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Abstract

The Bounded Diameter Minimum Spanning Tree problem (BDMST) and the
Hop Constrained Minimum Spanning Tree problems (HCMST) are NP-hard
combinatorial optimization problems which have their main application in
network design. In this thesis an existing relax-and-cut approach for finding
lower bounds and approximate solutions to those problems is enhanced and
extended, and a hybrid algorithm based on the relax-and-cut approach as
well as on an existing metaheuristic, namely an ant colony optimization
(ACO), is presented.

The enhanced relax-and-cut (R&C) approach is based on an integer lin-
ear programming (ILP) formulation which relies on so called jump con-
straints. The number of jump constraints in this formulation is exponential
by means of the instance size. Therefore, violated constraints are identified
and relaxed on the fly. The enhanced R&C algorithm is a so called non de-
leayed relax-and-cut algorithm which is based on subgradient optimization.
Since the number of separated jump inequalities can be large, a sophisicated
management of a pool of such constraints is used. The two main extensions
to this R&C approach are the initial identification of jump constraints with
corresponding dual variables and a generalization of jump constraints.

The metaheuristic utilized for the hybrid algorithm is an ant colony
optimization (ACO) algorithm. ACO algorithms exploit the ability of ants
finding short paths between their nest and food sources by depositing phero-
mone. This works as a positive feedback system. The concept of the hybrid
algorithm is the utilization of information obtained by the relax-and-cut
approach as a heuristic component in the ACO algorithm that is mixed
with the pheromone information of the ACO algorithm.

Computational experiments have been performed on previously pub-
lished benchmark instances. The results have shown that most of the en-
hancements to the R&C algorithm have lead to significant improvements
especially for the lower bounds compared to the original R&C algorithm.
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Zusammenfassung

Das minimale Spannbaumproblem mit einer Beschränkung des Durchmes-
sers (Bounded Diameter Minimum Spanning Tree – BDMST) ist ein NP
schweres kombinatorisches Optimierungsproblem aus dem Bereich des Netz-
werkdesigns. Ein verwandtes Problem ist das minimale Spannbaumproblem
mit festgesetztem Wurzelknoten und einer beschränkten Anzahl von Kan-
ten zwischen dem Wurzelknoten und jedem Blattknoten (Hop Constrained
Minimum Spanning Tree – HCMST). In dieser Arbeit wird ein bestehen-
der Relax-and-Cut (R&C) Algorithmus zur approximativen Lösung dieser
Probleme verbessert und erweitert und ein hybrider Algorithmus basierend
auf dem R&C Algorithmus und einer Metaheuristik vorgestellt.

Der R&C Algorithmus basiert auf einer integer linear programming (ILP)
Formulierung mit einer exponentiellen Anzahl von linearen Bedingungen,
den sogenannten Jump-Constraints. Dabei werden nicht erfüllte Bedingun-
gen während der Laufzeit des Optimierungsalgorithmus identifiziert und re-
laxiert. Verbessert wurde der R&C Algorithmus durch eine aufwändige
Verwaltung der identifizierten linearen Bedingungen und durch den Einsatz
eines non delayed R&C Verfahrens. Die entwickelten Erweiterungen sind
der Einsatz von generalisierten Jump-Constraints und eine initiale Erzeu-
gung einer Menge von Jump-Constraints mit zugehörigen dualen Variablen.

Die für den hybriden Algorithmus verwendete Metaheuristik ist eine
Ameisenkolonie-Optimierung (ACO). ACO Algorithmen nutzen die Fähig-
keit von Ameisen kurze Wege zwischen Nahrungsquellen und ihrem Nest
durch das Hinterlassen von Pheromonen am Weg zu finden. Die Funktions-
weise entspricht einem positiv rückgekoppelten System. Der hybride Algo-
rithmus verbindet die Pheromoninformationen mit Informationen vom R&C
Algorithmus, sodass zur Lösungsfindung neben Pheromonwerten zusätzliche
heuristische Werte einfließen.

Experimentelle Berechnungen mit schon bestehenden Probleminstanzen
aus der Literatur wurden durchgeführt. Die Resultate zeigen, dass die
Verbesserungen des R&C Algorithmus zu deutlich besseren Ergebnissen –
im Speziellen zu deutlich höheren unteren Schranken – geführt haben.
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Chapter 1

Introduction

The bounded diameter minimum spanning tree problem is an optimization
problem in graph theory. It is related to the minimum spanning tree problem
but it has the additional constraint of limiting the maximum number of
hops (edges) between any two nodes. The problem is known to be NP-hard
which means that currently no deterministic algorithm exists which solves
the problem to optimality in polynomial time.

The hop constrained minimum spanning tree problem is a similar prob-
lem. An HCMST is a minimum spanning tree with a fixed root node and a
limited height, that means the path from the root node to any other node
must be limited in the number of edges.

Peter Putz has described an ILP Formulation for the BDMST in [Put07]
that is mainly based on an HCMST formulation. It is solved with a relax-
and-cut algorithm. In this thesis several changes and enhancements for this
relax-and-cut approach are presented as well as a generalization of the ap-
proach such that it can also be used to solve HCMST problems. In addition
a way of combining the relax-and-cut approach with an existing metaheuris-
tic, namely an ant colony optimization, is presented that forms the basis for
a new hybridized approach.

Overview of the Thesis

The remainder of this thesis is organized as follows: The next two Sec-
tions present definitions and detailed descriptions of the problems as well
as different applications. Chapter 2 gives an overview of existing methods
for solving the problems. In Chapter 3 the utilized relax-and-cut approach
and its fundamentals are described. Chapter 4 presents enhancements for
this relax-and-cut approach. Extensions as well as the combination with
the metaheuristic for the hybrid approach are described in Chapter 5 and
Chapter 6 and 7 present details about the implementation as well as com-
putational results.
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1.1 Applications

The bounded diameter minimum spanning tree problem can be found in
several applications, mainly in telecommunication network design when the
number of hops from one node to any other must be limited, for example
for quality reasons. If a maximum transmission delay in packet switched
networks from one node to another must not be exceeded the number of hops
on the path of the message should be limited. The reason is that the packet
switching hops have a more significant impact on communication delay than
the length of continuous transmission lines. This is also an application of
the HCMST problem, if only the delay between a server and a client is of
interest. Limiting the hops on the path from a client to the server increases
both, availability and reliability [WA88]. Availability is the probability that
a client can connect to a server and reliability is the probability that an
established connection will not be interrupted.

Beside network design the BDMST problem can also be found as sub-
problems of other problems:

In [BK91] Bookstein and Klein describe an algorithm for the compres-
sion of correlated bit-vectors based on minimum spanning trees, where the
decoding time of a bit-vector depends on its depth in the tree. Thus, an
MST with a diameter bound seems reasonable.

