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Abstract

This thesis presents a complete solution archive enhancing a genetic al-
gorithm for the Multidimensional Knapsack Problem (MKP). The genetic
algorithm on which this work is based on uses a special repair operator to
prevent the generation of infeasible solutions and to transform each feasible
solution into a locally optimal solution.

In longer runs it is likely that this algorithm produces candidate solutions
that have already been generated and evaluated before. This effect can
significantly reduce the algorithm’s overall performance. To prevent the
reconsideration of already evaluated solutions, a solution archive based on
a Trie is studied.

Each newly generated candidate solution is inserted into this archive. If
during insertion into the archive a solution is recognized to be a duplicate
of an already visited solution, a special procedure transforms this duplicate
solution into a new solution that is not contained in the archive and is locally
optimal. Furthermore upper bounds are calculated during the insertion at
each node of the Trie. If the upper bound calculated at some level of the
Trie is smaller than the best solution found so far, the corresponding sub
Trie is cut off. Each solution that is generated and would be located in
this sub Trie is considered to be a duplicate and an alternative solution is
generated.

This thesis presents the algorithms and data structures that are needed
to implement the solution archive together with the procedures that operate
on this archive. This enhanced genetic algorithm is compared with the
original algorithm, showing that for many test instances better solutions
can be found.
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Zusammenfassung

In dieser Arbeit wird ein vollständiges Lösungsarchiv vorgestellt, das einen
genetischen Algorithmus zur Lösung des multidimensionalen Rucksack Prob-
lems (MKP) erweitert. Der genetische Algorithmus, auf dem diese Arbeit
aufbaut, verwendet einen repair operator, um ungültige Lösungen auszu-
schließen und jede gültige Lösung zu einer lokal optimalen Lösung zu trans-
formieren.

Es ist wahrscheinlich, dass der genetische Algorithmus Lösungen pro-
duziert, die während der Laufzeit schon einmal generiert und ausgwertet
wurden. Um die Berücksichtigung von schon ausgewerteten Lösungen zu
verhindern, wird ein Lösungsarchiv auf der Basis eines Tries analysiert.

Jede erzeugte Kandidatenlösung wird in das Archiv eingefügt. Wird
eine schon enthaltene Lösung in das Archiv eingefügt, so wird mit einer
speziellen Prozedur aus dieser doppelten Lösung eine neue, noch unbe-
suchte Lösung generiert, die ebenfalls lokal optimal ist. Des weiteren werden
während des Einfügens von Lösungen obere Schranken an jedem Knoten des
Tries berechnet. Wird für einen Teilbaum des Tries eine obere Schranke
ermittelt, die kleiner als die bisher beste gefundene Lösung ist, so wird
der entsprechende Teilbaum abgeschnitten. Sind in einem Teilbaum alle
lokal optimalen Lösungen schon einmal besucht worden, so wird dieser Teil-
baum ebenfalls abgeschnitten. Jede Lösung, die später generiert wird und
in diesem abgeschnittenen Teilbaum liegen würde, wird als schon besuchte
Lösung identifiziert, und in eine noch unbesuchte Alternativlösung trans-
formiert.

In dieser Arbeit werden die zur Implementierung notwendigen Algorith-
men und Datenstrukturen dieses Lösungsarchivs vorgestellt. Dieser erweit-
erte genetische Algorithmus wird mit dem ursprünglichen Algorithmus ver-
glichen, und es zeigt sich, dass durch dieses Lösungsarchiv bei vielen In-
stanzen bessere Lösungen gefunden werden.
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Chapter 1

Introduction

The Multidimensional Knapsack Problem (MKP) is a combinatorial opti-
mization problem that is a generalization of the well-known 0-1 Knapsack
Problem. It can be formulated as the following Integer Linear Program:

maximize z =
n∑

j=1

pjxj (1.1)

subject to
n∑

j=1

aijxj ≤ ci, i = 1, . . . ,m (1.2)

xj ∈ {0, 1}, j = 1, . . . , n (1.3)

The problem consists of n items with profits pj > 0 and resource consump-
tion values aij > 0 for resources i = 1 . . .m. Each resource i has capacity
ci > 0. The goal is to find a subset of the n items yielding maximum profit
(see 1.1) without violating any of the m constraints also called knapsack
constraints (see 1.2). The special case with m = 2 is also called bi-knapsack
problem. The problem is known to be strongly NP-hard which means that no
deterministic polynomial algorithm is supposed to exist to solve the problem
[CB98].

The multidimensional knapsack problem has been used to model many
real world problems including capital budgeting and project selection prob-
lems. The first examples were published by Lorie and Savage in [LS55] and
by Manne and Markovitz in [MM57]. Given a set of n projects, the goal here
is to find a subset of projects yielding maximum profit. Each project has a
profit pj and consumes aij units of each of several resources i = 1 . . .m. The
overall resource consumption may not exceed ci for each resource. More
recent applications related to capital budgeting can be found in [MCS01]
and [BMM01].

The multidimensional knapsack problem also occurs in cutting stock
problems [GG66], loading problems [Shi79], allocating processors and data-
bases in distributed computing systems [GP82], and finding good investment
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policies for the tourism sector of a developing country [GSV73]. Furthermore
the problem appears as subproblem in many general integer programs. In
[Fré04] an extensive overview on the MKP can be found.

Goal of this Thesis

In 1998, Chu and Beasley [CB98] published a (hybrid) genetic algorithm
for heuristically solving larger instances of the MKP, which is still among
the best approximate solution approaches. As a major feature it includes
a strong repair and local improvement operator which ensures that only
promising feasible solutions at the boundary of the feasible region are pro-
duced as candidate solutions.

The disadvantage of this approach, however, is that in longer runs the
same solutions are repeatedly generated and evaluated many times, and
valuable CPU-time is wasted.

In this work, Chu and Beasley’s algorithm is enhanced by a special
archive to efficiently avoid these re-computations by inserting each solution
in the archive before evaluating it. If during insertion a solution is identified
as duplicate a special algorithm transforms the duplicate into an alternative
solution that is not a duplicate. In this thesis the solution archive as well
as the algorithms for finding alternative solutions are introduced. The po-
tential benefits of this enhancement of the genetic algorithm is investigated
and discussed.

Thesis Overview

In chapter 2 existing exact and heuristic approaches to solve the MKP are
summarized. In chapter 3 the motivations for extending a genetic algorithm
with a complete solution archive are presented. Chapter 4 introduces the
solution archive and a search algorithm for finding alternative unvisited so-
lutions within this archive. Implementation details are given in chapter 5
and computational results on a large set of test instances as well as con-
clusions and suggestions for further research are presented in the last two
chapters.
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Chapter 2

Solution Approaches for the
MKP

Since this thesis’ goal is to investigate the potential benefits of a complete
solution archive in particular for Chu and Beasley’s genetic algorithms for
the MKP an overview of the various approaches for the MKP is given in
this chapter. Several methods for solving the MKP have been developed
during the past few decades. These methods can be classified in exact and
heuristic algorithms. In this chapter an overview of different approaches is
given. Note that not all articles published for the MKP during the past few
decades can be cited here. In the book “Knapsack Problems” of Kellerer et
al. [KPP04] a comprehensive overview of practical and theoretical results
can be found. For extended bibliographies on the MKP see [Fré04] and
[FH05].

2.1 Exact Algorithms for the MKP

Though the MKP has not received as much attention as the single dimen-
sional standard 0-1 knapsack problem during the past decades the first exact
algorithms to approach the MKP have been developed in the sixties. Among
the early attempts to solve the problem dynamic programming techniques
were widely adopted. Green [Gre67] proposed two algorithms of which one
is an adaption of a dynamic programming based algorithm for the single di-
mensional case proposed by Gilmore and Gomory [GG66]. While dynamic
programming algorithms for the single dimensional KP have a worst case
runtime of O(nc) where c is the capacity of the Knapsack, dynamic pro-
gramming solutions for the MKP exhibit a worst case runtime of O(n(c∗)m)
where c∗ = max{c1, . . . , cm} [BD02]. The space requirements and computa-
tion time thus grows rapidly with increasing m and even problem instances
of moderate size cannot be solved efficiently in practice.

Subsequent approaches tried to take advantage of the special structure
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of the MKP but did not produce convincing results (e.g. [Cab70]). In
particular implicit enumeration techniques for 0-1 Integer Programming (e.g.
[LS67]) could not produce results that are competitive with today’s state-
of-the-art.

In the late seventies Shih [Shi79] presented the first linear programming
based branch and bound algorithm. Shih used the m single dimensional
knapsack problems to compute upper bounds. The fractional solution (the
solution of the linear programming formulation where the integrality con-
straints are omitted, also called the solution of the LP relaxation) for each of
the m single constraint problems was computed and the minimum of those
objective function values was used as upper bound. Computational experi-
ments on a test set of 30 randomly generated test instances with sizes up to
m = 5 and n = 90 showed better performance than approaches mentioned
above.

Lagrangian relaxation based techniques have also been developed. These
methods however have not produced competitive results. The investigations
reported in literature have shown that Lagrangian relaxation frameworks do
not seem suited to solve the MKP efficiently because relaxing a small number
of constraints does not simplify the problem significantly [Fré04].

Surrogate relaxation based methods (the Surrogate relaxation is pre-
sented in section 4.5.1) however have shown to be promising. Gavish and
Pirkul [GP85] have developed a branch and bound approach that uses the
surrogate relaxation to obtain upper bounds. To avoid solving single di-
mensional knapsack problems and thus to save computation time the LP
relaxation of the surrogate dual is solved to obtain the upper bounds. Hence
the bounds obtained by this method did not improve compared to the LP
relaxation based bounds, but significant improvements with respect to com-
putation time were achieved. Furthermore their algorithm can be used as a
heuristic by terminating it before optimality is proven. Computational ex-
periments have shown that the algorithm is considerably faster than Shih’s
LP relaxation based branch and bound procedure presented in [Shi79]. It
has also been found to be faster than the commercial mixed integer pro-
gramming solver Sciconic/VM.

2.1.1 Commercial Software

Even though commercially available general purpose integer-programming
solvers such as CPLEX have produced impressive results for certain classes
of large-scale integer programs the MKP is still difficult if optimal solutions
are needed for large-scale instances. It has been shown that the existence
of special constraints such as generalized upper bounds, special-ordered sets
and plant-location constraints is essential for the efficient solution of general
0-1 integer problems [EMT95]. Due to the absence of such constraints and
the non-negativity and density of the constraint matrix A the MKP is still
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difficult to solve with general purpose integer programming software if opti-
mal solutions are desired. Such techniques include variable fixing, tightening
the LP relaxation, identifying constraint redundancies and others. The size
of instances that can be solved to optimality varies. There are instances of
size n = 100 and m = 10 which can be solved to optimality with CPLEX 11
within one minute (e.g. instances taken from Beasley’s OR-library [Bea90])
while other instances (see section 6.1) of equal size take more than an hour
to be solved on an AMD Opteron 270 with 2 GHz. Instances with several
hundreds items are usually far too large to be solved to optimality with
exact algorithms even for a moderately sized number of constraints.

2.2 Heuristic Algorithms for the MKP

In contrast to the methods mentioned in section 2.1, heuristic methods are
not used to find guaranteed optimal solutions. Instead near optimal solu-
tions that are obtained with reasonable effort are wanted. Heuristic ap-
proaches are in practice the only viable option for approaching large scale
instances.

2.2.1 Greedy Heuristics

Among the early approaches were greedy heuristics that make use of utility-
ratios. These utility ratios are an extension of the “bang-for-buck” ratio
known from the single dimensional knapsack problem which is defined as
the ratio of profit and resource consumption per item. In the multidimen-
sional extension these utility ratios are defined as pj/

∑m
i=1wiaij , where the

vector w is of dimension m and represents a weighting of the resource co-
efficients. In [ST68] Senju and Toyoda presented an algorithm which starts
by setting all variables to one and then successively remove items according
to ascending utility ratios until the solution is feasible. After having at-
tained feasibility all removed items are checked whether they fit in the slack
capacity. In contrast to such a dual heuristic which starts from an infeasi-
ble solution, primal heuristics have been published (e.g. [LM79]) that start
from a zero solution and add items according to increasing utility ratios as
long as no constraint is violated. It is noted that concepts of this greedy
approach also appear in metaheuristics, where repair operators or drop-add
moves use greedy like assignments of variables exploiting utility ratios. An
example can be found in [CB98] which describes the genetic algorithm that
is enhanced by a solution archive in this thesis. Other examples include
tabu search algorithms (e.g [DV93]).
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2.2.2 Relaxation Based Heuristics

Besides greedy heuristics mathematical programming as well as upper and
lower bounds have also been exploited in many heuristic approaches. One of
the most well known approaches for 0-1 programming is the Pivot and Com-
plement procedure developed by Balas and Martin [BM80]. Their procedure
uses the solution of the LP relaxation and transforms the fractional solution
into an integer solution with a sequence of pivots. Finally a local search
is performed to improve the attained integer solution. Good results were
obtained on many types of 0-1 integer programs and the procedure has been
used in commercial solvers as well. A preprocessing procedure that produces
good feasible solutions has been presented by Balev et al. [BYFA08]. The
procedure generates a non-increasing sequence of upper bounds with the
LP relaxation and an increasing sequence of lower bounds with a dynamic
programming approach. With these sequences of bounds either optimality
is proven or variables can be fixed to their optimal values. Another heuris-
tic preprocessing approach was presented by Puchinger, Raidl and Pferschy
[PRP06]. In their Core Concept a core is defined as a subset of items that
are not fixed to 1 or 0 and undergoes optimization. To compute this sub-
set the LP relaxation of the problem instance is solved and the items are
ordered according to decreasing utility ratios, using the dual variables of
the LP solution as surrogate multipliers. The split interval is the interval
between the first and the last fractional item in this ordered sequence. The
center of this split interval is taken as the center of the core of fixed size.
All items with utility ratios greater than the utility ratios of items in the
core are set to 1 and the remaining items outside the core are set to 0. The
remaining subproblem was solved with different metaheuristic approaches.

2.2.3 Metaheuristics

Simulated annealing has been among the first attempts to tackle the MKP
with metaheuristic approaches. Genetic algorithms, tabu search, and neural
networks have also been published with varying results. Early developments
of genetic algorithms for the MKP have not shown satisfying results. One
problem with standard genetic algorithms is that infeasible solutions can
occur and they need to be penalized by the fitness function of the algorithm
as for example in [KBH94]. In 1996 Hoff, Løkketangen and Mittet published
an enhanced genetic algorithm, that allows only feasible solutions within
the population [HLM96]. The population was initialized with only feasible
solutions and if during any generation an infeasible string occurs in the
population, randomly chosen items are removed from the solution until no
constraint is violated. Chu and Beasley restricted all individuals in the
population of their genetic algorithm to the boundary of the feasible region
[CB98]. They used a special greedy like repair operator to transform each
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solution that is not on the boundary of the feasible region to one that lies
on the boundary. It has turned out that such repair and local improvement
strategies are essential for genetic algorithms in order to be competitive with
other state-of-the-art approaches. The algorithm of Chu and Beasley will
be discussed in more detail in chapter 3.

