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Public Bike Sharing Systems require some kind of rebalancing to avoid
too many rental stations of running empty or entirely full, which would
make the system ineffective and annoy customers. Most frequently, a fleet
of vehicles with trailers is used for this purpose, moving bikes among the
stations. Previous works considered different objectives and modeled the
underlying routing problem in different ways, but they all allow an arbi-
trary number of bikes to be picked up at some stations and delivered to
other stations, just limited by the vehicles’ capacities. Observations in
practice, however, indicate that in larger well-working bike sharing sys-
tems drivers almost never pickup or deliver only few bikes, but essentially
always approximately full vehicle loads. Many stations even require sev-
eral visits with full loads. Due to budgetary reasons, typically only just
enough drivers and vehicles are employed to achieve a reasonable balance
most of the time, but basically never an ideal one where single bikes play
a substantial role. Consequently, we investigate here a simplified problem
model, in which only full vehicle loads are considered for movement among
the rental stations. This restriction appears to have only a minor impact
on the achieved quality of the rebalancing in practice but eases the model-
ing substantially. More specifically, we formulate the rebalancing problem
as a selective unit-capacity pickup and delivery problem with time budgets

1

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
4



on a bipartite graph and present a compact mixed integer linear program-
ming model, a logic-based Benders decomposition and a branch-and-check
approach for it. For the general case, instances with up to 70 stations,
and for the single-vehicle case instances with up to 120 stations are solved
to proven optimality. A comparison to leading metaheuristic approaches
considering flexible vehicle loads indicates that indeed the restriction to
full loads has only a very small impact on the finally achieved balance in
typical scenarios of Citybike Wien.

Keywords: balancing bike-sharing systems, logic-based Benders decomposition,
branch-and-check, vehicle routing, pickup-delivery, traveling salesman problem

1. Introduction

Public bike sharing systems (PBSs) provide a modern way of shared public transport
within cities. These systems consist of rental stations distributed in parts of a city. In
state-of-the-art PBSs every station has a self-service computer terminal authenticat-
ing the customers, and ideally also used to allow instant registration for new clients.
Customers have to authenticate and provide a payment method to reduce theft and
vandalism. Rental stations consist of slots which can either be empty or occupied by a
bike. These slots are connected to the whole computer system allowing the operators
as well as the customers to have an overview of the status of each station. If there
is at least one slot occupied by a bike, customers have the opportunity to rent a bike
via the terminal, and if there is at least one slot free, customers may return a bike by
putting it into the free slot. To work well, a PBS has to have a reasonable density of
stations in the covered region. Users can rent bikes at any station and return them
at any other station. PBSs can help in solving the last mile problem arising in pub-
lic transport, and they encourage the population to do more sports by riding bikes.
They are a contribution to smart cities as they reduce motorized traffic and are more
ecofriendly [9]. Moreover, bikes also need less parking space than cars which can help
to utilize limited space more efficiently.

A PBS should not be confused with classical bike rental as both have different use
cases, client bases and revenue models. The major differences are that in PBS short-
term usage is promoted whereas in bike rental longer rental times are not unusual,
PBSs are distributed over a larger area, whereas bike rentals are more stationary with
bikes usually to be returned at the same place where they have been rent [38].

PBS are mostly implemented in public-private partnership and are financed through
advertisements on the bikes, subsidies from the municipalities, and subscription fees
from the users. The costs for building and operating the system have to be covered.
The problem of building or extending a PBS can in principle be seen as a facility
location or hub location problem with network design aspects [28] and is not within
the scope of this work.

For continuous operation of the system, besides maintaining the bikes and stations,
providers in particular have to take care of rebalancing bikes among the stations such
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that users can rent and return bikes at any station with high probability. Stations
should ideally neither run full nor empty, as these situations obviously significantly
impact customer satisfaction.

Different approaches to achieve and maintain a reasonable balance exist. Most
commonly, the PBS operator actively rebalances the stations by employing vehicles
with trailers that pickup bikes at stations with excess of bikes and deliver them to
stations with a lack of bikes. This is the scenario we will consider in the following, but
there are also alternative approaches in which balance should be achieved by the users
themselves [15, 32]. There, the operator provides incentives for their customers to rent
bikes at stations with excess and to return them at stations with a lack of bikes. These
incentives can be reduced subscription fees, prizes or discounts at special partners of
the PBS. Both rebalancing strategies can also be used in conjunction.

The active rebalancing of a PBS by a vehicle fleet has in the literature been referred
to as a capacitated single commodity split pickup and delivery vehicle routing problem
with multiple visits [35]. Diverse variants of this problem, with different objectives
and constraints, have already been considered, and different algorithmic approaches
have been proposed, ranging from mixed integer linear programming (MIP) methods
to metaheuristics and hybrids. To our knowledge, all these approaches allow for an
arbitrary number of bikes to be picked up at some stations and delivered to other
stations, just limited by the vehicles’ and stations’ capacities. Observations in practice,
however, indicate that in a larger well-working bike sharing system it makes rarely sense
to move only few bikes for rebalancing. Drivers actually almost always pickup a full
vehicle load and deliver it completely to another station. Many stations even require
several visits with full load pickups or deliveries. Due to budgetary reasons, typically
only just enough drivers and vehicles are employed to achieve a reasonable balance
most of the time, but basically never an ideal one where single bikes play a substantial
role. Drivers should use their limited working time in a best way to optimize the PBS’s
overall balance as far as possible. The described scenario is particularly true in case
of our collaboration partner Citybike Wien1.

Following this observation, we investigate here a simplified problem definition in
which only full vehicle loads are considered for movement among the rental stations.
This restriction appears to have only a minor impact at the achieved quality of the
rebalancing in practice but eases the modelling and algorithmic solving essentially.

For this new problem formulation, we then propose three exact solution approaches:
a compact MIP model, a logic-based Benders decomposition (LBBD), and branch-and-
check (BAC). Moreover, we compare with previously proposed leading metaheuristics
allowing flexible numbers of picked up and delivered bikes, concluding that the restric-
tion to only full vehicle loads affects the finally achieved balance in practical scenarios
indeed in only minor ways.

This article is organized as follows: The next section presents the details of our new
problem formulation and Section 3 summarizes related work. In Section 4 the compact
MIP model is introduced, whereas Section 5 describes the LBBD and Section 5.4 the
related BAC. Computational results are shown in Section 7, and finally, we conclude

1http://www.citybikewien.at
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in Section 8.

2. Problem Formulation

We first summarize aspects of existing problem formulations for Balancing Bike Shar-
ing Systems (BBSSs) and then state our new approach, giving respective formal defi-
nitions.

Generally, previous works distinguish two types of problem variants for BBSS,
namely the static and the dynamic case.

In the static scenario we are given an initial state of the system, i.e., initial fill levels
for all stations, and a desired target state of the system, i.e., target fill levels or demand
intervals for all stations.

For the static case, a significant variety of different optimization goals has been
considered in the literature, e.g., minimizing the traveling costs [4, 8] where balancing
is modeled as a hard constraint, or minimizing the total number of expected short-
ages [36].

A quite challenging task is to determine best suited target fill levels for the optimiza-
tion. This has to be done with caution because the final state at the end of rebalancing
is the initial state for the next day(s) in the static model. Obviously, it depends on
the customer demand how the PBS operator fixes the target values or target intervals
for rebalancing as it is necessary to cover the future demand of the customers. Thus,
a sophisticated demand prognosis is necessary to estimate well-suited target values.
Rudloff and Lackner [37] build such a prognosis model based on historical data of the
system of Citybike Wien based on various impact factors like weather, day of the week,
time of the day, temperature, etc. They also consider the influence of entirely full or
empty neighboring stations. Han et al. [16] concentrate on the demand prediction for
large scale BSS. They describe the spatio-temporal correlation in BSS as an impor-
tant factor for demand estimation. They verified their model on the record set they
retrieved from the BSS Vélib’ in Paris.

In general, the static problem variant neglects the dynamic interaction between the
customers and the system as it does not consider the user demand during rebalancing
and e.g., is appropriate for overnight rebalancing if the system is not in use during the
night [36].

The dynamic case also considers user interactions during rebalancing. Only few
works, however, exist in this direction. In [26] the user interactions and the demands
are retrieved from historical data and implemented by a probabilistic model obtained
by Rudloff and Lackner [37], and the objective is to minimize unsatisfied user demand
as well as to minimize deviation between initial and desired target fill levels. Contardo
et al. [6] randomly generate demand values and try to minimize shortages and excesses
of bikes over a prospective time horizon.