In addition it appears as a subproblem of the vehicle routing problem
(VRP) [AC90]. This problem describes a fleet of vehicles which have to serve
several customers. It is closely related to the travelling salesman problem,
since a solution to the VRP consists of several TSP solutions with com-
mon start and end points. If the total length of a tour is limited, MST
based heuristics such as the Christofides heuristic have to be extended to
use BDMSTs instead of MSTs.

1.2 Definitions

1.2.1 Minimum Spanning Tree

Given a connected graph G(V,E) with positive edge costs cv,w, a minimum
spanning tree (MST) is a cycle free subgraph T (V,ET ) that connects all
vertices of G and has a minimum sum of edge costs

∑
(v,w)∈ET cv,w. Figure

1.1 (a) shows an MST.

1.2.2 Bounded-Diameter Minimum Spanning Tree

A bounded diameter minimum spanning tree (BDMST) with diameter
D is a minimum spanning tree in which the path between any two nodes
does not contain more than D edges. Figure 1.1 (b) depicts a BDMST with
a diameter of 4.
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The eccentricity of a node v is defined as the maximum number of edges
on the path from node v to any other node in the tree. Given the eccentricity
we can define the center for a BDMST with even diameter as the node with
minimal eccentricity. For a BDMST with odd diameter the center consists
of a pair of nodes, i.e. we have one edge forming the center of the tree. For
the BDMST in Figure 1.1 the center node is 5.

The MST problem can be efficiently solved in O(|E|log|E|) with Krus-
kal’s MST algorithm, or in O(|E|+ |V |log|V |) with Prim’s MST algorithm
[CLRS01]. However, adding the diameter constraint increases the complex-
ity of the problem. As shown in [GJ79] the bounded diameter minimum
spanning tree problem with diameter D is NP-hard for 4 ≤ D < n−1 where
n is the number of nodes of the graph.

1.2.3 hop-constrained minimum spanning tree

The Hop-Constrained Minimum Spanning Tree problem (HCMST)
is very related to the BDMST. A HCMST with height H is defined as a
minimum spanning tree on an undirected connected graph G(V,E) rooted
at r ∈ V and a maximum path length (number of edges) of H for the path
from r to any other node in the tree. A BDMST with even diameter D can
be seen as a HCMST with a height of D/2 that is rooted at the center node
of the BDMST. Thus it is possible to adapt BDMST problem formulations
(at least for even diameters) such that they can be solved by an algorithm for
the HCMST problem and vice versa. Note that finding the optimal center
of a BDMST is part of the optimization problem, while in the HCMST
problem the root node is given in advance as part of the instance. Figure
1.1 (c) depicts a HCMST with H = 2 rooted at node 1. The BDMST (b)
could be seen as a HCMST with H = 2 rooted at node 5.
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Figure 1.1: An MST, a BDMST with D = 4 and an HCMST with H = 2
and root node 1 based on a complete graph of 10 nodes and edge costs
proportional to their Euclidean distances.
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Chapter 2

Previous Work

Several algorithms have been presented in the last decades to solve the
BDMST, HCMST and other similar problems. Some of the algorithms use
exact techniques while others are based on heuristic approaches. This chap-
ter gives an overview of the previous work.

2.1 Exact Methods

In [Gou96] Gouveia presents a directed multi-commodity flow formulation
(DMCF) for the terminal layout problem with hop constraints which is equal
to the HCMST problem. He compares this DMCF formulation to an undi-
rected multi-commodity flow formulation (UMCF). For the DMCF undi-
rected edges between two nodes u and v (except the root node) are replaced
by two directed arcs (u, v) and (v, u) and each edge between the root r
node and any other node v is replaced by only one arc (r, v). In addition,
two Lagrangian relaxations derived from the DMCF are described. They
present results showing that the bounds given by the LP relaxation of the
multi-commodity flow models are very sharp. The results also show that the
directed multi-commodity flow model delivers tighter lower bounds than the
undirected model.

Dahl et al. present an ILP formulation for the HCMST problem that
is based on so called jump constraints in [DFFG05]. The number of con-
straints is exponential such that not all constraints can be identified in ad-
vance. To compute upper and lower bounds with this formulation they use
a Lagrangian relaxation based relax-and-cut approach which identifies and
relaxes violated constraints on the fly.

In [DGR06] Dahl, Gouveia and Requejo give a survey about several
ILP formulations for the HCMST and present comparisons of the different
methods. In particular they describe a general framework for the construc-
tion of HCMST formulations as well as they present a generic formulation
that includes previously known formulations as special cases. The presented
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methods all rely on a directed formulation of the HCMST problem since it
has proven to be quite useful for many network design problems to direct
the problem.

Gouveia et al. present a further modeling approach for the HCMST
that views the problem as defined on a layered graph in [GSU07]. It is
equivalent to a transformation of the HCMST to a directed Steiner tree
problem over a layered graph. With their transformation any model for the
Steiner tree problem on the layered graph is a valid model for the HCMST
problem. They employ the hop-cut model which has an exponential number
of constraints and needs a cutting plane algorithm to be solved.

N.R. Achutan et al. present a multi-commodity flow based mixed inte-
ger linear programming formulation (MILP) for the BDMST problem using
a directed representation of an undirected instance graph as described in
[ACCG94]. They distinguish between the cases for odd and even diameters
and present different formulations. For the even diameter case they intro-
duce an artificial node r and artificial arcs from r to any other node v ∈ V .
For the odd diameter case they do not introduce an artificial arc but binary
variable for the selection of the center edge.

In [GM03] Gouveia and Magnanti present multi-commodity flow based
formulations for the diameter constrained minimum spanning and Steiner
trees. While other multi-commodity flow models for these problems use
one commodity for every pair of nodes their model uses a single source of
commodities. It simultaneously finds a directed tree with a central node (or
edge) serving as the source for the commodities. Their results show that
single-sourcing combined with directing the model and using hop-indexed
formulations is very powerful. For both, the even and odd diameter case,
they use an artificial root node with artificial edges. For the odd case exactly
two artificial edges from the root to the other nodes are selected and an extra
variable for the edge connecting the two nodes is added to the model. In
contrast to a traditional multi-commodity flow model which could not solve
a 20-node and 100-edge instance after one week of computation, their model
was able to solve this problem in less than 1 second.