Tabu search techniques have also proven to be a promising approach to
tackle the MKP. Remarkable results in this area were reported by Vasquez
and Hao with a hybrid algorithm [VH01]. Their approach computes values
kmin and kmax which denote lower and upper bounds for the number of items
included in an optimal solution. An additional constraint

∑n
j=1 xj = k is

introduced and the LP relaxation of the resulting problem for each value
of k between kmin and kmax is solved and the obtained solutions are used
as starting point for a local tabu search with dynamic tabu list manage-
ment. Later Vasquez and Vimont improved the results by embedding this
algorithm in a heuristic preprocessing procedure which fixes variables to re-
duce the search space [VV05]. Their experiments on standard test instances
which are widely used in literature show the best solution in quality reported
so far for these test instances. A drawback of their approach is the rather
high computation time required for solving large instances.
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Chapter 3

Fundamentals and
Motivation

3.1 Principles of Genetic Algorithms

The concept of genetic algorithms has first been published in the seventies
by Holland in [Hol75]. An overview of genetic algorithms as well as refer-
ences for applications of genetic algorithms in various fields can be found
in [BBM93b] and [BBM93a]. There are numerous publications describing
the basic principle of genetic algorithms in detail (e.g. [Dav91], [G+89]) and
many textbooks on evolutionary and genetic algorithms. During the last few
decades genetic algorithms have been applied to a wide range of problems as
numerical function optimization, which received most focus during the first
period of research on genetic algorithms, image processing, combinatorial
optimization, machine learning, design and others.

The main idea of genetic algorithms is that the process of evolution in
nature is simulated. In nature the individuals of a species compete with
each other for resources. The individuals which are the most successful in
surviving and mating will have more offspring while the weak individuals
will have few or no offspring at all. Thus the genes that make an individual
successful will be spread over the population over time.

Genetic algorithms mimic this process by representing a population of
candidate solutions of an optimization or search problem with a population
of chromosomes in a suitable encoding. The fitness of a candidate solution
is determined by evaluating a fitness function. The individuals are given
opportunity to reproduce with other individuals depending on their fitness
so that the resulting offspring shares features from each parent. In a well
designed GA, the population will converge to an optimum. The following
section explains basic principles of Genetic Algorithms. A more elaborate
overview can be found in [BBM93b] and [BBM93a] or a textbook on Genetic
Algorithms (e.g. [G+89]).
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3.1.1 Coding and Fitness Function

Each candidate solution of the problem has to be represented by a chro-
mosome, which is the input for the fitness function. A chromosome is the
combination of all parameters that describe a candidate solution, called
genes. One possible coding for many problems is a binary string, where
each gene of a chromosome can only have the values 0 or 1. The fitness
function computes a single numerical value that should be proportional to
the “utility” or the “quality” of a solution represented by a chromosome.

3.1.2 Reproduction

During the phase of reproduction individuals are typically selected randomly
from the population to produce offspring for the next generation. The prob-
ability for individuals with a high fitness to be selected is greater than for
individuals with a low fitness. Typically, poor individuals may not be se-
lected at all while good ones can be selected several times. The main oper-
ation to produce offspring is a Crossover operator which takes two parent
chromosomes and produces one or two child chromosomes depending on the
crossover operator. A discussion on different crossover techniques can be
found in [BBM93a]. Usually some proportion of the offspring is produced
by simply duplicating parent chromosomes instead of performing a crossover
operation.

Mutation is usually applied to the offspring. Each gene is altered ran-
domly with a certain probability which is usually very low. The primary
goal of mutation in genetic algorithms is to (re-)introduce genetic material
unavailable in the population.

3.1.3 Generations and Convergence

There are two widespread models of genetic algorithms: Steady-state algo-
rithms and generational algorithms. In steady-state algorithms an initial
population is created which is evolved by replacing single chromosomes by
newly generated ones. Only one child individual is created at a time and
this individual usually replaces the worst individual in the population. In
contrast, generational algorithms create an initial population which is taken
as parent generation to produce an offspring generation. This process is
performed repeatedly.

In a well designed algorithm the population will evolve towards the global
optimum while diversity in the population decreases. If the majority of the
individuals share the same value for a gene, the gene is said to be con-
verged and if all of the genes have converged, the population is said to have
converged.
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3.1.4 Avoiding Duplicates in the Population

Raidl and Gottlieb [RG99] investigated the importance of phenotypic dupli-
cate elimination in the population of decoder-based evolutionary algorithms.
Such algorithms use a special indirect coding to represent candidate solu-
tions. Due to the common encoding redundancy many chromosomes that
differ in genotype (i.e. their genetic data is different) may be mapped to
the same phenotype (they map to the same candidate solution after the
decoding procedure is applied). Thus, these algorithms are susceptible to
premature convergence due to a loss of diversity in the population. With
duplicate elimination a newly generated solution is only accepted if it does
not already exist in the population. Raidl and Gottlieb have shown that
it is usually not sufficient to eliminate chromosomes which are genotypic
duplicates of chromosomes already contained in the population but it is im-
portant to perform a phenotypic duplicate elimination. Ronald used hash
tagging to prevent a loss of diversity in a genetic algorithm for the Traveling
Salesman Problem [Ron95].

While duplicate elimination has proven to be an effective measure for
maintaining population diversity, it only considers chromosomes that are
in the population at the time of generation of a chromosome to determine
whether to accept the newly generated chromosome or not. Kratica [Kra99]
improves the runtime performance of a genetic algorithm for the simple
plant location problem by caching the procedure for evaluating the fitness
function. His approach works well for problems where the length of the
chromosomes is relatively small but the evaluation of the fitness function is
computational expensive. Povinelli [Pov00] compared three different meth-
ods for saving computation time of genetic algorithms by saving the objective
value for each chromosome in order to avoid the reevaluation of the objec-
tive function. In many genetic algorithms most of the computation time is
needed for evaluating the fitness function. In [PF99] Povinelli suggests the
use of a hash table to save the evaluated fitness values for each chromosome
that occurs during the run of the algorithm. If the same chromosome is
reconsidered the value stored in the hash table can be returned saving the
computation time of reevaluating the fitness function. The three methods
compared also include a binary search tree, in which all chromosomes are
inserted and the third method is also based on the hash table method, but
the hash table only contains the fitness values for the chromosomes of the
last generation. It is noted however that Povinelli’s approach does not aim
to find alternate solutions once a duplicate chromosome is detected. Only
the cached fitness value is used and thus computation time is saved.

An approach that detects duplicates not only within the current popu-
lation but among all chromosomes that have been generated, and to replace
these duplicates with new candidate solutions that are constructed from the
duplicates, has not yet appeared in literature to my knowledge.
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3.2 Chu & Beasley’s Genetic Algorithm for the
MKP

The genetic algorithm chosen to be enhanced by a complete solution archive
is the algorithm proposed by Chu and Beasley in 1998 [CB98]. It was the
first implementation of a genetic algorithm for the MKP to be competitive
with other heuristic approaches. In this section this algorithm is presented
in detail.

One problem with genetic algorithms for the MKP is the encoding of
candidate solutions and how to efficiently deal with infeasible solutions.
The direct representation, where the chromosome is a binary string that
corresponds to the solution vector of the integer linear program, allows for
chromosomes to represent each feasible and infeasible combination of items
to be packed. It is useful to classify this search space and define different
regions of it [Got00].

3.2.1 The Boundary of the Feasible Region

Let S = {0, 1}n be the entire search space. Clearly S contains infeasible and
feasible solutions with respect to the MKP. The feasible region F is defined
as follows:

F =
{
x ∈ S |

n∑
j=1

aijx ≤ ci for all i ∈ {1, . . . ,m}
}

The infeasible region U is defined as S \ F . Let ≺ be a binary relation over
S × S that is defined as follows:

x ≺ y ⇔ d(x, y) = 1 and xj < yj for some j ∈ {1, . . . ,m}

where d : S × S → N is the Hamming distance. Consider solutions x and y
which satisfy x ≺ y. The following statements can be easily verified:

1. If y ∈ F then x ∈ F .

2. If x ∈ U then y ∈ U .

3. y has a higher profit than x.

If y ∈ F then x cannot be a global optimum because of 1 and 3. Furthermore
the set X = {x ∈ S | x ≺ y} is a subset of F and does not contain a global
optimum. Thus large amounts of the feasible region cannot contain a global
optimum. Suppose x∗ to be a global optimum. The set Y = {y ∈ S | x∗ ≺ y}
is a subset of U . The most interesting part of the search space is the boundary
B of the feasible region which represents all solutions that are feasible, but
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turn infeasible if any single item that is not included is added. Thus, B is a
subset of F that is defined as follows:

B = {x ∈ F | x ≺ y → y ∈ U}

All global optima are located within B, and thus a search algorithm that
focuses the search on B will typically find an optimal solution with a higher
probability than an algorithm that focuses the search on F or S.

3.2.2 Chromosome Representation and Fitness Function

The most obvious way to represent solutions as chromosomes is to use the
incidence vector x, since this directly represents the underlying 0-1 integer
variables. One problem with this representation, however, is that the in-
dividuals are not restricted to the feasible region F of the search space S
when considering standard initialization, recombination and mutation op-
erators. Thus infeasible solutions can also occur in the population. There
exist simple standard ways to deal with this problem.

• A different, indirect representation can be used that ensures that no
infeasible solution is generated. For the MKP a permutation based
representation used with a decoding routine is an example for such
a representation. The decoding routine adds the items in the order
according to the permutation as long as the items fit in the solution.
Raidl and Gottlieb presented an overview of different representations
for the MKP [RG05].

• A penalty function is applied to penalize infeasible solutions. An
overview of GAs that use a penalty function can be found in [Got00].
In general, however such approaches work out to be less effective for
the MKP.

• A special heuristic repair operator is used that transforms each in-
feasible solution into a feasible solution. The algorithm that is used
as basis in this thesis applies such an operator to each feasible and
infeasible solution.

• Instead of using standard initialization, recombination and mutation
operators, special operators can be implemented that assure that fea-
sibility is maintained. This approach, however, basically adds up to
heuristic repair operators mentioned above.

The algorithm of Chu and Beasley that is used in this thesis uses binary
string chromosomes.
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3.2.3 Parent Selection, Mutation and Crossover

Parent selection is the task of selecting individuals of the population to pro-
duce child individuals. Typically two individuals are used to derive one (or
more) children. The method used in this algorithm is the binary tournament
selection. In tournament selection a pool of k individuals is drawn from the
population randomly. The individual with the best fitness is chosen as one
parent individual. Further parents are selected in the same way. The larger
the pools are, the larger the selection pressure gets. For binary tournament
the pool size is k = 2.

There are different standard crossover operators that are widely used
with binary string chromosomes: One-point crossover, two-point crossover
and uniform crossover. For one-point crossover one single crossover point is
needed which is typically drawn randomly. All data in the chromosomes be-
yond this crossover point is swapped between the two parent chromosomes.
The resulting chromosomes are the children. Figure 3.1 illustrates one-point
crossover. Two point crossover is essentially the same as one point crossover
with the difference that two crossover points are selected. Figure 3.2 de-
scribes two-point crossover. A generalization of these crossover operators is
k−point crossover where k crossover points are selected.

parents

children

crossover point

Figure 3.1: One-point crossover

parents

children

crossover points

Figure 3.2: Two-point crossover

The uniform crossover operator creates a child chromosome of the parent
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chromosomes by selecting for each gene in the child chromosome randomly
with a certain probability (typically 0.5) whether it is taken from the first
or the second parent.

Since binary string representation was chosen for the chromosomes a
wide range of crossover and mutation operators for can be used. Chu and
Beasley have chosen uniform crossover as as the default crossover operator
for their genetic algorithm.

For each child that is generated by crossover a mutation procedure is
applied, that introduces small changes to a chromosome. The value of some
bits that are randomly selected is changed from 0 to 1 or vice versa. The
probability for a bit to mutate is chosen so that on average two bits of the
string change.

3.2.4 Repair Operator

The solutions generated by the mutation and crossover operator may not
be feasible. A heuristic repair operator is applied to maintain feasibility
for all solutions. Further more the repair operator does not only “repair”
solutions that lie in the infeasible region U but it also locally optimizes
all feasible solutions by transforming them into boundary solutions. Thus
every solution that is generated by the crossover and mutation operator
is transformed into a solution that is contained in the boundary B of the
feasible region.

Most greedy like heuristics as the ones presented in the previous chapter
use the notion of utility ratios. As the surrogate relaxation of the MKP
aggregates all knapsack constraints into a single constraint (see section 4.5.1)
this provides an easy way to compute utility ratios. The utility ratio of an
item is then defied as pj/

∑m
i=1wiaij where wi are non negative weights.

The selection of the weights is a crucial task and it influences the quality of
the heuristic that uses the utility ratios. A simple method to compute the
weights wi is to take the dual variables of the optimal solution of the LP
relaxation of the original problem.

Chu and Beasley designed a repair operator that consists of two phases.
The first part called DROP phase ensures that every solution that was pro-
cessed by this DROP phase is feasible. Each variable is examined in as-
cending order of utility ratios and as long as the solution is infeasible the
current item examined is excluded from the solution if it was included. The
second part, called ADD phase, examines all items in decreasing order of
utility ratio and adds each item that is not included in the solution as long
as no resource constraint gets violated. Algorithm 1 shows the pseudo-code
for this repair operator.

The idea behind the algorithm is to remove elements from any infeasible
solution until it is feasible and then to transform it into a boundary solution
by adding all items that fit in the resulting temporary solution. The idea
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Algorithm 1 GreedyRepair
Input: Solution vector x sorted according to ascending utility ratios
Output: Boundary solution vector

1: Rk ←
∑n

i=1 aikx[i] ∀k ∈ {1, . . . ,m}
2: j ← n
3: while (Rk > ck for any k ∈ {1, . . . ,m}) { // DROP phase
4: if (x[j] = 1) {
5: x[j]← 0
6: Rk ← Rk − ajk ∀k ∈ {1, . . . ,m}
7: }
8: j ← j − 1
9: }

10: for j = 1 . . . n { // ADD phase
11: if (x[j] = 0) and (Rk + ajk < bk ∀k ∈ {1, . . . ,m}) {
12: x[j]← 1
13: Rk ← Rk + ajk ∀k ∈ {1, . . . ,m}
14: }
15: }

behind the utility ratios is to remove the items with the lowest profit per
weight ratio and to add items with the highest profit per weight ratio as
possible. The worst case runtime of this algorithm is O(nm) as can be
easily seen, since each operation in the loops (addition of items and check
for feasibility) has a worst case runtime of O(m).

3.2.5 Initialization

The initial population is set up as follows. Instead of simply creating ran-
dom solutions taken from the entire search space S and then applying the
repair operator on each individual of the population, Chu and Beasley use a
special initialization routine which ensures that all individuals of the initial
population are feasible. The initialization routine starts by setting all com-
ponents of the solution vector to 0. Then a random permutation of all items
is generated and the items are added in order of this random permutation.
The algorithm stops when the first item is encountered that does not fit in
the solution. Algorithm 2 illustrates this routine.

3.2.6 The Genetic Algorithm

The algorithm framework is steady-state and a new candidate solution re-
places the worst chromosome in each iteration. Duplicate elimination is
also performed which means that if a solution generated by crossover and
mutation is identical to a solution already contained in the population, the
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Algorithm 2 Initialize
Input: Uninitialized Solution vector x
Output: Initialized Solution vector

1: x[i]← 0, for all i ∈ {1, . . . , n}
2: Rk ← 0 ∀k ∈ {1, . . . ,m}
3: Generate a random permutation Π of {1, . . . , n}
4: k ← 0
5: i← Π[k]
6: while (Rk + aik < bk ∀k ∈ {1, . . . ,m}) {
7: x[i]← 1
8: Rk ← Rk + aik ∀k ∈ {1, . . . ,m}
9: k ← k + 1

10: i← P [k]
11: }

solution is discarded and a new child is generated. Algorithm 3 shows the
pseudo code of the genetic algorithm.