If the user demand is predicted reasonably well and the rebalancing takes place
during the active times of the PBS, the dynamic case can thus in principle be more
accurate than a static model but is also computationally much more demanding. Under
the assumption that rebalancing should not primarily fulfill short-term needs and
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station capacities are reasonably large, static models are generally also accepted as a
reasonably good approximation for systems where the rebalancing takes place during
the operation hours. We therefore also concentrate on the static case here.

2.1. A BBSS Formulation Considering Full Vehicle Loads Only

As motivated already in the introduction, observations at Citybike Wien reveal that
the pickup and delivery of full vehicle loads clearly dominate practice. Due to economic
reasons there is a financial limit on the labor costs, and rebalancing is done in such a
way that a practically acceptable but usually not perfect balance of the stations’ fill
levels is achieved. Thus, the number of drivers (vehicles) and their working times are
a major limit, and the stations should be brought to specified target fill levels as far
as possible, but reaching all of them exactly is (typically) out of question. The drivers
are in principle daily faced with more work than can be feasibly done. Furthermore,
many stations ideally require more than one, sometimes even several full vehicle loads
to be be delivered or picked up in order to achieve the desired target state. Most of the
drivers’ working time is consumed by traveling to the individual stations and parking
somewhere nearby, the time differences for loading or unloading less or more bikes,
however, plays a comparably small role, and is frequently also neglected in existing
models. In such a scenario, it becomes obvious that it is clearly most effective to move
almost always approximately full vehicle loads from stations with a substantial excess
of bikes to stations with a substantial demand.

Consequently, we assume in our new BBSS problem formulation that the vehicle is
always either fully loaded with bikes or empty, dropping the consideration of moving
only a certain number of bikes less than the vehicles full capacity. Concerning the
objective function, our goal is to bring as many stations as far as possible to their
specified target fill levels, respecting given working times, and the general constraints
for feasible tours.

Considering only full vehicle loads simplifies existing models substantially. Typically,
the consideration of the exact number of bikes to be moved requires an additionally
embedded flow problem to be solved.

Of course, not dealing with partial vehicle loads comes along with a potential loss
of accuracy, but the prediction of user demands which depends on, e.g., the weather,
weekday, events in the stations’ neighborhoods and the influence of neighboring sta-
tions involve in general uncertainties for the calculation of suitable target fill levels
that can be safely assumed to dominate in practice.

2.2. Formal Problem Definition

We are given a set of stations S and a set of homogeneous vehicles L. For the vehicles
we are given a common capacity and a common time budget t̂ (drivers’ shift times)
within which the vehicles have to finish their routes. For each station s ∈ S we are
given the number of full vehicle loads fs to be delivered (fs ≥ 1) or picked up (fs ≤ −1)
such that the station achieves its (approximately) ideal target fill level. Stations that
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are already at their desired target fill level (or require less than a full vehicle load) are
ignored from any further consideration.

A station, to which bikes shall be delivered is called a delivery station, while a station
from which bikes should be removed is called a pickup station. At pickup stations, only
pickups may be performed, while at delivery stations, only deliveries, and we never
allow more than |fs| visits at each station. Thus, a kind of buffering bikes at some
station and moving them further later is explicitly excluded. Especially in our context
with the consideration of full vehicle loads only, such solutions would not make sense
anyway when the triangle inequality is fulfilled by the traveling times between stations,
what we can safely assume for practice.

For modeling tours with up to |fs| visits at each station s ∈ S, we define a directed
bipartite graph G = (V,A) as follows. Let Vpic = {si | s ∈ S∧fs ≤ −1, i = 1, . . . , |fs|}
be a set of nodes representing up to |fs| visits at each pickup station, and let Vdel =
{si | s ∈ S∧fs ≥ 1, i = 1, . . . , fs} denote the respective potential visits at the delivery
stations. V = Vpic ∪ Vdel then refers to the joined set of all potential visits, and the
arc set of graph G is given by A = {(u, v), (v, u) | u ∈ Vpic, v ∈ Vdel}.

We further extend the set of stations V by two nodes 0 and 0′ representing the depot
at the beginning and the end of each tour, respectively, obtaining V0 = V ∪ {0, 0′}.
Node 0 is connected to all pickup nodes, while 0′ is connected to all delivery nodes, i.e.,
A0 = A∪{(0, v) | v ∈ Vpic}∪{(v, 0′) | v ∈ Vdel}, yielding bipartite graph G0 = (V0, A0).
We explicitly omit here an arc (0, 0′) which might be used for representing a vehicle
that stays at the depot and does not do any station visits due to the fundamental
assumption in our modeling that more than enough rebalancing work exists for keeping
all vehicles busy.

Each arc (u, v) ∈ A0 represents an actual trip from location u to location v and has a
corresponding traveling time tuv > 0 associated. This time also includes an estimated
time for parking at the destination and in case of v 6= 0′ for handling the station’s
electronic system and for loading or unloading the bikes.

A solution to our problem is a set of |L| Hamiltonian paths starting at 0 and ending
at 0′, or in other words a set of |L| simple disjoint paths in G0 from node 0 to node
0′. Let rl = (r1l , r

2
l , . . . , r

ρl
l ) be the successive station visits in the route of vehicle

l ∈ L, with ρl being the number of visits. Due to the bipartite structure of G0, as
long as the path is not empty (ρl > 0) each odd stop must be at a pickup station,
i.e., r1l , r

3
l , . . . , r

ρl−1
l ∈ Vpic, while each even stop takes place at a delivery station, i.e.,

r2l , r
4
l , . . . , r

ρl
l ∈ Vpic, and ρl always is even.

A non-empty route rl is feasible with respect to the time budget t̂ iff

t0r1l +

ρl−1∑

i=1

tril r
i+1
l

+ trρll 0′ ≤ t̂. (1)

By assumption all vehicles start empty at the beginning and have to return empty,
which is implicitly guaranteed again by the bipartite graph.

By above definitions, we reduce the BBSS problem as introduced in [35] to a selec-
tive unit-capacity one-commodity pickup and delivery problem with time budgets on a
bipartite graph.
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As optimization goal, we consider in this work the maximization of the total number
of station visits

max
∑

l∈L
ρl, (2)

which corresponds to twice the number of moved full vehicle loads. By this objective
function, we also minimize the sum of the deviations from the stations’ target fill levels
after the rebalancing, which is

∑

s∈S
|fs| −

∑

l∈L
ρl, (3)

and is the primary objective of previous work such as [10, 11, 22, 35, 36].

3. Related Work

In this section we give an overview on existing algorithmic approaches for finding
reasonable routes for balancing PBSs and other problems related to our simplified
problem formulation considering full vehicle loads only.

As already pointed out in the above section, essentially all existing models for rebal-
ancing PBSs consider flexible numbers of bikes to be loaded or unloaded at each visit,
and most work addresses the static case only. Several different problem variants with
different objectives and side constraints exist, and different solution approaches have
been proposed for them. Direct comparisons are therefore quite hard. Many of the
described approaches rely on MIP techniques, but there also exist (meta)heuristics and
hybrid metaheuristics, which appear to be particularly well suited for larger scenarios.

3.1. MIP Approaches

Chemla et al. [4] proposed an exact branch-and-cut approach for the single-vehicle
case considering it a hard constraint to exactly reach all given target fill levels. The
approach is based on a relaxed MIP model yielding a lower bound and a tabu search
for obtaining heuristic solutions and thus upper bounds.

Raviv et al. [36] proposed several MIP models minimizing user dissatisfaction and
operational costs. These include a time-indexed as well as an arc-indexed formulation
which is restricted in the sense that a station may only be visited once by the same
vehicle. They also incorporate loading and unloading times proportional to the number
of bikes moved. By additionally applying algorithmic enhancements to their MIP
models they are able to solve instances up to 60 stations with reasonable optimality
gaps.