An alternative modeling approach is presented by Gouveia et al. in
[GMR04], since the odd diameter case proved to be more difficult to solve
than the even diameter case with the approaches presented in [GM03]. Their
model views the diameter constrained minimum spanning tree as a compo-
sition of a variant of a directed spanning tree and two constrained paths –
a shortest and longest paths – from the root node to any node in the tree.
This leads to linear programming gaps that are one third to one tenth of
the gaps of the best previous model.

Santos, Lucena and Riberio present a formulation based on lifted Miller-
Tucker-Zemlin inequalities in [dSLR04]. They also use the concept of an
artificial root node for the even and odd diameter case.

In [GR05] Gruber and Raidl present – in contrast to multi-commodity
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flow formulations – a compact 0–1 ILP formulation. To strengthen their
formulation they use a branch-and-cut approach which iteratively identifies
violated connection and cycle elimination constraints in the solution of the
LP-relaxation and adds them as cuts. The presented results show that
their formulation performs well on dense graphs with rather tight diameter
bounds.

Putz describes a modification of the relax-and-cut approach mentioned
in [DFFG05] for the BDMST problem in his masters thesis [Put07] by
adding an artificial root node and artificial arcs like N.R. Achutan et al.
in [ACCG94]. However, only the even diameter case is considered. Lower
bounds for the optimal value are computed with a relax-and-cut algorithm,
which separates and relaxes violated constraints while running. This thesis
is fundamentally based on this formulation and introduces many improve-
ments for its implementation. The most significant change is the switch from
a delayed to a non delayed relax-and-cut approach. This will be discussed
in more detail in Section 4.2.

2.2 Heuristic Methods

While exact methods are rather bound to relatively small instances heuristic
approaches can handle much larger ones. Heuristic algorithms can only be
employed to compute upper bounds, however, computational results show
that some heuristics mostly deliver optimal solutions within relatively short
computation times for small instances (when considering complete graphs).

Abdalla et al. [ADG00] describe a greedy heuristic for constructing a
BDMST. The one-time tree construction algorithm (OTTC) is a modifica-
tion of Prim’s MST algorithm. The OTTC starts at an arbitrarily chosen
node and subsequently connects the nearest node that does not violate the
diameter constraint. It is very sensitive regarding the choice of the starting
node and it does not always create a valid solution if the instance graph is
not complete.

A similar construction heuristic is presented by Julstrom. The center-
based tree construction algorithm (CBTC) in [Jul04] is an improvement of
the OTTC. The selected start node forms the center of the tree such that a
node can be connected with a certain edge if the number of edges on the path
from the center to the node does not exceed D/2. If the diameter is odd a
center edge is selected (i.e. a pair of nodes) instead of one center node. This
reduces the worst case runtime complexity from O(n3) (OTTC) to O(n2).
Raidl and Julstrom describe a randomized version of the CBTC, called RTC,
which chooses nodes to be connected in the cheapest possible way in random
order [RJ03] which leads to better results on Euclidean instances.

Julstrom and Raidl present an evolutionary algorithm in [JR03]. For
this algorithm candidate trees are encoded as permutations of vertices. The
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first vertex in the permutation (or the first two vertices for the odd diameter
case) represent the center node (or nodes) of the tree. The remaining vertices
are selected in the order of the permutation and connected with the lowest-
weight edge to the tree such that the inclusion of that edge doesn’t violate
the diameter constraint. This decoding scheme is very similar to the RTC
heuristic described above. As crossover operator for two permutations the
partially mapped crossover is applied and for the mutation two arbitrary
chosen vertices swap their positions.

Several neighborhood searches are described by Gruber, van Hemert
and Raidl in [GvHR06]. Based on those neighborhoods three metaheuris-
tics are presented. The four described neighborhoods are the arc exchange,
level change, node swap and center exchange level neighborhood. These
neighborhoods work on two different solution representations and are com-
bined within a strong local improvement procedure, variable neighborhood
descent (VND). The three metaheuristics presented are a variable neigh-
borhood search (VNS), an evolutionary algorithm (EA), and an ant colony
optimization (ACO). Both, the EA and the ACO, are based on a node level
encoding that does not directly represent a valid solution. Thus, a decod-
ing mechanism building a valid BDMST from the node level information
is needed for these metaheuristics. The third metaheuristic presented is a
variable neighborhood search which is an improvement heuristic and – as
the EA – relies on a construction heuristic for an initial solution. The re-
sults achieved by the metaheuristics, especially by the ACO and EA, are
comparatively good. The ACO achieves better solutions while the EA con-
verges faster and is therefore more suitable if computation time is strictly
limited. The variable neighborhood descent and the ant colony optimization
are discussed in more detail in Sections 3.2.3 and 4.1 as they are used as
part of my work.
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Chapter 3

Relax-and-Cut Approach for
the BDMST Problem

The relax-and-cut approach for the BDMST problem – initially presented
by Putz in [Put07] – covered in this thesis is based on the jump model for the
HCMST by Dahl et al. [DFFG05]. In the following section the fundamentals
for that approach are presented.

3.1 Methods

3.1.1 ILPs and Lagrangian Relaxation

Many combinatorial optimization problems can be formulated as an integer
linear program (ILP). A typical integer linear program has the following
form:

min cx (3.1)
s.t. Ax ≥ b

x ∈ N

where c is an n dimensional vector, b is an m dimensional vector, and A is
an (m × n) matrix. Ax ≥ b is a constraint set of m constraints which can
also be written as:

n∑
j=1

aijxj ≥ bi 1 ≤ i ≤ m (3.2)

The difference between a linear program and an integer linear program is
that for the linear program the values of the solution vector are real values,
i.e. x ∈ Rn, while in general for an integer linear program only integer
values can form the solution vector: x ∈ Nn. However, many integer linear
programs have an integrality constraint of the form x ∈ {0, 1}n. Such ILPs
are called 0–1 integer linear programs.
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While linear programs can be solved efficiently in general, e.g. with the
simplex algorithm (see [Wol98]), integer linear programs are quite com-
plex to solve. A common way to obtain upper or lower bounds (depending
whether the optimization problem is a maximization or minimization prob-
lem) for integer linear programs is the LP-relaxation. In the LP-relaxation
the integrality constraint of the integer linear program is relaxed reducing
the ILP to an LP which in turn can be efficiently solved. For minimization
problems the resulting solution is a lower bound for the optimal solution
of the the ILP. Another way to compute upper or lower bounds for integer
linear programs is Lagrangian relaxation. For simplicity, we only consider
minimization problems in the following sections.

