
Anytime Algorithms for the Longest
Common Palindromic Subsequence Problem

− Supplementary Material −
Marko Djukanovic1, Günther R. Raidl1, and Christian Blum2

1Institute of Logic and Computation, TU Wien, Vienna, Austria

2Artificial Intelligence Research Institute (IIIA-CSIC),

Campus UAB, Bellaterra, Spain

{djukanovic|raidl}@ac.tuwien.ac.at, christian.blum@iiia.csic.es

This document provides the following supplementary information:

• the complete set of graphics concerning the anytime performance of the proposed
algorithms, both concerning the solution quality and the gaps

• descriptions of the 2–LCPS algorithms from literature to which we compare in the
main paper, with our choices of certain implementation aspects

1

1 Anytime plots of the algorithms showing the evolution of the
obtained solution quality

0 200 400 600 800
time[s]

150

155

160

165

170

so
l. q

 a
lity

m=10, n=500, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

58

60

62

64

66

so
l. q

ua
lit

m=10, n=500, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

36

38

40

42

so
l. q

 a
lity

m=10, n=500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 1: Instances with m =10 and n =500.

0 200 400 600
time[s]

300

310

320

330

340

so
l. q

ua
lity

m= 10, n= 1000, Σ = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

120

125

130

135

so
l. q

 a
lity

m=10, n=1000, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

74

76

78

80

82

84

86

so
l. q

ua
lit

m=10, n=1000, |Σ| = 20

A* + BS
A*+ACS
ACS-ub
APS

Figure 2: Instances with m =10 and n =1000.

2

0 200 400 600
time[s]

120

125

130

135

140
so
l. q

ua
lit

m=50, n=500, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

38

40

42

44

46

48

so
l. q

 a
lity

m=50, n=500, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

23

24

25

26

27

so
l. q

 a
lity

m=50, n=500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 3: Instances with m =50 and n =500.

0 200 400 600 800
time[s]

250

260

270

280

so
l. q

 a
lity

m=50, n=1000, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

85

90

95

100

so
l. q

 a
lity

m=50, n=1000, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

48

50

52

54

56

58

so
l. q

ua
lit

m=50, n=1000, |Σ| = 20

A* + BS
A*+ACS
ACS-ub
APS

Figure 4: Instances with m =50 and n =1000.

3

0 200 400 600 800
time[s]

115

120

125

130
so
l. q

 a
lity

m=100, n=500, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

36

38

40

42

so
l. q

 a
lity

m=100, n=500, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

20

21

22

23

24

so
l. q

 a
lity

m=100, n=500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 5: Instances with m =100 and n =500.

0 200 400 600 800
time[s]

240

250

260

270

so
l. q

 a
lity

m=100, n=1000, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

77.5

80.0

82.5

85.0

87.5

90.0

so
l. q

ua
li y

m=100, n=1000, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

44

46

48

50

52

so
l. q

ua
lit

m=100, n=1000, |Σ| = 20

A* + BS
A*+ACS
ACS-ub
APS

Figure 6: Instances with m =100 and n =1000.

4

0 200 400 600 800
time[s]

110

115

120

125

so
l. q

ua
lit

m=150, n=500, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

34

36

38

40

so
l. q

 a
lity

m=150, n=500, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

18

19

20

21

22

23

so
l. q

ua
li y

m=150, n=500, |Σ| = 20

A* + BS
A*+ACS
ACS-ub
APS

Figure 7: Instances with m =150 and n =500.

0 200 400 600 800
time[s]

230

240

250

260

so
l. q

 a
lity

m=150, n=1000, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

74

76

78

80

82

84

86

so
l. q

 a
lity

m=150, n=1000, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

42

44

46

48

50

so
l. q

ua
lit

m=150, n=1000, |Σ| = 20

A* + BS
A*+ACS
ACS-ub
APS

Figure 8: Instances with m =150 and n =1000.

5

0 200 400 600 800
time[s]

110

115

120

125
so
l. q

ua
lit

m=200, n=500, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

33

34

35

36

37

38

39

so
l. q

ua
lity

m= 200, n= 500, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

18.0

18.5

19.0

19.5

20.0

20.5

21.0

so
l. q

 a
lity

m=200, n=500, |Σ| = 20

A* + BS
A*+ACS
ACS-ub
APS

Figure 9: Instances with m =200 and n =500.

0 200 400 600 800
time[s]

230

240

250

260

so
l. q

 a
lity

m=200, n=1000, |Σ| = 4

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

72

74

76

78

80

82

84

so
l. q

ua
lit

m=200, n=1000, |Σ| = 12

A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

40

42

44

46

48

so
l. q

ua
lity

m= 200, n= 1000, Σ = 20

A* + BS
A*+ACS
ACS-ub
APS

Figure 10: Instances with m =200 and n =1000.

