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Public Bike Sharing Systems require some kind of rebalancing to avoid
too many rental stations of running empty or entirely full, which would
make the system ineffective and annoy customers. Most frequently, a fleet
of vehicles with trailers is used for this purpose, moving bikes among the
stations. Previous works considered different objectives and modeled the
underlying routing problem in different ways, but they all allow an arbi-
trary number of bikes to be picked up at some stations and delivered to
other stations, just limited by the vehicles’ capacities. Observations in
practice, however, indicate that in larger well-working bike sharing sys-
tems drivers almost never pickup or deliver only few bikes, but essentially
always approximately full vehicle loads. Many stations even require sev-
eral visits with full loads. Due to budgetary reasons, typically only just
enough drivers and vehicles are employed to achieve a reasonable balance
most of the time, but basically never an ideal one where single bikes play
a substantial role. Consequently, we investigate here a simplified problem
model, in which only full vehicle loads are considered for movement among
the rental stations. This restriction appears to have only a minor impact on
the achieved quality of the rebalancing in practice but eases the modeling
substantially. More specifically, we formulate the rebalancing problem as
a selective unit-capacity pickup and delivery problem with time budgets on
a bipartite graph and present a compact mixed integer linear programming
model, a logic-based Benders decomposition and a variant thereof, namely
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Branch-and-Check for it. For the general case, instances with up to 70
stations, and for the single-vehicle case instances with up to 120 stations
are solved to proven optimality. A comparison to leading metaheuristic
approaches considering flexible vehicle loads indicates that indeed the re-
striction to full loads has only a very small impact on the finally achieved
balance in typical scenarios of Citybike Wien.

Keywords: balancing bike-sharing systems, logic-based Benders decomposition,
Branch-and-Check, vehicle routing, pickup-delivery, traveling salesman problem

1. Introduction

Public bike sharing systems (PBSs) provide a modern way of shared public transport
within cities. These systems consist of rental stations distributed in parts of a city. In
state-of-the-art PBSs every station has a self-service computer terminal authenticat-
ing the customers, and ideally also used to allow instant registration for new clients.
Customers have to authenticate and provide a payment method to reduce theft and
vandalism. Rental stations consist of slots which can either be empty or occupied by a
bike. These slots are connected to the whole computer system allowing the operators
as well as the customers to have an overview of the status of each station. If there
is at least one slot occupied by a bike, customers have the opportunity to rent a bike
via the terminal, and if there is at least one slot free, customers may return a bike by
putting it into the free slot. To work well, a PBS has to have a reasonable density of
stations in the covered region. Users can rent bikes at any station and return them at
any other station.

PBS are mostly implemented in public-private partnership and are financed through
advertisements on the bikes, subsidies from the municipalities, and subscription fees
from the users. The costs for building and operating the system have to be covered.
The problem of building or extending a PBS can in principle be seen as a facility
location or hub location problem with network design aspects [33] and is not within
the scope of this work.

For continuous operation of the system, besides maintaining the bikes and stations,
providers in particular have to take care of rebalancing bikes among the stations such
that users can rent and return bikes at any station with high probability. Stations
should ideally neither run full nor empty, as these situations obviously significantly
impact customer satisfaction.

Different approaches to achieve and maintain a reasonable balance exist. Most
commonly, the PBS operator actively rebalances the stations by employing vehicles
with trailers that pickup bikes at stations with excess of bikes and deliver them to
stations with a lack of bikes. This is the scenario we will consider in the following, but
there are also alternative approaches in which balance should be achieved by the users
themselves [17, 37]. There, the operator provides incentives for their customers to rent
bikes at stations with excess and to return them at stations with a lack of bikes. These
incentives can be reduced subscription fees, prizes or discounts at special partners of
the PBS. Both rebalancing strategies can also be used in conjunction.
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The active rebalancing of a PBS by a vehicle fleet has in the literature been referred
to as a capacitated single commodity split pickup and delivery vehicle routing problem
with multiple visits [40]. Diverse variants of this problem, with different objectives
and constraints, have already been considered, and different algorithmic approaches
have been proposed, ranging from mixed integer linear programming (MIP) methods
to metaheuristics and hybrids. To our knowledge, all these approaches allow for an
arbitrary number of bikes to be picked up at some stations and delivered to other
stations, just limited by the vehicles’ and stations’ capacities. Observations in practice,
however, indicate that in a larger well-working bike sharing system it makes rarely sense
to move only few bikes for rebalancing. Drivers actually almost always pickup a full
vehicle load and deliver it completely to another station. Many stations even require
several visits with full load pickups or deliveries. Due to budgetary reasons, typically
only just enough drivers and vehicles are employed to achieve a reasonable balance
most of the time, but basically never an ideal one where single bikes play a substantial
role. Drivers should use their limited working time in a best way to optimize the PBS’s
overall balance as far as possible. The described scenario is particularly true in case
of our collaboration partner Citybike Wien1.

Following this observation, we investigate here a simplified problem definition in
which only full vehicle loads are considered for movement among the rental stations.
This restriction appears to have only a minor impact at the achieved quality of the
rebalancing in practice but eases the modeling and algorithmic solving essentially.

For this new problem formulation, we then propose three exact solution approaches:
a compact MIP model, a logic-based Benders decomposition (LBBD), and a vari-
ant thereof, namely Branch-and-Check (BAC). Moreover, we compare with previously
proposed and leading metaheuristics allowing flexible numbers of picked up and deliv-
ered bikes, concluding that the restriction to only full vehicle loads affects the finally
achieved balance in practical scenarios indeed in only minor ways.

This article is organized as follows: The next section presents the details of our
new problem formulation and Section 3 summarizes related work. In Section 2.3
the compact MIP model is introduced, whereas Section 4 describes the LBBD and
Section 4.3 its variant BAC. Computational results are shown in Section 6, and finally,
we conclude in Section 7.

2. Problem Statement

We first summarize aspects of existing problem formulations for Balancing Bike Shar-
ing Systems (BBSS) and then state our new approach, giving respective formal defi-
nitions.

Generally, previous works distinguish two types of problem variants for BBSS,
namely the static and the dynamic case.

In the static scenario we are given an initial state of the system, i.e., initial fill levels
for all stations, and a desired target state of the system, i.e., target fill levels or demand
intervals for all stations.

1http://www.citybikewien.at
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For the static case, a significant variety of different optimization goals has been
considered in the literature, e.g., minimizing the traveling costs [6, 10] where bal-
ancing is modeled as a hard constraint, or minimizing the total number of expected
shortages [41].

A quite challenging task is to determine best suited target fill levels for the op-
timization. This has to be done with caution because the final state at the end of
rebalancing is the initial state for the next day(s) in the static model. The customer
demand of renting and returning bikes is the crucial factor when target values for the
rebalancing operations have to be determined. Thus, a sophisticated demand progno-
sis is necessary to estimate well-suited target values. Rudloff and Lackner [42] build
such a prognosis model based on historical data of the system of Citybike Wien based
on various impact factors like weather, day of the week, time of the day, temperature,
etc. They also consider the influence of entirely full or empty neighboring stations.
Han et al. [19] concentrate on the demand prediction for large-scale BSS. They describe
the spatio-temporal correlation in BSS as an important factor for demand estimation.
They verified their model on the record set they retrieved from the BSS Vélib’ in Paris.

In general, the static problem variant neglects the dynamic interaction between the
customers and the system as it does not consider the user demand during rebalancing
and e.g., is appropriate for overnight rebalancing if the system is not in use during the
night [41].

The dynamic case also considers user interactions during rebalancing. Only few
works, however, exist in this direction. In [30] the user interactions and the demands
are retrieved from historical data and implemented by a probabilistic model of Rudloff
and Lackner [42], and the objective is to minimize unsatisfied user demand as well as
to minimize deviation between initial and desired target fill levels. Contardo et al. [8]
randomly generate demand values and try to minimize shortages and excesses of bikes
over a prospective time horizon.

If the user demand is predicted reasonably well and the rebalancing takes place
during the active times of the PBS, the dynamic case can thus in principle be more
accurate than a static model but is also computationally much more demanding. Under
the assumption that rebalancing should not primarily fulfill short-term needs and
station capacities are reasonably large, static models are generally also accepted as a
reasonably good approximation for systems where the rebalancing takes place during
the operation hours. We therefore also concentrate on the static case here.

2.1. A BBSS Formulation Considering Full Vehicle Loads Only

As motivated already in the introduction, observations at Citybike Wien reveal that
pickup and delivery of full vehicle loads clearly dominates practice. Due to economic
reasons there is a financial limit on the labor costs, and rebalancing is done in such a
way that a practically acceptable but usually not perfect balance of the stations’ fill
levels is achieved. Thus, the number of drivers respectively vehicles and their working
times are a major limit, and the stations should be brought to specified target fill
levels as far as possible, but reaching all of them exactly is (typically) out of question.
The drivers are in principle daily faced with more work than can be feasibly done.
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Furthermore, many stations ideally require more than one, sometimes even several full
vehicle loads to be delivered or picked up in order to achieve the desired target state.
Most of the drivers’ working time is consumed by traveling to the individual stations
and parking somewhere nearby, however, required time for loading or unloading less or
more bikes plays a comparably small role, and is frequently also neglected in existing
models. In such a scenario, it becomes obvious that it is clearly most effective to move
almost always approximately full vehicle loads from stations with a substantial excess
of bikes to stations with a substantial demand.

Consequently, we assume in our new BBSS problem formulation that the vehicle is
always either fully loaded with bikes or empty, dropping the consideration of moving
only a certain number of bikes less than the vehicles full capacity. Concerning the
objective function, our goal is to bring as many stations as far as possible to their
specified target fill levels, respecting given working times, and the general constraints
for feasible tours.

Considering only full vehicle loads simplifies existing models substantially. Typically,
the consideration of the exact number of bikes to be moved requires an additionally
embedded flow problem to be solved.

Of course, not dealing with partial vehicle loads comes along with a potential loss
of accuracy, but the prediction of user demands which depends on, e.g., the weather,
weekday, events in the stations’ neighborhoods and the influence of neighboring sta-
tions involve in general uncertainties for the calculation of suitable target fill levels
that can be safely assumed to dominate in practice.