Lagrangian Relaxation

With Lagrangian relaxation one or more constraint sets of an integer linear
program are relaxed by bringing them into the objective function such that
the relaxed program gives a lower bound to the optimal solution of the
original problem. Given an integer linear program

min cx (3.3)
s.t. Ax ≥ b

Bx ≥ c
x ∈ {0, 1}

a possible Lagrangian relaxation is:

min cx+ λ(b−Ax) (3.4)
s.t. Bx ≥ c

x ∈ {0, 1}

One of the constraint sets of (3.3) is removed and brought into the objective
function by attaching a Lagrange multiplier vector λ ≥ 0 to that constraint
set. If the constraints in A are violated λ(b − Ax) is positive and thus can
be seen as penalty. If the constraints are satisfied a negative term is added
to the function. Additionally, omitting a constraint set for the ILP can only
reduce its objective value. As a result, the solution of (3.4) is a lower bound
to the optimal solution of the original problem. For the proof the interested
reader is referred to [Bea93]. (3.4) is called the Lagrangian lower bound
program (LLBP).

The obtained problem is obviously easier to solve since we relaxed a
constraint set. However, the lower bound obtained by this problem often is
not very tight. We are interested in the best lower bound, that means the
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lower bound with the greatest value. This leads us to the following problem:

max
λ≥0


min cx+ λ(b−Ax)
s.t. Bx ≥ d

x ∈ {0, 1}

 (3.5)

It is called the Lagrangian dual problem. The key to a good value of the
Lagrangian dual problem is to find good values for the Lagrange multipliers,
i.e. the vector λ. A well known method for finding good values for λ is the
subgradient optimization which is discussed in the next section.

Besides only calculating lower bounds Lagrangian relaxation can also be
helpful with finding feasible solutions of good quality, i.e. upper bounds for
minimization problems. Given a solution of the Lagrangian lower bound
problem which is mostly infeasible together with a repair heuristic we can
perform adjustments such that we obtain a feasible solution.

Subgradient Optimization

The subgradient optimization is an iterative method for finding values of
the Lagrange multiplier vector that lead to a maximal value for the solution
of the LLBP. The two main components the subgradient optimization relies
on are a good upper bound and a solver for the LLBP. The upper bound
can be obtained with a heuristic. In the following the solution of the LLBP
will be denoted as zLLBP and the upper bound as zUB.

The central concept introduced in subgradient optimization is the sub-
gradient vector δ. Based on the values of zLLBP , zUB, and δi the values for
the Lagrange factors λi are iteratively adjusted. To present a more detailed
view on the subgradient vector we first switch to the other notation for the
constraint set Ax ≥ b:

n∑
j=1

aijxj ≥ bi i = 1, ...,m (3.6)

Now δi, the subgradient for the ith constraint in solution x, is defined as
follows:

δi = bi −
n∑
j=1

aijxj (3.7)

The value of δi gives a notion of how far the solution x is from saturating the
ith constraint with equality. If δi is negative the ith constraint is oversatu-
rated and if δi is positive the ith constraint is violated for x. In both of these
cases the Lagrange factor λi will be changed for the next calculation of x:
If δi is positive, λi is increased to increase the penalty for the violated con-
straint and if δi is negative λi is decreased. Only if δi = 0 – this is the case
when the ith constraint is satisfied with equality – λi remains unchanged.
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In order to iteratively let λi approach the values where zLLBP is maximal
the adjustment of λi must be controlled by a so-called step size. The smaller
the difference between zLLBP and zUB the smaller the adjustments must be.

Therefore the step size ∆ is defined as follows:

∆ =
π(zUB − zLLBP )∑m

i=1 δ
2
i

(3.8)

The parameter π, called agility, enables a better convergence. After a specific
number of iterations without any improvement, the value of π is reduced
resulting in smaller changes of the Lagrange multipliers.

The steps of the procedure for the subgradient optimization as described
in [Bea93] are:

1. Initialize π and the Lagrange multipliers λi. For π Beasley suggests a
value of 2.

2. Calculate zLLBP with the current values of λi.

3. Evaluate the subgradients as defined by (3.7).

4. Calculate the step size as defined by (3.8).

5. Adjust the Lagrangian multipliers λi and – if necessary – reduce π.

6. If termination condition is not satisfied continue at step 2.

Possible termination conditions could be:

• π is too small.

• The maximum number of iterations is reached.

• zLLBP = zUB which means the optimum of the original problem was
found.

Relax-and-Cut Algorithms

For several ILP formulations not all constraints can be added to the model
in advance since their number is too high (e.g. exponential). In such a
case violated constraints can be identified (separated) in the current solu-
tion and relaxed during computation. Two different types of relax-and-cut
algorithms can be distinguished: delayed R&C, as utilized in the implemen-
tation of Putz (see [Put07]), and non-delayed R&C, as described by Lucena
in [Luc05]. The main difference between a delayed and a non-delayed relax-
and-cut algorithm is the strategy when to identify new constraints: While
for the non-delayed relax-and-cut approach it is essential to separate new vi-
olated constraints at every iteration of the subgradient algorithm the delayed
relax-and-cut algorithm identifies new constraints only after the subgradient
algorithm has converged to some degree.
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3.2 The Jump-Model for the BDMST

This section gives a brief overview about the relax-and-cut approach from
Putz. For a detailled discussion of the algorithms see [Put07]. This approach
for the BDMST problem is based on an ILP formulation for the HCMST
problem. As mentioned in Section 1.2.3 a BDMST can be seen as a HCMST
with an additional constraint. In fact, with the jump model a HCMST
problem is solved. Therefore, the instance of the BDMST problem has to
be transformed into an artificially rooted HCMST instance.

3.2.1 Artificially Rooted HCMST

Suppose a BDMST problem with an undirected instance graph G(V,E),
with V being the node set and E the set of edges, and an even diameter
bound of D (In this work only the even diameter case is considered). To
utilize the jump model for the BDMST problem an artificial root node rart
is introduced with artificial directed arcs (rart, v)|v ∈ V to every other node
in the graph. The resulting graph can now be seen as an instance graph for
the HCMST problem with a hop limit of H = D/2 + 1. The costs of the
artificial arcs are set to a large constant such that any resulting HCMST
will only contain one of these artificial arcs (rart, v). In a solution this node
v connected to rart represents the center node of the BDMST and rart itself
and the artificial arc (rart, v) are not included in the BDMST solution.

Additionally, the jump model is defined on directed instance graphs so
the undirected instance graph G(V,E) has to be transformed into a directed
one, G(V,A), with A being the set of directed arcs. Each edge (u, v) of the
undirected graph is replaced by two directed arcs (u, v) and (v, u) with arc
costs equal to that of the edge. The resulting augmented graph G+(V +, A+),
with V + = V ∪ {rart}, A+ = A ∪ {(rart, v)∀v ∈ V } can now be seen as a
directed interpretation of a HCMST instance graph. On this graph the
equivalent to an MST is a minimum spanning arborescence. A minimum
spanning arborescence is a directed tree T in which for any node v ∈ V
there exists exactly one directed path from the root node – in this case rart
– to v where the sum over all arc costs c(u,v) ∈ T is minimal.