6

2 Anytime plots of the algorithms showing the evolution of the
obtained gaps

0 200 400 600 800
time[s]

42

44

46

48

50

ga
p[

\%
]

m= 10, n= 500, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

57.5

60.0

62.5

65.0

67.5

70.0

ga
p[

\%
]

m=10, n= 500, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600
time[s]

65

70

75

80

85

ga
p[

\%
]

m= 10, n= 500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 11: Instances with m =10 and n =500.

0 200 400 600
time[s]

44

46

48

50

52

ga
p[

\%
]

m= 10, n= 1000, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

64

66

68

70

72

74

ga
p[

\%
]

m= 10, n= 1000, Σ = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70

75

80

85

ga
p[

\%
]

m= 10, n= 1000, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 12: Instances with m =10 and n =1000.

7

0 200 400 600 800
time[s]

50

52

54

56

58

60
ga
p[
\%

]

m=50, n=500, | | = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

65

70

75

80

ga
p[

\%
]

m= 50, n= 500, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70

75

80

85

90

ga
p[

\%
]

m= 50, n= 500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 13: Instances with m =50 and n =500.

0 200 400 600 800
time[s]

52

54

56

58

60

62

ga
p[

\%
]

m= 50, n= 1000, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70.0

72.5

75.0

77.5

80.0

82.5

ga
p[

\%
]

m=50, n= 1000, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

80

85

90

ga
p[

\%
]

m= 50, n= 1000, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 14: Instances with m =50 and n =1000.

8

0 200 400 600 800
time[s]

52

54

56

58

60

62
ga

p[
\%

]

m= 100, n= 500, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70

75

80

ga
p[

\%
]

m= 100, n= 500, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70

75

80

85

90

ga
p[

\%
]

m=100, n= 500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 15: Instances with m =100 and n =500.

0 200 400 600 800
time[s]

54

56

58

60

62

64

ga
p[

\%
]

m= 100, n= 1000, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

72.5

75.0

77.5

80.0

82.5

85.0

ga
p[

\%
]

m=100, n= 1000, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

80

85

90

ga
p[

\%
]

m= 100, n= 1000, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 16: Instances with m =100 and n =1000.

9

0 200 400 600 800
time[s]

52

54

56

58

60

62

64
ga

p[
\%

]

m= 150, n= 500, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70

75

80

ga
p[

\%
]

m= 150, n= 500, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70

75

80

85

90

ga
p[

\%
]

m=150, n= 500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 17: Instances with m =150 and n =500.

0 200 400 600 800
time[s]

56

58

60

62

64

ga
p[

\%
]

m= 150, n= 1000, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

74

76

78

80

82

84

ga
p[

\%
]

m= 150, n= 1000, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

80

85

90

ga
p[

\%
]

m= 150, n= 1000, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 18: Instances with m =150 and n =1000.

10

0 200 400 600 800
time[s]

54

56

58

60

62

64
ga
p[
\%

]

m=200, n=500, | | = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

70.0

72.5

75.0

77.5

80.0

82.5

ga
p[

\%
]

m=200, n= 500, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

75

80

85

90

ga
p[

\%
]

m= 200, n= 500, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 19: Instances with m =200 and n =500.

0 200 400 600 800
time[s]

56

58

60

62

64

ga
p[

\%
]

m= 200, n= 1000, Σ = 4
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

75.0

77.5

80.0

82.5

85.0

ga
p[

\%
]

m=200, n= 1000, |Σ| = 12
A* + BS
A*+ACS
ACS-ub
APS

0 200 400 600 800
time[s]

80

85

90

ga
p[

\%
]

m= 200, n= 1000, |Σ| = 20
A* + BS
A*+ACS
ACS-ub
APS

Figure 20: Instances with m =200 and n =1000.

11

3 The 2-LCPS Algorithms

The existing literature on approaches for solving the 2–LCPS problem is more of theoret-
ical nature. In other words, a computational study comparing the different approaches
has not been performed so far. In the following, we sketch the existing approaches,
putting emphasis on the data structures we chose in order to obtain efficient implemen-
tations. Note that a straightforward Constraint Programming (CP) model has already
been described in the appendix of the main paper. In the following we focus, therefore,
on the description of the remaining three approaches: (1) a Dynamic Programming (DP)
approach, (2) an algorithm which solves the Maximum Nesting Depth Rectangle Struc-
tures (MNDRS) problem from computational geometry to which the 2–LCPS problem
can be reduced, and (3) the so-called CPSA approach which uses an automaton to solve
the 2–LCPS problem.

