-DNNF of size O(64k(n+m)).

5 A Lower Bound for Clique-Width

Note that there is a qualitative difference in the size bounds of Corollary 1 and
Corollary 3 on the one hand, and Corollary 2 on the other hand. If k is the value
of a structural parameter of a formula with n variables and m clauses, then the
former bound has the shape 2O(k)(n + m), whereas the latter bound has the
shape mO(k)(n+m). For small values of k and large values of n and m, bounds
of the form 2O(k)(n+m) are preferable to bounds of the form mO(k)(n+m).

In this section we will give evidence that the size bound of Corollary 2 is
optimal qualitatively, so that the qualitative difference discussed above is un-
avoidable. To this end, we introduce the following notions from parameterized
complexity.

A parameterized problem is a pair (P, κ) where P is a decision problem and
κ : {0, 1} → N is a computable function associating every instance of P with a
parameter. A parameterized problem (P, κ) is in the complexity class FPT, or
fixed-parameter tractable, if there is an algorithm solving P in time f(κ(x))|x|c
for every instance x, where f : N → N is a computable function and c is a
constant. A parameterized problem (P, κ) is in the complexity class FPT/ppoly
if there is an algorithm that, given an instance x of P and f ′(κ(x))|x|c′ advice
bits, correctly solves x in time f(κ(x))|x|c where f : N→ N and f ′ : N→ N are
computable functions and c, c′ are constants [3].9 Clearly, FPT is contained in
FPT/ppoly.

Theorem 2. Assume that W[1] * FPT/ppoly. Then there is no computable
function f : N → N and constant c such that for every CNF-formula F with n
variables, m clauses and clique-width k there is a DNNF D such that F and D
compute the same function and the size of D is at most f(k)(n+m)c.

7 By the same token, the statement could also be proved for other structural param-
eters, like Boolean width, rank-width, or MIM-width [18, 16].

8 The directed incidence graph is an orientation of the incidence graph encoding pos-
itive and negative occurrences of variables.

9 Note that the advice given to the algorithm may only depend on κ(x) and |x| but
not directly on x. Thus for two instances x and x′ with κ(x) = κ(x′) and |x| = |x′|
the algorithm is given the same advice string.
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The assumption W[1] 6⊆ FPT/ppoly is a parameterized analogue of the as-
sumption NP 6⊆ P/poly in classical complexity; the latter is known to hold
unless the Polynomial Hierarchy collapses to the second level [9]. Although
W[1] 6⊆ FPT/ppoly is a stronger assumption than W[1] 6⊆ FPT, which is stan-
dard in parameterized complexity, we still consider it plausible, since it is not
clear how nonuniformity should help in solving W[1]-hard problems.

Proof (of Theorem 2). We use a reduction from partitioned clique to the satis-
fiability problem presented in [10]. The partitioned clique problem is to decide,
given a k-partite graph G whose color classes all have the same size, whether
G has a clique of size k, i.e. containing a vertex from every color class. Here,
k is the parameter of the problem instance. The partitioned clique problem is
W[1]-complete under fixed-parameter tractable many-one reductions; see [7] for
more details.

In [10], it is shown (Theorem 4 and Corollary 1) that, given a k-partite graph
G = (V1, . . . , Vk, E) with the same number of vertices in each color class, one
can construct a CNF formula FG such that the incidence graph of FG has clique-
width at most k+4 and the size of FG is polynomial in the size ofG, and such that
the formula FG has a satisfying assignment if and only if G has a clique of size k.
If Vi = {vi1, . . . , vin}, the formula contains the variables Vi for each 1 ≤ i ≤ k.
For each pair (u, v) such that v ∈ Vi, u ∈ Vj (i 6= j), and such that uv /∈ E, the
formula FG contains the clause Cu,v = {¬u,¬v} ∪ {w | w ∈ (Vi ∪ Vj) \ {u, v} }.
The idea is that the variables vij mapped to 1 by a satisfying assignment of FG

correspond to a partitioned clique of G. The clauses Cu,v are padded with the
remaining variables in order to keep the clique-width of FG’s incidence graph
small; to make sure that a clause Cu,v cannot be satisfied by these extra variables
when u and v are both assigned to 1, a “selection gadget” is attached to each
color class Vi. This gadget (which we will not describe here) guarantees that
each satisfying assignment of FG maps exactly one of the variables in each color
class Vi to 1.