2.2. Formal Problem Definition

We are given a set of stations S and a set of homogeneous vehicles L. For the vehicles
we are given a common capacity Z and a common time budget t̂ (drivers’ shift times)
within which the vehicles have to finish their routes. For each station s ∈ S we are
given the number of full vehicle loads fs to be delivered (fs ≤ −1) or picked up (fs ≥ 1)
such that the station achieves its (approximately) ideal target fill level. Stations that
are already at their desired target fill level (or require less than a full vehicle load) are
ignored from any further consideration.

A station, to which bikes shall be delivered is called a delivery station, while a station
from which bikes should be removed is called a pickup station. At pickup stations, only
pickups may be performed, while at delivery stations, only deliveries, and we never
allow more than |fs| visits at each station. Thus, a kind of buffering bikes at some
station and moving them further later is explicitly excluded. Especially in our context
with the consideration of full vehicle loads only, such solutions would not make sense
anyway when the triangle inequality is fulfilled by the traveling times between stations,
what can safely be assumed for practice.

For modeling tours with up to |fs| visits at each station s ∈ S, we define a directed
bipartite graph G = (V,A) as follows. Let Vpic = {(s, i) | s ∈ S ∧ fs ≥ 1, i =
1, . . . , |fs|} be a set of nodes representing up to |fs| visits at each pickup station, and
let Vdel = {(s, i) | s ∈ S∧fs ≤ −1, i = 1, . . . , fs} denote the respective potential visits
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at the delivery stations. V = Vpic ∪ Vdel then refers to the joined set of all potential
visits, and the arc set of graph G is given by A = {(u, v), (v, u) | u ∈ Vpic, v ∈ Vdel}.

We further extend the set of stations V by two nodes 0 and 0′ representing the depot
at the beginning and the end of each tour, respectively, obtaining V0 = V ∪ {0, 0′}.
Node 0 is connected to all pickup nodes, while 0′ is connected to all delivery nodes, i.e.,
A0 = A∪{(0, v) | v ∈ Vpic}∪{(v, 0′) | v ∈ Vdel}, yielding bipartite graph G0 = (V0, A0).
We explicitly omit here an arc (0, 0′) which might be used for representing a vehicle
that stays at the depot and does not do any station visits due to the fundamental
assumption in our modeling that more than enough rebalancing work exists for keeping
all vehicles busy.

Each arc (u, v) ∈ A0 represents an actual trip from the location represented by visit
u to the location represented by visit v and has a corresponding traveling time tuv > 0
associated. This time also includes an estimated time for parking at the destination
and in case of v 6= 0′ for handling the station’s electronic system and for loading or
unloading the bikes.

A solution to our problem is a set of |L| simple paths in G0 from node 0 to node
0′ visiting all vertices in their vehicle’s l ∈ L corresponding subgraph. Let rl =
(r1l , r

2
l , . . . , r

ρl
l ) be the successive station visits in the route of vehicle l ∈ L, with

ρl being the number of visits and V (rl) corresponding to the set of station visits
contained in route rl. Due to the bipartite structure of G0, as long as the path
is not empty (ρl > 0) each odd stop must be performed at a pickup station, i.e.,
r1l , r

3
l , . . . , r

ρl−1
l ∈ Vpic, while each even stop takes place at a delivery station, i.e.,

r2l , r
4
l , . . . , r

ρl
l ∈ Vdel, and ρl always is even.

A non-empty route rl is feasible with respect to the time budget t̂ iff

t0r1l +

ρl−1∑

i=1

tril r
i+1
l

+ trρll 0′ ≤ t̂. (1)

By assumption all vehicles start empty at the beginning and have to return empty,
which is implicitly guaranteed again by the bipartite graph.

By above definitions, we reduce the BBSS problem as introduced in [40] to a selec-
tive unit-capacity one-commodity pickup and delivery problem with time budgets on a
bipartite graph.

As optimization goal, we consider in this work the maximization of the total number
of station visits

max
∑

l∈L
ρl, (2)

which corresponds to twice the number of moved full vehicle loads. By this objective
function, we also minimize the sum of the deviations from the stations’ target fill levels
after the rebalancing, which is

min
∑

s∈S
|fs| −

∑

l∈L
ρl (3)
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and is the primary objective of previous work such as [11, 12, 25, 40, 41]. In [40] the
objective is particularly given as follows:

min ωbal
∑

s∈S
δs + ωload

∑

l∈L

ρl∑

i=1

|yil,ril |+ ωwork
∑

l∈L
tl, (4)

where ωbal, ωload, ωwork are weighting factors, δs = |as − qs| denotes the deviation of
the final fill level as from the target fill level qs at station s ∈ S, yi

l,ril
denotes the

number of bikes loaded (> 0) or unloaded (< 0) by vehicle l ∈ L at station ril , and tl
is the total working time of vehicle l.

Proposition 1. When considering only balance optimization, the objective functions
shown in equation (3) and (4) correspond to each other (except for rounding errors
resulting from the fact that we now only consider full vehicle loads).

Proof. As we only focus on the balance aspect here, i.e., minimizing the deviation
between final and target fill levels, we set the weighting factors in equation (4) to ωbal =
1, ωload = 0, ωwork = 0, effectively ignoring the second and third term. Equation (4)
can then be rewritten as

min
∑

s∈S
|as − qs| = min

∑

s∈Spic

as − qs +
∑

s∈Sdel

qs − as. (5)

Let ps be the initial fill level for station s ∈ S, then in a static context, the final fill
level can also be expressed as as = ps −

∑
l∈L
∑ρl
i=1 y

i
l,ril

which results in

min
∑

s∈Spic

(
ps − qs −

∑

l∈L

ρl∑

i=1

yil,s

)
+
∑

s∈Sdel

(
qs − ps +

∑

l∈L

ρl∑

i=1

yil,s

)
. (6)

To show the correspondence of equation (3) to equation (6), equation (3) is multiplied
by the vehicle capacity Z such that the deviation in full vehicle loads is transformed
to the actual deviation in the number of bikes

min Z ·
(∑

s∈S
|fs| −

∑

l∈L
ρl

)
(7)

Required full loads to balance station s ∈ S can be calculated as follows

fs =

⌈
ps − qs
Z

⌉
∀s ∈ Spic, and fs =

⌊
ps − qs
Z

⌋
∀s ∈ Sdel, (8)

which can be used in equation (7) to get

min Z ·


 ∑

s∈Spic

⌈
ps − qs
Z

⌉
−
∑

s∈Sdel

⌊
ps − qs
Z

⌋
−
∑

l∈L
ρl


 . (9)
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Let bs =
∑
l∈L |{ril | ril ∈ rl, ril = s}| ∀s ∈ S the number of full vehicle loads delivered

to or picked up at station s ∈ S, then we can rewrite equation (9) as

min Z ·


 ∑

s∈Spic

⌈
ps − qs
Z

⌉
−
∑

s∈Sdel

⌊
ps − qs
Z

⌋
−
∑

s∈S
bs


 =

min Z ·


 ∑

s∈Spic

⌈
ps − qs
Z

⌉
−
∑

s∈Sdel

⌊
ps − qs
Z

⌋
−
∑

s∈Sdel

bs −
∑

s∈Spic

bs


 =

min Z ·


 ∑

s∈Spic

(⌈
ps − qs
Z

⌉
− bs

)
−
∑

s∈Sdel

(⌊
ps − qs
Z

⌋
− bs

)
 =

min
∑

s∈Spic

(
Z ·
⌈
ps − qs
Z

⌉
− Z · bs

)
+
∑

s∈Sdel

(
Z ·
⌈
qs − ps
Z

⌉
+ Z · bs

)

(10)

Comparing equation (6) with equation (10) shows that the terms Z · bs and∑
l∈L
∑ρl
i=1 y

i
l,s correspond to each other as both represent the number of moved

bikes by the vehicles in the system. Moreover, the terms Z ·
⌈
ps−qs
Z

⌉
, Z ·

⌈
qs−ps
Z

⌉

and ps − qs, qs − ps correspond to each other except for rounding errors due to the
consideration of only full vehicle loads.

2.3. Compact Mixed Integer Linear Programming Model

We now formulate the problem as a compact MIP model using assignment variables
xvl ∈ {0, 1} to state the assignment of station visits v ∈ V to vehicles l ∈ L and
arc selection variables yluv ∈ {0, 1} to describe the tour for each vehicle. Subtours
are eliminated via Miller-Tucker-Zemlin inequalities [34] utilizing further continuous
variables av for the nodes v ∈ V .

max
∑

l∈L

∑

v∈V
xvl (11)

s.t.
∑

l∈L
xvl ≤ 1 ∀v ∈ V (12)

∑

v∈Vpic

xvl =
∑

v∈Vdel

xvl ∀l ∈ L (13)

∑

l′∈L
x(s,i)l′ ≥ x(s,i+1)l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (14)

∑

v∈Vpic

yl0v = 1 ∀l ∈ L (15)

∑

v∈Vdel

ylv0′ = 1 ∀l ∈ L (16)

∑

(u,v)∈A0

yluv = xul ∀l ∈ L, u ∈ V (17)
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∑

(u,v)∈A0

yluv = xvl ∀l ∈ L, v ∈ V (18)

∑

(u,v)∈A0

yluv =
∑

(v,u)∈A0

ylvu ∀l ∈ L, v ∈ V (19)

au − av + |V | · yluv ≤ |V | − 1 ∀l ∈ L, (u, v) ∈ A (20)
∑

(u,v)∈A0

tuv · yluv ≤ t̂ ∀l ∈ L (21)

xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (22)

yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (23)

1 ≤ av ≤ |V |, av ∈ R ∀v ∈ V (24)

The objective function (11) maximizes the number of full vehicle loads picked up
and delivered to the stations and thus, the total balance increase in the PBS, compare
equation (3). Inequalities (12) state that every station visit is performed by at most
one vehicle. By equalities (13) we explicitly define that every tour contains the same
amount of pickup visits as delivery visits. Note that these equations are in principle
redundant but we include them nevertheless as they might be helpful from a compu-
tational point of view. Inequalities (14) are used for symmetry breaking among the
visits of the same station: The i+ 1-th visit can only be performed when the i-th visit
is performed, for i = 1, . . . , fs− 1 and each station s ∈ S. For each vehicle the depot’s
starting node 0 has to have one outgoing arc (15), and similarly, the depot’s target
node 0′ has to have one incoming arc (16). The arc selection variables are linked with
the assignment variables as follows: Equalities (17) ensure that every node u ∈ V
has one outgoing arc iff it is assigned to vehicle l, i.e., xul = 1, while equalities (18)
guarantee that each node v ∈ V which is assigned to vehicle l ∈ L has to have one
corresponding ingoing arc. Equalities (19) express that the number of ingoing arcs has
to be equal to the number of outgoing arcs for each node v ∈ V, l ∈ L. We eliminate
subtours by inequalities (20) by computing an ordering of the nodes in variables av.
Inequalities (21) guarantee that the routes for each vehicle lie within the allowed time
budget t̂. Finally, (22) to (24) define the domains of the decision variables.