Schuijbroek et al. [39] describe approaches for determining service level requirements
at the stations and vehicle routes for the rebalancing at the same time. An initial MIP
model turns out to be intractable for instances of practical size. Consequently, the
authors derive a cluster-first route-second heuristic where they first assign stations to
clusters by a MIP model and then they solve an independent vehicle routing prob-
lem (VRP) for each cluster. In our approach, we will follow a similar basic idea for
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decomposition, but extend it to an exact LBBD. Concerning the considered problem
variant, there are also several other differences to our approach: For each station,
Schuijbroek et al. assume a target demand interval as given and it is considered a hard
constraint to bring the fill level of each station within this interval. Shift times are
not considered, and it is the main objective to minimize the overall makespan for the
whole rebalancing. As travel-distance matrix they use Euclidean distances which does
not reflect reality well. For deriving clusters of stations they use a maximum spanning
star (MAXSPS) model to approximate the routing costs within each cluster whereas
we will utilize an arborescence approximation rooted at the depot for the traveling
salesman problem (TSP). They show computational results on the systems of Cap-
ital Bikeshare located in Washington, DC with 135 stations and Hubway in Boston,
MA with 60 stations. They compare four different approaches of their own: a compact
MIP model, a clustered MIP, a clustered MIP with cuts and a constraint programming
approach. However, on the Boston instances only 10 stations lie originally outside of
the target service level interval and in the Washington, DC instances 11 respectively
25 stations. The instances for Capital Bikeshare have been too complex for retrieving
any feasible solution through the compact MIP model.

Erdoğan et al. [12] define demand intervals for each station which have to be satisfied
similarly as it is also done by Schuijbroek et al. They consider only the single-vehicle
case and aim at minimizing traveling costs for the vehicle and handling costs for the
rebalanced bikes. Erdoğan et al. present a branch-and-cut formulation, apply valid
inequalities from the VRP literature and also present a Benders decomposition scheme.
Their approaches solve instances up to 50 stations to optimality.

3.2. (Meta-)Heuristics and Hybrid Approaches

Due to the practical complexity of BBSS, (meta-)heuristics appear also particularly
meaningful especially for larger systems. Diverse metaheuristic approaches are de-
scribed in the literature. Rainer-Harbach et al. [34] introduced a greedy construction
heuristic (GCH) and a variable neighborhood search (VNS) with an embedded vari-
able neighborhood descent. These methods have been tested for instances with up
to 700 stations, for which they provided very reasonable results. Papazek et al. [31]
have developed a pilot heuristic [44] which improved the GCH from [34] significantly,
a greedy randomized adaptive search procedure (GRASP) upon both construction
heuristics performing very well on instances with a high number of rental stations.
Raidl et al. [33] examined different strategies for determining optimal loading and
unloading decisions for given routes within a metaheuristic by specialized maximum-
flow and linear programming approaches. Rainer-Harbach et al. [35] refined their
work on metaheuristics for the static case by providing comprehensive computational
tests and have also introduced their time-indexed and hop-indexed MIP models. Pa-
pazek et al. [30] investigated diverse path relinking extensions for GRASP.

The dynamic case was considered by Kloimüllner et al. [26], who proposed a problem
model in which flexible demand functions in dependence of time can be considered
for all the stations. By separating the demand functions into continuous monotonic
pieces and dealing with them appropriately, a complete discretization of time could
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be avoided. As solution approaches, the authors extended the GRASP and VNS
metaheuristics from [35]. The VNS was able to solve instances with up to 90 stations
reasonably well.

Di Gaspero et al. further describe a constraint programming approach [10] and a
hybridization of it with ant colony optimization [11]. They tested on the same bench-
mark set as Rainer-Harbach et al. [35]. Although the hybrid ant colony optimization
performed better than the pure constraint programming, these methods were not able
to yield competitive results.

Vogel et al. [43] propose a MIP model for the resource allocation problem arising in
PBSs. They aim at minimizing the traveling costs as well as the handling costs for the
relocated bikes. Furthermore, they add a penalty to the objective function for missing
bikes and missing free slots at the stations. As for real-world instances the size of the
MIP model is too large to be solved directly, the authors suggest a MIP-based large
neighborhood search following a fix-and-optimize strategy.

Forma et al. [14] propose the following 3-step hybrid metaheuristic. First, stations
are clustered according to geographical data and initial inventory by using a savings
heuristic. In a second step, it is decided which vehicle visits which clusters of stations
by using a revised MIP model originally stated in [36]. Vehicles are allowed to visit
multiple clusters but one cluster is assigned to exactly one vehicle. In a third step,
routing problems are solved for each cluster independently. The authors report results
for instances with up to 200 stations and three vehicles.

3.3. Other Related Problems and Approaches

Obviously, our simplified BBSS model in which only full vehicle loads are considered is
related to diverse other vehicle routing and in particular pickup-and-delivery problems.
There are, however, several special aspects that need to be considered by a meaningful
solution approach, in particular that not all stations need to be visited, that a time
budget is given, and that tours are sought on a bipartite graph.

A similar problem occurs in the domain of waste collection, for which Ar-
inghieri et al. [1] describe a GRASP and a tabu search. In this problem there is
also given a bipartite graph resulting in alternating tours between pickup and delivery
places. However, multiple commodities representing different types of waste are con-
sidered there. The objective is to reduce the number of tours needed to dispose all the
waste and thus, collecting all the waste is considered here as hard constraint, whereas
we aim to optimize the quantity of moved commodity within the given time budget.

Related to our problem formulation also is the one-commodity pickup and delivery
traveling salesman problem (1-PDTSP) described by Hernández-Pérez et al. [18, 19, 20,
21], and the selective pickup and delivery problem (SPDP) studied by Ting et al. [42].
In the 1-PDTSP a depot and several customers are given which are either pickup
or delivery customers and the aim is to find a minimum distance route visiting all
customers starting and ending at the depot and satisfying all the supplies and demands.
In the SPDP not all pickup nodes have to be visited, but all delivery demands need to
be fulfilled. Moreover, somewhat related also is the prize collecting traveling salesman
problem introduced by Balas [2], in which a prize is paid for every visited city and/or
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a penalty has to be paid for each city which is not visited. A minimum prize money
has to be earned, and the objective is to minimize the routing costs as well as the
penalty incurred by cities which have not been visited.

Especially when considering our decomposition approach which will be described
in Section 5, we obtain as subproblem independent Hamiltonian path problems for
the individual vehicles. These problems can be modeled classical asymmetric TSPs
(ATSP) on bipartite graphs. Concerning this special TSP variant, not much specific
work exists. Shurbevski et al. [40] proposed several approximation algorithms, which
are, however, more of theoretical interest. We will apply the well-known Concorde TSP
solver [7] to tackle these subproblems, not further exploiting the underlying bipartite
graph structure.

4. Compact MIP Formulation

We now formulate the problem as a compact MIP model using assignment variables
xvl ∈ {0, 1} to state the assignment of station visits v ∈ V to vehicles l ∈ L and
arc selection variables yluv ∈ {0, 1} to describe the tour for each vehicle. Subtours
are eliminated via Miller-Tucker-Zemlin inequalities [29] utilizing further continuous
variables ai for the nodes i ∈ V .

max
∑

l∈L

∑

v∈V
xvl (4)

s.t.
∑

l∈L
xvl ≤ 1 ∀v ∈ V (5)

∑

v∈Vpic

xvl =
∑

v∈Vdel

xvl ∀l ∈ L (6)

xsil ≥ xsi+1l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (7)
∑

v∈Vpic

yl0v = 1 ∀l ∈ L (8)

∑

v∈Vdel

ylv0′ = 1 ∀l ∈ L (9)

∑

(u,v)∈A0

yluv = xul ∀l ∈ L, u ∈ V (10)

∑

(u,v)∈A0

yluv = xvl ∀l ∈ L, v ∈ V (11)

∑

(u,v)∈A0

yluv =
∑

(v,u)∈A0

ylvu ∀l ∈ L, v ∈ V (12)

ai − aj + |V | · ylij ≤ |V | − 1 ∀l ∈ L, (i, j) ∈ A (13)
∑

(u,v)∈A0

tuv · yluv ≤ t̂ ∀l ∈ L (14)
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xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (15)

yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (16)

1 ≤ ai ≤ |V | ∀i ∈ V (17)

The objective function (4) maximizes the number of full truck loads picked up and
delivered to the stations and thus, the total balance increase in the PBS, compare
equation (3). Inequalities (5) state that every station visit is performed by at most
one vehicle. By equalities (6) we explicitly define that every tour contains the same
amount of pickup visits as delivery visits. Inequalities (7) are used for symmetry
breaking among the visits of the same station: The i+1-th visit can only be performed
when the i-th visit is performed, for i = 1, . . . , fs− 1 and each station s ∈ S. For each
cluster the depot’s starting node 0 has to have one outgoing arc (8), and similarly, the
depot’s target node 0′ has to have one incoming arc (9). The arc selection variables
are linked with the assignment variables as follows: Equalities (10) ensure that every
node u ∈ V has one outgoing arc iff it is assigned to vehicle l, i.e., xul = 1, while
Equalities (11) guarantee that each node v ∈ V which is assigned to cluster l ∈ L
has to have one corresponding ingoing arc. Equalities (12) express that the number of
ingoing arcs has to be equal to the number of outgoing arcs for each node v ∈ V, l ∈ L.
We eliminate subtours by inequalities (13) by computing an ordering of the nodes in
variables ai. Inequalities (14) guarantee that the routes for each vehicle lie within
the allowed time budget t̂. Finally, (15) to (17) define the domains of the decision
variables.