Algorithm 3 GA
1: initialize P // initial population
2: evaluate each chromosome x ∈ P
3: find best chromosome x∗ ∈ P
4: iter ← 0
5: while (iter < MAXITER) {
6: select (x1, x2) // select 2 chromosomes with binary tournament
7: y ← Crossover(x1, x2)
8: y ← Mutate(y)
9: y ← GreedyRepair(y)

10: if (y ≡ x for any x ∈ P ) {
11: goto 5
12: }
13: find worst chromosome xmin ∈ P
14: replace xmin with y
15: evaluate y
16: if (y better than x∗) {
17: x∗ ← y
18: }
19: iter ← iter + 1
20: }
21: return x∗
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3.3 Complete Solution Archive

3.3.1 Goals for a Solution Archive

A solution archive enhancing the genetic algorithm should have the following
properties:

• Duplicate detection: Each solution should be inserted into the
archive so that all duplicates can be detected.

• Excluding parts of the search space: The solution archive should
allow for marking completely evaluated parts of the search space in the
archive and deleting them from the archive and thus excluding them
from search space.

• Alternative solutions: Upon insertion of a duplicate solution it
should be possible to generate a similar unique solution to replace the
duplicate.

• Detect Complete Evaluation: The archive should permit the de-
tection whether the complete search space has already been evaluated.

Duplicate Detection

The first goal mentioned above differs from the duplicate elimination method
that is used in Chu & Beasley’s algorithm. The method that is performed
in the genetic algorithm of Chu and Beasley (see line 11 of Algorithm 3)
only detects duplicates that are contained in the population at the time
of generation of the duplicate solution. It is however possible and not so
unlikely that a candidate solution that was replaced by a different solution
is generated again in a later iteration. This kind of duplicate occurrence
should be detected with the help of the solution archive

Excluding Parts of the Search Space

The second goal mentioned above is necessary to efficiently identify parts
of the search space that are completely evaluated. Furthermore if all such
parts can be marked in the archive and the memory that is occupied by
solutions located in such a part can be freed, this can significantly reduce
the resource requirements of the archive.

Alternative Solutions

Upon detection of a duplicate solution it is desired to derive an alternative
solution from the duplicate solution that is not contained in the solution
archive. Thus, the solution archive should be implemented with a data
structure that not only permits the detection of duplicate solutions but also
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permits to generate alternative unvisited solutions not only by proceeding
with the genetic algorithm, but to actively search for such alternative solu-
tions. This search can be simplified if evaluated parts of the search space
(and thus parts where no such alternative solutions can be located) can be
marked in the archive as mentioned above.

Detect Complete Evaluation

If the complete search space has been evaluated, the genetic algorithm should
terminate. This is only possible if the solution archive permits to detect
whether all solutions are already contained in the archive and no alternative
unvisited solution exists.

3.3.2 Suitable Data structure

A suitable data structure needs to be chosen that satisfies all requirements
stated above. The applicability of a hash table, a binary tree as well as a
Trie is compared in this section.

• Hash table: The first requirement stated above (duplicate detection)
can be achieved with a solution archive based on a hash table. Each
solution that is already contained in the hash table can easily be iden-
tified as duplicate when inserting it a second time in the archive. The
exclusion of parts of the search space however cannot be achieved with
a hash table if no additional data structure is used. Upon inserting a
solution a plain hash table cannot indicate whether the solution lies
in an excluded part of the search space. The exclusion of completely
evaluated parts of the search space is crucial for detecting the complete
evaluation of the search space as well as for searching for alternative
solutions. Basically the only operation that a hash table based archive
offers is to insert a solution and to tell whether a solution is contained
in the archive. Thus it does not fulfill all requirements stated above.

• Binary search tree: As for hash tables a binary tree allows for
detecting any duplicate solution that is inserted into the archive. The
second goal (excluding parts of the search space) cannot be performed
with a binary search tree. Consider an implementation where each
node represents a solution and the left sub tree contains only “smaller”
solutions and the right sub tree contains only “greater” solutions (the
keys for comparing the solutions are binary strings that are interpreted
as binary numbers). Excluding the left or right sub tree of a tree node
from the search space will eliminate a greater region of the search space
than a region that is defined by a certain prefix. It is however desired
to be able to exclude regions of the search space that are defined by a
certain prefix of the solution string.
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To actively search for boundary solutions that are not included in the
tree, the structure of the Trie cannot easily be used since the location
of a solution in the tree and a descent from the root to the solution
does not give us enough information to determine whether a solution is
a boundary solution. There are further disadvantages of binary search
trees that are discussed later in this chapter.

• Trie: A Trie based archive can overcome the drawbacks of hash tables
and binary search trees that are explained above. The exclusion of
parts of the search space that are defined by a certain prefix can easily
be implemented since each level of the Trie corresponds to an item
of a problem instance and a sub Trie of Trie node corresponds to all
strings that share the same prefix. The nodes of a Trie do not contain
the records (solutions) that are stored in the Trie and thus the size of
each node is very small. In contrast to hash tables and binary search
trees alternative boundary solutions can be searched in the archive. It
is even possible to detect whether all boundary solutions are already
contained in the archive and to terminate the genetic algorithm in this
case.

Performance Improvements

The repair operator can be easily extended to compute the fitness function
while “repairing and optimizing” a chromosome. The worst case runtime
of the extended repair operator is O(n(m+ 1)) which is asymptotically the
same as O(nm). Each time an item is removed or added the resource con-
sumption for each of the m resources needs to be updated as well as the
overall profit. If the fitness values are stored in the solution archive the
benefit in computation time would not be very large because the repair op-
erator has to be performed once for each chromosome and the runtime of the
repair operator is O(nm) while the runtime of the evaluation of the fitness
function is O(n). The saved fitness value only saves the effort of reevaluating
the fitness function for duplicate chromosomes which gets negligible in com-
parison to the effort of applying the repair operator for instances with large
m. Thus the solution archive does not need to store the fitness values to
save the time of reevaluation since the performance improvement would be
negligible compared to the extra memory needed to store the fitness values.

3.3.3 Trie

A Trie (derived from retrieval) is a data structure that is suitable to store
many strings. The name was first suggested in [Fre60]. It is a kind of
specialized search tree that makes use of the string representation of the
keys to be inserted into the Trie. The difference to binary search trees is
that no node in the Trie stores the string that is associated with it, but the
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position of each node relative to the root node determines the string that is
represented by a node. Tries are very efficient for implementing a dictionary
which is a common application for a Trie.

There exist many different kinds of Tries such as Radix Tries, Indexed
Tries, Packed Tries, Linked Tries and others. A more detailed discussion
on Trie data structures can be found in [Knu73] and [Gus97].

In indexed Tries each node has in general m child nodes if the strings
to be inserted are composed of a character set with m characters. The
pointers to the child nodes are stored in an array and thus the access of a
child node corresponding to a given character can be performed by indexing
the corresponding pointer in the array. Additionally flags are used to mark
the end of a word. This is especially important if a word is a prefix of
another word stored in the Trie (e.g. the words the and theater).

The size of indexed Tries can be compacted by using suffix compression,
linked Tries or packed Tries which are compacted variants of indexed Tries
that use less memory.

A Radix Trie is a special kind of binary tree that contains records that
are ordered according to a key that is a binary string S of fixed length.
Only the leaf nodes contain the data records while the internal nodes are
only router nodes that have a maximum of two child nodes. A router node
on level i has the property that in its left sub Trie only records are stored
for which Si (the i-th bit of the key) is 0 and the right sub Trie contains
only records with Si = 1. The leaf nodes are attached at a router node the
highest possible level so that the key can be uniquely identified among other
keys that share a common prefix. Thus no unnecessary router nodes are
contained in the Trie.

Binary Trie

For the solution archive a binary Trie similar to the Radix Trie was selected
to store the solution strings. Since the records to be stored (solution strings)
can be used as keys the leaf nodes do not need to contain a record. The
position of a leaf node is sufficient to identify the corresponding solution.
However, a solution can only be uniquely identified by a leaf node at the
lowest level of the Trie. Thus, even if only one solution is contained in the
Trie all internal nodes on the path from the root to the leaf corresponding
to the solution string are needed to describe the solution. Since all solutions
are described by strings of the same length, all leaf nodes are placed at the
same level of the Trie. Thus the Trie has a height of n levels for an MKP
instance with n items. The binary Trie in Figure 3.3 for example contains
the binary strings 001, 011, 110 and 111 that correspond to solutions of
an MKP instance with 3 items. The operations for inserting, searching
and deleting of strings in the Trie all exhibit a worst case runtime of 0(n).
Algorithm 4 illustrates the insertion of a string in such a Trie. Since each
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Figure 3.3: A Trie for binary strings

node has only two child nodes they can be named left (indicating a 0 for the
corresponding bit in the string) and right (indicating 1). The retrieval of

Algorithm 4 Insert(x, r)
Input: string x to be inserted, root node r
Output: leafnode representing the string that was inserted

1: node← r
2: for i = 1 . . . x.length {
3: if x[i] = 0 {
4: if node.left =NULL {
5: node.left = new node
6: }
7: node← node.left
8: } else {
9: if node.right =NULL {

10: node.right = new node
11: }
12: node← node.right
13: }
14: }
15: return node

a string is illustrated in Algorithm 5 and the deletion of a string is depicted
in Algorithms 6 and 7. It is easy to see that Algorithms 4, 5, and 6 exhibit a
worst case runtime of O(n). Algorithm 7 also exhibits a worst case runtime
of O(n) since the sub Trie to be deleted by this algorithm is in fact only a
linked list that does not contain any branches.

Advantages over Binary Search Trees

As mentioned above a binary Trie is the data structure that fits best to
the requirements of the solution archive. Furthermore a Trie has significant
advantages over a binary search tree in a scenario like this.
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Algorithm 5 Search(x, r)
Input: string x to be searched, root node r
Output: whether the string was found

1: node← r
2: for i = 1 . . . x.length {
3: if x[i] = 0 {
4: if node.left = NULL {
5: return false
6: }
7: node← node.left
8: } else {
9: if node.right =NULL {

10: return false
11: }
12: node← node.right
13: }
14: }
15: return true

• Looking up keys (in this case solution strings) is faster than with binary
search trees. The height of a well balanced binary search tree is in
O(log(k)) where k is the number of solutions inserted into the binary
search tree the and thus the number of key comparisons to be made
for searching or inserting a solution is in O(log(k)). The comparison of
the keys (binary strings of length n where n is the number of items in
the MKP instance) is in O(n). Thus the wost case time for inserting,
searching and deleting solutions is in O(nlog(k)) which is greater than
O(n) for the binary Trie.

• In many cases the Trie requires less memory because the strings do
not need to be stored in the nodes and nodes are shared by strings
that have a common prefix.

• A Trie cannot degenerate to a linked list as a non-balanced binary
search tree can. The balancing of a binary search tree needs some
effort that is not needed when a Trie is used.

3.3.4 Size of Search Space

Section 3.2.1 gives an overview on how the entire search space can be clas-
sified. An ordinary genetic algorithm that uses binary string chromosomes
and does not use a special repair and optimization operator will generate
solutions that are contained in the entire search space and thus can be con-
tained in either the feasible region F or the infeasible region U . The repair
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Algorithm 6 Delete(x, r)
Input: string x to be deleted from Trie, root node r, index i

1: node← r
2: delete← r
3: for i = 1 . . . x.length {
4: if x[i] = 0 {
5: if node.left =NULL {
6: String not contained
7: }
8: if node.right 6= NULL {
9: delete← node.left

10: }
11: node← node.left
12: } else {
13: if node.right =NULL {
14: String not contained
15: }
16: if node.left 6= NULL {
17: delete← node.right
18: }
19: node← node.right
20: }
21: }// delete is the root node of the sub Trie to be deleted
22: Free(delete)

Algorithm 7 Free(r)
Input: Root r of sub Trie to be freed from memory

1: if r 6= NULL {
2: Free(r.left)
3: Free(r.right)
4: delete node r
5: }

operator presented in 3.2.4 does not only ensure that each solution lies in
F but also optimizes each solution so that finally only solutions that are
contained in B are generated. Clearly the size of B is only a fraction of the
size of S and in general there will be many solutions that are generated by
a crossover and mutation operator that map to the same solution in B after
applying the repair operator. Thus the probability for identical solutions to
occur during the reproductive phase of this genetic algorithm is higher than
for an ordinary genetic algorithm.

As can be seen in chapter 6, the number of duplicate individuals that
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can be detected with a solution archive is much higher than the number of
duplicates that are detected with the duplicate elimination method that is
implemented by the genetic algorithm. For the large instances from Chu
and Beasley (n = 500,m = 30) more than half of the generated solutions
can be identified as duplicates and for smaller instances (n = 250,m = 10)
about two thirds or more of the solutions are duplicates.

3.3.5 Information Gained from Solution Archive

A solution archive based on a Trie has significant advantages over a solution
archive based on a hash table. The structure of a binary Trie based archive
represents the entire search space for the MKP. This enables more opportu-
nities how to handle the detection of a duplicate. While with a hash table
based solution archive the only action that can be efficiently performed is to
discard the duplicate and proceed with the genetic algorithm, a Trie based
solution archive allows us to actively search for an alternate solution in the
neighborhood (i.e with a small Hamming distance to the original solution)
that is not contained in the solution archive. Furthermore the Trie struc-
ture permits the exclusion of parts (sub Tries) of the search space that either
have been evaluated completely or that can be shown not to contain any so-
lution that is better than the best solution found so far. The latter can be
implemented by the computation of upper bounds during the insertion of
chromosomes in the solution archive.

3.3.6 Resource Requirements

Today, as even large amounts of memory are relatively cheap, a Trie based
solution archive does not pose a problem in regard to resource requirements.
Modern computers today have several Gigabytes of main memory. The
amount of memory needed for such a solution archive depends on the size
of the problem instance (the number of constraints is irrelevant), the im-
plementation of the Trie based archive and the order in which the levels of
the Trie correspond to items of the problem instance. Whether the size of a
Trie based solution archive is greater or smaller than the size of a hash table
based archive cannot be stated generally since it depends on many factors
as stated above. An analysis of the size of the Trie based solution archive
can be found in section 6.2.2. In the worst case the Trie requires an amount
of memory with is close to kns if k � 2n where k is the number of solutions
contained in the Trie, n is the number of items of the problem instance
ans s is the size of a Trie node. This situation occurs if all solutions that
included in the archive share the shortest common prefix possible, i.e. all
branches in the Trie are at levels near the root so that only few Trie nodes
are shared among the solutions. A complete Trie where all solutions (all
possible strings) are included requires an amount of memory equal 2n+1s.

30



The enhancements of the Trie to exclude parts of the search space that are
discussed in the next chapter avoid such a scenario even for small scale in-
stances where all solutions can be generated by the genetic algorithm within
reasonable time.
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Chapter 4

A Trie Based Solution
Archive

This chapter presents a complete solution archive for Chu & Beasley’s ge-
netic algorithm. The data structure as well as all algorithms that operate
on the Trie are explained in detail.