For small instances, a state-of-the-art MIP solver such as CPLEX is able to directly
yield proven optimal solutions by this model in reasonable time, see the experimental
results in Section 6. The approach, however, does not scale well to larger instances.

3. Related Work

In this section we give an overview on existing algorithmic approaches for finding
reasonable routes for balancing PBSs and other problems related to our simplified
problem formulation considering full vehicle loads only.

As already pointed out in the above section, essentially all existing models for rebal-
ancing PBSs consider flexible numbers of bikes to be loaded or unloaded at each visit,
and most work addresses the static case only. Several different problem variants with
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different objectives and side constraints exist, and different solution approaches have
been proposed for them. Direct comparisons are therefore quite hard. Many of the de-
scribed approaches rely on MIP techniques, but there also exist (meta-)heuristics and
hybrid metaheuristics, which appear to be particularly well suited for larger scenarios.

Before starting with the literature review it should be pointed out that an overview
paper about shared mobility systems has been published by Laporte et al. [32] contain-
ing chapters about rebalancing incentives and vehicle repositioning approaches.

3.1. MIP Approaches

Chemla et al. [6] proposed an exact branch-and-cut approach for the single-vehicle
case considering it a hard constraint to exactly reach all given target fill levels. The
approach is based on a relaxed MIP model yielding a lower bound and a tabu search
for obtaining heuristic solutions and thus upper bounds.

Raviv et al. [41] proposed several MIP models minimizing user dissatisfaction and
operational costs. These include a time-indexed as well as an arc-indexed formulation
which is restricted in the sense that a station may only be visited once by the same
vehicle. They also incorporate loading and unloading times proportional to the number
of bikes moved. By additionally applying algorithmic enhancements to their MIP
models they are able to solve instances up to 60 stations with reasonable optimality
gaps.

Schuijbroek et al. [44] describe approaches for determining service level requirements
at the stations and vehicle routes for the rebalancing at the same time. An initial MIP
model turns out to be intractable for instances of practical size. Consequently, the
authors derive a cluster-first route-second heuristic where they first assign stations to
clusters by a MIP model and then they solve an independent vehicle routing prob-
lem (VRP) for each cluster. In our approach, we will follow a similar basic idea for
decomposition, but extend it to an exact LBBD.

Similarly to Schuijbroek et al., Erdoğan et al. [13] define demand intervals for each
station. They consider only the single-vehicle case and aim at minimizing traveling
costs for the vehicle and handling costs for the rebalanced bikes. Erdoğan et al. present
a branch-and-cut formulation, apply valid inequalities from the VRP literature and
also present a Benders decomposition scheme. Their approaches solve instances up to
50 stations to optimality.

3.2. (Meta-)Heuristics and Hybrid Approaches

Due to the practical complexity of BBSS, (meta-)heuristics appear also particularly
meaningful especially for larger systems. Diverse metaheuristic approaches are de-
scribed in the literature. Rainer-Harbach et al. [39] introduced a greedy construction
heuristic (GCH) and a variable neighborhood search (VNS) with an embedded vari-
able neighborhood descent. These methods have been tested for instances with up
to 700 stations, for which they provided very reasonable results. Papazek et al. [36]
have developed a pilot heuristic [50] which improved the GCH from [39] significantly,
a greedy randomized adaptive search procedure (GRASP) upon both construction
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heuristics, performing very well on instances with a high number of rental stations.
Raidl et al. [38] examined different strategies for determining optimal loading and
unloading decisions for given routes within a metaheuristic by specialized maximum-
flow and linear programming approaches. Rainer-Harbach et al. [40] refined their
work on metaheuristics for the static case by providing comprehensive computational
tests and have also introduced their time-indexed and hop-indexed MIP models. Pa-
pazek et al. [35] investigated diverse path relinking extensions for GRASP.

The dynamic case was considered by Kloimüllner et al. [30], who proposed a problem
model in which flexible demand functions in dependence of time can be considered
for all the stations. By separating the demand functions into continuous monotonic
pieces and dealing with them appropriately, a complete discretization of time could
be avoided. As solution approaches, the authors extended the GRASP and VNS
metaheuristics from [40]. The VNS was able to solve instances with up to 90 stations
reasonably well.

Di Gaspero et al. further describe a constraint programming approach [11] and a
hybridization of it with ant colony optimization [12]. They tested on the same bench-
mark set as Rainer-Harbach et al. [40]. Although the hybrid ant colony optimization
performed better than the pure constraint programming, these methods were not able
to yield competitive results.

Vogel et al. [49] propose a MIP model for the resource allocation problem arising in
PBSs. They aim at minimizing the traveling costs as well as the handling costs for the
relocated bikes. Furthermore, they add a penalty to the objective function for missing
bikes and missing free slots at the stations. As for real-world instances the size of the
MIP model is too large to be solved directly, the authors suggest a MIP-based large
neighborhood search following a fix-and-optimize strategy.

Forma et al. [15] propose the following 3-step hybrid metaheuristic. First, stations
are clustered according to geographical data and initial inventory by using a savings
heuristic. In a second step, it is decided which vehicle visits which clusters of stations
by using a revised MIP model originally stated in [41]. Vehicles are allowed to visit
multiple clusters but one cluster is assigned to exactly one vehicle. In a third step,
routing problems are solved for each cluster independently. The authors report results
for instances with up to 200 stations and three vehicles.

3.3. Other Related Problems and Approaches

Obviously, our simplified BBSS model in which only full vehicle loads are considered is
related to diverse other vehicle routing and in particular pickup and delivery problems.
There are, however, several special aspects that need to be considered by a meaningful
solution approach, in particular that not all stations need to be visited, that a time
budget is given, and that tours are sought on a bipartite graph.

A similar problem occurs in the domain of waste collection, for which Ar-
inghieri et al. [2] describe a GRASP and a tabu search. In this problem there is
also given a bipartite graph resulting in alternating tours between pickup and delivery
places. However, multiple commodities representing different types of waste are con-
sidered there. The objective is to reduce the number of tours needed to dispose all the
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waste and thus, collecting all the waste is considered here as hard constraint, whereas
we aim to optimize the quantity of moved commodity within the given time budget.

Another problem related to the one introduced here is the one-commodity full-
truckload pickup and delivery problem (1-FTPDP) proposed by Gendreau et al. [18].
This is a variant of the well-known pickup and delivery problem where a truck has to
alternatively visit pickup as well as delivery customers all demanding a unit-capacity
pickup respectively delivery. In contrast to our problem the supply and demand of
each customer has to be satisfied. Thus, the authors add copies of the depot either to
the set of pickup customers or to the set of delivery customers to ensure enough supply
respectively demand of the customers. There are no time-budget constraints and all
customers have to be visited exactly once. The authors model the problem by solving
a routing problem through the set of pickup customers and then, assign the delivery
customers to the pickup customers. The problem is solved to optimality by relying on
classical and generalized Benders decomposition. They also present a traveling sales-
man problem (TSP) formulation of the problem based on classical subtour elimination
constraints. Starting with an initial empty set of subtour elimination constraints they
separate them by detecting all connected components and adding subtour elimination
constraints for them accordingly. They compare their two approaches based on classi-
cal and generalized Benders decomposition with their TSP formulation and conclude
that the TSP formulation outperforms the classical as well as the generalized Benders
decomposition, although the authors note that there is room for improvement of the
approaches based on Benders decomposition.

Related to our problem formulation also is the one-commodity pickup and delivery
traveling salesman problem (1-PDTSP) described by Hernández-Pérez et al. [21, 22,
23, 24], and the selective pickup and delivery problem (SPDP) studied by Ting and
Liao [48]. In the 1-PDTSP a depot and several customers are given which are either
pickup or delivery customers and the aim is to find a minimum distance route visiting
all customers starting and ending at the depot and satisfying all the supplies and
demands. In addition, Salazar-González and Santos-Hernández [43] introduce the
split-demand one-commodity pickup and delivery traveling salesman problem where a
truck has to visit a number of delivery and pickup customers multiple times respecting
a maximum number of visits per customer. Also the depot may be visited multiple
times. However, they do not consider time-budget constraints and all demands have to
be fulfilled. They propose an exact model which is solved by Benders decomposition
where the separation problem is modeled as a maximum-flow problem. They report
interesting and excellent results on an extensive set of benchmark instances. In the
SPDP not all pickup nodes have to be visited, but all delivery demands need to be
fulfilled. Moreover, somewhat related also is the prize collecting traveling salesman
problem introduced by Balas [3], in which a prize is paid for every visited city and/or
a penalty has to be paid for each city which is not visited. A minimum prize money
has to be earned, and the objective is to minimize the routing costs as well as the
penalty incurred by cities which have not been visited.