3.2.2 The ILP Formulation

The ILP formulation of the jump model is defined for the HCMST problem
on a directed interpretation of the instance graph. By applying the trans-
formation described above it can also be used for the BDMST problem. For
the ease of reading the following definitions are based on a directed graph
G(V,A) which is the directed interpretation of a HCMST instance graph,
obtained by replacing all undirected edges (u, v) with two directed arcs (u, v)
and (v, u) with arc costs equal to that of the corresponding edge. Note that
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the edges from the root node r to any other node v are only replaced by one
directed arc (r, v). The formulation is based on variables xu,v defined as:

xu,v =
{

1 if the arc (u, v) is in the solution tree T
0 otherwise

(3.9)

The constraints used in this formulation to enforce the hop respectively the
diameter bound are so-called jump constraints that are derived as follows:

Given a HCMST problem with hop limit H and root node r all nodes
of the tree are partitioned into H + 2 non-empty sets such that the root
node r is assigned to the set S0 and the other nodes are assigned to the
sets S1, .., SH+1. Upon such a node partition P we can define a jump J as
follows:

J = {(u, v) ∈ A|u ∈ Si, v ∈ Sj , j ≥ i+ 2} (3.10)

It is the set of all arcs that jump over at least one set Si in the partition P .
Since any valid HCMST with hop limit H must contain at least on arc out
of every possible jump the jump constraints can be formulated as:∑

(u,v)∈J

xu,v ≥ 1 ∀J ∈ Π (3.11)

where Π is the set of all jumps induced by all possible valid partitions (r ∈
S0, |Si| > 1∀i ∈ {1 . . . H + 1}).

This leads us to the following ILP formulation:

min
∑
a∈A

caxa (3.12)

s.t.
∑
a∈J

xa ≥ 1 ∀J ∈ Π (3.13)

x is a spanning arborescence in G(V,A) rooted at r (3.14)

By relaxing the constraint set (3.13) we obtain the following Lagrange re-
laxed ILP:

min
∑
a∈A

caxa +
∑
J∈Π

λJ(1−
∑
a∈J

xa) (3.15)

s.t. x is a spanning arborescence in G(V,A) rooted at r

The objective function (3.15) can also be written as:

min
∑
a∈A

αaxa +
∑
J∈Π

λJ (3.16)

where αa is given by
αa = (ca −

∑
J∈Π|a∈J

λJ) (3.17)

The relaxed program can be efficiently solved with Edmond’s algorithm for
a minimum spanning arborescence. For more details on this algorithm see
[Gib85].
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3.2.3 Heuristics

The solutions obtained by the described relax-and-cut algorithm form lower
bounds for the optimal solution of the original problem. Mostly, these solu-
tions are infeasible and therefore must be transformed to feasible solutions
to obtain upper bounds for the optimal solution. This problem can be solved
with heuristics described in this section.

In order to transform an infeasible solution into a feasible one, the node
levels of the infeasible solution are identified. The level of a node v is the
number of arcs on the path from the root node r to v where r is assigned
to level 0. This node level information will contain invalid values for nodes
which exceed the hop limit in the infeasible solution. Those nodes are as-
signed to the maximal valid level. The resulting list of node levels is then de-
coded to a valid solution with a decoding algorithm described in [GvHR06].
It finds the least cost predecessor p for every node v at level l by considering
all nodes from levels 0 to l− 1 and connects node v to its cheapest possible
predecessor node p. After decoding the node level information an improve-
ment heuristic which is described in the following section is applied to the
valid BDMST.

Variable Neighborhood Descent

The variable neighborhood decent (VND) described in [GvHR06] is a lo-
cal improvement heuristic using four different local neighborhoods. Based
on an initial solution the four neighborhoods are completely explored in a
specified order, always the best move found in one of the neighborhoods is
applied. All neighborhoods lead to local optimal solutions. However, they
can be different. Therefore, neighborhood 1 is completely explored until
a local optimum is reached (no better solution can be found any more in
this neighborhood). Then, neighborhood 2 is explored until the local op-
timum is reached and if an improvement was found in neighborhood 2 the
algorithm restarts with neighborhood 1, otherwise the VND will continue
with neighborhood 3 and so forth. Only when in all four neighborhoods no
better solutions can be found any more the algorithm terminates. The four
neighborhoods utilized by this algorithm are:

1. Arc exchange neighborhood:

A neighboring solution with respect to the arc exchange neighborhood
is a tree that differs in exactly one arc from the current solution.
Considering a complete graph with n nodes the number of neighboring
solutions is in O(n2).

2. Node swap neighborhood:

The node swap neighborhood defines neighboring solutions to a cur-
rent one by exchanging the position of a node u and one of its direct
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successors v. This neighborhood consists of O(n) solutions.

3. Level change neighborhood:

For the level change neighborhood an adjacent solution to a current one
is obtained by incrementing or decrementing the level of exactly one
node. This neighborhood has a size of O(n), however, computation
time for an implementation of this neighborhood is in O(n2) since
for each node to be moved it has to be checked if nodes have to be
reconnected to another predecessor.

4. Center exchange level neighborhood:

Adjacent solutions to a current one with respect to the center exchange
level neighborhood are defined by replacing the center node by a non-
center node. The original center node is assigned to level H such that
it can be reconnected to the largest number of potential predecessors.
The size of this neighborhood is O(n) while the implementation of one
movement has a worst-case time of O(n2) which leads to an overall
complexity of O(n3).

CBTC and RTC

For calculating initial upper bounds for the subgradient algorithm other
heuristics are utilized since at this time no infeasible solution that can be
transformed to a feasible one yet exists. The center based tree construction
heuristic (CBTC) selects one node as the center node and then subsequently
connects – like Prim’s MST algorithm – the remaining nodes to the tree with
the cheapest available edge that does not violate the diameter bound.

The randomized center based tree construction (RTC) is a variant of the
CBTC selecting the center node as well as the order of the remaining nodes
for subsequent processing randomly.

Again, a solution constructed by one of the two heuristics is improved
with the variable neighborhood decent local improvement procedure.
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Chapter 4

Enhancements for the
Relax-and-Cut Approach

The relax-and-cut approach described in Chapter 3 can be enhanced in
several ways to improve the performance and the quality of the solutions
obtained. This Chapter presents several enhancements effecting both, the
quality of the upper and lower bounds computed by the relax-and-cut algo-
rithm.