For small instances, a state-of-the-art MIP solver such as CPLEX is able to directly
yield proven optimal solutions by this model in reasonable time, see the experimental
results in Section 7. The approach, however, does not scale well to larger instances.

The problem consists of an assignment problem (AP) and multiple Hamiltonian
path problems with time budgets that are interconnected. The AP is given in the
above model by equations (5)–(7), the Hamiltonian path problems are represented by
equations (12)–(14), and the connections between the AP and Hamiltonian path prob-
lems are given by equation (10) and (11). In the following we decompose the problem
correspondingly by applying LBBD. In this approach, we iteratively solve a master
problem, corresponding to the AP, and subproblems corresponding to the Hamilto-
nian path problems but are modeled as ATSPs. The solutions of the subproblems
will yield Benders infeasibility cuts for restricting the master problem in the further
iterations. The following section discusses this decomposition approach in detail.

5. Logic-based Benders decomposition

In 1962 Benders came up with his classical decomposition technique to solve large
MIP problems [3]. This approach is in principle applicable if the problem can be
split into a master problem making use of only a subset of the variables including the
complicating integer variables, and an easier subproblem on the remaining continuous
variables when the master problem variables are assumed to be fixed to certain values.
The solution approach iterates by solving master problem instances and subproblems.
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After the master problem is solved, a corresponding subproblem is obtained by fixing
the master problem’s variables in the original formulation to the obtained values. From
the solution of the subproblem’s linear programming (LP) dual one derives feasibility
and/or optimality cuts which are added to the master problem in each iteration. The
whole process is repeated until no further Benders cuts can be derived and an optimal
solution has been obtained.

Erdoğan et al. [12] propose a Benders decomposition scheme for solving the static
rebalancing problem arising in BSS. When applying Benders decomposition to VRPs
often the master problem, containing the complicating variables, is hard to solve.
Thus, Lai et al. [27] came up with a hybrid of Benders decomposition and a genetic
algorithm (GA). They solve the master problem by the GA and the subproblems via
a MIP model by a commercial solver.

LBBD generalizes classical Benders decomposition by also allowing integer variables
or even nonlinearities in the subproblem. This is achieved by replacing the LP dual
by a more general concept called inference dual [24]. Typically, Benders cuts are here
obtained via logical deduction. In several applications, in particular in the domain of
scheduling, LBBD achieved remarkable results.

Hooker [23] presents a solution method applicable to generic scheduling problems
where he models the master problem as a MIP and solves the subproblems by con-
straint programming (CP). Reported results on the LBBD outperform a pure MIP and
and a pure CP approach. Harjunkoski and Grossmann [17] propose a decomposition
approach for multistage scheduling problems. The master problem, an assignment
problem, is modeled as a MIP whereas for the subproblems they employ two strategies
for feasibility checking: One which utilizes a CP approach and another one where a
MIP model is used for the feasibility check. They have shown that the hybrid decom-
position approach by solving the master problem as a MIP and the subproblems with
their CP approach has been superior to a pure MIP or pure CP approach. Further-
more, solving the subproblem, the sequencing of jobs, with the CP approach has been
superior to the feasibility check by the MIP.

There are two types of Benders cuts, namely, infeasibility cuts and optimality cuts.
Infeasibility cuts state that the current master solution is not feasible and avoid its
generation in future iterations, whereas optimality cuts provide new bounds on the
objective value for the current master problem solution. In every iteration except
the last, one or more cuts are generated where every single cut reduces the master
problem’s search space, or more precisely its underlying LP polytope – the more the
better in general. Thus, it should also be considered to strengthen obtained Benders
cuts as far as possible, which is especially in case of the LBBD frequently done by
heuristics or by constraint programming techniques, cf. the greedy algorithms proposed
by Hooker [23].

A technique similar to the principles of LBBD are combinatorial cuts, cf. Codato
and Fischetti [5].

In the following we show how LBBD is applied to our MIP for BBSS. Section 5.1
describes the master problem and states its MIP formulation, while Section 5.2 dis-
cusses the subproblem and proposes a corresponding solution approach. Section 5.3
shows how the master problem and subproblem interact and how the algorithm finally
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yields an optimal solution.

5.1. Master problem

We decompose the model (4)–(17) from Section 4 by focusing in the master problem
on the clustering aspect, i.e., the AP, yielding multiple Hamiltonian path problems
as subproblems. Our method was inspired by the cluster-first route-second method
introduced by Fisher and Jaikumar [13] and also applied for BBSS by Schuijbroek
et al. [39].

In order to strengthen the master problem such that a relatively meaningful cluster-
ing is determined from the beginning on, it is crucial to estimate the route durations
for the cluster and exclude clusters that obviously cannot be handled by a single ve-
hicle. Hooker [23] also reveals that it is important, for the success of the approach, to
include a relaxation of the subproblem within the master problem. Ideally, this route
duration estimation should come close to the real minimal Hamiltonian path durations
and introduce only a reasonable overhead in the master problem’s model. However,
it is important that the determined approximate trip durations are guaranteed lower
bounds for the real durations, as otherwise sets of station visits might be excluded
from becoming clusters, despite feasible routes would actually exist for them.

A lower bound for a TSP that can relatively easily be expressed by a linear program
is obtained from the minimum spanning tree relaxation of the TSP. As we can model
the Hamiltonian path problem as an ATSP, we relax the problem of finding an optimal
ATSP tour to the minimum 0-arborescence problem, i.e., a minimum, from the depot
outgoing, arborescence.

The MIP formulation of our master problem primarily uses the assignment variables
xvl, v ∈ V, l ∈ L from the original problem. For determining the lower bounds for
the clusters’ tour durations via the arborescence polytope, flow variables f luv and arc
selection variables zluv ∈ {0, 1} for all vehicles l ∈ L and arcs (u, v) ∈ A0 are used.

Furthermore, we define β to be an upper bound on the maximal number of station
visits per cluster respectively vehicle. This upper bound is derived by solving the
single-vehicle case of the problem, for which the MIP model is given in Appendix A.
This single vehicle case is in practice much easier to solve than our complete problem.
In our test discussed in Section 7, we typically obtained optimal solutions within
seconds, and stopped the solving after a CPU-time limit of 5min and then took the
obtained rounded down upper bound to the optimal solution value as β.

Given these decision variables, preprocessing values and parameters, the master
problem (MP) is stated as follows:

max
∑

l∈L

∑

v∈V
xvl (18)

s.t.
∑

v∈V
xvl ≤ β ∀l ∈ L (19)

∑

l∈L
xvl ≤ 1 ∀v ∈ V (20)
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∑

v∈Vpic

xvl =
∑

v∈Vdel

xvl ∀l ∈ L (21)

xsil ≥ xsi+1l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (22)
∑

(0,v)∈A0

zl0v = 1 ∀l ∈ L (23)

∑

(u,0′)∈A0

zlu0′ = 1 ∀l ∈ L (24)

zluv ≤ xul ∀l ∈ L, u ∈ V, (u, v) ∈ A0 (25)

zluv ≤ xvl ∀l ∈ L, v ∈ V, (u, v) ∈ A0 (26)
∑

(0,v)∈A0

f l0v =
∑

v∈V
xvl + 1 ∀l ∈ L (27)

∑

(v,0′)∈A0

f lv0′ = 1 ∀l ∈ L (28)

∑

(u,v)∈A0

f luv −
∑

(v,w)∈A0

f lvw = xvl ∀l ∈ L, v ∈ V (29)

f luv ≤





(β + 1) · zl0v if u = 0

β · zluv if v ∈ Vpic
(β − 1) · zluv else

∀l ∈ L, (u, v) ∈ A0 (30)

∑

(u,v)∈A0

zluv =
∑

v∈V
xvl + 1 ∀l ∈ L (31)

∑

(u,v)∈A0

tuv · zluv ≤ t̂ ∀l ∈ L (32)

xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (33)

zluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (34)

0 ≤ f luv ≤





β + 1 if u = 0

β if v ∈ Vpic
β − 1 else

∀l ∈ L, (u, v) ∈ A0 (35)

As in the compact model, the objective function (18) to be maximized is the total
number of performed station visits. The maximum number of station visits per cluster
are bounded upwards by β (19), the optimal solution or rounded down upper bound of
the single-vehicle case, cf. appendix A. Inequalities (20) state that any station visit can
only be performed by at most one vehicle. Equations (21) ensure that for every vehicle
the number of assigned delivery station visits corresponds to the number of assigned
pickup station visits. Inequalities (22) ensure that the i + 1-th visit of a station can
only be performed when an i-th visit takes place. Equalities (23) and (24) state that
each vehicle leaves node 0 once and arrives at 0′ once, respectively. Equalities (25)
and (26) link the cluster assignment variables xvl with the arc selection variables zluv.
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It is ensured that an arc (u, v) can only be used in the arborescence if both u ∈ V and
v ∈ V are assigned to vehicle l.