Especially when considering our decomposition approach which will be described
in Section 4, we obtain as subproblems independent Hamiltonian path problems for
the individual vehicles. These problems can be modeled as classical asymmetric TSPs
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(ATSP) on bipartite graphs. Concerning this special TSP variant, not much specific
work exists. To the best of our knowledge, Frank et al. [16] have been the first re-
searchers considering bipartite, symmetric TSPs for which they proposed a 2-factor
approximation algorithm. Srivastav et al. [46] analyzed the problem of finding tours for
pick-and-place robots which showed up of consisting of a an assignment problem and a
bipartite TSP. Given an initial bin assignment the authors proposed several approxima-
tion algorithms for the bipartite TSP. Further work on approximation algorithms for
the bipartite TSP was done by Baltz and Srivastav [4] as well as Shurbevski et al. [45].
However, these algorithms are more of theoretical interest. We will apply the well-
known Concorde TSP solver [1, 9] to tackle these subproblems, not further exploiting
the underlying bipartite graph structure.

4. Logic-based Benders decomposition

We first introduce the term LBBD and then describe the application of an LBBD
scheme to BBSS.

4.1. Introduction

In 1962 Benders came up with his classical decomposition technique to solve large
MIP problems [5]. This approach is in principle applicable if the problem can be
split into a master problem making use of only a subset of the variables including the
complicating integer variables, and an easier subproblem on the remaining continuous
variables when the master problem variables are assumed to be fixed to certain values.
The solution approach iterates by solving master problem instances and subproblems.
After the master problem is solved, a corresponding subproblem is obtained by fixing
the master problem’s variables in the original formulation to the obtained values. From
the solution of the subproblem’s linear programming (LP) dual one derives feasibility
and/or optimality cuts which are added to the master problem in each iteration. The
whole process is repeated until no further Benders cuts can be derived and an optimal
solution has been obtained.

Erdoğan et al. [13] propose a Benders decomposition scheme for solving the static
rebalancing problem arising in BSS. When applying Benders decomposition to VRPs
often the master problem, containing the complicating variables, is hard to solve.
Thus, Lai et al. [31] came up with a hybrid of Benders decomposition and a genetic
algorithm (GA). They solve the master problem by the GA and the subproblems via
a MIP model by a commercial solver.

LBBD generalizes classical Benders decomposition by also allowing integer variables
or even nonlinearities in the subproblem. This is achieved by replacing the LP dual
by a more general concept called inference dual [27]. Typically, Benders cuts are here
obtained via logical deduction. In several applications, in particular in the domain of
scheduling, LBBD achieved remarkable results.

Hooker [26] presents a solution method applicable to generic scheduling problems
where he models the master problem as a MIP and solves the subproblems by con-
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straint programming (CP). Reported results on the LBBD outperform a pure MIP and
and a pure CP approach. Harjunkoski and Grossmann [20] propose a decomposition
approach for multistage scheduling problems. The master problem, an assignment
problem, is modeled as a MIP whereas for the subproblems they employ two strategies
for feasibility checking: One which utilizes a CP approach and another one where a
MIP model is used for the feasibility check. They have shown that the hybrid decom-
position approach by solving the master problem as a MIP and the subproblems with
their CP approach has been superior to a pure MIP or pure CP approach. Further-
more, solving the subproblem, the sequencing of jobs, with the CP approach has been
superior to the feasibility check by the MIP.

There are two types of Benders cuts, namely, infeasibility cuts and optimality cuts.
Infeasibility cuts state that the current master solution is not feasible and avoid its
generation in future iterations, whereas optimality cuts provide new bounds on the
objective value for the current master problem solution. In every iteration except
the last, one or more cuts are generated where every single cut reduces the master
problem’s search space, or more precisely its underlying LP polytope – the more the
better in general. Thus, it should also be considered to strengthen obtained Benders
cuts as far as possible, which is especially in case of the LBBD frequently done by
heuristics or by constraint programming techniques, cf. the greedy algorithms proposed
by Hooker [26].

We note that a technique which is similar to the principles of LBBD is called com-
binatorial Benders cuts, cf. Codato and Fischetti [7].

4.2. Application to BBSS

The problem consists of an assignment problem (AP) and multiple Hamiltonian path
problems with time budgets that are interconnected. The AP is given in the pro-
posed model by equations (12)–(14), the Hamiltonian path problems are represented
by equations (19)–(21), and the connections between the AP and Hamiltonian path
problems are given by equation (17) and (18). In the following we decompose the prob-
lem correspondingly by applying LBBD. In this approach, we iteratively solve a master
problem, corresponding to the AP, and subproblems corresponding to the Hamiltonian
path problems but are modeled as ATSPs. The solutions of the subproblems will yield
Benders infeasibility cuts for restricting the master problem in the further iterations.
The following section discusses this decomposition approach in detail.

In the following we show how LBBD is applied to our MIP for BBSS. Section 4.2.1
describes the master problem and states its MIP formulation, while Section 4.2.2 dis-
cusses the subproblem and proposes a corresponding solution approach. Section 4.2.3
shows how the master problem and subproblem interact and how the algorithm finally
yields an optimal solution. Section 4.3 introduces the alternative to LBBD, namely
BAC.
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4.2.1. Master problem

We decompose the model (11)–(24) from Section 2.3 by focusing in the master problem
on the clustering aspect, i.e., the AP, yielding multiple Hamiltonian path problems
as subproblems. Our method was inspired by the cluster-first route-second method
introduced by Fisher and Jaikumar [14] and also applied for BBSS by Schuijbroek
et al. [44].

In order to strengthen the master problem such that a relatively meaningful cluster-
ing is determined from the beginning on, it is crucial to estimate the route durations
for the cluster and exclude clusters that obviously cannot be handled by a single ve-
hicle. Hooker [26] also reveals that it is important, for the success of the approach, to
include a relaxation of the subproblem within the master problem. Ideally, this route
duration estimation should come close to the real minimal Hamiltonian path durations
and introduce only a reasonable overhead in the master problem’s model. However,
it is important that the determined approximate trip durations are guaranteed lower
bounds for the real durations, as otherwise sets of station visits might be excluded
from becoming clusters, despite feasible routes would actually exist for them.

A lower bound for a TSP that can relatively easily be expressed by a linear program
is obtained from the minimum spanning tree relaxation of the TSP. As we can model
the Hamiltonian path problem as an ATSP, we relax the problem of finding an optimal
ATSP tour to the minimum 0-arborescence problem, i.e., a minimum, from the depot
outgoing, arborescence.

The MIP formulation of our master problem primarily uses the assignment variables
xvl, v ∈ V, l ∈ L from the original problem. For determining the lower bounds for
the vehicles’ tour durations via the arborescence polytope, flow variables f luv and arc
selection variables yluv ∈ {0, 1} for all vehicles l ∈ L and arcs (u, v) ∈ A0 are used.

Furthermore, we define β to be an upper bound on the maximal number of station
visits per vehicle. This upper bound is derived by solving the single-vehicle case of the
problem, for which the MIP model is given in Appendix A. This single vehicle case
is in practice much easier to solve than our complete problem. In our test discussed
in Section 6, we typically obtained optimal solutions within seconds, and stopped the
solving after a CPU-time limit of 5min and then took the obtained rounded down
upper bound to the optimal solution value as β.

Given these decision variables, preprocessing values and parameters, the master
problem (MP) is stated as follows:

max
∑

l∈L

∑

v∈V
xvl (25)

s.t.
∑

v∈V
xvl ≤ β ∀l ∈ L (26)

∑

l∈L
xvl ≤ 1 ∀v ∈ V (27)

∑

v∈Vpic

xvl =
∑

v∈Vdel

xvl ∀l ∈ L (28)
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∑

l′∈L
x(s,i)l′ ≥ x(s,i+1)l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (29)

∑

(0,v)∈A0

yl0v = 1 ∀l ∈ L (30)

∑

(u,0′)∈A0

ylu0′ = 1 ∀l ∈ L (31)

yluv ≤ xul ∀l ∈ L, u ∈ V, (u, v) ∈ A0 (32)

yluv ≤ xvl ∀l ∈ L, v ∈ V, (u, v) ∈ A0 (33)
∑

(0,v)∈A0

f l0v =
∑

v∈V
xvl + 1 ∀l ∈ L (34)

∑

(v,0′)∈A0

f lv0′ = 1 ∀l ∈ L (35)

∑

(u,v)∈A0

f luv −
∑

(v,w)∈A0

f lvw = xvl ∀l ∈ L, v ∈ V (36)

f luv ≤





(β + 1) · yl0v if u = 0

β · yluv if v ∈ Vpic
(β − 1) · yluv else

∀l ∈ L, (u, v) ∈ A0 (37)

∑

(u,v)∈A0

yluv =
∑

v∈V
xvl + 1 ∀l ∈ L (38)

∑

(u,v)∈A0

tuv · yluv ≤ t̂ ∀l ∈ L (39)

xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (40)

yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (41)

f luv ∈ R+ ∀l ∈ L, (u, v) ∈ A0 (42)

As in the compact model, the objective function (25) to be maximized is the total
number of performed station visits. The maximum number of station visits per vehicle
are bounded upwards by β (26), the optimal solution or rounded down upper bound of
the single-vehicle case, cf. Appendix A. Inequalities (27) state that any station visit can
only be performed by at most one vehicle. Equations (28) ensure that for every vehicle
the number of assigned delivery station visits corresponds to the number of assigned
pickup station visits. Inequalities (29) ensure that the i+1-th visit of a station can only
be performed when an i-th visit takes place. Equalities (30) and (31) state that each
vehicle leaves node 0 once and arrives at 0′ once, respectively. Assignment variables
xvl are linked with the arc selection variables yluv by inequalities (32) and (33). It is
ensured that an arc (u, v) can only be used in the arborescence if both u ∈ V and
v ∈ V are assigned to vehicle l. Note that these inequalities are in principle redundant
because it is also implicated by the constraints for the flow conservation but we include
them nevertheless as they might be helpful from a computational point of view.
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The arborescence is realized by the single commodity flow conservation equa-
tions (34)–(38). According to (34) the amount of flow sent out from the depot at
node 0 corresponds to the number of nodes assigned to vehicle l plus one to also reach
0′, i.e., to get back to the depot. The consumption of this last unit of flow at 0′ is
ensured by (35). Equalities (36) provide the flow conservation for all station visits
v ∈ V , where one unit of flow is consumed by each station visit assigned to vehicle
l ∈ L. Inequalities (37) link the flow variables with the arc selection variables yluv,
i.e., a positive flow may only occur on a selected arc. Equations (38) state for each
arborescence that the total number of arcs must be one more than the total number
of nodes, i.e., station visits assigned to vehicle l ∈ L. Inequalities (39) ensure that
for each vehicle the approximated routing durations, i.e., the total times of the ar-
borescence, lie within the allowed time budget t̂. Finally (40)–(42) are the domain
definitions of the decision variables. Variables xvl and yluv are binary whereas the flow
variables f luv are continuous.