4.1 Definitions

Throughout this chapter the terms solution and chromosome will be used
to identify any binary string of length n that represents either a feasible
or an infeasible solution. These terms will be used interchangeably. A ‘1’
in the binary string at index i means that the item corresponding to this
index is contained in the solution whereas a ‘0’ denotes the absence of the
item. The term boundary solution will be used for solutions contained in B,
i.e. solutions that cannot be improved by adding items and thus are locally
optimal.

The solution archive consists of a Trie as it is explained in 3.3.3. The
Trie explained in the last chapter always has a height of n for an instance
with n items and the leaf nodes that are located at the lowest level in the
Trie represent the candidate solutions that are inserted in the Trie. To allow
for marking completely evaluated regions of the search space the Trie has to
be enhanced. An inner node at level i of the Trie as defined in the previous
chapter represents a set of solutions that all share the same prefix of length
i. The set of solutions that is contained in the sub Trie of this inner node
corresponds to all leaf nodes of the sub Trie. To mark and exclude such a
set of solutions from the search space the corresponding inner node needs to
indicate the exclusion of its sub Trie. This enhancement can be accomplished
by storing a special value in the pointer to the corresponding sub Trie and
thus no additional memory is needed. In section 4.1.2 we will see that for
each boundary solution an inner node can be found that is the root of a sub
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Trie that does not contain any feasible solution other than the boundary
solution. This sub Trie can be marked and eliminated without evaluating
it.

4.1.1 Trie Nodes

Each node of the Trie contains only two pointers – one for the left child and
one for the right child of the node. The meaning of these pointers depends
on the value they contain:

• NULL: If the value of the pointer is 0 this means that no chromosome
is contained in the Trie that would be located in the corresponding sub
Trie. Obviously before inserting the first chromosome in the Trie the
pointer to the root contains the value NULL.

• COMPLETED: This indicates that all chromosomes that are located
in the sub Trie of the corresponding pointers have already been eval-
uated and that each chromosome that is to be inserted and would be
located in this sub Trie is considered a duplicate solution.

• Anything else: All other values denote the address of the node that
is a child node of the node containing the pointer.

For the Trie nodes the following properties hold:

• Leaf nodes at level n (for instances with n items), that represent so-
lutions have no child nodes.

• Leaf nodes at a level smaller than n contain one NULL pointer and
one COMPLETED pointer. An inner node that contains two NULL
pointers would be unnecessary because it would neither represent a
solution nor a completed region of the search space. A pointer that
contains two COMPLETED pointers would be redundant because the
pointer to it at the parent node could contain the value COMPLETED.

• All inner nodes have at least one child node

4.1.2 Representation of Boundary Solutions in the Trie

The genetic algorithm that is enhanced by the solution archive only gener-
ates boundary solutions. All solutions outside the feasible region are trans-
formed to feasible solutions by the repair operator and all solutions which
are contained in F \B are locally optimized so that they lie on the boundary
region B. Since only boundary solutions are relevant for the solution archive
all trailing 0s in the binary string representing a boundary solution can be
omitted, because each of the trailing 0s represents an item that would make
the solution infeasible if added. Therefore solutions in the Trie have the
following properties:
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• Each (feasible or infeasible) solution is represented by a leaf node in
the Trie.

• Each boundary solution can also be represented by the last right child
node on the path from the root to the leaf that describes the boundary
solution since this is the only feasible solution the sub Trie contains.
(See node c in Figure 4.1)

• Considering the sub-Trie in which boundary solution a is the rightmost
leaf, this sub-Trie does not contain any better solution (and therefore
also boundary solution) with a depth smaller or equal than the depth
of a. (Node a in Figure 4.1)

• Two different boundary solutions always have a Hamming-Distance of
at least 2.

A naive approach would be to map the levels of the Trie to the items of the
problem instance in decreasing order of utility ratios as used in the repair
operator described above. But it is also possible to use a different order for
the Trie levels as explained in section 4.6

Example: Consider the problem instance given in table 4.1 with n = 4
and m = 1 and the capacity of the knapsack equal to 18.

item 1 2 3 4
profit 9 5 7 6

weight 5 3 8 7

Table 4.1: Small example instance

a b

no boundary solution

cx y

infeasible solutions

item

12

3

4

1

1

1

1

1

1

1 1

1

1 1

1

11 1

0

0

00

0

0

0 0 0 0 0

0

00 0
c

Figure 4.1: Complete solution Trie
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This instance has 16 distinct solutions of which two are infeasible and
three are boundary solutions. The leaf nodes a, b and c in Figure 4.1 repre-
sent the three boundary solutions 0111, 1011 and 1110. Note that boundary
solution c can also be represented by node c since the sub Trie of this node
does not contain any other feasible solution than c. Thus the pointer to
node c can be marked COMPLETED.

The structure of the Trie (regardless of the order in which the levels
of the Trie correspond to the items of the problem instance) allows a very
easy computation of upper bounds at each level in the Trie. This can be
incorporated to mark certain regions of the Trie as completed even though
not all boundary solutions have already been visited in that sub-Trie. The
existence of an upper bound which is smaller than the best solution found
so far guarantees that no solution is excluded from the search space that
is better than the best solution found so far. Section 4.5 describes this in
detail.

Note that in the pseudocode for the algorithms presented in this chapter
only a check for the value COMPLETED is performed on the pointers of a
node since this is the only value that prohibits to descend further down the
Trie. If the value is either NULL or anything else the descent may proceed.
In this case a new Trie node has to be allocated if the value was NULL.
For the sake of simplicity this check for the value NULL and the allocation
of a new Trie node is not included in the pseudocode for the algorithms
presented in this chapter.

4.1.3 Procedures

There are three main procedures that operate on the Trie.

• insert: This procedure takes a chromosome and inserts the chromo-
some into the Trie. If the chromosome is not already contained in the
Trie this procedure returns true. If the chromosome to be inserted is
already contained in the Trie false is returned.

• find alternate: This procedure takes a chromosome and searches for
an alternative boundary solution that is not yet contained in the Trie.
If an alternative solution is found true is returned and the chromo-
some that was given as argument is changed so that it represents the
new solution. The only case this procedure returns false is when all
boundary solutions have been evaluated, i.e. the pointer to the root
node of the Trie has the value COMPLETED.

• is completed: This procedure returns true if all boundary solutions
are contained in the Trie and thus, the pointer to the root node has
the value COMPLETED.
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For each chromosome that is generated by the genetic algorithm the
procedure is completed is called and if false is returned insert is called.
If insert returns false the procedure find alternate is called to obtain
an alternative boundary solution that is not a duplicate of any candidate
solution generated so far. If find alternate or is completed returns false
the genetic algorithm terminates, indicating that the optimal solution has
been found.

The procedure find alternate uses many sub procedures to perform
the task of searching for alternative solutions. In this chapter all impor-
tant algorithms required to implement the archive and the above mentioned
procedures are presented.

4.2 Handling of Duplicates

If the insertion of a boundary solution fails because the solution to be in-
serted lies in a region of the Trie that is marked as COMPLETED (Al-
gorithm 4 can easily be enhanced to detect this), the insertion will fail.
The procedure find alternate transforms the solution into an alternate
boundary solution that has not yet been visited and hence does not lie in
a completed region of the Trie. To transform a boundary solution to an
alternate boundary solution, at least one item has to be unpacked and the
freed capacity needs to be filled by other items.

4.2.1 Requirements for a Search Algorithm

An algorithm that searches for an unvisited boundary solution in the Trie
starting from an already visited solution should have the following proper-
ties:

• Only boundary solutions should be returned by the algorithm.

• Boundary solutions in the neighborhood (small Hamming-Distance) of
the duplicate solution should be returned in favor by the algorithm.

• The algorithm should ideally run in O(nm) time.

• Sub-Tries that do not contain any unvisited boundary solution should
be marked as completed and freed from memory.

• It should be possible to control the probability for an item to be re-
placed by the algorithm. Possible approaches include equal distribu-
tion over all items as well as probabilities based on the pseudo utility
ratios or normal distribution.

• If an unvisited boundary solution exists it should be returned by the al-
gorithm. If no unvisited boundary solution exists the algorithm should
terminate and indicate that the entire search space has been evaluated.
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All of the above mentioned properties cannot be completely satisfied at the
same time. The generation of an alternate boundary solution in the neigh-
borhood of an already existing boundary solution means that one or more
items have to be unpacked, and at least one item which is not part of the
initial solution has to be added. A guaranteed worst case runtime of O(nm)
seems hard to achieve if possible at all. A guarantee that unvisited bound-
ary solutions are found and returned by the algorithm, if any exist, is very
important. The selection of an item to be unpacked from the initial solu-
tion can have an effect on the Hamming-Distance of the generated solution.
If an item with very large resource consumption is chosen to be unpacked
and the resulting “space” in the knapsack is large enough to accommodate
any two items except the unpacked one, then the Hamming-Distance of
the generated boundary solution will be 3 even if boundary solutions with
Hamming-Distance of only 2 exist.

4.3 Search Algorithm

Since solutions with a small Hamming-Distance should be generated it is
best to start searching for a new boundary solution by unpacking a randomly
selected item or adding a randomly selected item to the initial boundary so-
lution. The index of the item to be removed or added is chosen randomly
(either equally distributed or normally distributed). Whether the item is
included in the solution determines whether the item will be added or re-
moved.

4.3.1 Search for Boundary Solution

Let f be the index at which the insertion of the solution into the Trie failed.
This index will be needed during the search for an alternate solution. The
following steps describe the procedure of searching for an alternate boundary
solution. In all algorithms that follow in this section the variables Rl contain
the resource consumptions for all m constraints as they were computed by
the repair operator.

Step1: Let P = (p1, p2, p3, . . . , pn), pi ∈ {0, 1} be the solution vector
which was returned by the greedy repair operator where pk represent the
items in the order of the levels of the Trie. Assume that P happens to be a
duplicate of a boundary solution which already exists in the Trie. An index
k is selected randomly from a normal distribution with µ = c and σ = 0.15n
where c is the index of the center of the core as defined in [PRP06]. If pk = 1
go to Step2a else go to Step2b.

Step2a: Remove item k (set pk = 0) and go to Step2c.

37



Step2b: Add item k (set pk = 1). The interim solution is infeasible now.
Remove items in reverse order of the solution vector starting from index f
without touching the item just added, until the interim solution is feasible. If
index 0 is reached without attaining feasibility “wrap around” and continue
to remove items starting from the last index until the solution is feasible.
The removal of the items is started at index f since this will ensure that
the solution vector changes before index f . If the solution vector would
only change beyond index f a descent into the Trie might follow the path
described by the initial solution vector and end up in the already completed
region of the Trie. Set k = −1 and perform Step2c.

step2c: While step3 does not return true perform boundaryCheck (see
section 4.3.2). If either step3 or boundaryCheck returns true a new boundary
solution was found.

Step3: In this step a new boundary solution is searched. Let x be the
input vector for this step. Start at the root of the Trie and perform a descent
along the path given by x except for levels in the Trie which represent an
item that is not included in x and with resource consumption smaller than
spare resources in x. At these levels the descent follows the right instead of
the left child of the corresponding node. If no completed region of the Trie
is entered a new boundary solution has been found. Mark the solution in
the Trie as completed (see 4.4). Algorithm 8 describes this step in detail.
If called from Step2a, k is the item that was just removed, so this item will
not be added (to prevent the generation of the same duplicate). If called
from Step2b k is set to −1 so any item may be added.

Note that this step is not guaranteed to generate a new boundary solu-
tion. This happens if the intended path has to be left because the path leads
to a completed region of the Trie. Being diverted to the left child during
the descent along x (see line 21 in Algorithm 8) means that an item which
would fit in the temporary solution cannot be added or has to be removed
respectively. After this diversion continue the operation of Step3 as if this
incident would not have happened in Algorithm 8. The resulting solution is
not guaranteed to be a boundary solution however it is marked as completed
in the Trie before it is analyzed if it lies on the boundary. This is shown in
4.3.2. If diverted to the right perform Step4 and return false. In both cases
Algorithm 8 returns false to indicate that the solution has to be analyzed
if it lies on the boundary of the feasible region.

Step4: Being diverted to a right child during the descent along x means
that an item which does not fit in the temporary solution has to be added.
If the resulting solution without the elements represented by nodes further
down the Trie is already infeasible, mark the infeasible branch as completed,
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Algorithm 8 step3
Input: Solution x, index k
Output: Whether a new boundary solution was found

1: found ← true
2: current ← root
3: for i = 1 to n {
4: if (x[i] = 0) and (Rl + ail > bl for any l ∈ {1, . . . ,m}) { // x gets

infeasible if item i is included
5: if current.leftchild 6= COMPLETED {
6: current ← current.leftchild
7: } else {
8: x[i]← 1
9: Rl ← Rl +ail ∀l ∈ {1, . . . ,m} // Add the resource consumption

of item i
10: x← handleRightDiversion(x, current, i)
11: return false
12: }
13: }
14: if ([i] = 1) or ((x[i] = 0) and (Rl + ail ≤ bl ∀l ∈ {1, . . . ,m})) {
15: if (current.rightchild 6= COMPLETED) and (i 6= k) { // we may

not add item k
16: current ← current.rightchild
17: if ([i] = 0) {
18: x[i]← 1
19: Rl ← Rl + ail ∀l ∈ {1, . . . ,m}
20: }
21: } else {
22: current ← current.leftchild
23: if ([i] = 1) {
24: x[i]← 0
25: Rl ← Rl − ail ∀l ∈ {1, . . . ,m}
26: }
27: found ← false
28: }
29: }
30: }
31: mark(x, found)
32: return found
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otherwise continue the descent along the intended path as long as the items
fit in the temporary solution. The resulting solution is marked as completed.
Algorithm 9 shows this in detail.

4.3.2 Check if a Solution Lies on the Boundary

The analysis whether a temporary solution x is contained in the boundary
region is very similar to step3. A descent from the root along the path
given by x is performed. As in step3 each item that is not included in x is
added if it does not violate any knapsack constraint. If this descent finishes
without entering an already completed region of the Trie the solution x was
not on the boundary (otherwise the descent would have ended up in the
node that was marked just before in step3 ) and the resulting solution x′ is
a new boundary solution. Mark this new boundary solution as completed
and return true.

If the descent reaches a completed region the remaining part of x (the
suffix for which the descent is not performed) has to be analyzed without
descending further down the Trie. This operation is equivalent to the sec-
ond part of the greedy repair operator presented in [CB98]. If however x
was changed before a completed region was reached (see lines 8 and 24 in
Algorithm 10), x was not not on the boundary, and by adding items it could
only be changed to a solution that lies in a completed region of the Trie.

If x is on the boundary true is returned. If it is not on the boundary
false is returned to indicate that the search for a boundary solution has to
be performed again. Algorithm 10 illustrates this procedure.