The arborescence is realized by the single commodity flow conservation equations
in equations (27)–(31). According to (27) the amount of flow sent out from the depot
at node 0 corresponds to the number of nodes assigned to vehicle l plus one to also
reach 0′, i.e., to get back to the depot. The consumption of this last unit of flow
at 0′ is ensured by (28). Equalities (29) provide the flow conservation for all station
visits v ∈ V , where one unit of flow is consumed by each station visit assigned to
vehicle l. Inequalities (30) link the flow variables with the arc selection variables zluv,
i.e., a positive flow may only occur on a selected arc. Equations (31) state that for
each station visit assigned to vehicle l, exactly one incoming arc must be selected.
Inequalities (32) ensure that for each vehicle the approximated routing durations, i.e.,
the total times of the arborescence, lie within the allowed time budget t̂. Finally
(33)–(35) are the domain definitions of the decision variables.

5.2. Subproblems

A solution to the master problem yields an assignment of stations to vehicles in vari-
ables xvl. The subproblem (SP) in our LBBD corresponds then to the task of finding
for each cluster/vehicle l ∈ L in graph G0 a Hamiltonian path from 0 to 0′ visiting each
node v ∈ V | xvl = 1 exactly once and having a total duration that does not exceed
t̂. Thus, our Benders subproblem decomposes into |L| independent Hamiltonian path
problems that are essentially decision variants of the ATSP, when considering that
nodes 0 and 0′ actually represent the same depot and might be further connected with
an arc (0′, 0).

As sophisticated solvers for the TSP exist, we utilize one of them in our solution
approach instead of implementing one on our own: Concorde [7] is a state-of-the-art
TSP solver for the symmetric traveling salesman problem (STSP) on complete graphs.
We convert each of our directed ATSP instance into an STSP instance by employing
the method from Jonker et al. [25]. A symmetric auxiliary graph Gaux = (V aux, Eaux)
with associated costs taux : V → R+ is derived. Its set of vertices consists of two nodes
for each one in V and two nodes 0 and 0′ representing the depot: V aux = {v, v′ | v ∈
V }∪{0, 0′}. As Concorde works on a complete graph, we set Eaux = V aux×V aux and
define the edge costs as follows:

tauxvv′ = tauxv′v = 0 ∀v ∈ V ∪ {0} (36)

tauxu,v = tauxu′,v′ =∞ ∀u, v ∈ V ∪ {0}, u 6= v (37)

tauxu,v′ = tauxv′u = tuv ∀(u, v) ∈ A (38)

tauxu,v′ = tauxv′u =∞ ∀u, v ∈ V, u 6= v, (u, v) 6∈ A (39)

taux0,v′ = tauxv′,0 = t0v ∀v ∈ Vpic (40)

taux0′,v = tauxv,0′ = tv0′ ∀v ∈ Vdel (41)

Figure 1 shows the derivation of the auxiliary graph on an example. A TSP solution on
graph Gaux will always connect a node v ∈ V ∪{0} directly with its copy v′ due to the
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Figure 1: An example for the conversion of our subproblem on graph G0 into a sym-
metric TSP instance on an auxiliary graph Gaux. Pickup stations are referred
by p1 and p2, d1 and d2 denote delivery stations, 0 is the depot and 0′ is the
copy of the depot. Note, that Gaux actually is a complete graph. However,
infeasible edges with tuv = ∞, ∀(u, v) ∈ Gaux are omitted for the sake of
readability.
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zero-cost edges, 0 to a node v ∈ Vpic, a node u′ with u ∈ Vpic with a node v ∈ Vdel, and
a node u′ with u ∈ Vdel with a node v′ with v ∈ Vpic ∪ {0}. Consequently, a minimum
duration Hamiltonian path from 0 to 0′ can be obtained from an optimal TSP tour
on Gaux by taking for each selected edge (u, v′) the arc (u, v), for all u ∈ V ∪ {0} and
v ∈ V and arc (u, 0′) for edge (v, 0′).

5.3. Iterated Decomposition Procedure and Cut Generation

Algorithm 1 LBBD for BBSS

1: repeat
2: init: r ← vector of |L| empty routes, cutsAdded ← false
3: Solve MP to obtain subproblems
4: for all l ∈ L do
5: rl ← solve SP for vehicle l
6: if robjl > t̂ then
7: I ←Try to minimize infeasible set of station visits in rl
8: MP← MP ∪

(∑
v∈I xvl ≤ |I| − 1 ∀l ∈ L

)

9: cutsAdded ← true
10: end if
11: end for
12: until not(cutsAdded)
13: return r

Algorithm 1 shows an LBBD scheme utilizing cut generation by Benders infeasibility
cuts. Variable r denotes the current solution, i.e., the vector of |L| routes, which are

initially all empty. The shorthand notation robjl stands for the objective value of a
single subproblem solution, i.e., the actual routing costs when the TSP is solved to
optimality.

The master problem is solved in line (3) and the assignment of stations to vehicles
is retrieved. We get our subproblems which are solved in the corresponding loop (4)
for each vehicle separately. For every solution to a subproblem we utilize a solution
cache. This means, that if a subproblem is feasible its corresponding Hamiltonian path
and the routing costs are cached for later use. If the subproblem is infeasible it is not
going to be cached because those subproblems result in a cut for the master problem.
If we cannot find the subproblem in our solution cache, then a single subproblem is
solved by Concorde (5) and added to the current solution r as rl. In the subproblem
the routing costs are minimized and if this objective value is greater than the maximal
time budget of the vehicles, we found an infeasible assignment (6). In this case an
infeasibility cut of the form ∑

v∈I
xvl ≤ |I| − 1 (42)

is created for each vehicle l ∈ L and added to the master problem, where I is a set
of station visits. These cuts imply that the simultaneous assignment of the station
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visits in I – and all supersets of I – to one cluster is prohibited in the following master
problem instances.

To make this cut as strong as possible, we try to minimize the infeasible set I of
station visits, which is derived from all currently assigned stations (7) by the following
algorithm:

Algorithm 2 Minimize the cutset

init: MinSize ← |I|, T = ∅
function minimizeCutSet(rl)
1: for all (u, v) ∈ rl | u /∈ {0, 0′}, v /∈ {0, 0′} do
2: T ← extract all nodes from rl except u and v
3: r′l ← solve SP for stations in T

4: if r′objl > t̂ then
5: if |T | = MinSize then
6: I ← I ∪ {T}
7: else if |T | < MinSize then
8: I ← ∅
9: I ← I ∪ {T}

10: MinSize ← |T |
11: end if
12: minimizeCutSet(r′l)
13: end if
14: end for

Loop (1) iterates over all edges of a given Hamiltonian path rl = {0, r1l , . . . rρll , 0′}
so that all possible options for minimizing the cutset are evaluated. We extract all
nodes from the Hamiltonian path except u and v and refer this set as T (2). Two
stations have to be removed because the number of pickup and delivery station visits
have to be equal in oder to obtain a feasible route. As edges can only exist between
alternating station types it is ensured that only one pickup and one delivery station
visit is removed. Here again, we utilize the proposed solution cache so that previously
evaluated sets of station visits may not be evaluated multiple times. If the subproblem
cannot be found in the solution cache, the subproblem of finding a Hamiltonian path
for the reduced set of station visits T is solved (3) and the routing costs are checked
for feasibility (4). If the set T is infeasible we either found an additional cut (5)
with equal size of station visits as the previous found cut(s) or we found a new cut
containing less station visits than all previously found cuts (7). If the routing costs
are feasible we did not find any new cut and do not have to explore this branch of
the search tree further. If the routing costs have been infeasible we recursively call
the function minimizeCutSet (12) to check all subsets of I which are candidates for a
smaller cutset. At the end the set I contains the smallest possible cutset(s) based on
the initial one. It is also possible that I contains more than one cut because multiple
minimum cutsets may exist.