4.2.2. Subproblems

A solution to the master problem yields an assignment of stations to vehicles in vari-
ables xvl. Let Gl = (Vl, Al) with node set Vl = {v | v ∈ V, xvl = 1} and arc set
Al = {(u, v) | (u, v) ∈ A, xul = 1, xvl = 1} ∪ {(0, v) | v ∈ V pic, xvl = 1} ∪ {(v, 0) |
v ∈ V del, xvl = 1} be the corresponding subgraph for vehicle l ∈ L. The subproblem
(SP) in our LBBD corresponds then to the task of finding for each vehicle l ∈ L in
its corresponding subgraph Gl a Hamiltonian path from 0 to 0′ visiting each node
v ∈ Vl ∪{0, 0′} exactly once and having a total duration that does not exceed t̂. Thus,
our Benders subproblem decomposes into |L| independent Hamiltonian path problems
that are essentially decision variants of the ATSP, when considering that nodes 0 and 0′

actually represent the same depot and might be further connected with an arc (0′, 0).
As sophisticated solvers for the TSP exist, we utilize one of them in our solution

approach instead of implementing one on our own: Concorde [1, 9] is a state-of-the-art
TSP solver for the symmetric traveling salesman problem (STSP) on complete graphs.
We convert each of our directed ATSP instances into an STSP instance by employing
the 2-node transformation described by Jonker and Volgenant [28, 29]. A symmetric
auxiliary graphGaux = (V aux, Eaux) with associated costs taux : Eaux → R+ is derived.
Its set of vertices consists of two nodes for each one in Vl and two nodes 0 and 0′

representing the depot: V aux = {v | v ∈ Vl} ∪ {v′ | v ∈ Vl} ∪ {0, 0′}. As Concorde
works on a complete graph, we set Eaux = V aux × V aux and define the edge costs as
follows:

tauxvv′ = 0 ∀v ∈ Vl (43)

tauxuv = tauxu′v′ =∞ ∀u, v ∈ Vl, u 6= v (44)

tauxuv′ = tuv +M ∀(u, v) ∈ Al (45)

tauxuv′ =∞ ∀u, v ∈ Vl, u 6= v, (u, v) 6∈ Al (46)

Figure 1 shows the derivation of the auxiliary graph on an example. Note that the big-
M is needed to ensure that the zero-cost edges between all nodes and their duplicates
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(G0) 0

p1 d1

0′

p2 d2

5

3

2

8

49

3

9

12

10

8

7

0

(Gaux) 0

d1

d2

p1

p2

d′1

d′2

p′1

p′2

0′

9+M

3+M

0

0

0

4+M

5+M

2+M 0

7+M

9+M

12+M

8+M

3+M

8+M

10+M

0

Figure 1: An example for the conversion of our subproblem on subgraph Gl into a
symmetric traveling salesman problem instance on an auxiliary graph Gaux.
Pickup stations are referred by p1 and p2, d1 and d2 denote delivery stations,
0 is the depot and 0′ is the copy of the depot. Note, that Gaux actually is
a complete graph. However, infeasible edges with tuv = ∞, ∀(u, v) ∈ Gaux

are omitted for the sake of readability. The optimal solution in Gaux and
the corresponding optimal solution in Gl are drawn as bold, green edges
respectively arcs.
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(v, v′) are always used in an optimal solution for the converted STSP. Thus, it has to be
ensured that the big-M constant is large enough such that this property is guaranteed.

Proposition 2. There is a one-to-one correspondence between optimal solutions to
the converted STSP with finite objective and optimal solutions for the ATSP.

Proof. Let C be the set of all Hamiltonian cycles in Gaux which contain (v, v′) for all
v ∈ Vl and Caux ∈ C. We define the following corresponding subgraph of Gl, for which
we will prove that it is a Hamiltonian cycle:

C = {(u, v) | u, v′ ∈ Caux, u 6= v} ∪ {(v, u) | u′, v ∈ Caux, u 6= v}.

Due to the fact that the cost between all edges from the original graph (u, v) and all
edges between duplicates (u′, v′) are set to infinity, they will never be part of Caux.
Thus, there are two types of edges contained in Caux: (u, v′) ∈ Eaux representing an
outgoing arc from node u in Gl and (u′, v) ∈ Eaux representing an ingoing arc to node
u in the original graph Gl. As every node u has degree two in Caux and is connected
with u′ there must be exactly one v 6= u where v′ is connected with u. The same way
there exists exactly one w 6= u which is connected to u′. Consequently, every node has
exactly one ingoing and exactly one outgoing arc in C. Since the undirected version
of C is exactly Caux after merging all vertices v with v′, it can be concluded that
C is weakly connected. Since it was shown that every node has exactly one ingoing
and exactly one outgoing arc and C is weakly connected, consequently, C has to be a
Hamiltonian cycle in Gl. Moreover, if C is a Hamiltonian cycle in Gl we can construct
the corresponding Hamiltonian cycle Caux in Gaux. Therefore, we have a bijection
between all Hamiltonian cycles in Gl and all Hamiltonian cycles in C. The objectives
of these Hamiltonian cycles is the same except a constant:

tC = tCaux − (|V |+ 2) ·M.

Therefore, if Caux is optimal, the corresponding C also has to be optimal. Moreover,
if C is optimal, it follows that Caux has a minimum objective of all Hamiltonian cycles
in C. By construction all optimal Hamiltonian cycles of Gaux have to be in C and
therefore, Caux is optimal.

An optimal TSP solution on graph Gaux will always connect node 0 to a visit of a
pickup station v ∈ V pic since the costs for traveling from the depot 0 to a delivery
station is infinity. Moreover, when a pickup station has been visited the next visit can
only be performed at a delivery station v ∈ V del since costs for traveling between two
pickup stations is also infinity. The same condition holds for traveling between two
delivery stations. Traveling to the copy of the depot 0′ can only be performed from a
delivery station since the costs for traveling from a pickup station to the copy of the
depot is infinity. Finally, the Hamiltonian path can be obtained by simply excluding
the arc between 0 and 0′ which is performed at no cost.
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Algorithm 1 LBBD for BBSS

1: repeat
2: init: r ← vector of |L| empty routes, cutsAdded ← false
3: Solve MP to obtain subproblems
4: for all l ∈ L do
5: rl ← solution of SP for vehicle l
6: if obj (rl) > t̂ then
7: I ← V (rl)
8: MP← MP ∪

(∑
v∈I xvl ≤ |I| − 1 ∀l ∈ L

)

9: cutsAdded ← true
10: end if
11: end for
12: until not(cutsAdded)
13: return r

4.2.3. Iterated Decomposition Procedure and Cut Generation

Algorithm 1 shows an LBBD scheme utilizing cut generation by Benders infeasibility
cuts. Variable r denotes the current solution, i.e., the vector of |L| routes, which
are initially all empty. The function obj (rl) returns the objective value of a single
subproblem solution, i.e., the actual routing costs when the TSP is solved to optimality.

The MP is solved in line (3) and the assignment of stations to vehicles is retrieved.
We get our subproblems which are solved in the corresponding loop (4) for each vehicle
separately. For every solution to a subproblem we utilize a solution cache. This means,
that if a subproblem is feasible its corresponding Hamiltonian path and the routing
costs are cached for later use. If the subproblem is infeasible it is not going to be cached
because those subproblems result in a cut for the master problem. If we cannot find the
subproblem in our solution cache, then a single subproblem is solved by Concorde (5)
and added to the current solution r as rl. In the subproblem the routing costs are
minimized and if this objective value is greater than the maximal time budget of the
vehicles, we found an infeasible assignment (6). Let I = {r1l , r2l , . . . , rρll } be a set of
station visits for which the minimal Hamiltonian path from 0 to 0′ is greater than the
time budget t̂. Then, we can build infeasibility cuts of the form

∑

v∈I
xvl ≤ |I| − 1 ∀l ∈ L. (47)

These cuts are created for each vehicle l ∈ L and added to the MP. They imply that
the simultaneous assignment of the station visits in I – and all supersets of I – to any
of the vehicles is prohibited in subsequent master problem instances.

To make this cut as strong as possible, we try to minimize the infeasible set I of
station visits, which is derived from all currently assigned stations (7) by Algorithm 2.
Loop (1) iterates over all edges of a given Hamiltonian path rl = {0, r1l , . . . , rρll , 0′} so
that all possible options for minimizing the cutset are evaluated. We extract nodes u
and v from the Hamiltonian path and refer the remaining set as T (2). Two station
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Algorithm 2 Minimize the cutset

init: rl ← Hamiltonian Path for vehicle l in Gl, I ← {I}, MinSize ← |I|
function minimizeCutSet(rl, I,MinSize)
1: for all (u, v) ∈ rl | u /∈ {0, 0′}, v /∈ {0, 0′} do
2: T ← V (rl) \ {u, v}
3: r′l ← solution of SP for stations in T
4: if obj (r′l) > t̂ then
5: if |T | = MinSize then
6: I ← I ∪ {T}
7: else if |T | < MinSize then
8: I ← {T}
9: MinSize ← |T |

10: end if
11: I ← minimizeCutSet(r′l, I,MinSize)
12: MinSize ← |I ′|, I ′ ∈ I
13: end if
14: end for
15: return I

visits have to be removed because the number of pickup and delivery station visits
have to be equal in oder to obtain a feasible route. As edges can only exist between
alternating station types it is ensured that only one pickup and one delivery station
visit is removed. Here again, we utilize the proposed solution cache so that previously
evaluated sets of station visits may not be evaluated multiple times. If the subproblem
cannot be found in the solution cache, the subproblem of finding a Hamiltonian path
for the reduced set of station visits in T is solved (3) and the routing costs are checked
for feasibility (4). If the set T is infeasible we either found an additional cut (5)
with equal size of station visits as the previous found cut(s) or we found a new cut
containing less station visits than all previously found cuts (7). If the routing costs
are feasible we did not find any new cut and do not have to explore this branch of
the search tree further. If the routing costs have been infeasible, we recursively call
the function minimizeCutSet (11) to check all subsets of I which are candidates for a
smaller cutset. At the end the set I contains the smallest possible cutset(s) based on
the initial one. It is also possible that I contains more than one cut because multiple
minimum cutsets may exist.