4.3.3 Runtime Analysis

The worst case runtime of the procedures presented above is O(nm) for step3
and boundaryCheck. These two procedures perform a descent through the
Trie and perform a check if an item can be added at each level of the Trie
if the corresponding item is not already included. The descent has a worst
case runtime of O(n) and a check whether a single item can be added runs in
O(m). The procedure handleRightDiversion gets called from step3 and per-
forms a descent only for the levels that step3 has not reached before calling
handleRightDiversion. Thus the runtime of handleRightDiversion is already
included in the runtime of step3. A worst case runtime of the complete algo-
rithm cannot be analyzed exactly because it depends on the solutions that
are contained in the Trie that influence the number of attempts to be made
before a new boundary solution is found. Though, computational results
show that the number of attempts to find a new boundary solution is on
average very small (see section 6.2.1).
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Algorithm 9 handleRightDiversion
Input: Infeasible solution x, TreeNode startnode, Integer k

1: current ← startnode
2: for i = k to n {
3: if (x[i] = 1) and (Rl −

∑n
j=i+1 x[j]ail ≤ bl ∀l ∈ {1, . . . ,m}) { // If

item i is included and x without items beyond i is feasible
4: if current.rightchild 6= COMPLETED {
5: current ← current.rightchild
6: } else {
7: current ← current.leftchild
8: x[i]← 0
9: Rl ← Rl − ail ∀l ∈ {1, . . . ,m}

10: }
11: } else if (x[i] = 1) and (Rl −

∑n
j=i+1 x[j]ail > bl for any l ∈

{1, . . . ,m}) { // If item i is included and x without items beyond i is
infeasible

12: if current.rightchild 6= COMPLETED {
13: Rl ← Rl −

∑n
j=i+1 x[j]ail ∀l ∈ {1, . . . ,m}

14: x[j]← 0, for i < j ≤ n
15: mark(x, true)
16: x[i]←= 0
17: Rl ← Rl − ail ∀l ∈ {1, . . . ,m}
18: return x
19: } else {
20: current ← current.leftchild
21: x[i]← 0
22: Rl ← Rl − ail ∀l ∈ {1, . . . ,m}
23: }
24: } else { // item i is not included
25: if current.leftchild 6= COMPLETED {
26: current ← current.leftchild
27: } else {
28: x[i]← 1
29: Rl ← Rl + ail ∀l ∈ {1, . . . ,m}
30: return handleRightDiversion(x, current, i)
31: }
32: }
33: }
34: mark(S, false)
35: return S

41



Algorithm 10 boundaryCheck
Input: Solution x
Output: Whether the solution lies on the boundary

1: current ← root
2: changed ← false
3: for i = k to n {
4: if (x[i] = 0) and (Rl + ail > bl for any l ∈ {1, . . . ,m}) {
5: if current.leftchild 6= COMPLETED {
6: current ← current.leftchild
7: } else {
8: if (changed = true) {
9: return false // x was not on the boundary

10: } else {
11: return onBoundary(x) // x may be on the boundary
12: }
13: }
14: }
15: if (x[i] = 1) or ((x[i] = 0) and (Rl + ail ≤ bl ∀l ∈ {1, . . . ,m})) {
16: if (current.rightchild 6= COMPLETED) {
17: current ← current.rightchild
18: if x[i] = 0 {
19: x[i]← 1
20: Rl ← Rl + ail ∀l ∈ {1, . . . ,m}
21: changed ← true
22: }
23: } else {
24: if (changed = true) {
25: return false // x was not on the boundary
26: } else {
27: return onBoundary(x) // x may be on the boundary
28: }
29: }
30: }
31: }
32: mark(x, true)
33: return true
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4.4 Marking Parts of the Trie as Completed

All solutions that are inserted into the Trie have to be marked so that during
insertion or search for alternate solutions duplicates can be identified. To
save memory, entire sub Tries should be deleted and marked to indicate
regions of the search space that are completely evaluated. When marking
the pointer to a child at a node as completed and the pointer to the other
child is already marked as completed the corresponding pointer at the parent
node can be marked as completed. This procedure is performed recursively.
The following sections describe which node may be marked for a certain
solution. The aim is to mark solutions at the highest possible level in the
Trie without eliminating parts of the Trie that possibly contain unvisited
boundary solutions.

4.4.1 Marking Boundary Solutions

a

b

(a) Boundary
Solution

a

b

(b) Solution with trailing 1’s

Figure 4.2: Marking parts of the Trie as completed

As explained in section 4.1.2, each new boundary solution can be viewed
as the last right child in the path that represents the solution before it is
marked as completed. The trailing zeros in the solution vector all represent
items, that do not fit in the solution. Thus, the last node that is the right
child of its parent (node a in Figure 4.2a) is the root of a completed sub
Trie because no other feasible solution (and therefore boundary solution)
can exist in this sub Trie. At the parent of this right child (node b in Figure
4.2a), the pointer to the right child can be marked as completed and the
corresponding sub Trie can be freed from memory. The procedure mark is
always called with 2 parameters from all procedures. The first parameter
denotes the solution string and the second parameter indicates whether the
solution may be marked at its last right child.
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4.4.2 Marking Non-Boundary Solutions as Completed

If the last k (k ≥ 1) components of the solution vector are equal to 1, i.e. it
contains k trailing 1’s, a greater sub Trie than only this leaf can be marked
as completed. Consider the last component xi of the solution vector x which
is equal 0 (node b in Figure 4.2b). The solution represented by node a is the
best solution within the sub Trie of node b and no other solution in this sub
Trie can be located on the boundary. This condition holds for both cases
when x represents a boundary solution and when x represents a solution
that is contained in F \B. Therefore the complete sub Trie can be marked
as completed at the parent node of the last left child.

a

b

(a) Before insertion

a

b

c

d

e

(b) after insertion

a

b

c

d

e not evaluated solutions

(c) after marking correctly

Figure 4.3: Marking non-boundary solutions

Non boundary solutions generated by one of the procedures explained
above cannot be handled that easy. In contrast to boundary solutions there
may be items represented by trailing zeros in the solution vector which would
fit in the solution but were not added during step3. This scenario can occur
in the following situation. Consider a solution x which is processed by step3
that has the following structure:

x = (x1, x2, . . . , xn−3 = 0, xn−2 = 1, xn−1 = 0, xn = 0)

Figure 4.3a represents the corresponding part of the Trie where x gets in-
serted (at node a item xn−3 determines the direction to follow). During the
operation of step3, with node a as current node, item xn−3 cannot be added
due to one or more resource constraints that would be violated. Thus step3
proceeds to node b in the next iteration. Then xn−2 has to be unpacked
because the right child of node b is marked as completed. Hence step3 pro-
ceeds to node c (Figure 4.3b). The result is solution x′ that has the following
structure:

x′ = (x′1, x
′
2, . . . , x

′
n−3 = 0, x′n−2 = 0, x′n−1 = 0, x′n = 0)

The remaining 2 items (xn−1 and xn) do not fit anymore into x′ and thus the
output of step3 is solution x′ which has to be marked as completed. Even
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though the last 4 items are set to 0 the last right child in this solution (node
a in Figure 4.3b) must not be marked as completed, because the sub Trie
with xn−3 = 1 (right sub Trie of node a) has not yet been completed and
boundary solutions (and even the optimal solution) may be located in this
sub Trie. Instead of marking the last right child of the solution as completed
a naive approach would be to mark the leaf of the solution (see Figure 4.3c).

The scenario described above however does not occur for all non bound-
ary solutions. There may be many non boundary solutions generated by
step3 in which all items represented by trailing zeros do not fit anymore
in the solution. For these solutions, it would be acceptable to cut off the
Trie at the last right child. Therefore it is necessary to identify such non
boundary solutions during the operation of step3.

The scenario described above, resulting in a non boundary solution that
must not be marked at its last right child (because containing trailing zeros
that represent items of which one or more would fit in the solution), is the
only scenario that can lead to such a solution. If the else block in line 21 of
Algorithm 8 is entered, an item which has initially been part of the solution
may be unpacked. If this happens, the solution must not be marked at its
last right child. The corresponding else-block however is also entered if an
item that is not part of the solution would fit in the solution but cannot
be added because the right child of the corresponding Trie node is already
marked as completed. In this case the situation described in 4.4.1 does not
apply. Thus it is safe to mark non boundary solutions at their last right
child, if during step3 no item that was initially part of the solution has
to be unpacked. Furthermore a solution may be marked at its last right
child if beyond the last right branch no item has to be unpacked regardless
of unpacked items before the last right branch. Algorithm 11 shows these
changes in step3. Note that the procedure mark can be called with the
second parameter having the value true even though the resulting solution
is not a boundary solution. The parameter will only be false if beyond the
last right branch an item had to be unpacked.

4.4.3 Optimized Marking for all Other Solutions

Sections 4.4.1 and 4.4.2 describe how for certain types of solutions a node
higher than the leaf node can be marked. If the rest of the solutions are
simply marked at the leaf nodes the performance of the search procedures
is degraded noticeable, which is demonstrated by the following example:

During step3 a solution was generated which can only be marked at
its leaf node. The item corresponding to node a in Figure 4.4 had to be
unpacked because the right child of a has already been marked. Items b
through d do not fit in the solution. So the solution is neither a boundary
solution nor can it be marked at its last right branch. Thus, only the leaf
node (node e) can be marked (Figure 4.4b). Since no boundary solution
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Algorithm 11 step3Enhanced
Input: Solution x, TreeNode root

1: found ← true
2: notunpacked ← true
3: current ← root
4: for i = 1 to n {
5: if (x[i] = 0) and (Rl + ail > bl for any l ∈ {1, . . . ,m}) {
6: if (current.leftchild 6= COMPLETED) {
7: current ← current.leftchild
8: } else {
9: x[i]← 1

10: Rl ← Rl + ail ∀l ∈ {1, . . . ,m}
11: x← handleRightDiversion(S, current, i)
12: return false
13: }
14: }
15: if (x[i] = 1) or ((x[i] = 0) and (Rl + ail ≤ bl ∀l ∈ {1, . . . ,m})) {
16: if (current.rightchild 6= COMPLETED) and (i 6= k) {
17: current ← current.rightchild
18: if ([i] = 0) {
19: x[i]← 1
20: Rl ← Rl + ail ∀l ∈ {1, . . . ,m}
21: }
22: notunpacked ← true
23: } else {
24: current ← current.leftchild
25: if (x[i] = 1) {
26: notunpacked ← false
27: x[i]← 0
28: Rl ← Rl − ail ∀l ∈ {1, . . . ,m}
29: }
30: found ← false
31: }
32: }
33: }
34: mark(x, notunpacked)
35: return found
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Figure 4.4: Costly repetitions of step3

was generated step3 has to be called again. Item a is the only item, that
would fit in the solution but since the corresponding sub Trie is already
marked, the algorithm proceeds to nodes b, c, and d. A right-diversion
occurs at node d resulting in the right child of d getting marked and thus d
getting marked itself (Figure 4.4c). This operation is repeated (Figures 4.4c
and 4.4d) until node a is marked and step3 will generate a solution in a
different sub Trie. The number of calls of step3, step4 and boundaryCheck
is performed k times where k is the number of levels between nodes a and
e. Since each run of step3 and the following procedures performs a descent
through the Trie from the root, this significantly affects the computation
time of the overall algorithm.

To overcome this problem the marking procedure has to be enhanced.
In the previous example only the leaf node of the solution can be marked
initially and all subsequent iterations only mark the next higher node. The
ideal case would be to mark node a in Figure 4.4.3 during the first iteration
to save the computation time of subsequent iterations.

If only the leaf node of a solution can be marked the procedure ascends
the Trie along the path representing the solution and stops at the fist node
that either represents an item that could be added (i.e. the item would fit
in the solution and the corresponding sub Trie is not yet marked) or at the
first node that is a right child. This node will be marked as completed.
Algorithm 12 shows this procedure. Note that in this Algorithm the father
of a Trie node is accessed. Since the Trie nodes only contain pointers to the
left and the right child the father of a node cannot be accessed directly. For
this purpose all nodes of the path from the root to a leaf are cached in an
array during the descent from the root to a leaf. When walking the Trie
up from this leaf node as in Algorithm 12 the array is used to determine
the father node of a node. For the sake of simplicity Algorithm 12 does not
make use of such an array but rather accesses the father of a node directly.
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Algorithm 12 improveMarking
Input: Solution x

1: current ← leaf node of x
2: i ← n
3: while (current is no right child) {
4: if (Rl + ail ≤ bl ∀l ∈ {1, . . . ,m}) {
5: if (current.father.rightchild 6= COMPLETED) {
6: break
7: }
8: }
9: current ← current.father

10: i ← i - 1
11: }
12: cutoff(current)

4.5 Using Bounds to Reduce the Search Space

The structure of the Trie lends itself to exploit the advantage of upper
bounds in the archive-enhanced genetic algorithm and thus to reduce the
search space. Therefore it is necessary to compute upper bounds for each
solution that is inserted into the Trie at each level of the Trie. Since the
genetic algorithm generates a large quantity of solutions the computation
of the upper bound has to be very efficient with respect to computation
time. Furthermore the upper bound should be calculated at each level in
the Trie, so it is also important that an incremental computation of the
upper bounds can be implemented. That means that for the computation
of the upper bound in level k of the Trie the previously computed upper
bound of level k − 1 should be incorporated.

4.5.1 Selection of a Suitable Bound

There exist several ways to compute upper bounds for the MKP. Solving
the LP relaxation of the original problem to obtain upper bounds is com-
putationally too expensive to be performed several hundreds of thousands
of times. The surrogate LP relaxation is much better suited for this pur-
pose. The surrogate relaxation of the MKP, introduced by Glover [Glo65],
is defined as:
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maximize z =
n∑

j=1

pjxj (4.1)

subject to
n∑

j=1

(
m∑

i=1

µiaij

)
xj ≤

m∑
i=1

µici (4.2)

xj ∈ {0, 1}, j = 1, . . . , n. (4.3)
µi ≥ 0, i = 1, . . . ,m. (4.4)

The single constraint (4.2) is called surrogate constraint, and the val-
ues µi are called surrogate multipliers. If the integrality constraints for the
variables xj are omitted the optimal objective value of this surrogate LP
relaxation can be computed very efficiently. The optimal solution of the
surrogate LP relaxation yields the same value as the optimal solution of the
LP relaxation if the dual variables of the Knapsack constraints of the optimal
LP solution are used as surrogate multipliers [GP85]. To keep complexity
and computation time low the surrogate multipliers are only computed once
per problem instance. If during the descent in the Trie an item’s variable
is fixed to 1 or 0 and the value of this variable is different to the value in
the optimal LP solution, the LP relaxation of the resulting sub problem will
yield different dual variables than the LP relaxation of the original problem.
This may affect the quality of the upper bounds obtained by the surro-
gate LP relaxation, if the surrogate multipliers are not updated accordingly.
However to compute the dual variables at each level in the Trie where the
above mentioned situation occurs is computationally too expensive. So we
are satisfied with the surrogate multipliers that are obtained from the LP
relaxation of the original problem.

4.5.2 Calculation of the Upper Bound

The calculation of the surrogate LP relaxation is performed by a simple
greedy algorithm. The items are sorted according to decreasing utility ratio
and included in the solution as long as the surrogate Knapsack constraint
is not violated. The first item, that does not fit in the solution is divided
and only the fraction of the item which fits into the solution is added. The
pseudocode of this procedure is given in Algorithm 13.

split item

11 1 1 1 1 11 00 0 0 0 003
4

Figure 4.5: Solution of surrogate LP relaxation

49



Algorithm 13 UpperBound
Input: array of items in order of decreasing utility ratio, capacity c
Output: Upper bound

1: ub ← 0, consumption ← 0, i← 0
2: while (consumption + items[i].weight ≤ c) {
3: consumption ← consumption + items[i].weight
4: ub ← ub + items[i].profit
5: i++
6: }
7: frac ← (c− consumption)/items[i].weight
8: ub ← ub + items[i].profit ∗ frac
9: consumption← c

10: return ub

Figure 4.5 depicts the structure of of the solution of the surrogate LP
relaxation. The values in this example were chosen randomly. The bound
derived from the surrogate LP relaxation is a global upper bound for the
optimal value of the original MKP. This global bound also represents the
starting point to compute local upper bounds during the descent at each
level in the Trie. Not only the upper bound but also the structure of the
solution is kept in memory for subsequent computation of upper bounds.