We can perform this algorithm because the subproblem is solved very efficiently by
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the Concorde TSP solver.

5.3.1. Cluster-spanning cuts

Due to the following observation we came up with the idea of also computing cluster-
spanning cuts instead of only utilizing cuts for single clusters: Consider, if some of the
computed clusters from the master problem are infeasible, we generate a cut for every
single cluster. In a new iteration of the master problem the MIP solver often tries
to move station visits among different clusters – because then these new assignments
constitute different clusters than in the cutset – although it may not be possible to
come toward a feasible solution this way. The total (optimal) routing costs over all
clusters may be larger than the total amount of time budget provided by all available
vehicles.

The idea is to solve the LP relaxation of the MIP formulation provided in appendix B
as it already provides reasonable lower bounds so that at least some of these cluster-
spanning cuts can be generated. Thus, we take the reduced set of station visits as
solution from the master problem but breakup the assignment to the clusters and
compute the minimal routing costs resulting from an optimal assignment. We there-
fore adjusted inequalities (20) from the master problem to the following equalities:∑
l∈L xvl = 1 ∀v ∈ V , and changed the objective function to minimize the total rout-

ing costs over all clusters, i.e., min
∑
l∈L
∑

(u,v)∈A0
yluv · tuv. If these routing costs are

higher than the available time budget of all vehicles together, the set of stations is not
able to produce a feasible solution in any constellation of assignments. Let hl denote
the minimal computed routing costs for the reduced set of station visits of vehicle
l ∈ L, then we can add a cluster-spanning cut iff

∑

l∈L
hl > |L| · t̂. (43)

Let I denote the set of stations used in the currently considered assignment, i.e., I =
{v | xvl = 1,∀v ∈ V, l ∈ L}. Assume, that inequality (43) holds for this assignment.
Then formally, the cut is defined as follows:

∑

l∈L

∑

v∈I
xvl ≤ |I| − 1 (44)

5.4. Branch-and-Check

As an alternative to the classical (logic-based) Benders decomposition approach fol-
lowed in the previous section, we also consider a corresponding BAC approach. The
term BAC has been originally proposed by Thorsteinsson in [41] and refers to the fol-
lowing. Instead of completely resolving the master problem after adding new Benders
cuts in each iteration, the master problem is now only solved once, and Benders cuts
are separated in a branch-and-cut manner whenever a solution supposed to be feasible
is encountered.
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Thus, the Benders subproblem is solved not only for so-far optimal master problem
solutions, but for any encountered feasible master problem solution. Again, Concorde
is used for solving the subproblems and algorithm 2 for finding minimal infeasible sets
of station visits is applied to obtain possibly strengthened Benders cuts.

A particular advantage of this BAC is that it is in general able to yield upper
as well as lower bounds and corresponding feasible solutions to the BBSS problem
already early during the optimization. In contrast classical Benders decomposition
with feasibility cuts is only able to provide lower bounds earlier than at the very end,
as the master problem variables will not get overall feasible assignments before.

6. Variable Neighborhood Search

For comparison purposes and to further study the impact of the BBSS problem sim-
plification by only considering full loads, we use here the VNS proposed by Rainer-
Harbach et al. [35]. This VNS uses remove-station, insert-unbalanced-station, intra-
route-2-opt, replace-station, intra-or-opt, 2-opt*-inter-route-exchange and intra-route
3-opt neighborhood structures for local improvement within an embedded Variable
Neighborhood Descent (VND), and for shaking move-sequence, exchange-sequence,
destroy-&-recreate, and remove-stations operations. The only modification we applied
concerns the objective function, in which we set the weighting factors ωwork and ωload

for the additional terms to consider tour lengths and loading instructions to zero, in
order to follow the same single goal of maximizing the balance gain as we do in our
new approaches. Furthermore, as the balance gain is expressed in the VNS in terms of
the number of bikes and in our case here in station visits, we scale the VNS’s objective
values accordingly by dividing them by the vehicle capacity.

7. Computational Results

We have done our computational tests on a rigorous benchmark suite derived from [35]
with instances up to 70 and 120 stations for the multi-vehicle and the single-vehicle
cases. An instance is primarily characterized by the tuple of the number of stations,
the number of vehicles, and the time limit (|V |, |L|, t̂). All algorithms have been
implemented in C++ and have been compiled with g++ 4.9.2. As MIP solver we used
CPLEX 12.6.2 branch-and-cut with default parameters except limiting the number of
used threads to one for a better comparability and restricting the maximum size of
the branch-and-cut tree to 3GB. All tests have been performed as single threads on
an Intel Xeon E5540 2.53GHz Quad Core processor.

For our tests with multiple vehicles we use instances with 10, 20, 30, 40, 50, 60
or 70 stations, 2 or 3 vehicles, and a time budget of either 120, 240, or 480 min-
utes. For all instances we employed a maximum CPU time limit of 2 hours. For
every combination (|V |, |L|, t̂), we considered 30 different randomly generated in-
stances which are available at https://www.ac.tuwien.ac.at/files/resources/
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instances/bbss/benchs.tar.gz. These instances have been derived from the real-
world scenario at Citybike Wien, Vienna’s major PBS.

The instances state specific initial fill levels ps and target fill levels qs for each station
s ∈ S as well as a uniform vehicle capacity Z. Following our new approach, we only
consider the movement of full vehicle loads, i.e., Z bikes from one station to another.
Consequently, we derived each station’s demand fs of full vehicle loads as

fs =

⌊
ps − qs
Z

⌋
∀s ∈ Sdel and fs =

⌈
ps − qs
Z

⌉
∀s ∈ Spic. (45)

Remember that delivery stations Sdel have positive demand values fs, while pickup
stations are given by negative values; stations with |ps − qs| < Z do not need to be
considered in our model and are therefore discarded. By above definition, it is ensured
that we never move more than |ps − qs| bikes to a station and thus never exceed a
station’s capacity.

7.1. Analyzing the Impact of Considering Full Vehicle Loads Only

We first want to gain an approximate understanding of the loss in solution quality we
obtain by moving from a previous “detailed” model, in which the loading and unloading
of an arbitrary number of bikes is allowed, to our simplified model that considers only
full vehicle loads.

The MIP models available to us for details of the original problem formulation
are, unfortunately, only able to exactly solve instances with up to 20 nodes, see [35].
Therefore, we consider here one of the leading metaheuristic approaches, which is the
VNS from [34] introduced in Section 6.

Table 1 shows comparative results for instances which our BAC could solve to proven
optimality. Remember that the VNS is not limited to full vehicle loads. It tries to find
a tour together with best possible numbers of vehicles to load and unload at each stop.
We just scaled the final overall balance gain by dividing it by the vehicle capacity Z
to make it comparable to the number of full vehicle loads by which we measure the
balance gain in our new model.

We show the number of instances where the particular approach yielded the best
solution #best, the number of runs where BAC terminated with the optimal solution
#opt, mean of the objective value obj over 30 instances per benchmark set, the stan-
dard deviation of the objective value sd obj and the median of the runtimes t̃ime. If
BAC was not able to find the optimal solution we use the lower bound, i.e., objec-
tive value of the best identified solution. Only in very few cases, on larger instances,
we have not been able to retrieve any feasible solution by BAC (12 out of 1260 in-
stances) which explains the relatively large standard deviations on the instance groups
(70, 2, 480) and (70, 3, 480). Note that BAC is only able to yield the best solution if
the solution obtained via VNS is not optimal.

When analyzing the results in Table 1 one can see that the average objective values
obtained by the BAC and the VNS correspond closely. Obviously, the simplification
of considering only full vehicle loads has on these instances only a very minor impact.
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Table 1: Comparison of BAC for our new model restricted to full vehicle loads with
the VNS allowing fine-grained bike movements.