3.1 Dynamic Programming Approach

Chowdhury et al. [1] presented a dynamic programming approach for solving the 2–LCPS
problem. The idea is as follows. Let s1 and s2 be the input strings of equal length.1

Let lcps(i, j, k, l), 1 ≤ i, j, k, l ≤ n, store the optimal length of the LCPS for substrings
s1[i, j] and s2[k, l], that is, lcps(i, j, k, l) := |LCPS(s1[i, j], s2[k, l])|. Chowdhury proved
that the following recursion leads to an optimal solution to the 2–LCPS problem:

lcps(i, j, k, l) =



0, for i > j ∨ k > l
1, for i = j ∧ k ≤ l

∧ s1[i] = s2[k]
2 + lcps(i+ 1, j − 1, k + 1, l − 1), for i < j ∧ k < l

∧ s1[i] = s1[j]
= s2[k] = s2[l]

max(lcps(i+ 1, j, k, l), lcps(i, j − 1, k, l),
lcps(i, j, k + 1, l), lcps(i, j, k, l − 1)), otherwise.

The first one of the two main cases is obtained when i < j, k < l and s1[i] =
s1[j] = s2[k] = s2[l]. In this case, the value of lcps(i, j, k, l) can easily be obtained
as lcps(i, j, k, l) := 2 + lcps(i+ 1, j− 1, k+ 1, l− 1). Otherwise, the value of lcps(i, j, k, l)
can be recursively calculated by solving the four smaller subproblems corresponding to
the values of lcps(i+ 1, j, k, l), lcps(i, j − 1, k, l), lcps(i, j, k+ 1, l), and lcps(i, j, k, l− 1).
The maximum of these values actually corresponds to lcps(i, j, k, l).

The DP approach stores the solution of all possible subproblems in a 4-dimensional table
of size n×n×n×n, which implies a space complexity of O(n4). The DP recursion gen-
erates O(n4) distinct subproblems, in O(1) time each, in a bottom-up manner, implying

1The case of input strings of different length can easily be transformed to the case of input strings with
equal length.

12

a time complexity of O(n4) for the approach. Note that the value of an optimal solution
is stored in lcps(1, n, 1, n).

3.2 The MNDRS Approach

The Maximum Nesting Depth Rectangle Structures (MNDRS) problem is known from
computational geometry and can be described as follows. Given a set of rectangles
in the Euclidean plane, find a maximum-length sequence of these rectangles such that
each rectangle in the sequence contains all following rectangles of the sequence. Chowd-
hury [1] mapped the 2–LCPS problem to the MNDRS problem by introducing for each
pair ((i, k), (j, l)) of index couples—such that s1[i] = s1[j] = s2[k] = s2[l]—a rectangle
in N2 whose lower left corner is (i, k) and whose upper right corner is (j, l). Moreover,
Chowdhury provided a sparse DP approach for solving the MNDRS problem by making
use of 3-dimensional balanced range search trees.

Subsequently, Inenaga and Hyyrö [4] proposed an algorithm for solving the MNDRS
problem which makes use of two simple but clever data structures. However, since their
work is theoretically oriented, they did not deal with the question of how to implement
the proposed algorithm in an efficient way. Therefore, the following description of this
algorithm presents our own implementation.
The first one of the two data structures mentioned above is used to find—for each
combination of a letter c ∈ Σ and a rectangle R—a sub-rectangle Rc of maximum
area which is strongly contained in R and whose indexes of the lower left and upper
right vertices correspond to letter c. Finding such a rectangle can be done in constant
time O(1) by making use of two predecessor and two successor tables (which basically
correspond to the Pred and Succ data structures used in the preprocessing of our A∗,
as described in the main paper). The second data structure is a space-efficient 4D–table
used for checking whether or not a rectangle R is processed in the main recursion, as
explained in the following. Our implementation uses hash maps to realize this data
structure and thus answers a query in O(1) expected time. Note that O(R2) memory is
needed to store for these data structures.
A recursion is used in order to calculate, for each rectangle, its so-called nesting weight
number, which denotes the maximum length of a sequence of rectangles nested in R (in-
cluding the rectangle R itself). The initial call of the recursion is applied to the virtual
rectangle RV = (0, 0, n+ 1, n+ 1) and its final nesting number actually corresponds to
the length of an optimal solution to the 2–LCPS problem. Moreover, all rectangles are
initially marked as non-processed. Furthermore, a rectangle R will be marked as pro-
cessed when its nesting weight number is calculated. The information about the nesting
numbers is stored in a 4D-hash table. If an already processed rectangle is encountered in
the recursion, its nesting number—as obtained from the 4D-hash table—is immediately
returned. Let us suppose a rectangle R is currently being processed. For each letter c,
the maximum sub-rectangle Rc is being determined (by making use of the Pred and Succ
structures) and the recursion is repeatedly called for each Rc until one of the following
conditions is encountered: (1) Rc is empty, returning value 0; (2) Rc is a point or a line,