Following the path to the left or the right child of a node during the
descent in the Trie corresponds to fixing the item represented by the current
level in the Trie to 0 or 1 respectively. Note that the order in which the
items correspond to Trie levels does not necessarily correspond to the order
which was taken for the computation of the upper bound where the items
were sorted according to decreasing utility ratios. The order of the items in
the Trie may even vary between different branches of the Trie as described in
section 4.6. To update the upper bound at each level we have to distinguish
two cases:

• Fixing an item to 1 (next node is right child)

• Fixing an item to 0 (next node is left child)

Fixing an Item to 1

When fixing an item to 1, again two cases need to be distinguished. Either
the item to be fixed to 1 is already included in the current solution of the
surrogate LP relaxation or it is not included. In the first case, there is
nothing left to do except marking the item as fixed so that this item will not
be touched any more during the calculation of upper bounds of subproblems.
In the second case however the item has to be added and marked as fixed in
the solution of the surrogate LP relaxation. Since the surrogate Knapsack
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constraint is violated when adding any item to the solution, other items have
to be removed, so that the constraint is satisfied. The items to be removed
are chosen by ascending utility ratio. Note that only items that have not
yet been marked as fixed may be removed. In the visualization of the upper
bound the split item will move to the left as illustrated in Figure 4.6.

split item

11 1 1 1 1 11 00 0 0 0 003
4

item to add
remove items

split item

11 1 1 1 11 00 0 0 00 101
4

Before addition

After addition

Figure 4.6: Updating the upper bound after adding an item

Fixing an Item to 0

The procedure for fixing an item to 0 resembles the procedure for adding an
item. If the item to be fixed to 0 is not contained in the current solution of
the surrogate LP relaxation nothing has to be done but marking the item
as fixed. If the item to be fixed to 0 is included in the current surrogate LP
solution it has to be removed and marked as fixed and thus the Knapsack
constraint is over satisfied and other items need to be added so that there
is no slack in the constraint. Items according to decreasing utility ratios are
added, starting from the split item, as long as the constraint is satisfied.
Note that only items that have not yet been marked as fixed may be added.
Figure 4.7 depicts this process.

split item

11 1 1 1 1 11 00 0 0 0 003
4

item to remove
add items

split item

11 1 1 0 11 00 0 0 01 1
41 1

Before removal

After removal

Figure 4.7: Updating the upper bound after removing an item
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4.5.3 Applying the Bounds to Reduce Search Space

Section 4.4 explains how every solution that is inserted in the Trie (whether
it is feasible, infeasible or a boundary solution) is marked at the highest
possible level. Incorporating the knowledge of an upper bound and the best
solution found so far (global lower bound) at each level of the Trie makes it
easy to decide for each solution at each level in the Trie whether the sub Trie
may contain better solutions than the best solution found so far. Walking
down the levels from the root, the upper bound is calculated incrementally
and as soon as the upper bound gets smaller than the global lower bound
the solution is marked at this node and the sub Trie is cut off. In this case
sub Tries can be eliminated even though there still may exist many unvisited
boundary solutions. But all boundary solutions that are located in this sub
Trie are worse than the best solution found so far. This approach is a kind
of a hybridization of Branch and Bound and Genetic Algorithms. To save
computation time the global upper bound is only computed once and for
each new solution the data structures needed to perform the incremental
calculation are populated with a copy of the initial upper bound.

4.6 Mapping of Trie Levels to Items

The order in which the items of a solution correspond to the levels of the
Trie can have a large influence on the generation of alternate solutions. The
search algorithm presented in section 4.3 has some greedy like behavior.
It tries to pack the first item of a non-boundary solution it encounters on
the way down from the root along the path described by the chromosome.
Therefore items with a high utility ratio should be tried first before attempt-
ing to pack items with a low utility ratio. The naive approach maps the item
with the highest utility ratio to the highest level in the Trie and the item
with the lowest utility ration to the lowest level in the Trie.

4.6.1 Random Order

Another approach to map Trie levels to items is a distinct pseudo random
order for each path in the Trie. Clearly the root can only correspond to a
single item. The mapping of the second level of the Trie depends on the value
of the item corresponding to the root of the Trie in a pseudo random manner.
The mapping of level n depends on the value of all items represented by
levels smaller than n. Therefore, for two different chromosomes that share
the same prefix of length l, the first l + 1 levels in the Trie of the paths
corresponding to the chromosomes will map to the same items and from
level l + 2 the mapping will be different for both chromosomes. For two
different chromosomes that do not share any prefix still the root maps to
the same item. Figure 4.8 depicts an example of a complete Trie for an
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instance size of n = 5 with random order. The numbers in the nodes denote
the item that corresponds to the node. It is noted here that the number of

1 2

553 1

33252

5 5 2 2 3 3 2 2

1 5

11 33 3 3 5

4

2

5

Figure 4.8: A complete solution archive in random order

the item that corresponds to a node is not stored in a Trie node since it can
be computed with the information given by the path to the node. This will
be explained in more detail in section 5.3

4.6.2 Partial Random Order

To combine the advantages of a random order and the decreasing order
according to utility ratios a hybrid approach was chosen. Only items that
are in the core (see section 2.2.2) are mapped pseudo randomly to Trie
levels. Items with a utility ratio greater than for the ones in the core will
get mapped to the highest levels according to decreasing utility ratios and
items with a lower utility ratio will get mapped to the lowest levels in the
Trie. That way the search algorithm tries to add items with a high utility
ratio first. For items with a medium ratio the order in which the items
are tried to be added varies. Items with a low utility ratio are checked last
whether they can be added.
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Chapter 5

Implementation Details

The archive enhanced genetic algorithm was implemented in C++. For the
part of the genetic algorithm a well suited generic library for Evolutionary
Algorithms (ealib) was used. In this section the focus lies on the implemen-
tation of the Trie based solution archive.

5.1 Data Structures

The Trie is implemented as a singleton class that contains the complete Trie
as well as the declaration and definition of the Trie-node type. To keep
memory consumption as low as possible a Trie-node consists only of two
pointers – one for the left and one for the right child. It is noted here that
no additional data needs to be stored in the Trie, because the structure of
the Trie itself contains all information that is needed. Thus on a 32 bit
processor one Trie node occupies 8 bytes of memory.

5.2 Memory Management

During the insertion of chromosomes in the Trie a large number of Trie-
nodes is allocated and deallocated. Each time the marking procedure marks
a solution at a node located at a higher level than the leaf-node, all nodes
beyond the marked node have to be freed from memory. If the sibling of the
node that is marked has already been marked before the parent node gets
marked and freed and this procedure is performed recursively. Thus a large
amount of Trie-nodes (that are of uniform size) will be allocated and freed
from memory.

5.2.1 Drawbacks of Conventional Memory Management

During the runtime of the genetic algorithm several thousand solutions get
inserted into the solution archive and regions of the Trie that correspond
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to completely evaluated regions of the search space get freed from mem-
ory. Thus, millions of nodes get allocated and deallocated. Even though
the memory management subsystem of a modern operating system is very
efficient this special case can be handled much more efficiently with a cus-
tomized memory management than by a general purpose memory manage-
ment. Experimental results have shown that for large instances the waste
of memory introduced by the memory management can be up to 50% and
more.

5.2.2 Customized Memory Management

Since the memory requirements of the Trie are a special case (all nodes
have the same size and structure) and thus the overhead of a general pur-
pose management can be significant as described in the previous section,
a customized memory management that handles this special case without
overhead is desired. The fact, that most operators in C++ including the
new and delete operators can be overloaded globally of for certain types,
facilitates the implementation of a special memory management for the Trie.
The requirements for this memory management are very simple and straight
forward:

• only Trie-nodes of equal size need to be allocated and freed from mem-
ory

• the allocation and freeing of one Trie-node should have a worst case
runtime of O(1)

• the size of the data structures needed by the memory management
should be very small so that ideally no memory gets wasted

• many cycles of allocation and deallocation phases should not degrade
the performance of the memory management

A pool-based memory management satisfies all these requirements. A pool
of fixed size is allocated before the genetic algorithm is started and all Trie-
nodes that are allocated are taken from the pool. The freed Trie nodes are
kept in a linked list. Note that no external linked list is used but rather the
freed Trie nodes are used as list items that are arranged in the linked list.
Three pointers are used to manage the memory pool:

• head: The head of the linked list, in which the freed nodes are man-
aged. Note that only nodes that once have been allocated and have
been freed again are managed in this list.

• first: The first unused Trie-node of the memory pool, that has not
yet been used in the Trie.

• last: The last Trie-node in the pool.
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Initialization of Memory Pool

The memory pool is initialized before the genetic algorithm runs. An ar-
ray of Trie-nodes is allocated where the number of Trie-nodes in the array
is calculated as bpoolsize/sizeof(TrieNode)c. The first pointer gets
assigned the address of the first element of the array, the last pointer is
initialized with the address of the last element of the array and the head
pointer is set to NULL.

Allocation of a Trie-Node

The allocation of a Trie-node is performed by a small procedure that re-
turns a pointer to a free Trie-node within a constant runtime. Algorithm
14 illustrates this procedure. The use of the first pointer is to use the
memory pool without iterating through all Trie-nodes and arranging them
in a linked list during initialization phase. Instead the pool consists of two
parts: A linked list of free Trie-nodes and an uninitialized memory area.
After initialization of the pool the linked list is empty while during runtime
both parts can contain free Trie-nodes, but nodes are only allocated from
the uninitialized area if the linked list is empty. If all Trie-nodes have been
allocated and the genetic algorithm requests the allocation of another node
an error is returned.

Algorithm 14 Allocate
Output: Pointer to a Trie-node

1: node = NULL
2: if (head != NULL) {
3: node = head
4: head = head->right
5: return node
6: } else {
7: if (first > last) {
8: return ERROR // out of memory
9: }

10: node = first
11: first = first + 1 // Advance first to the next Trie-node in the

pool
12: return node
13: }

Freeing a Trie-Node

A node, that gets freed by the marking procedure, is recycled by inserting
it at the head of the linked list. Algorithm 15 illustrates this procedure in a
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C-like pseudo code syntax.

Algorithm 15 Free
Input: Pointer p to Trie-node to be freed

1: p->right = head
2: head = p

5.2.3 Considerations for 32 versus 64 Bit

The address space of 32 bit systems is limited to 4 GB. Since on a 32 bit
processor each pointer has a size of 32 bit and thus each Trie node occupies
8 bytes no more than 229 (approximately 500 million) Trie nodes could
be allocated theoretically. The actual number is smaller, since user space
processes usually have an address space limited to 3 GB. The advantage of
64 bit architectures is the increased size of address space but that comes with
the drawback that pointers occupy 64 bit and thus on a 64 bit architecture
each Trie node occupies 16 bytes, twice the amount as on 32 bit processors.
A modification of the customized memory management can overcome this
drawback and keep the size of each Trie node at 8 byte. Instead of storing
two 64 bit pointers in each Trie node two 32 bit indices are sufficient to
address 232 Trie nodes each 8 bytes of size. The 32 bit index references a
Trie node in the node pool maintained by the memory management. Thus,
on 64 bit systems with less than 32 GB memory this enhancement can handle
twice as many Trie nodes as with standard 64 bit pointers.

5.3 Implementation of Random Ordering

Section 4.6 discusses the various approaches how to map the levels of the
Trie to the items of a problem instance including a random mapping for
the different paths in the Trie. This section discusses the details how to
implement such a random mapping.

Each time a new chromosome is inserted into the Trie a new mapping
of Trie levels to items is computed based on the values of the genes of the
chromosome. Clearly two identical chromosomes will yield the same map-
ping. An integer value is computed and updated incrementally for each level
during the descent from the root along a given path in the Trie and stored
in an array. This integer value together with the value of an item’s variable
is used to determine the item that will get mapped to the next level in the
Trie on a path. The mapping for all Trie levels is stored in an array that
has to be initialized for each new chromosome with the values [1, 2, 3, . . . , n].
Algorithm 16 shows this procedure in pseudo code. The� operator denotes
a left-shift and the | operator denotes bitwise ‘or’. The function ‘pseudoRan-
domFunc’ computes a pseudo random value from two integer parameters.
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The parameter seed in this algorithm denotes a random value, that is not
changed during the runtime of the program. This procedure can easily be
changed to compute a random mapping to Trie levels for all items, not only
for the items in the core.

Algorithm 16 GetItemForLevel
Input: chromosome x representing a solution vector, Trie level i for which

to obtain item
Output: index in x that will map to Trie level i

1: r ← 1
2: if (i > 0) {
3: r ← randOrderPattern[i]
4: r ← (r � 1)|x[i− 1]
5: }
6: randOrderPattern[i] ← r
7: if (coreStart ≤ i ≤ coreEnd) {
8: // compute a random index in range i ≤ index ≤ coreEnd
9: index← pseudoRandomFunc(seed, r) mod (coreEnd+ 1− i)

10: index← index+ i
11: // swap item i and index in geneOrder array
12: h← geneOrder[index]
13: geneOrder[index] ← geneOrder[i]
14: geneOrder[i] ← h
15: }
16: return geneOrder[i]

5.4 Usage

This section provides a detailed description on the usage of the program. All
parameters that are relevant for the solution archive are described. Further-
more the most important parameters of the EAlib are discussed. A detailed
description of all parameters of the EAlib can be found in the documentation
of the ealib. The usage of the program is as follows:

TrieMKP [parameters]

parameters is a string that contains key/value pairs for each parameter that
should be set. If a parameter is not specified in the string the default value
of the parameter is used. A ‘@’ followed by a filename specifies that the file
contains parameters. The command line may contain key/value pairs to set
parameters as well as a file containing further parameters and their values.
The following parameters influence the behavior of the archive.
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PoolSize: Possible values: A positive integer specifying the amount of
memory to be allocated for the node pool. The integer may be followed
by one of the characters [KMG] which denotes kilobytes, megabytes and
gigabytes respectively. 512M specifies a pool size of 512 megabytes.
The default value is 512M.

coreSize: Possible values: Any real number in the interval [0, 1] that spec-
ifies the size of the core as ratio of the number of items. A value of 0.1
indicates that 10% of the items before the center and 10% beyond the
center of the core will be included in the core and thus the core size is
20% of the items. The standard value is 0.15

TrieOrder: Possible values: -1, 0, 1 and 2. This parameter specifies the
order in which the levels of the Trie correspond to items of the prob-
lem instance. The value -1 stands for ascending utility ratios, 1 for
decreasing utility ratios, 2 for decreasing utility ratios outside the core
and random order within the core and 0 denotes the order in which
the items are specified in the input file. The default value is 1.

bnbHybrid: Possible values: 0 and 1. This parameter indicates whether
upper bounds should be computed to eliminate regions from the Trie
that have a smaller upper bound than the global lower bound. The
default value is 0.

useTrie: Possible values: 0 and 1. It indicates whether the solution archive
should be used or not. The default value is 1 to use the Trie.

diffstat: Possible values: 0 and 1. It specifies whether a difference file
should be generated that indicates how often each item has been re-
moved or added by the find alternate procedure.