Instance set BAC VNS

|V | |L| t̂ #best #opt obj sd obj t̃ime #best obj sd obj t̃ime
10 2 120 26 30 6.80 1.5403 0.10 26 6.87 1.2521 3600
10 2 240 30 30 8.87 1.2521 0.10 30 8.87 1.2521 3600
10 2 480 30 30 8.87 1.2521 0.10 30 8.87 1.2521 3600
10 3 120 26 30 8.13 1.5698 0.10 30 8.40 1.3287 3600
10 3 240 30 30 8.87 1.2521 0.10 30 8.87 1.2521 3600
10 3 480 30 30 8.87 1.2521 0.10 30 8.87 1.2521 3600
20 2 120 30 30 7.80 0.6103 0.40 28 7.67 0.9223 3600
20 2 240 28 30 16.40 1.6938 2.00 26 16.40 1.3287 3600
20 2 480 30 30 18.87 2.3887 0.40 30 18.87 2.3887 3600
20 3 120 30 30 11.20 1.3493 1.40 26 10.93 1.6386 3600
20 3 240 30 30 18.87 2.3887 1.00 30 18.87 2.3887 3600
20 3 480 30 30 18.87 2.3887 0.70 30 18.87 2.3887 3600
30 2 120 28 30 7.67 1.0613 0.90 30 7.93 0.3651 3600
30 2 240 30 24 18.53 1.0417 241.50 20 17.87 1.0417 3600
30 2 480 30 30 28.87 2.9094 6.20 30 28.87 2.9094 3600
30 3 120 28 29 11.40 1.6733 2.20 28 11.67 0.9223 3600
30 3 240 30 12 25.47 1.7367 3600.00 23 25.00 1.4622 3600
30 3 480 30 30 28.87 2.9094 8.40 30 28.87 2.9094 3600
40 2 120 29 30 7.87 0.7303 2.50 30 8.00 0.0000 3600
40 2 240 27 22 18.80 1.4479 296.90 21 18.53 1.2794 3600
40 2 480 30 16 35.93 1.5298 530.30 23 35.47 1.2794 3600
40 3 120 29 30 11.67 1.1842 5.40 28 11.73 0.6915 3600
40 3 240 27 9 26.47 1.6344 3600.00 23 26.33 1.1842 3600
40 3 480 30 30 38.33 2.7334 15.10 30 38.33 2.7334 3600
50 2 120 30 30 7.93 0.3651 4.60 30 7.93 0.3651 3600
50 2 240 30 26 19.53 1.1366 115.00 26 19.27 1.3374 3600
50 2 480 29 1 38.67 1.6046 3600.00 17 37.87 1.7367 3600
50 3 120 30 29 11.80 0.8052 18.70 30 11.80 0.8052 3600
50 3 240 28 9 27.67 1.9711 3600.00 20 27.07 1.5522 3600
50 3 480 30 27 48.73 2.7029 101.90 27 48.53 2.4598 3600
60 2 120 30 30 8.00 0.0000 10.50 30 8.00 0.0000 3600
60 2 240 30 23 19.60 0.8137 570.50 21 19.00 1.1447 3600
60 2 480 30 0 39.33 1.6046 3600.00 15 38.33 1.3979 3600
60 3 120 30 29 11.93 0.3651 31.80 28 11.80 0.6103 3600
60 3 240 24 6 27.07 2.0833 3600.00 22 26.93 1.3629 3600
60 3 480 29 3 53.67 1.3979 3600.00 22 53.20 1.4479 3600
70 2 120 30 30 8.00 0.0000 22.20 30 8.00 0.0000 3600
70 2 240 27 23 19.60 0.9685 522.40 27 19.60 0.8137 3600
70 2 480 27 0 39.07 7.4599 3600.00 16 39.53 1.5477 3600
70 3 120 30 29 11.93 0.3651 68.40 30 11.93 0.3651 3600
70 3 240 22 9 27.67 2.1709 3600.00 24 27.93 1.5298 3600
70 3 480 17 0 35.33 27.3790 3600.00 20 55.13 1.5477 3600
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In fact, we could observe that also the solutions identified by the VNS also almost
always transported only full vehicle loads from one station to another. Obviously, this
only holds under our fundamental assumption that a complete balance with objective
value zero, i.e., where all station demands are fulfilled, is not achievable within the
limited working time – and also not necessary in practice. A Wilcoxon signed-rank
test comparing BAC with the VNS on each instance set shows significant advantages
with error probabilities of less than 5% for 11 of the 42 classes whereas the VNS has
significant advantages on 2 of the 42 classes.

The disadvantages of the simplified model are very well compensated by the much
better solvability of the new approach.

7.2. Gains of Logic-Based Benders Decomposition Compared to
Compact Model

In Table 2 a comparison between LBBD approach and applying CPLEX directly to
the compact model is shown.

Column opt shows the percentage of instances solved to optimality out of the 30
different instances of each instance group. obj shows the average number of stations
that can be serviced within the given time budget t̂ aggregated over the instance group.
By mem we show how many of the instances did not succeed because of exceeding the
memory limit of 3GB. The median of the time is shown in the column t̃ime and is
given in seconds. We marked those values bold where the corresponding approach
managed to solve more instances to optimality with respect to the others.

Most of the small instances with 10 and 20 stations are solved to proven optimality
by both approaches in a very small amount of time. On larger instances the LBBD
approach relatively clearly outperforms the compact approach with respect to the
number of instances that could be solved to optimality. We notice that CPLEX needs
a lot of memory for the compact MIP model because of its high size in constraints and
variables. This is much better in the decomposition approach because the master and
the subproblem are both small models and subproblems do not have to be maintained,
so they can be discarded once they are solved. For the master problem we rely on the
resolve feature of CPLEX where it tries with repair heuristics to recover from the last
solution found.

Of course, depending on the structure of the instance either the LBBD or the com-
pact model is more likely to be successful. But overall, the LBBD could solve 151
more instances to optimality than the compact model. This is also due to the fact
that on larger instances the performance of the LBBD gets better with respect to the
compact model.

7.3. Enhancements by Branch-and-Check

In Table 3 we show a comparison between the BAC approach on the left side and the
LBBD on the right side. In contrast to the previous table we also give the average
number of iterations for the LBBD denoted by column header iter and the number of
calls to LazyConstraintCallback of the BAC approach denoted by calls. By cuts, we
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Table 2: Comparison of LBBD with the compact model

Instance set LBBD Compact model

|V | |L| t̂ opt [%] obj t̃ime[s] opt [%] obj mem [%] t̃ime[s]
10 2 120 100 6.80 0.14 100 6.73 0 0.04
10 2 240 100 8.87 0.05 100 8.07 0 0.02
10 2 480 100 8.87 0.05 100 8.07 0 0.01
20 2 120 100 7.80 0.35 100 7.80 0 0.12
20 2 240 100 16.40 1.66 100 16.40 0 0.43
20 2 480 100 18.87 0.14 100 17.73 0 0.09
20 3 120 100 11.20 1.36 97 10.80 0 0.70
20 3 240 100 18.87 0.45 100 17.73 0 0.14
20 3 480 100 18.87 0.17 100 17.73 0 0.10
30 2 120 100 7.67 0.84 97 7.67 0 0.54
30 2 240 67 12.40 941.38 67 12.33 13 84.02
30 2 480 100 28.87 0.99 100 27.73 0 0.41
30 3 120 97 11.13 1.84 77 9.00 3 106.41
30 3 240 27 6.53 3600.00 67 16.80 13 126.26
30 3 480 100 28.87 1.07 100 27.73 0 0.49
40 2 120 100 7.87 3.06 80 6.40 3 2.93
40 2 240 73 14.07 250.32 53 10.53 13 583.66
40 2 480 53 19.20 1506.95 93 33.13 0 5.01
40 3 120 97 11.33 4.81 43 5.20 13 1942.29
40 3 240 20 5.20 3600.00 33 9.40 43 709.20
40 3 480 100 38.33 2.92 100 37.20 0 1.26
50 2 120 100 7.93 3.84 63 4.93 7 184.78
50 2 240 87 17.07 149.02 47 9.33 20 498.81
50 2 480 3 1.20 3600.00 47 18.47 37 604.39
50 3 120 93 11.20 17.12 13 1.60 30 3591.50
50 3 240 27 7.60 3600.00 0 0.00 63 1078.43
50 3 480 90 43.67 27.93 93 44.33 3 3.13
60 2 120 100 8.00 10.63 67 5.33 7 20.62
60 2 240 73 14.67 326.49 43 8.67 23 735.88
60 2 480 0 0.00 3600.01 20 8.00 60 672.99
60 3 120 97 11.60 31.29 27 3.20 17 3588.24
60 3 240 17 5.00 3600.01 3 1.00 63 835.63
60 3 480 13 7.33 3600.01 20 10.67 57 1122.85
70 2 120 100 8.00 14.31 47 3.73 13 836.50
70 2 240 77 15.33 324.55 47 9.47 27 852.23
70 2 480 3 1.33 3600.01 0 0.00 63 988.07
70 3 120 97 11.60 48.43 23 2.80 27 3268.72
70 3 240 30 9.00 3600.01 0 0.00 57 1352.00
70 3 480 0 0.00 3600.01 0 0.00 73 1133.34
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also provide the number of generated Benders infeasibility cuts for both approaches.
We also give the median of the maximum time needed to solve the master problems