4.1 Employing other Heuristics

As presented in Section 3.2.3 a heuristic is employed to create a feasible
solution from an infeasible one that is obtained by the solver for the LLBP.
This heuristic is mainly based on node level information. Experiments have
shown that – especially for larger instances – the upper bounds obtained by
this heuristic are not as good as the solutions computed with metaheuristics
such as the ant colony optimization (ACO) or the evolutionary algorithm
(EA) described in [GvHR06]. In addition, these metaheuristics are based
on node level information as well. Hence, it seems promising to employ
one of these heuristics for the calculation of the upper bounds in the relax-
and-cut algorithm. Since the ACO algorithm delivers the better results we
prefer it to the EA. In the following a brief overview of the concepts of ACO
algorithms in general as well as a description of an ACO algorithm for the
BDMST problem is given.

4.1.1 Ant Colony Optimization

As several other metaheuristics the ant colony optimization (ACO) has its
origins in processes of the nature. It is a positive feedback system. The
first ant colony algorithm was presented by Dorigo [Dor92]. Several ant
colony algorithms exist, mainly for optimization problems on graphs as the
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traveling salesman problem [DG97].
The main idea of ant colony optimization comes from the ability of ants

finding a short path from food sources to their nest. Ants deposit pheromone
on their ways and prefer ways with more accumulated pheromone deposited
by other ants. Suppose there are several possibilities for the path between
two points. One ant cannot know in advance which is the shortest so it can
be expected ants choose either way with the same probability. On their way
ants deposit pheromone and since on short paths more ants can pass within
the same time (if ants walk in both directions) the amount of pheromone
accumulated on the shorter path is larger. Hence, ants will begin to prefer
the shorter path.

The ACO Algorithm for the BDMST Problem

In the ant colony optimization for the BDMST problem [GvHR06], phero-
mone is not artificially deposited on paths (between nodes) but in a matrix.
For a BDMST problem instance with a diameter D and n nodes in the
instance graph the pheromone matrix consists of n columns and H + 1 rows
where H = bD2 c. A pheromone value at column i and row l denotes the
probability for node i to be at level l in the BDMST (or HCMST). Clearly,
a decoding mechanism is needed to build a BDMST or HCMST from the
level information of nodes. This decoding mechanism is the same as in the
heuristic described in Section 3.2.3.

The ACO algorithm now works as follows: At each iteration several
(virtual) ants build a BDMST based on the values in the pheromone matrix.
The ant that produced the best solution is allowed to deposit pheromone
to the pheromone matrix according to the node levels of its solution. In
addition, accumulated pheromone decays at each iteration to smooth the
distribution of pheromone values.

The ACO Algorithm in the Relax-and-Cut Approach

The simple integration of the ACO algorithm into the relax-and-cut ap-
proach can only be done by using the ACO algorithm for the calculation
of the initial upper bound before the subgradient optimization starts. The
upper bounds computed by the ACO algorithm outperform the results of
the heuristic presented in Section 3.2.3 in most cases such that this heuristic
seems obsolete.

4.2 Non Delayed Relax-and-Cut

Based on the jump-model described in Chapter 3 Putz describes a delayed
relax-and-cut algorithm in [Put07]. This algorithm has shown to produce
a relatively small pool of constraints which was too small to compute tight

22



lower bounds. The scheme of the delayed relax-and-cut algorithm is the
following:

1. Solve the LLBP with an empty constraint set.

2. Identify violated constraints based on the initial solution obtained in
step 1.

3. Perform the subgradient algorithm until it converged.

4. Separate new constraints that are violated at the end of the run of the
subgradient algorithm in step 3.

5. Continue at (3) until a termination condition is met, like no improve-
ment in the last runs of the subgradient algorithm.

In this algorithm, constraints that are separated during a run of the
subgradient algorithm are not used before the Lagrangian dual problem is
solved. After a restart of the subgradient algorithm the new constraints are
used. Additionally constraints are only separated at the end of each run of
the subgradient algorithm which results in a smaller number of identified
constraints.

In contrast to the algorithm sketched above, Lucena describes non de-
layed relax-and-cut algorithms in [Luc05]. The main difference to delayed
relax-and-cut algorithms is that constraints are separated at every itera-
tion of the subgradient algorithm. Lucena states that this is an important
step. The relax-and-cut algorithm implemented to substitute the scheme
described above can be seen as a modified subgradient algorithm. It is
presented in more detail in Algorithm 1.

The terminate() function at line 6 returns true if the agility is too small,
the maximal number of iterations is reached, or an optimal solution is found.
The deleteInactive() function deletes at most as many inactive (saturated
or oversaturated constraints with a Lagrange multiplier of 0) constraints as
are in Πnew, the set of new constraints. If there are not enough inactive
constraints in Π that can be deleted the set Πnew is reduced such that
the overall maximum number of constraints is not exceeded. The function
improved() at line 20 returns false if in the last 30 iterations the lower bound
zLLBP did not increase or the upper bound zUB did not decrease. Note that
not only new constraints are added but also previously added constraints are
deleted. Since the number of constraints can increase rapidly when violated
constraints are identified at every iteration of the subgradient algorithm it is
necessary to also delete constraints, as computation time increases with the
number of constraints. For the exact decision strategy about the deletion of
constraints see Section 4.4.

Note that Algorithm 1 is based on the classical subgradient optimization
as described in [Bea93]. The following enhancements to the subgradient
optimization are applied as also shown in [Put07].
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Algorithm 1 NonDelayedRelaxAndCut
1: Π← ∅ // initialize the constraint set

2: λ← 0 // initialize the Lagrange multiplier vector to 0, since no constraints are known in advance

3: Πnew ← ∅ // initialize temporary constraint set

4: π ← 2
5: lowerBound ← 0 // initialize lower bound to 0

6: while (¬terminate()) {
7: xLLBP ← LLBP(Π, λ) // solve the relaxed problem to optimality

8: zUB ← calculateUpperBound(xLLBP ) // calculate an upper bound with a

basic heuristic

9: δJ ← 1− J · xLLBP ∀J ∈ Π // compute subgradient

10: Πnew ← getViolatedConstraints()
11: deleteInactive(Π,Πnew) // delete some inactive constraints

12: Θ =
{
||δ||/||κprev||, if δ · κprev < 0
0, otherwise

// compute the weighting factor for

the direction vector

13: κJ = δJ + ΘκprevJ ∀J ∈ Π // compute the direction vector

14: ∆ = π(zub−zLLBP )P
J∈Π δJκJ

∀J ∈ Π // compute step size

15: λJ = max(0, λJ + ∆ · κJ) ∀J ∈ Π // update Lagrangian multipliers

16: Π← Π ∪Πnew

17: if (zLLBP > lowerBound) {
18: lowerBound← zLLBP // update lower bound if necessary

19: }
20: if (¬improved()) {
21: π ← π

2 // reduce agility

22: }
23: }

• For the computation of the step size ∆ we can increase the upper
bound such that the step size does not get too small. A factor of 1.05
is suggested in [Bea93].