13

returning value 1; or (3) Rc is already processed, returning the stored nesting number.
Note that a point or a line correspond to a middle letter in the respective solution to the
2–LCPS problem. It can be shown that—concerning the expected asymptotic runtime—
the MNDRS approach of Inenaga and Hyyrö for solving the 2–LCPS problem is by a
factor of |Σ| faster than the DP approach.

The approach of Inenaga and Hyyrö and the approach of Chowdhury et al. have the
same memory complexity [4]. Moreover, Chowdhury’s MNDRS approach is—with re-
spect to the expected asymptotic runtime—slower than the DP approach in the case
of input strings that were generated uniformly at random, where R = O(n2). If the
number of matchings is significantly lower, for example R = O(n1.5), the MNDRS ap-
proach of Chowdhury shows an advantage over the DP in terms of its running times [1].
Additionally, the data structures used in the approach of Inenaga and Hyyrö [4] are
simpler—with respect to the ease of implementation—than the sophisticated data struc-
tures from computational geometry used in Chowdhury’s MNDRS approach. In general,
it is not expected that the MNDRS approach of Chowdhury has a significant advantage
over the MNDRS approach of Inenaga and Hyyrö in the context of instances generated
uniformly at random. For these reasons we decided to implement the algorithm from [4]
for comparison purposes.

3.3 A Palindromic Subsequence Automaton Approach

In the following we describe the so-called Common Palindromic Subsequence Automaton
(CPSA) approach from [2], highlighting the major adaptation we applied in order to
obtain an efficient algorithm for solving the 2–LCPS problem. The algorithm is based
on a so-called Palindromic Subsequence Automaton (PSA) for each input string, that
is, a PSA M1 for input string s1 and a PSA M2 for input string s2. Each of these
PSAs works on the space of the first halves of all palindromic subsequences of the cor-
responding input strings. The major idea for solving the 2–LCPS problem is based on
the construction of a so-called intersecting automaton that connects M1 and M2.

In the following we describe the structure of a PSA for a string s. The automaton is
denoted by M(Q,Σ, τ, w, F), where Q is a set of states, τ : Q × Σ 7→ Q is a transition
function, w : Q × Q 7→ N0 is a weight function, and F is a set of final states. M has a
state q ∈ Q associated with each pair (i, j), i, j ≥ 1, such that s[i] = srev[j]. The initial
state of the automaton is defined by q0 = (0, 0). A transition τ(q1, a) = q2 between two
states q1 = (i′, j′) and q2 = (i′′, j′′) is possible if and only if s[i′′] = srev[j′′] = a and there
exist no positions k and l, i′ < k < i′′ ∧ j′ < l < j′′, matching the letter a. Note that the
states can be seen as the nodes of a weighted directed acyclic graph, with q0 as the root
node. Moreover, existing transitions between states can be seen as the directed edges of
this graph. A state q is therefore a partial LCPS solution that corresponds to a directed
path from the root node to q. Note that a transition corresponds to the extension of a
partial solution, either by one or by two letters. More specifically, if i′′+ j′′ = |s|+1, the
corresponding transition is an extension by a single letter and otherwise an extension by

14

two letters. The weight function of the PSA is defined accordingly:

w(q1, q2) =


2, if i′′ + j′′ < |s|+ 1

1, if i′′ + j′′ = |s|+ 1

0, else.

Each state can be considered as a final (accepted) state of the automaton, that is, F = Q.
Any path p from the initial state q0 to any final state—that is, p = q0 · · · qri · · · qrk with
k ≥ 0—corresponds to the following palindromic subsequence sp of s:

sp =

{
s[ir1] · · · s[irk−1

]s[irk] · (s[ir1] · · · s[irk−1
]s[irk])rev if ik + jk < |s|+ 1,

s[ir1] · · · s[irk−1
] · s[irk] · (s[ir1] · · · s[irk−1

])rev if ik + jk = |s|+ 1.