˜max master and the average time needed to solve the master problem respectively
˜avg master . BAC was only in two instance sets worse than LBBD but in all other

cases it was equal or even better. With respect to the number of optimal solutions
retrieved, BAC outperformed LBBD on 8 instance sets. As it can be seen, the number
of generated cuts are higher when using BAC because the feasibility check in the
subproblem is done for each feasible solution whereas for the LBBD cuts are only
generated when the master problem is solved to optimality. However, as shown more
generated Benders cuts do not necessarily yield better performance. Of course, it
depends also on the quality of the cuts.
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7.4. Single-Vehicle Case

Table 4: Computational results for the single-vehicle case

|V | t̂ opt [%] obj UB LB gap mem [%] t̃ime
40 240 97 9.60 9.93 9.98 0.45 0 0.39
40 480 100 20.40 20.40 20.40 0.00 0 0.94
50 120 100 4.00 4.00 4.00 0.00 0 0.21
50 240 93 9.33 9.93 10.03 1.08 0 1.01
50 480 90 19.27 21.27 21.42 0.74 0 4.83
60 120 100 4.00 4.00 4.00 0.00 0 0.26
60 240 83 8.40 10.00 10.45 4.65 0 1.52
60 480 87 18.73 21.40 21.73 1.58 0 86.13
70 120 100 4.00 4.00 4.00 0.00 0 0.39
70 240 83 8.47 10.13 10.46 3.26 0 2.93
70 480 67 14.67 21.67 22.18 2.46 0 27.36
90 120 100 4.00 4.00 4.00 0.00 0 0.62
90 240 80 10.08 10.07 10.35 2.86 0 16.36
90 480 63 22.21 22.14 23.41 5.78 0 38.41
120 120 100 3.93 3.93 3.93 0.00 0 1.35
120 240 57 5.67 10.00 10.64 6.43 0 2302.56
120 480 37 8.20 22.13 23.23 5.01 13 3600.00

We have also performed computational tests on the single-vehicle case of the prob-
lem. This is also of practical importance for cases where the whole service area is more
statically partitioned into districts and individual drivers/vehicles are then solely re-
sponsible for dedicated districts. Computational results are shown in Table 4. As the
problem becomes simpler when reducing the number of vehicles we have also provided
results for instances with 90 and 120 stations. For the most difficult instances with
120 stations and a shift time of 8 hours for the driver we have been able to solve 37%
of the instances to proven optimality. For the remaining instances we have been able
to provide results with an average optimality gap of about 5%.

8. Conclusions and Future Work

We have introduced and investigated a new problem formulation for BBSS derived
from practical considerations as they appear, e.g., at Citybike Wien, which is compu-
tationally substantially simpler to solve than previous BBSS formulations. The key
observation is that an economic maintenance of a PBS rarely allows to bring all sta-
tions into perfect balance w.r.t. precisely specified target fill levels. In practice, usually
“more rebalancing work actually exists than can be typically achieved” with the given
number of vehicles and limited working time of the drivers. Therefore, vehicles almost
always move full vehicle loads among the stations. Moving just very few bikes from
one station to another is basically meaningless in practice.
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While previous BBSS models always considered a rather fine-grained planning al-
lowing the movement of arbitrary numbers of bikes, we restrict our rebalancing tours
to the movement of full vehicle loads from the beginning. This restriction yields sub-
stantial simplifications in the overall model, and consequently, the model can be solved
computationally significantly easier.

For solving this new model, we developed a compact MIP model, an LBBD approach,
and a BAC variant of the latter. The LBBD was inspired by the cluster-first route-
second method because the problem can naturally be split in an assignment part and
a routing part. The integral subproblems turned out to essentially correspond to
asymmetric TSPs, which we solve by the state-of-the-art TSP solver Concorde. From
these, Bender’s infeasibility cuts are derived and iteratively added to the assignment
master problem. In the BAC, we modified the LBBD approach by solving the master
problem only once and solving corresponding subproblems for any encountered feasible
solution. This modification turned out to further improve the performance in many
cases.

Experimental comparisons with a state-of-the-art VNS for a previous fine-grained
BBSS model have shown that our new problem formulation has only a minor impact
on the achievable solution quality. In fact, the advantages of the easier solvability
clearly outweigh the theoretical restrictions introduced by allowing only full vehicle
loads. A Wilcoxon signed-rank test showed that BAC compared to VNS has significant
advantages with an error probability of less than 5% for 11 of the 42 instance sets.

With our LBBD we could solve instances up to 70 stations to proven optimality,
which is a substantial step forward in comparison to previous work with exact ap-
proaches. For the single-vehicle problem, we have solved even larger instances up to
120 stations.

Clearly, the proposed compact MIP, LBBD, and BAC are not the only meaningful
methods to approach the new simplified BBSS problem formulation exactly. State-of-
the-art branch-and-cut solvers for diverse vehicle routing problem variants based on
subtour-elimination constraints can likely be adapted and are then presumably strong
if not superior competitors. Also column generation approaches based on some set
covering formulation appear meaningful.

But also in a purely heuristic context for addressing larger problem instances with
possibly thousands of stations, the simplified modeling approach appears very mean-
ingful and opens diverse existing methods for vehicle routing problem variants to be
adapted with moderate effort.
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A. Single-vehicle MIP model

The following MIP formulation models the problem, if only a single vehicle is applied
to BBSS.

max
∑

v∈V
xv (46)

s.t. xv ≤ 1 ∀v ∈ V (47)
∑

v∈Vpic

xv =
∑

v∈Vdel

xv (48)

xsi ≥ xsi+1 ∀s ∈ S, i = 1, . . . , fs − 1 (49)
∑

v∈Vpic

y0v = 1 (50)

∑

v∈Vdel

yv0′ = 1 (51)

∑

(u,v)∈A0

yuv = xu ∀u ∈ V (52)

∑

(u,v)∈A0

yuv = xv ∀v ∈ V (53)

∑

(u,v)∈A0

yuv =
∑

(v,u)∈A0

yvu ∀v ∈ V (54)

ai − aj + |V | · yij ≤ |V | − 1 ∀(i, j) ∈ A (55)
∑

(u,v)∈A0

yuv · tuv ≤ t̂ (56)

xv ∈ {0, 1} ∀v ∈ V (57)

yuv ∈ {0, 1} ∀(u, v) ∈ A0 (58)
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1 ≤ ai ≤ |V | ∀i ∈ V (59)

B. Routing MIP model

This MIP formulation can be used to obtain minimal routing costs for a predefined
set of station visits.

min
∑

l∈L

∑

(u,v)∈A0

yluv · tuv (60)

s.t.
∑

l∈L
xvl = 1 ∀v ∈ V (61)

∑

v∈Vpic

xvl =
∑

v∈Vdel

xvl ∀l ∈ L (62)

xsil ≥ xsi+1l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (63)
∑

v∈Vpic

yl0v = 1 ∀l ∈ L (64)

∑

v∈Vdel

ylv0′ = 1 ∀l ∈ L (65)

∑

(u,v)∈A0

yluv = xul ∀l ∈ L, u ∈ V (66)

∑

(u,v)∈A0

yluv = xvl ∀l ∈ L, v ∈ V (67)

∑

(u,v)∈A0

yluv =
∑

(v,u)∈A0

ylvu ∀l ∈ L, v ∈ V (68)

ai − aj + |V | · ylij ≤ |V | − 1 ∀l ∈ L, (i, j) ∈ A (69)

xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (70)

yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (71)

1 ≤ ai ≤ |V | ∀i ∈ V (72)
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