We can perform this algorithm because the subproblem is solved very efficiently by
the Concorde TSP solver.

4.2.4. Vehicle-spanning cuts

Due to the following observation we came up with the idea of also computing vehicle-
spanning cuts instead of only utilizing cuts only for a single vehicle: Throughout
the algorithm, a Benders infeasibility cut is added to the MP whenever an infeasible
vehicle assignment is generated. In a new iteration of the master problem the MIP
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solver often tries to move station visits among different vehicles – because then these
new assignments constitute different vehicles than in the cutset – although it may not
be possible to come toward a feasible solution this way. The total (optimal) routing
costs over all vehicles may be larger than the total amount of time budget provided
by all available vehicles.

The idea is to solve the LP relaxation of the MIP formulation provided in Ap-
pendix B as it already provides reasonable lower bounds so that at least some of
these vehicle-spanning cuts can be generated. Thus, we take the reduced set of sta-
tion visits as solution from the MP but breakup the assignment to the vehicles and
compute the minimal routing costs resulting from an optimal assignment. We there-
fore adjusted inequalities (27) from the master problem to the following equalities:∑
l∈L xvl = 1 ∀v ∈ V , and changed the objective function to minimize the total rout-

ing costs over all vehicles, i.e., min
∑
l∈L
∑

(u,v)∈A0
yluv · tuv. If these routing costs

are higher than the available time budget of all vehicles together, the set of station
visits is not able to produce a feasible solution in any constellation of assignments. Let
hl denote the minimal computed routing costs for the reduced set of station visits of
vehicle l ∈ L, then we can add a vehicle-spanning cut iff

∑

l∈L
hl > |L| · t̂. (48)

Let I denote the set of stations used in the currently considered assignment, i.e., I =
{v | xvl = 1,∀v ∈ V, l ∈ L}. Assume, that inequality (48) holds for this assignment.
Then formally, the cut is defined as follows:

(49)

4.3. Branch-and-Check

As an alternative to the classical (logic-based) Benders decomposition method de-
scribed in the previous section, we also consider a corresponding Branch-and-Check
(BAC) approach. The term BAC has been originally proposed by Thorsteinsson in [47]
and refers essentially to a classical branch-and-cut, which, however, is re-interpreted
in terms of the Benders decomposition.

Instead of completely resolving the master problem after adding new Benders cuts in
each iteration, BAC essentially solves the master problem only once and adds Benders
cuts on the fly: BAC starts by solving the MIP model of the original master problem
(possibly enhanced by a relaxation of the subproblem) in the usual branch-and-cut
fashion. When an optimal solution is identified, the subproblem is solved by an aux-
iliary method and corresponding Benders cuts are derived as in the original Benders
decomposition method. Now in BAC, however, these Benders cuts are dynamically
added to the currently considered master problem within the branch-and-cut, effec-
tively cutting off the current solution, and the branch-and-cut process is continued.
Any obtained so far optimal solution to the master problem is “checked” in this way,
and the master problem correspondingly augmented by Benders cuts until at some
point the obtained solution turns out to be feasible and optimal also for the original
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problem; no further Benders cuts need then to be added, and the whole BAC can be
terminated.

In our implementation of BAC we use again the MIP model proposed in Sec-
tion 4.2.1. Remember that this model already includes the 0-arborescence problems as
a relaxation of the subproblems. The subproblems are solved as described before via
Concorde and the derivation of Benders Cuts follows exactly the already described way.

As an improvement to basic LBBD, the Benders subproblem is solved not only
for so-far optimal master problem solutions, but for any encountered feasible master
problem solution resulting in more cuts than the LBBD-based approach. The larger
number of earlier added cuts turned out to be beneficial in the sense that the overall
number of required branch-and-bound nodes and the overall runtime were reduced.

A particular advantage of this BAC is that it is in general able to yield upper
as well as lower bounds and corresponding feasible solutions to the BBSS problem
already early during the optimization. In contrast, classical Benders decomposition
with infeasibility cuts is not directly able to provide lower bounds earlier than at the
very end, as the master problem variables will not get overall feasible assignments
before.

5. Variable Neighborhood Search

For comparison purposes and to further study the impact of the BBSS problem sim-
plification by only considering full loads, we use here the VNS proposed by Rainer-
Harbach et al. [40]. This VNS uses remove-station, insert-unbalanced-station, intra-
route-2-opt, replace-station, intra-or-opt, 2-opt*-inter-route-exchange and intra-route
3-opt neighborhood structures for local improvement within an embedded Variable
Neighborhood Descent (VND), and for shaking move-sequence, exchange-sequence,
destroy-&-recreate, and remove-stations operations. The only modification we applied
concerns the objective function, in which we set the weighting factors ωwork and ωload

for the additional terms to consider tour lengths and loading instructions to zero, in
order to follow the same single goal of maximizing the balance gain as we do in our
new approaches. Furthermore, as the balance gain is expressed in the VNS in terms of
the number of bikes and in our case here in station visits, we scale the VNS’s objective
values accordingly by dividing them by the vehicle capacity.

6. Computational Results

We have done our computational tests on a rigorous benchmark suite derived from [40]
with instances up to 70 and 120 stations for the multi-vehicle and the single-vehicle
cases respectively. An instance is primarily characterized by the tuple of the number
of stations, the number of vehicles, and the time limit (|V |, |L|, t̂). All algorithms have
been implemented in C++ and have been compiled with g++ 4.8.4. As MIP solver
we used CPLEX 12.6.3 branch-and-cut with default parameters except limiting the
number of used threads to one for a better comparability and restricting the maximum

23

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
4



size of the branch-and-cut tree to 3GB as this is the amount of memory available to
one cluster node in our configuration. All tests have been performed as single threads
on an Intel Xeon E5540 2.53GHz Quad Core processor.

For our tests with multiple vehicles we use instances with 10, 20, 30, 40, 50, 60
or 70 stations, 2 or 3 vehicles, and a time budget of either 120, 240, or 480 min-
utes. For all instances we employed a maximum CPU time limit of 1 hour. For
every combination (|V |, |L|, t̂), we considered 30 different randomly generated in-
stances which are available at https://www.ac.tuwien.ac.at/files/resources/

instances/bbss/benchs.tar.gz. These instances have been derived from the real-
world scenario at Citybike Wien, Vienna’s major PBS in the following way. Citybike
Wien gave us historic data sets from year 2011 when the system consisted of 92 renting
stations—now the system has already 120 stations. We enlarged the dataset by 664
artificial stations placed among the city of Vienna. We have derived travel times tuv by
an estimation of the real-world travel time and further including an estimation for the
time needed to park at the station, i.e., some stations may be better reachable than
others. For the existing stations we, of course, chose their original capacity Cs whereas
for the artificial ones we have chosen the capacities at random. The initial fill level of
stations ps has been taken from a snapshot of 2011 for the existing stations. For the
artificial stations we first chose for some of them initial fill levels at random according
to a distribution we observed at the real stations so that geographically near stations
have a similar fill level. For the other artificial stations we used an interpolation for
determining their initial fill level. We set the target values qs in such a way that there
are multiple full vehicle loads needed in order to bring the system in a balanced state.
All tests inhere have been performed by considering a full vehicle load consisting of
Z = 20 bikes. Of course, our approach works with arbitrary sizes of full vehicle loads,
and how an instance for our new problem formulation is derived by the given data, is
explained in the next paragraph. For every instance set we have chosen a correspond-
ing subset of the 756 available stations where we first chose a station at random and
then selected the |S| + 1 nearest stations. One station was randomly selected as the
depot for the instance.

Following our new approach, we only consider the movement of full vehicle loads, i.e.,
Z bikes from one station to another. Consequently, we derived each station’s demand
fs of full vehicle loads as defined in equations (8). Remember that delivery stations
Sdel have negative demand values fs, while pickup stations are given by positive values;
stations with |ps−qs| < Z do not need to be considered in our model and are therefore
discarded. By above definition, it is ensured that we never move more than |ps − qs|
bikes to a station and thus never exceed a station’s capacity.

In the following we analyze the results. Table 1 shows for every instance configura-
tion results for the analyzed approaches: Logic-based Benders decomposition (LBBD)
and its variant Branch-and-Check (BAC), compact MIP (see Section 2.3), and the
variable neighborhood search (VNS) and the hop-indexed MIP from [40]. The column
#best shows the number of instances where the particular approach achieved the best
objective value among the 5 considered approaches. For BAC, LBBD and the com-
pact MIP we show also the number of instances for which the corresponding approach
returned a proven optimal solution #opt according to the new problem formulation.
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Moreover, we also report the average objective value obj which corresponds to the
station visits respectively twice the number of moved full vehicle loads. For BAC,
LBBD and the compact MIP we take the optimal solution if available. If the optimal
solution was not found we use the best integer solution found so far for BAC and the
compact MIP. If also no integer solution was found we use 0 as the objective value for
the corresponding instance. In the case of LBBD we take either the optimal solution
or 0 because for this approach no bounds can be derived if the approach does not end
up with a proven optimal solution. For VNS and miphop we use the original objective
function as defined in [40] and shown in equation (4), only setting the weighting factors
to ωbal = 1, ωload = 0, ωwork = 0 accordingly, as already said we only consider balance
optimization here. For comparing our new approaches with the VNS and miphop we
use the following value: ∑

l∈L
∑ρl
i=1 |yil,ril |
Z

. (50)

This value corresponds to twice the number of full vehicle loads moved among the
stations and its average over a particular instance group is reported as obj in Table 1
for VNS and miphop.