• By setting the subgradient δi to 0 in the current iteration if λi = 0
and δi was < 0 in the previous iteration, we prevent the step size from
getting too small if a lot of values in the subgradient vector would be
negative.

• As described in [CFG01] the computation of the step size and the
update of the Lagrange multipliers is performed with a direction vector
κ. The values of this direction vector are computed as

κJ = δJ + ΘκprevJ

where Θ is a weighting factor and κprev is the direction vector of the
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Figure 4.1: Concept of the path approach for partitioning nodes

previous iteration. The step size is computed as

∆ =
π(zub − zLLBP )∑

J∈Π δJκJ
.

The weighting factor Θ is

Θ =
{
||δ||/||κprev||, if δ · κprev < 0
0, otherwise

The update of the Lagrange multipliers is performed in the following
way:

λJ = max(0, λJ + ∆ · κJ)

4.3 Identifying Violated Jump Constraints

The methods for separating jump constraints utilized in [Put07] led to a
constraint pool of suboptimal quality. Therefore, another approach for iden-
tifying violated jump constraints has been adopted which is described in the
following paragraphs.

Violated jump constraints are separated based on infeasible solutions
produced by the solver for the relaxed ILP. Each solution of this solver is
a minimum spanning arborescence. Most of these solutions are infeasible
(violating the hop respectively the diameter constraint) which means that
they contain nodes at a level l ≥ H + 1. For each such node u (which does
not have to be a leaf node) we can find a node partition of H+ 2 non-empty
sets with the following strategy described in [DFFG05]:
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All the nodes on the path (r, v1)(v1, v2) . . . (vi, u)from the root node r
to node u are placed into a set according to their depth in the tree, i.e. a
node of depth k will be assigned to set k. The rest of the nodes is assigned
recursively to the same set as their direct predecessors. This approach is
denoted as the path approach in [DFFG05]. Clearly, it would lead to a large
set S0 as any node on a path directly originating from r that has no common
arc with the path (r, v1)(v1, v2) . . . (vi, u) will be assigned to the same set as
node r. Therefore, nodes v that are not on the path from r to u are assigned
to set l with l = max(1, set(pred(v))) where set(pred(v)) denotes the index
of the set the predecessor of node v is assigned to. This concept is depicted
in Figure 4.1.

Clearly, for long r − u paths the number of sets in the partition can be
greater than H + 2. If the resulting node partition consists of more than
H + 2 sets it is compressed by merging sets. For a partition with H + i
sets we can merge i − 1 sets. These could either be sets S1 . . . Si−1, sets
SH . . . SH+i−2, or any sequence of i − 1 sets between S1 and SH+i−2. The
first sets S0 and the last set SH+i−1 should be left unaffected such that
set S0 remains singleton and the number of nodes in set SH+i−1 does not
increase since we will make this set singleton in the next step.

If – after compression is applied – the last set (SH+1) contains more than
one node, we have to move all nodes except one into the set SH such that the
last set gets singleton. Dahl et al. proved in [DFFG05] that an inequality
induced by such a node partition is facet defining.

4.4 Managing the Constraint Pool

Since the total number of constraints can increase very quickly it is necessary
to employ a mechanism to keep the constraint pool below a specified size.
Two concepts presented by Lucena in [Luc05] have been adopted for the
relax-and-cut algorithm presented above.

4.4.1 Deleting Inactive Constraints

Lucena introduces three classes of constraints: currently violated active
(CA), previously violated active, and currently inactive (CI). The first two
classes describe constraints that are either violated or have non zero La-
grange multipliers in the current solution of the LLBP. The third class
consists of constraints that have a Lagrange multiplier λi and a subgradient
δi both set to 0. Thus all constraints of the class CI do not have any effect on
the subgradient optimization. For each constraint of that class the number
of iterations since it became inactive is stored and the constraints are sorted
according to this number. Every time new constraints are separated and
the maximum size of the constraint pool is reached, constraints of the class
CI which have been inactive for the most preceding iterations are replaced
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by new constraints. Additionally, only constraints that have been inactive
for more than two subsequent iterations can be replaced by new ones in this
approach.

As a second key, constraints are also ordered by the number of jump
arcs they contain i.e. the size of the jump J . Since the number of iterations
a constraint has been inactive is mostly the same for many constraints the
second level ordering is still meaningful. Clearly, a constraint with a small
set of jump arcs is stronger than a constraint with a large number of jump
arcs since requiring one arc out of a small set to be in the solution is a tighter
restriction. Thus constraints which have been inactive for the same number
of iterations are replaced in decreasing order of the number of contained
jump arcs.

4.4.2 Grouping Constraints into Subsets

Using the method described in Section 4.3 to identify violated jump con-
straints, we obtain a large number of constraints that have a high degree of
similarities. Those groups are induced by the node partitions. If one node
partition contains k nodes in the set SH+1 and we replace it by k partitions
with the set SH+1 being singleton, the resulting partitions induce constraints
that only differ in a few jump arcs. By considering only one out of all these
partitions with a singleton set SH+1, the total number of constraints de-
creases considerable reducing the need for replacing other constraints while
at the same time increasing the diversity in the constraint pool.
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Chapter 5

Extensions and Hybrid
Methods

5.1 Generalized Jump Constraints

The jump formulation from Section 3.2 uses jump constraints defined by
(3.11). Those constraints can be interpreted in the following way: If we
partition all nodes of the instance into H+ 2 non-empty sets where the root
node r is in the first set S0, any valid HCMST satisfying the hop constraint
H for that instance must at least contain one arc that, in the partition of
the nodes into H + 2 sets, jumps over one set. If the HCMST would not
contain such an arc there would be at least one path with H + 1 arcs from
the root node r to a node u in set SH+1. A node partition as described
above with the arcs of a valid HCMST are depicted in Figure 5.1.

S0 S1 S2 S3 S4

Figure 5.1: A node partition with 5 sets for a HCMST with hop constraint
H = 3. Without the jump arc (bold) from S1 to S3 bypassing set S2 the
nodes in set S4 would not be reachable without violating the hop constraint.
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S0 S1 S2 S3 S4 S5

(a)

S0 S1 S2 S3 S4 S5

(b)

Figure 5.2: Node partitions with 6 sets for a HCMST with hop constraint
H = 3.