The following list explains the parameters that are relevant for the genetic
algorithm and are not related to the archive.

usePSR: Possible values: 0 and 1. Indicates whether the items should be
ordered according to utility ratios for the repair operator. The default
value is 1.

instanceFile: Possible values: A string indicating the file name of the in-
stance file. No default value given.

instancePath: Possible values: A string indicating the name of the direc-
tory where the instance file is located. No default value given.

oname: Possible values: A string indicating the base filename without ex-
tensions for all output files. ‘@’ is the default value which indicates
the use of the standard output.
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odir: Possible values: A string indicating the base directory for all output
files. No default value given.

statext: Possible values: A string that describes the extension for the
statistics file. Default value is ‘.stat’.

outputstat: Possible values: 0 and 1. Specifies whether a statistics file
should be generated.

popsize: Possible values: An integer in the range [1,10000000] specifying
the size of the population which is 100 by default.

tgen: Possible values: An integer in the range [0,100000000] indicating the
number of iterations the genetic algorithm should perform.

plocim: Possible values: A real value in the interval [0,1] indicating the
probability for applying the repair operator to a chromosome. The
default value is 0.

dcdag: Possible values: 0 and 1. This parameter specifies whether dupli-
cates should be discarded. This parameter does not have any effect, if
the archive is used (see parameter useTrie). The default value is 0.

solveCore: Possible values: 0 and 1. If the value is 1 only the core will
be solved by the genetic algorithm. All items outside the core will be
fixed to 1 and 0.
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Chapter 6

Experimental Results

To investigate the influence of the Trie based archive on the quality of the
solutions, tests on different sets of instances were performed. This chapter
discusses the results that were obtained with the tests.

6.1 Test Instances

The first set of instances that was used in the experiments is taken from
Beasley’s OR-Library [Bea90] which is available online. This library contains
a set of 270 test instances with different values for m and n which have been
widely used as benchmarks in literature. The values for m are 5, 10 and 30
and the values for n are 100, 250, 500. For each of the 9 combination of values
m and n 30 instances were generated as follows: The resource consumptions
aij were drawn randomly from uniform distribution in the range (0,1000).
The right-hand side coefficients (the capacities of the knapsack) bi were
computed as

bi = α
m∑

j=1

aij

where α is a tightness ratio which is set to 0.25, 0.5 and 0.75. The 30
instances for each combination of m and n were generated with the three
different tightness ratios. For each ratio ten instances were generated. The
profits pj were correlated to the values aij and computed as follows:

pj =
m∑

i=1

aij/m+ 500qj

where qj is a uniformly distributed real number in the range (0,1).
A second set of test instances was generated with a procedure proposed

by Osorio et al. [OGH02] which produces very hard test instances. The
generation of the instances is similar to the method Beasley used. The
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integer values aij are drawn from the exponential distribution

aij = 1− 1000ln(U(0, 1))

where U(0, 1) is a real number drawn from the continuous uniform genera-
tor. The right-hand side coefficients are computed in the same way as for
the problems in the OR-Library described above. Again the value α was
chosen to be 0.25, 0.5 and 0.75. The profits were correlated to the resource
consumptions and computed as follows:

pj = 10

(
m∑

i=1

aij/m

)
+ 10U(0, 1)

where U(0, 1) is a real number drawn from the continuous uniform generator.
While the smallest test-instances instances of Beasley’s OR-Library (in-

stances with n = 100, m = 5 and α = 0.25) can be solved to optimality with
CPLEX 11 within 4 seconds and the genetic algorithm finds the optimal
solution within tenths of a second, the procedure of Osorio et. al. explained
above generates instances that are very hard to solve. For example, an in-
stance with n = 100, m = 5 and α = 0.25 cannot be solved within 1000
seconds with CPLEX 11 on the same machine and the genetic algorithm
does not find the optimal solution.

6.2 Results for large problems

The 30 largest instances of the OR-Library with 500 items and 30 con-
straints as well as 36 problems of varying size that were generated with
Osorio’s method were solved with the the archive enhanced genetic algo-
rithm as well as the original algorithm. For each instance 50 runs with 106

iterations each were performed on each of the selected 66 test instances.
Both algorithms were used with the same parameters (population size of
100, binary tournament selection and steady state replacement of the worst
chromosome). For the solution archive a partial random mapping of items
to Trie levels as described in section 4.6.2 and 5.3 was used. The parameter
coreSize was set to 0.15.

Table 6.1 shows the results for the 30 largest instances from the OR-
Library. For both, the genetic algorithm without archive as well as the
archive enhanced version, the %-gaps (100(OPTLP −OPTGA)/OPTLP ) rel-
ative to the solution of the LP relaxation of the best objective value as well
as for the median and mean objective value over the 50 runs is given. Bold
face text highlights the better value (smaller gap). The column ‘min’ gives
the percentage gap of the best solution out of 50 runs, the columns ‘median’
and ‘mean’ give percentage gap of the median and mean objective values
out of 50 runs. The last columns for each variant give the standard devia-
tion out of the 50 runs. The results show that the best objective value does
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not improve on the majority of instances but the median objective value
improves on 23 out of 30 instances. Only one instance shows a lower median
objective value for the archive enhanced version than for the original algo-
rithm. A Wilcoxon signed-rank test on the median objective values which
delivers a p-value of 2.25 × 10−6 clearly confirms that the objective values
obtained with the solution archive are greater than without archive. The
last 3 lines give average values over 10 instances with the same α values.

GA GA with Trie
prob. α min median mean dev min median mean dev

0 0.25 0.6140 0.6568 0.6602 0.0239 0.5188 0.6517 0.6459 0.0449
1 0.25 0.5800 0.6095 0.6175 0.0305 0.5800 0.6095 0.6204 0.0265
2 0.25 0.5807 0.6745 0.6646 0.0402 0.5807 0.6429 0.6496 0.0425
3 0.25 0.6084 0.6636 0.6677 0.0250 0.6118 0.6636 0.6673 0.0229
4 0.25 0.5768 0.6084 0.6122 0.0184 0.5119 0.6084 0.6073 0.0250
5 0.25 0.6131 0.6587 0.6624 0.0253 0.6286 0.6312 0.6496 0.0280
6 0.25 0.4435 0.6545 0.6458 0.0619 0.5516 0.6371 0.6432 0.0397
7 0.25 0.5144 0.5728 0.5678 0.0300 0.5144 0.5667 0.5670 0.0308
8 0.25 0.4173 0.6079 0.5901 0.0806 0.4173 0.5657 0.5485 0.0964
9 0.25 0.4800 0.5879 0.5747 0.0728 0.4800 0.5768 0.5463 0.0647
10 0.50 0.2637 0.2788 0.2877 0.0124 0.2555 0.2779 0.2801 0.0096
11 0.50 0.2086 0.2626 0.2616 0.0222 0.2086 0.2607 0.2558 0.0218
12 0.50 0.2302 0.2828 0.2809 0.0145 0.2302 0.2736 0.2725 0.0146
13 0.50 0.2356 0.2672 0.2736 0.0143 0.2237 0.2645 0.2666 0.0148
14 0.50 0.2330 0.2580 0.2627 0.0140 0.2145 0.2538 0.2568 0.0131
15 0.50 0.2428 0.2701 0.2726 0.0166 0.2304 0.2669 0.2634 0.0132
16 0.50 0.2280 0.2714 0.2676 0.0171 0.2280 0.2705 0.2595 0.0192
17 0.50 0.2609 0.3065 0.3064 0.0176 0.2715 0.2996 0.3005 0.0150
18 0.50 0.2521 0.2796 0.2729 0.0187 0.2466 0.2760 0.2726 0.0190
19 0.50 0.2451 0.2785 0.2837 0.0166 0.2418 0.2762 0.2783 0.0162
20 0.75 0.1310 0.1535 0.1545 0.0129 0.1310 0.1423 0.1491 0.0157
21 0.75 0.1551 0.1734 0.1724 0.0073 0.1518 0.1664 0.1690 0.0058
22 0.75 0.1477 0.1657 0.1655 0.0055 0.1549 0.1660 0.1657 0.0030
23 0.75 0.1657 0.1832 0.1815 0.0075 0.1545 0.1776 0.1764 0.0066
24 0.75 0.1631 0.1838 0.1817 0.0117 0.1608 0.1795 0.1785 0.0105
25 0.75 0.1585 0.1740 0.1730 0.0027 0.1585 0.1740 0.1715 0.0046
26 0.75 0.1458 0.1665 0.1666 0.0058 0.1521 0.1659 0.1654 0.0062
27 0.75 0.1501 0.1648 0.1650 0.0025 0.1501 0.1648 0.1642 0.0038
28 0.75 0.1475 0.1706 0.1712 0.0138 0.1462 0.1670 0.1664 0.0109
29 0.75 0.1690 0.1700 0.1785 0.0123 0.1627 0.1700 0.1776 0.0100

0.25 0.5428 0.6295 0.6263 0.0409 0.5395 0.6154 0.6145 0.0421
0.50 0.2400 0.2756 0.2770 0.0164 0.2351 0.2720 0.2706 0.0157
0.75 0.1534 0.1706 0.1710 0.0082 0.1523 0.1674 0.1684 0.0077

Table 6.1: Percentage gaps for 30 instances (each 50 runs) of Beasley’s OR-Library
with n = 500 and m = 30

Table 6.2 shows the results for 36 instances generated with Osorio’s
method with varying values for n, m and α. The results are a little bit
less satisfactory than for the 30 largest instances of the OR-Library but still
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for 25 out of 36 instances the median objective gap of 50 runs decreased
and only for 7 instances it increased. As for the 30 OR-Library instances
a Wilcoxon signed rank test shows that the solution archive leads to better
solutions. The p-value obtained by the Wilcoxon signed rank test is 0.00156
which indicates a very high significance level.

GA GA with Trie
n m α min median mean dev min median mean dev
50 5 0.25 0.3576 0.6317 0.6268 0.0996 0.2941 0.4420 0.4715 0.0509

0.50 0.1086 0.2445 0.2403 0.0364 0.1086 0.1979 0.2097 0.0412
0.75 0.1372 0.2294 0.2256 0.0594 0.1372 0.2294 0.2178 0.0434

10 0.25 1.6866 1.6866 1.9365 0.4260 1.6866 1.6866 1.6866 0.0000
0.50 0.7862 1.1284 1.2662 0.1744 1.1284 1.3562 1.3339 0.1726
0.75 0.6580 1.0607 1.0237 0.1711 0.5854 1.0757 1.0276 0.1756

30 0.25 10.9797 10.9797 10.9797 0.0000 10.9797 10.9797 10.9797 0.0000
0.50 5.8676 6.2558 6.2383 0.1957 5.6330 6.2172 6.1574 0.1947
0.75 4.0682 4.0936 4.1804 0.1149 4.0682 4.0936 4.1261 0.0612

100 5 0.25 0.0917 0.1955 0.1915 0.0398 0.0625 0.1634 0.1465 0.0487
0.50 0.0433 0.0961 0.0959 0.0224 0.0490 0.0894 0.0875 0.0143
0.75 0.0475 0.0837 0.0824 0.0169 0.0434 0.0824 0.0823 0.0137

10 0.25 0.9280 1.2266 1.1988 0.1063 0.8376 1.1739 1.1103 0.1484
0.50 0.4263 0.6159 0.6148 0.0916 0.4162 0.6008 0.6175 0.0857
0.75 0.2841 0.4095 0.4233 0.0497 0.2978 0.4257 0.4334 0.0469

30 0.25 4.4828 5.1569 5.0773 0.2673 4.4532 4.8842 5.0136 0.2546
0.50 2.4802 2.6906 2.6947 0.1095 2.3681 2.6926 2.6780 0.1322
0.75 1.5064 1.7381 1.7296 0.0795 1.5610 1.7663 1.7724 0.0810

250 5 0.25 0.0246 0.0486 0.0477 0.0098 0.0281 0.0474 0.0462 0.0099
0.50 0.0175 0.0296 0.0306 0.0068 0.0134 0.0295 0.0283 0.0063
0.75 0.0148 0.0253 0.0249 0.0058 0.0100 0.0231 0.0224 0.0043

10 0.25 0.2680 0.3886 0.3771 0.0497 0.2388 0.3522 0.3472 0.0373
0.50 0.1399 0.2170 0.2128 0.0275 0.1294 0.2122 0.2048 0.0267
0.75 0.1030 0.1553 0.1529 0.0202 0.0977 0.1532 0.1532 0.0178

30 0.25 1.5083 1.7663 1.7497 0.1096 1.5155 1.7062 1.7042 0.0963
0.50 0.7885 0.8779 0.8808 0.0367 0.7234 0.8716 0.8675 0.0497
0.75 0.5283 0.6380 0.6366 0.0407 0.5402 0.6235 0.6194 0.0306

500 5 0.25 0.0192 0.0318 0.0322 0.0071 0.0192 0.0343 0.0337 0.0065
0.50 0.0117 0.0207 0.0207 0.0036 0.0106 0.0213 0.0213 0.0042
0.75 0.0067 0.0148 0.0151 0.0030 0.0097 0.0143 0.0146 0.0026

10 0.25 0.1230 0.1747 0.1747 0.0255 0.1250 0.1664 0.1686 0.0224
0.50 0.0623 0.1007 0.0993 0.0127 0.0613 0.0945 0.0936 0.0158
0.75 0.0552 0.0709 0.0711 0.0074 0.0530 0.0706 0.0713 0.0087

30 0.25 0.7392 0.8221 0.8232 0.0369 0.6783 0.7997 0.7990 0.0460
0.50 0.3703 0.4272 0.4273 0.0262 0.3537 0.4246 0.4202 0.0218
0.75 0.2475 0.2878 0.2850 0.0149 0.2160 0.2841 0.2825 0.0185

Table 6.2: Results for 36 instances with varying values n, m and α
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6.2.1 Influence of the Archive

Probably the most interesting data regarding the influence of the Trie is
the number of chromosomes that are identified as duplicate solutions by the
solution archive compared to the number of chromosomes that are identified
as duplicates by the original algorithm.