In Section 6.1 we discuss the potential loss when considering only full vehicle loads.
Then, in Section 6.2 we point out the advantages of our decomposition approaches
and analyze the number of cuts and iterations of LBBD and its variant BAC and
we analyze the approximation quality of the 0-arborescence in the master problem.
Section 6.3 analyzes the single-vehicle case of our new problem formulation.

6.1. Analyzing the Impact of Considering Full Vehicle Loads Only

We first want to gain an approximate understanding of the loss in solution quality we
obtain by moving from a previous “detailed” model, in which the loading and unloading
of an arbitrary number of bikes is allowed, to our simplified model that considers only
full vehicle loads.

For comparison in Table 1 we use a hop-indexed MIP model as well as one of the
leading metaheuristic approaches, which is the VNS introduced in Section 5. Both
approaches have been proposed in [40]. In the following we will concentrate on the
VNS and BAC because these are the most competitive representatives of the two
different problem formulations.

Remember that the VNS is not limited to full vehicle loads. It tries to find a tour
together with best possible numbers of vehicles to load and unload at each stop. We
just scaled the final overall balance gain, i.e., the sum of all loading instructions at
each stop of every vehicle

∑
l∈L
∑ρl
i=1 |yil,ril |, by dividing it by the vehicle capacity Z,

cf. equation (50), to make it comparable to the number of full vehicle loads by which
we measure the balance gain with respect to the number of moved bikes in our new
model.
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Table 2: Additional aggregation provided by aggregating only over the number of nodes
for logic-based Benders decomposition, its variant Branch-and-Check, and the
compact mixed-integer linear programming model.

Instance set BAC LBBD Compact

|S| #best #opt t̃ime [s] #best #opt t̃ime [s] #best #opt t̃ime [s]

10 180 180 0.1 180 180 < 0.1 92 177 < 0.1
20 180 180 0.4 179 180 0.2 110 180 0.1
30 178 171 2.2 170 171 0.9 135 166 0.8
40 176 151 12 149 149 4 133 125 36
50 174 124 89.8 124 126 62.2 151 97 558.9
60 171 115 343 111 111 352.4 155 69 1422.7
70 169 106 459.4 101 101 336.5 159 41 1673.6

Total 1228 1027 1014 1018 935 855

When analyzing the results in Table 1 one can see that the average objective values
obtained by BAC, which provided the best results for our new problem formulation,
and the VNS correspond closely. Obviously, the simplification of considering only
full vehicle loads has on these instances only a very minor impact. In fact, we could
observe that also the solutions identified by the VNS also almost always transported
only full vehicle loads from one station to another. Obviously, this only holds under
our fundamental assumption that a complete balance with objective value zero, i.e.,
where all station demands are fulfilled, is not achievable within the limited working
time – and also not necessary in practice. It can be observed that BAC yields more
often the overall best solution—among the five different approaches—than the VNS
(693 versus 618), and a Wilcoxon signed-rank test comparing BAC with the VNS on
each instance set shows significant advantages with error probabilities of less than 5%
for 12 of the 30 classes for BAC whereas the VNS has significant advantages on 5 of
the 30 classes.

However, we have to note that the VNS often finds very fast high-quality solutions
whereas, at least for the larger instances, the MIP-based approaches, namely LBBD,
BAC, and the compact formulation often need a lot of time for finding an integer
solution or even solve the problem instance to proven optimality. Smaller instances
or mid-size instances, according to our test suite, are however, often solved to proven
optimality within a small amount of time.

We conclude that the disadvantages of the simplified model are very well compen-
sated by the much better solvability of the new approach.

6.2. Analyzing Logic-Based Benders Decomposition and the
Compact Model

In Table 2 additional aggregation of the results is given by providing results for each
individual number of stations. The best results are achieved by utilizing BAC. This
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Table 3: Comparing number of cuts, iterations, approximation quality and the time
needed to solve master problems as well as subproblems.

Instance set LBBD BAC

|S| |L| t̂ approx [%] #iter #cuts tmax
master [s] tmaster [s] tmax

sub [s] approx [%] #calls #cuts tmax
sub [s]

10 2 120 1.1 1.1 0.3 0.2 0.1 < 0.1 1.8 1.4 0.3 < 0.1
10 2 240 1.3 1.0 0.0 0.1 < 0.1 < 0.1 1.4 1.0 0.0 < 0.1
10 2 480 1.3 1.0 0.0 < 0.1 < 0.1 < 0.1 1.6 1.0 0.0 < 0.1
10 3 120 0.5 1.1 0.4 0.3 0.1 < 0.1 1.3 1.2 0.1 < 0.1
10 3 240 1.0 1.0 0.0 < 0.1 < 0.1 0.1 1.3 1.1 0.0 < 0.1
10 3 480 1.0 1.0 0.0 < 0.1 0.1 0.1 1.4 1.0 0.0 < 0.1

20 2 120 1.5 1.4 1.0 4.5 0.2 < 0.1 2.1 1.8 0.7 < 0.1
20 2 240 2.3 5.4 13.1 37.2 1.2 0.1 2.3 6.2 11.7 0.2
20 2 480 3.4 1.0 0.0 0.1 < 0.1 0.1 2.5 1.1 0.0 0.6
20 3 120 1.4 1.8 4.3 15.3 0.8 < 0.1 2.0 2.4 3.3 < 0.1
20 3 240 2.0 1.2 0.5 0.5 0.2 < 0.1 1.9 1.1 0.0 < 0.1
20 3 480 2.4 1.0 0.0 0.1 0.1 < 0.1 2.2 1.0 0.0 < 0.1

30 2 120 1.2 1.4 0.9 1.4 0.4 < 0.1 1.8 1.7 0.6 0.1
30 2 240 1.8 11.6 44.6 1925.7 37.5 0.9 1.8 21.2 63.9 0.6
30 2 480 4.8 1.0 0.0 0.6 0.2 0.1 4.2 1.1 0.0 0.1
30 3 120 1.3 2.2 4.5 39.6 2.1 < 0.1 3.2 2.5 2.0 < 0.1
30 3 240 1.9 4.6 21.5 3600.0 298.6 0.8 2.0 13.7 59.5 0.5
30 3 480 3.4 1.0 0.0 0.9 0.2 0.2 3.2 1.1 0.0 0.3

40 2 120 1.8 1.3 0.6 20.8 1.6 < 0.1 3.0 2.2 1.1 < 0.1
40 2 240 1.8 20.0 77.2 3407.2 81.0 0.6 1.7 47.8 159.1 0.5
40 2 480 3.3 4.3 11.0 3012.2 69.0 0.9 2.7 6.1 12.0 1.4
40 3 120 1.7 1.9 3.6 3600.0 122.2 < 0.1 3.3 2.5 2.7 0.1
40 3 240 2.2 6.6 40.4 3600.0 1423.7 0.8 2.1 53.5 274.1 1.7
40 3 480 5.4 1.0 0.0 3.1 0.8 0.6 4.4 1.2 0.0 0.7

50 2 120 2.2 1.7 1.7 112.3 3.7 < 0.1 2.4 2.1 1.1 0.1
50 2 240 2.5 27.1 115.2 3600.0 379.4 1.0 2.2 95.3 306.8 1.2
50 2 480 2.9 14.9 64.3 3600.0 704.0 1.1 2.7 97.2 406.0 3.2
50 3 120 1.9 2.6 7.8 1679.5 44.2 < 0.1 2.8 3.5 7.2 0.1
50 3 240 2.6 6.8 44.8 3600.0 1171.4 0.3 2.4 49.9 267.8 0.7
50 3 480 5.4 1.0 0.0 5.2 2.8 0.5 4.0 2.1 0.1 0.3

60 2 120 1.9 2.1 2.6 988.7 25.3 < 0.1 4.6 2.7 2.1 0.2
60 2 240 2.1 12.0 38.7 2510.5 80.8 0.3 2.2 53.8 176.0 0.9
60 2 480 3.0 11.4 49.4 3600.0 1530.3 1.9 2.8 55.8 195.0 2.0
60 3 120 2.2 2.0 4.9 3600.0 168.1 < 0.1 3.4 4.6 9.3 0.2
60 3 240 2.6 6.7 40.0 3600.0 1036.4 0.5 2.1 36.0 173.9 0.8
60 3 480 3.5 1.6 4.4 3600.0 1006.9 0.5 2.9 18.4 77.4 4.0

70 2 120 1.6 1.3 0.6 17.7 6.8 0.1 5.3 2.0 0.9 0.2
70 2 240 1.6 2.6 5.9 3600.0 652.0 0.6 1.4 16.7 30.0 1.5
70 2 480 3.1 11.5 48.8 3600.0 1758.4 1.1 2.2 60.1 188.3 2.3
70 3 120 1.5 1.7 2.6 33.2 13.8 < 0.1 4.2 4.7 8.6 0.4
70 3 240 2.0 4.2 22.7 3600.0 1053.2 0.5 1.8 22.6 97.9 1.3
70 3 480 4.3 1.0 8.3 3600.0 2429.6 1.7 2.7 15.7 60.4 1.6

Average 2.3 4.5 16.3 2.6 17.1 61.9
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is also the approach which yields the highest number of proven optimal solutions
among the analyzed dataset. As expected the median computation times are better by
applying LBBD than solving the full compact model at once. This further emphasizes
the importance of the decomposition approach we are introducing in this paper.

In Table 3 we measure various statistics about LBBD and BAC. Column approx
shows the average approximation quality of the 0-arborescence as percentage value
which is computed by (test − topt)/topt, where test are the estimated routing costs by
the 0-arborescence and topt are the optimal routing costs as obtained by the optimal
solution for a subproblem. The average over all computed routes is taken. Column
#iter shows the average number of iterations performed per instance set whereas #cuts
shows the average number of generated cuts. For BAC we use a different nomenclature,
namely #calls as for this variant of LBBD we do not have iterations but we measure
the calls to the LazyConstraintCallback where we generate the Benders infeasibility
cuts. Moreover, columns tmax

master and tmaster state the maximum time used to solve the
master problem and the average time respectively. Column tmax

sub shows the maximum
time which was needed to solve a single subproblem per instance set.