We modify this construction in the following way. Let Gk
n = (V1, . . . , Vk, ∅)

denote the empty k-partite graph with n vertices in each color class. The for-
mula FGk

n
contains a clause Cu,v for each pair of variables u ∈ Vi, v ∈ Vj (i 6= j),

as Gk
n does not contain any edges. Starting from FGk

n
, we construct a new for-

mula Fk,n by adding a distinct relaxation variable xu,v to each clause Cu,v.
These variables allow us to “switch clauses on and off” as needed. Adding the
variable xu,v to the clause Cu,v corresponds to adding a vertex xu,v and a “dan-
gling edge” {xu,v, Cu,v} to the incidence graph of FGk

n
. This can be done for

each clause Cu,v while increasing the clique-width of the incidence graph by
at most 3, as can be seen from the following argument. Consider a (k + 4)-
expression t of the incidence graph I(FGk

n
) of FGk

n
. For each clause Cu,v, the

expression t contains a subexpression •j that introduces the vertex Cu,v with
some label j ∈ {1, . . . , k + 4}. Using fresh labels, we replace each such subex-
pression with the expression ρk+6→k+7(ρk+5→j(ηk+5,k+6(•k+5t•k+6))). That is,
instead of introducing Cu,v with label j, we first introduce it with label k + 5,
along with the vertex xu,v, which we label with k + 6. We then create the edge
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{Cu,v, xu,v} and before relabelling both vertices: the vertex Cu,v gets its original
label j, while vertex xu,v is assigned an auxiliary label k + 7 to make sure it
does not become the endpoint of further edges. The resulting expression is a
(k + 7)-expression of I(Fk,n).

Given a k-partite graph G with n vertices in each color class, the formula FG

can be obtained from Fk,n by assigning the relaxation variables: simply set xu,v
to 1 if uv is an edge of G, and to 0 if uv is not an edge of G.

Now assume, by way of contradiction, that there is a function f : N → N
and a constant c such that for every CNF formula F with n variables, m clauses
and clique-width k, there is a DNNF D such that F and D compute the same
function and the size of D is at most f(k)(n+m)c. Then in particular, there is
a constant c′ such that for every n and k, there is a DNNF Dk,n of size f(k)nc

′

that computes Fk,n.
We now describe a non-uniform algorithm for the partitioned clique problem:

Given a k-partite graph G with n vertices in each color class, the advice string is
a desciption of Dk,n. The algorithm first sets the relaxation variables so as to get
a DNNF DG computing FG. This can be done in linear time [4]. The graph G has
a k-clique if and only if DG is satisfiable. Since checking satisfiability of DNNF
can be done in linear time [4], this gives the desired algorithm. It follows that the
partitioned clique problem, and hence every problem in W[1], is in FPT/ppoly,
which is a contradiction to the assumption of the lemma. We conclude that
DNNFs of the desired size cannot exist if W[1] 6⊆ FPT/ppoly. ut

6 Conclusion

We demonstrated how dynamic programming algorithms for #SAT [17, 16] can
be modified to construct structured d-DNNF representations of CNF formulas.
This observation allowed us to prove an upper bound on the size of structured
d-DNNF representations of CNFs in terms of a parameter called PS-width [16].
We showed that this bound translates into new upper bounds in terms of pa-
rameters such as the treewidth and the clique-width of the incidence graph. We
also provided evidence that the upper bound in terms of incidence clique-width
cannot be substantially improved, even for general DNNFs.

The d-DNNFs generated by our compilation algorithm do not necessarily fall
into the more restricted subclass of decision DNNFs. We do not know whether
this is an artifact of our methods or due to an inherent limitation of decision
DNNFs. In particular, we would like to know if CNF formulas can be compiled
into decision DNNFs of size exponential only in their incidence treewidth. Fi-
nally, it would be interesting to compare PS-width to other recently proposed
width measures of CNF-formulas, such as CV-width [11] and decision-width [12].
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