GA GA with Trie
prob. α dups dups #search avg dist size (M)

0 0.25 83318.00 632483.92 704848.04 1.11 3.82 445.45
1 0.25 111363.44 681331.32 774951.24 1.14 4.08 411.63
2 0.25 81647.48 628213.70 695060.52 1.11 3.84 451.23
3 0.25 81767.14 651908.88 742907.38 1.14 3.85 448.02
4 0.25 116309.98 682474.96 790248.98 1.16 4.06 402.58
5 0.25 98807.56 637583.92 716575.36 1.12 3.90 444.88
6 0.25 77324.12 618772.38 685304.30 1.11 3.87 448.79
7 0.25 73864.02 617336.90 695867.06 1.13 3.84 459.34
8 0.25 76111.62 635712.84 713050.24 1.12 3.82 442.35
9 0.25 76103.44 645388.90 734563.32 1.14 3.95 414.29
10 0.50 92283.92 597734.28 678933.64 1.14 3.68 428.54
11 0.50 73484.26 563934.98 637799.72 1.13 3.64 434.12
12 0.50 71452.48 548125.78 608071.56 1.11 3.65 450.65
13 0.50 89764.88 612031.80 698584.34 1.14 3.87 407.62
14 0.50 76969.40 582331.62 656473.64 1.13 3.71 418.26
15 0.50 65925.24 524119.26 576290.42 1.10 3.61 433.42
16 0.50 72919.68 592526.56 664817.00 1.12 3.72 416.59
17 0.50 73945.14 534652.58 598622.52 1.12 3.64 451.86
18 0.50 92314.68 603465.22 672590.80 1.11 3.69 417.49
19 0.50 76255.92 564597.96 626619.96 1.11 3.65 432.63
20 0.75 77026.36 522614.88 578740.34 1.11 3.59 364.60
21 0.75 70894.14 503240.64 560133.10 1.11 3.58 390.13
22 0.75 95529.56 568528.04 643227.52 1.13 3.66 350.34
23 0.75 76955.42 503260.00 561089.28 1.11 3.55 385.43
24 0.75 81910.54 520277.22 581862.56 1.12 3.62 385.18
25 0.75 147527.50 595496.56 677526.62 1.14 4.00 344.50
26 0.75 72259.24 499527.48 556369.74 1.11 3.57 386.69
27 0.75 96720.74 576926.74 662802.82 1.15 3.79 337.87
28 0.75 78619.66 502954.02 557512.60 1.11 3.60 389.13
29 0.75 91783.64 543085.90 609946.40 1.12 3.63 375.23

0.25 87661.68 643120.77 725337.64 1.13 3.9 436.86
0.50 78531.56 572352.00 641880.36 1.12 3.69 429.12
0.75 88922.68 533591.15 598921.1 1.12 3.66 370.91

Table 6.3: Statistical data of the Trie for the 30 largest OR-Library instances

Tables 6.3 and 6.4 show a comparison of the number of duplicates found
with the Trie and without Trie. The column ‘#search’ indicates how many
times on average for all 50 runs the procedure step3 was called. Since this
procedure descends through the Trie from the root to a leaf, the number of
calls on this procedure is a good indicator on how well the search for alter-
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native solutions in the Trie works. The column ‘avg’ describes the average
number of calls of procedure step3 for each duplicate solution. The low val-
ues indicate that for most duplicates that were encountered an alternative
solution was found within the first attempt for the 30 OR-Library instances.
Earlier tests have shown that the quality of the marking procedure is critical
for obtaining low numbers of attempts to find alternative solutions. Without
the improvements of the marking procedure that are explained in sections
4.4.2 and 4.4.3 the search for an alternative solution called step3 on average
7 to 8 times.

Table 6.4 clearly shows that the number of duplicates that are identified
with the solution archive on instances of the second set with 500 variables is
considerably smaller than for the instances of the OR-Library. As shown in
6.1 the instances generated with Osorio’s method are much harder to solve
so that for large instances the genetic algorithm does not produce as many
duplicate solutions as for instances that are much easier to solve. Clearly,
the advantage of the solution archive diminishes if the amount of duplicate
solution diminishes.

The column ‘dist’ in Tables 6.3 and 6.4 shows the average Hamming dis-
tance of the alternative solutions that are produced by the solution archive.

Results for Different Variants of the Trie

To analyze the effect of different parameters of the solution archive the
30 OR-Library instances analyzed above have been solved with the Trie
enhanced GA with varying parameters. In addition to the variant used
above two more settings for the Trie were used:

• No random mapping of the items in the core to levels of the Trie but
with the calculation of upper bounds.

• No random mapping of the items in the core and no calculation of
upper bounds.

As for all other tests 50 runs for each instance with 106 iterations were
performed. The parameters of the genetic algorithm were the same as for
the other tests.

As can be seen in Figure 6.1 there are no significant differences in the
quality of solutions obtained by the additional two tested variants. For
some instances the results do not differ while for some instances the results
vary. All variants however deliver better solutions than the genetic algorithm
without Trie.

Table 6.5 shows detailed results for the different variants of the Trie.
For each of the three variants of the Trie as well as the GA without Trie
the median and mean percentage gaps are given as well as the standard
deviation. As in Table 6.1 the last three lines give average values over all 10
instances with the same α values.
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GA GA with Trie
n m α dups dups #search avg dist size (M)
50 5 0.25 35478.36 856752.90 2521855.06 2.94 8.77 25.59

0.50 29187.28 745684.08 1836846.92 2.46 8.34 28.96
0.75 38792.88 707357.28 2228341.96 3.15 9.29 24.82

10 0.25 35568.62 837799.76 2081991.66 2.49 8.80 23.74
0.50 42029.84 747116.06 2037171.36 2.73 8.82 32.90
0.75 44496.26 656465.68 1330961.52 2.03 8.04 33.34

30 0.25 76922.92 901677.62 2327624.32 2.58 9.02 17.15
0.50 53960.38 713011.06 1380103.36 1.94 6.89 41.66
0.75 65209.34 670349.94 1339664.64 2.00 6.86 44.34

100 5 0.25 28922.82 692536.56 1450786.18 2.09 6.22 127.02
0.50 27401.80 581230.34 1019496.16 1.75 5.67 141.46
0.75 31464.26 551693.34 1011580.68 1.83 6.48 83.00

10 0.25 36338.76 717775.90 1560736.40 2.17 6.67 96.52
0.50 39949.36 660486.94 1203201.46 1.82 6.42 105.97
0.75 42283.64 561348.22 883718.64 1.57 6.09 107.28

30 0.25 51749.98 728263.76 1181837.84 1.62 6.32 101.14
0.50 68055.68 629515.36 986251.98 1.57 6.43 121.32
0.75 65821.96 530230.16 796006.60 1.50 5.54 117.14

250 5 0.25 18072.02 301002.62 386175.90 1.28 4.93 512.97
0.50 13954.26 103068.24 124052.28 1.20 4.84 592.45
0.75 20055.82 304055.02 376659.84 1.24 5.17 393.67

10 0.25 31459.28 538944.42 715887.96 1.33 5.23 386.84
0.50 26999.60 266423.06 328499.82 1.23 4.82 525.59
0.75 35798.22 358082.40 465546.28 1.30 4.71 419.69

30 0.25 67214.30 665107.00 996964.56 1.50 5.83 415.85
0.50 70303.32 542723.52 742162.46 1.37 5.43 397.13
0.75 92606.76 536134.30 736752.16 1.37 5.64 395.53

500 5 0.25 9177.96 14253.72 17231.50 1.21 5.49 1956.88
0.50 9518.66 13045.96 16282.82 1.25 4.98 2048.35
0.75 11192.04 21707.52 26883.18 1.24 4.24 1738.31

10 0.25 15178.58 123108.12 139303.20 1.13 5.36 1583.87
0.50 13696.88 50628.92 58823.16 1.16 4.90 1930.98
0.75 18798.96 74910.54 93236.28 1.24 4.11 1432.53

30 0.25 55974.70 491466.60 641861.54 1.31 5.70 1017.70
0.50 56932.54 298719.66 392789.68 1.31 5.37 1298.03
0.75 81438.40 359236.86 497754.12 1.39 4.95 1154.23

Table 6.4: Statistical data of the Trie for the 36 instances of Osorio’s method
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Figure 6.1: Comparison of different variants of the Trie (Trie R B = with
random mapping and upper bounds, Trie B = only with upper bounds, Trie
= only the Trie)
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Wilcoxon signed-rank tests on the median objective values obtained by
the different variants of the Trie show that there is no significant difference
between the three variants of the Trie. The p-values are in the range of
0.1148 to 0.3886 which does not indicate a strong significance compared to
the p-values obtained with a Wilcoxon signed-rank test for the Trie variants
and the original GA where the p-values are in the range of 10−6 to 10−5.

6.2.2 Size of the Trie

The size of the Trie is another important performance indicator. The last
column of Tables 6.3 and 6.4 shows the average maximum size of the Trie in
Megabytes. The difference of the sizes of the Trie for the instances from OR-
Library and the other 500 variable instances is very large. Since the depth
of the Trie is defined by the number of items and the number of solutions
inserted into the Trie does not vary heavily, the size of the Trie can only
differ that much if the structure of the instances and thus the structure of
the generated solutions differ.

The size of the Trie is influenced most by the length of the prefix that
most solutions share. Figure 6.2 illustrates this phenomenon. Two Tries
with each 8 solutions of a problem instance with 6 items are shown. In
Figure 6.2a the different solutions do not share a common prefix as they do
in Figure 6.2b. Thus the Trie in Figure 6.2a occupies more memory. For

(a) No common prefix (b) Common prefix of
length 2

Figure 6.2: Difference of Trie sizes

problem instances that are strongly correlated (i.e. the profit of an item is
correlated to the resource consumption) the utility ratios are less significant
than for weakly correlated instances. The more significant the utility ratios
are, the higher will the probability be that items with a high utility ratio will
be packed. Figure 6.3 shows the utility ratios of all 500 items in decreasing
order for two instances of equal size of the two different instance sets. These
two plots show how the range of the utility ratios for the different types of
instances differs. Obviously the instances of the OR-Library are much less
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correlated than the Osorio style instances which is a reason why the Osorio
style instances are so much harder to solve.
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Figure 6.3: Utility ratios of instances of different type

Figure 6.4 shows the number of occurrences of the items in the last
700000 solutions that were generated in order of decreasing utility ratios
for the two instances discussed above. The much smaller significance of the
utility ratios for the Osorio style instances also becomes clear in this figure.
This figure also explains the much shorter prefix that many or most solutions
share and thus, the larger size of the Trie.
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Figure 6.4: Number of occurrences of items in the last 700000 solutions
ordered according to decreasing utility ratios
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6.2.3 Computation Time

Obviously, the effort for inserting each solution into the Trie and searching
for an alternative solution in case a duplicate solution is encountered slows
down the genetic algorithm. However, this additional computation time is
spent for finding new solutions on the boundary of the feasible region.

GA GA with Trie
prob. α time #solutions t/s (ms) time #solutions t/s (ms)

0 0.25 69.11 450834 0.1533 173.23 1000000 0.1732
1 0.25 69.98 430032 0.1627 177.05 1000000 0.1770
2 0.25 66.89 453433 0.1475 171.97 1000000 0.1720
3 0.25 68.01 429858 0.1582 178.85 1000000 0.1788
4 0.25 67.26 433835 0.1550 176.41 1000000 0.1764
5 0.25 69.12 461223 0.1499 175.86 1000000 0.1759
6 0.25 67.34 458551 0.1468 172.14 1000000 0.1721
7 0.25 70.31 456527 0.1540 175.49 1000000 0.1755
8 0.25 67.85 440398 0.1541 172.88 1000000 0.1729
9 0.25 67.03 430714 0.1556 171.19 1000000 0.1712
10 0.50 76.90 494549 0.1555 170.48 1000000 0.1705
11 0.50 74.77 509549 0.1467 167.21 1000000 0.1672
12 0.50 73.66 523326 0.1408 164.42 1000000 0.1644
13 0.50 77.99 477733 0.1632 173.83 1000000 0.1738
14 0.50 75.27 494637 0.1522 168.26 1000000 0.1683
15 0.50 76.97 541805 0.1421 166.97 1000000 0.1670
16 0.50 76.61 480393 0.1595 171.41 1000000 0.1714
17 0.50 75.17 539292 0.1394 164.69 1000000 0.1647
18 0.50 78.36 488849 0.1603 171.86 1000000 0.1719
19 0.50 77.17 511657 0.1508 170.19 1000000 0.1702
20 0.75 74.14 554411 0.1337 152.10 1000000 0.1521
21 0.75 72.53 567653 0.1278 149.79 1000000 0.1498
22 0.75 75.00 527001 0.1423 155.50 1000000 0.1555
23 0.75 73.33 573695 0.1278 150.13 1000000 0.1501
24 0.75 73.71 561633 0.1312 151.61 1000000 0.1516
25 0.75 77.73 552030 0.1408 157.65 1000000 0.1577
26 0.75 73.90 572731 0.1290 150.99 1000000 0.1510
27 0.75 74.54 519794 0.1434 156.46 1000000 0.1565
28 0.75 73.98 575665 0.1285 150.40 1000000 0.1504
29 0.75 75.30 548697 0.1372 154.44 1000000 0.1544

0.25 68.29 444540.91 0.1537 174.51 1000000 0.1745
0.50 76.29 506179.56 0.1510 168.93 1000000 0.1689
0.75 74.42 555331.53 0.1342 152.91 1000000 0.1529

Table 6.6: Average runtime for the 30 OR-Library instances

Table 6.6 compares the average computation time of the original al-
gorithm with the computation time of the archive-enhanced version. The
column ‘#solutions’ lists the average number of unique solutions that were
generated per run by the genetic algorithm. For the original algorithms this
number can only be estimated by subtracting the number of duplicates that
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are identified by the archive from the number of solutions generated (106).
To obtain the number of duplicates that are only detected by the archive
and are not detected by the original algorithm, the number of duplicates
that were detected with the original algorithm is subtracted from the num-
ber of duplicates detected by the archive. The resulting number of unique
solutions generated by the original algorithm is however only an estimate
that has been calculated on the average values obtained for 50 runs for each
instance. For the archive-enhanced version the number of unique solutions
is 106. The column ‘t/s’ indicates the average time spent for generating
and evaluating one solution. Obviously the time for generating a solution is
slightly higher. However, the bounding procedure that is used in the archive
(see section 4.5) eliminates solutions from the searchspace without generat-
ing and evaluating them. Thus, the number of solutions that are contained
in the completed regions of the archive is usually higher than the 106 so-
lutions unique solutions that are evaluated. The number of solutions that
are eliminated by the bounding procedure without explicitly generating and
evaluating them is hard to be estimated reasonably.
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Chapter 7

Conclusion

In this thesis a genetic algorithm enhanced with a complete solution archive
based on a Trie is presented. Besides inserting each solution into the archive
a special procedure searches for alternative unvisited solutions if duplicates
are detected on insertion. Furthermore a bounding procedure eliminates
regions of the search space by computing upper bounds based on the sur-
rogate LP relaxation at each level of the Trie. The genetic algorithm that
is enhanced by the archive uses a repair operator to ensure that each so-
lution that is generated is located on the boundary of the feasible region.
The procedure that searches for alternative solutions ensures that only new
boundary solutions are generated. Computational results show that the
number of duplicate solutions generated by the original genetic algorithm
is significant for many instances. For those instances the genetic algorithm
generates more unique solutions and thus evaluates a larger portion of the
search space. The quality of the solutions obtained by the genetic algorithm
could be slightly improved by the use of the solution archive.

7.1 Suggestions for future work

Strongly correlated instances are harder to solve than weakly correlated in-
stances. For those instances the original genetic algorithm does not produce
as many duplicates as for strongly correlated ones. Especially large scale in-
stances with more than 1000 items pose a handicap for the solution archive.
The ratio of duplicate solutions generated with the original algorithm de-
creases as the size of the instance increases. Thus the benefit of the solution
archive decreases as well. Furthermore, the size of the solution archive grows
with the number of items. Thus, for very large instances the number of so-
lutions that can be inserted in the archive is limited. For such instances the
archive enhanced version cannot produce as many solutions as the original
version.

Improvements of the data structure may reduce the amount of memory
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that is needed by the solution archive. For example, there may (and in
general are) be many solutions contained in the Trie that differ only at few
places. A set of such solutions may contain much redundancy that may be
reduced by some means resulting in a more compact representation of the
solutions in the Trie.

The bounding procedure that is used to eliminate regions of the Trie
where no optimal solution can be located might also be improved probably.
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