A result of this comparison is that subproblems are relatively easy to solve compared
to the master problems. As seen in Table 3 the most difficult subproblem needed only
4 seconds to be solved whereas some of the the master problem instances could not be
solved to optimality within 1 hour. What can also be seen is that the approximation via
the 0-arborescence is tight. In many cases we have only 1 to 2 percent deviation from
the optimal routing costs. Furthermore, as expected, subproblems for instances with
low time budget, i.e., 2 hours, are very easy to solve and most often even do not need 0.1
seconds to be solved. BAC generates much more cuts as LBBD evaluates subproblems
only after optimal solutions to the master problem have been found whereas BAC
evaluates subproblems each time a feasible integer solution has been found. Although,
BAC generates more cuts than LBBD, the quantity of cuts is no guarantee for success
at all, but the quality of the cuts can improve solvability of the problem instance. A
phenomenon we could observe is that often instances with 4 hours time limit are more
difficult to solve and also produce more cuts/iterations. This is because the objective
of the problem is only to maximize the number of station visits. Thus, multiple
optimal solutions may exist, even if stations are near to another. As already said, as
the approximation quality of the 0-arborescence is relatively tight one of the optimal
solutions to an instance with a higher time limit, i.e., 8 hours can be obtained very
fast. On the other hand there are instances with 4 hours time limit that are hard to
solve because there may not be as many optimal solutions as for instances with 8 hours
time limit, even for the smaller instances. What has been observed by the authors
and which was the reason to introduce vehicle-spanning cuts (see also Section 4.2.4)
is that the approach often needs many iterations to prove that there does not exist a
solution with a given number of station visits but there could be many assignments
with 2 visits less that are optimal.
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Table 4: Computational results for the single-vehicle case

Instance set Compact

|V | t̂ #opt obj LB UB gap [%] t̃ime [s]

40 120 30 4.07 4.07 4.07 0.00 0.1
40 240 30 10.13 10.13 10.13 0.00 0.2
40 480 29 20.93 20.93 20.98 0.24 0.4

50 120 30 4.00 4.00 4.00 0.00 0.1
50 240 28 10.33 10.33 10.43 1.11 0.4
50 480 29 21.53 21.53 21.59 0.30 1.9

60 120 30 4.07 4.07 4.07 0.00 0.2
60 240 23 10.33 10.33 10.66 3.29 1.6
60 480 27 22.00 22.00 22.16 0.77 7.1

70 120 30 4.00 4.00 4.00 0.00 0.3
70 240 22 10.53 10.53 10.91 3.76 6.8
70 480 21 22.47 22.47 22.90 2.03 15.2

90 120 29 4.00 4.00 4.05 1.13 0.5
90 240 18 10.53 10.53 11.12 5.84 98.3
90 480 17 22.73 22.73 23.34 3.10 23.1

120 120 29 4.00 4.00 4.05 1.13 1.3
120 240 13 10.60 10.60 11.51 9.06 3120.2
120 480 19 23.27 23.27 23.88 2.76 369.6

Average 12.20 12.20 12.44 1.92

6.3. Single-Vehicle Case

We have also performed computational tests on the single-vehicle case of the problem
which we have solved by the compact MIP model provided in Appendix A. This is
also of practical importance for cases where the whole service area is more statically
partitioned into districts and individual drivers/vehicles are then solely responsible
for dedicated districts. Computational results are shown in Table 4. As the problem
becomes simpler when reducing the number of vehicles we have also provided results
for instances with 90 and 120 stations. For the most difficult instances with 120
stations and a shift time of 4 hours for the driver we have been able to solve 13 out of
30 instances to proven optimality. For the remaining instances we have been able to
provide results with an average optimality gap of about 5%.

7. Conclusions and Future Work

We have introduced and investigated a new problem formulation for BBSS derived
from practical considerations as they appear, e.g., at Citybike Wien, which is compu-
tationally substantially simpler to solve than previous BBSS formulations. The key
observation is that an economic maintenance of a PBS rarely allows to bring all sta-
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tions into perfect balance w.r.t. precisely specified target fill levels. In practice, usually
“more rebalancing work actually exists than can be typically achieved” with the given
number of vehicles and limited working time of the drivers. Therefore, vehicles almost
always move full vehicle loads among the stations. Moving just very few bikes from
one station to another is basically meaningless in practice.

While previous BBSS models always considered a rather fine-grained planning al-
lowing the movement of arbitrary numbers of bikes, we restrict our rebalancing tours
to the movement of full vehicle loads from the beginning. This restriction yields sub-
stantial simplifications in the overall model, and consequently, the model can be solved
computationally significantly easier.

For solving this new model, we developed a compact MIP model, an LBBD approach,
and a BAC variant of the latter. The LBBD was inspired by the cluster-first route-
second method because the problem can naturally be split in an assignment part and
a routing part. The integral subproblems turned out to essentially correspond to
asymmetric TSPs, which we solve by the state-of-the-art TSP solver Concorde. From
these, Bender’s infeasibility cuts are derived and iteratively added to the assignment
master problem. In the BAC, we modified the LBBD approach by solving the master
problem only once and solving corresponding subproblems for any encountered feasible
solution. This modification turned out to further improve the performance in many
cases.

Experimental comparisons with a state-of-the-art VNS for a previous fine-grained
BBSS model have shown that our new problem formulation has only a minor impact
on the achievable solution quality. In fact, the advantages of the easier solvability
clearly outweigh the theoretical restrictions introduced by allowing only full vehicle
loads. A Wilcoxon signed-rank test showed that BAC compared to VNS has significant
advantages with an error probability of less than 5% for 12 of the 30 instance sets.

With our LBBD we could solve instances up to 70 stations to proven optimality,
which is a substantial step forward in comparison to previous work with exact ap-
proaches. For the single-vehicle problem, we have solved even larger instances up to
120 stations.

Clearly, the proposed compact MIP, LBBD, and BAC are not the only meaningful
methods to approach the new simplified BBSS problem formulation exactly. State-of-
the-art branch-and-cut solvers for diverse vehicle routing problem variants based on
subtour-elimination constraints can likely be adapted and are then presumably strong
if not superior competitors. Also column generation approaches based on some set
covering formulation appear meaningful.

But also in a purely heuristic context for addressing larger problem instances with
possibly thousands of stations, the simplified modeling approach appears very mean-
ingful and opens diverse existing methods for vehicle routing problem variants to be
adapted with moderate effort.
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[35] P. Papazek, C. Kloimüllner, B. Hu, and G.R. Raidl, Balancing bicycle sharing sys-
tems: An analysis of path relinking and recombination within a GRASP hybrid,
PPSN, Vol. 8672 of LNCS, Springer, 2014, pp. 792–801.

[36] P. Papazek, G.R. Raidl, M. Rainer-Harbach, and B. Hu, A PILOT/VND/GRASP
hybrid for the static balancing of public bicycle sharing systems, Proc 14th EU-
ROCAST, Vol. 8111 of LNCS, Springer, 2013, pp. 372–379.

[37] J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari, Dynamic vehicle
redistribution and online price incentives in shared mobility systems, Intelligent
Transportation Syst, IEEE Trans 15 (2014), 1567–1578.

[38] G.R. Raidl, B. Hu, M. Rainer-Harbach, and P. Papazek, Balancing bicycle sharing
systems: Improving a VNS by efficiently determining optimal loading operations,
Hybrid Metaheuristics, Vol. 7919 of LNCS, Springer, 2013, pp. 130–143.

34

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
4



[39] M. Rainer-Harbach, P. Papazek, B. Hu, and G.R. Raidl, Balancing bicycle sharing
systems: A variable neighborhood search approach, EvoCOP, Vol. 7832 of LNCS,
Springer, 2013, pp. 121–132.

[40] M. Rainer-Harbach, P. Papazek, B. Hu, G.R. Raidl, and C. Kloimüllner, PILOT,
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max
∑

v∈V
xv (51)

s.t. xv ≤ 1 ∀v ∈ V (52)
∑

v∈Vpic

xv =
∑

v∈Vdel

xv (53)

x(s,i) ≥ x(s,i+1) ∀s ∈ S, i = 1, . . . , fs − 1 (54)
∑

v∈Vpic

y0v = 1 (55)

∑

v∈Vdel

yv0′ = 1 (56)

∑

(u,v)∈A0

yuv = xu ∀u ∈ V (57)

∑

(u,v)∈A0

yuv = xv ∀v ∈ V (58)

∑

(u,v)∈A0

yuv =
∑

(v,u)∈A0

yvu ∀v ∈ V (59)

au − av + |V | · yuv ≤ |V | − 1 ∀(u, v) ∈ A (60)
∑

(u,v)∈A0

yuv · tuv ≤ t̂ (61)

xv ∈ {0, 1} ∀v ∈ V (62)

yuv ∈ {0, 1} ∀(u, v) ∈ A0 (63)

1 ≤ av ≤ |V | ∀v ∈ V (64)

B. Routing MIP model

This MIP formulation can be used to obtain minimal routing costs for a predefined
set of station visits.

min
∑

l∈L

∑

(u,v)∈A0

yluv · tuv (65)

s.t.
∑

l∈L
xvl = 1 ∀v ∈ V (66)

∑

v∈Vpic

xvl =
∑

v∈Vdel

xvl ∀l ∈ L (67)

∑

l′∈L
x(s,i)l′ ≥ x(s,i+1)l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (68)
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∑

v∈Vpic

yl0v = 1 ∀l ∈ L (69)

∑

v∈Vdel

ylv0′ = 1 ∀l ∈ L (70)

∑

(u,v)∈A0

yluv = xul ∀l ∈ L, u ∈ V (71)

∑

(u,v)∈A0

yluv = xvl ∀l ∈ L, v ∈ V (72)

∑

(u,v)∈A0

yluv =
∑

(v,u)∈A0

ylvu ∀l ∈ L, v ∈ V (73)

au − av + |V | · yluv ≤ |V | − 1 ∀l ∈ L, (u, v) ∈ A (74)

xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (75)

yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (76)

1 ≤ av ≤ |V | ∀v ∈ V (77)
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