Let M1 = (Q1,Σ, τ1, w1, F1) be the PSA of s1 and M2 = (Q2,Σ, τ2, w2, F2) be the PSA
for s2, respectively. The intersecting automaton Misec(Q,Σ, τ, w, F) = M1 ∩M2, called
Common Palindromic Subsequence Automaton (CPSA), is defined as follows. It has
an initial state (root node) denoted by qMisec = (q′0, q

′′
0), where q′0 ∈ Q1 and q′′0 ∈ Q2

are the root nodes of M1 and M2, respectively. In general, if L(M1) and L(M2) are
the languages accepted by M1 and M2, the intersecting automaton Misec will accept all
words common to both languages, i.e., L(Misec) = L(M1) ∩ L(M2). A maximum path
in the directed acyclic graph defined by Misec corresponds to an optimal solution to the
2–LCPS problem.
The transition function τ of Misec is defined as follows. If q′ = (q′1, q

′
2), q

′′ = (q′′1 , q
′′
2) ∈

Q ⊆ Q1 × Q2, then a transition between the nodes—that is, τ(q′, a) = q′′ for some
a ∈ Σ—exists if and only if τ1(q

′
1, a) = q′′1 and τ2(q

′
2, a) = q′′2 . The weight corresponding

to this edge is calculated as follows:

w(q′, q′′) =


2 if w1(q

′
1, q
′′
1 , a) = w2(q

′
2, q
′′
2 , a) = 2

1 if w1(q
′
1, q
′′
1 , a) = 1 ∨ w2(q

′
2, q
′′
2 , a) = 1

0, else.

(1)

The final states q ∈ F of Misec are all states for which q′1 ∈ F1 or q′2 ∈ F2. In order to
construct the intersection automaton Misec, we start by adding the root node qMisec to
a queue Q′ and Q. At each step, the top node q = (q′, q′′) is taken from Q′ and the out-
going edges E1 of q′ in M1 and outgoing edges E2 of q′′ in M2 are considered. All edges
e1 = q′r′1 ∈ E1 and e2 = q′′r′2 ∈ E2 for which τ1(q

′, a1) = r′1 ∧ τ2(q
′′, a2) = r′2 ∧ a1 = a2

will create a new state r = (r′1, r
′
2) which is then added to Q′ and to the set of states Q

(if not already there). We implemented Q by means of a hash table in order to be able
to efficiently check whether or not a state is already in Q. If state r is added to Q, an
extension of functions τ and w of Misec is generated for r by determining the correspond-
ing weights for the newly created edge qr, as defined in (1). Afterwards, q is removed
from the top of Q′. The procedure stops once Q′ is empty. A detailed description of this
process is provided in [2].

15

As mentioned above, Misec also defines a directed acyclic graph, and for solving the
corresponding 2–LCPS problem it is actually sufficient to find a maximum-length path
in Misec. This takes time O(|Q|) = O(|Q1| · |Q2|) when applying a topological sort to all
nodes of Q. For this purpose, the authors of [2] construct a maximum-length automa-
ton [3], which accepts all the subsequences of maximum length among the subsequences
from L(Misec). The automaton is constructed in O(|Q|) time by using a topological sort
of the nodes in Misec followed by removing all the transitions and states which are not
part of any longest path from the initial state to a final state.

Since a main effort of the algorithm is actually to construct the CPSA, and as we are only
interested in finding one optimal solution of possibly several ones, and as constructing
the maximum-length automaton followed by solving the 2–LCPS problem is more time
consuming than a direct application of the maximum-path algorithm to Misec, we decided
to simply use the maximum-path algorithm based on the topological sort of the states
of the CPSA in order to solve the 2–LCPS problem, without the construction of a
maximum-length automaton. This approach yields more directly one optimal solution
of the 2–LCPS problem.

References

[1] S. R. Chowdhury, M. M. Hasan, S. Iqbal, and M. S. Rahman. Computing a longest
common palindromic subsequence. Fundamenta Informaticae, 129(4):329–340, 2014.

[2] M. M. Hasan, A. S. M. S. Islam, M. S. Rahman, and A. Sen. Palindromic subsequence
automata and longest common palindromic subsequence. Mathematics in Computer
Science, 11(2):219–232, 2017.

[3] C. Iliopoulos, M. S. Rahman, M. Voráček, and L. Vagner. Finite automata based
algorithms on subsequences and supersequences of degenerate strings. Journal of
Discrete Algorithms, 8(2):117–130, 2010.

[4] S. Inenaga and H. Hyyrö. A hardness result and new algorithm for the longest com-
mon palindromic subsequence problem. Information Processing Letters, 129(C):11–
15, 2018.

16