5.1.1 The Jump-Formulation with Generalized Jump Con-
straints

The formulation of the jump constraints can be generalized to node parti-
tions with H+k sets as described in [DG04]. Suppose we partition all nodes
of the instance into H + 3 instead of H + 2 non-empty sets, then any valid
HCMST satisfying the hop constraint H must at least contain one arc that
jumps over at least two sets or two arcs that jump over one set. This idea
is depicted in Figure 5.2. In (5.2a) without the two jump arcs (bold) the
nodes in set S5 would not be reachable from r without violating the hop
constraint. In (5.2b) only one jump arc is sufficient but it must jump over
at least two sets. Let us now assign a value of 1 to any jump arc that jumps
over one set, a value of 2 for jump arcs that skip two sets and so forth. Any
non jump arc a value of 0 will be assigned to. Thus, we can say that for a
constraint induced by a partition of all nodes into H+k non-empty sets the
values of the used jump arcs must sum up to a value ≥ k − 1. A jump J
can now be easily written as a vector j in the formulation of the constraints.
The values assigned to jump arcs are denoted as ja in the vector j. This
leads us to the following definition of the generalized jump constraints:∑

a∈A
jaxa ≥ bJ ∀J ∈ Π (5.1)

with bJ = k−1 for a jump J that is based on a node partition with H+k sets.
Note that the classical jump constraints can be seen as a special case of the
generalized jump constraints induced by H+k sets with k = 2. Relaxing the
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generalized jump constraints and bringing them into the objective function
of the integer linear program (3.12) leads to the following objective function
of the Lagrangian relaxed program:

min
∑
a∈A

caxa +
∑
J∈Π

λJ(bJ −
∑
a∈A

jaxa) (5.2)

which can also be written as:

min
∑
a∈A

caxa +
∑
J∈Π

λJbJ −
∑
J∈Π

(∑
a∈A

jaxaλJ

)
=

min
∑
a∈A

xa

ca − ∑
J∈Π|ja≥1

jaλJ

+
∑
J∈Π

λJbJ (5.3)

Generalized jump constraints can be identified and separated with the
same procedure as explained in Section 4.3 whereas compression no longer
is necessary but it still can – of course – be performed.

5.2 Creating an Initial Pool of Constraints

Since the number of jump constraints is exponential in the number of nodes
it is not possible to add them all in advance to the model but they have to be
separated dynamically from infeasible solutions. The subgradient algorithm
starts with an empty set of relaxed jump cuts. Hence it seems promising to
have an initial set of jump constraints before starting the subgradient algo-
rithm. However, experiments have shown that starting with an initial set of
jump inequalities that were obtained from previous runs of the subgradient
algorithm does not yield to significantly better solutions or shorter compu-
tation times. On the other hand, using such a set along with corresponding
Lagrange factors from a previous run lead to a noticeable improvement of
the solutions.

Dahl et al. describe a method for creating an initial pool of jump con-
straints in [DFFG05] which is based on a dual ascent approach. However,
their method relies on a certain subproblem for identifying appropriate jump
inequalities:

Given a subgraph T of the instance graph, a jump constraint J has to
be found such that J ∩ T = ∅, i.e. the jump constraint J must not contain
any arc already included in the subgraph. They claim that their problem is
hard and must be solved via a time consuming call of an ILP solver. As a
consequence they have only tested it for small instances.

This subproblem arises from the motivation of finding Lagrange fac-
tors along with the jump constraints. This is done by enforcing the primal
complementary slackness condition and relaxing the dual complementary
slackness condition.
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In the further sections a similar algorithm will be described which uses a
greedy heuristic to efficiently solve the mentioned subproblem. Before that,
some fundamentals are presented.

5.2.1 Methods

Consider the following linear program

min cTx

s.t. Ax ≥ b

where c and x are n-dimensional vectors, A is an m × n matrix, and b is
an m-dimensional vector. The T indicates a transposed matrix. This linear
program has n variables and m constraints.

From this problem we can derive a new linear program:

max λT b

s.t. ATλ ≤ c

This new linear program is called the dual to the original (primal) problem.
The two problems are related to each other in the following way: If the
primal problem is bounded the dual problem is bounded as well and the
values of the optimal solutions of both problems are equal. Additionally, we
can see that there is a relation between the primal variables and the con-
straints of the dual as well as between the dual variables and the constraints
of the primal: Each primal variable corresponds to one constraint in the
dual problem, and each dual variable corresponds to one constraint in the
primal problem. Furthermore, the following relations are given:

xi > 0⇒ ATi λ = ci (5.4)

and
λj > 0⇒ Ajx = bj (5.5)

(5.4) is called the primal complementary slackness condition, (5.5) is called
the dual complementary slackness condition. In words we can say:

1. If xi > 0, the ith constraint of the dual is binding.

2. If λj > 0, the jth constraint of the primal is binding.

This information can be exploited by primal-dual algorithms for approx-
imation problems.
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5.2.2 A Dual-Ascent Algorithm

Several dual-ascent algorithms are presented in [GW97]. A brief description
about a dual-ascent algorithm is given here since it forms the basis of the
implemented method for generating an initial pool of jump constraints. For
the ease of reading the formulations are presented with the same symbols
as used for the jump formulation.

Let

min
∑
a∈A

caxa (5.6)

s.t.
∑
a∈J

xa ≥ 1 J ∈ Π

xa ∈ {0, 1} a ∈ A

be an ILP, and

min
∑
a∈A

caxa (5.7)

s.t.
∑
a∈J

xa ≥ 1 J ∈ Π

0 ≤ xa ≤ 1 a ∈ A

its corresponding LP relaxation. Then

max
∑
J∈Π

λJ (5.8)

s.t.
∑
J :a∈J

λJ ≤ ca a ∈ A

0 ≤ λJ ≤ 1 J ∈ Π

is the dual problem of its LP relaxation. Furthermore, let T be a set
that is represented by x in the following way: If xa = 1 then a ∈ T . In
other words we can say that T is a – not necessarily feasible – solution for
the primal problem. J is a constraint and can be understood as a set of
elements of A of which at least one must appear in the solution T . Π is the
set of all constraints.

Now let us consider a given primal infeasible solution T and a feasible
dual solution λ. Obviously the infeasibility of T says that a constraint of
the primal problem is violated. If T satisfies the primal complementary
slackness condition for λ

a ∈ T ⇒
∑
J :a∈J

λJ = ca (5.9)

then it is not possible to find a feasible primal solution still satisfying the
primal complementary slackness condition for the same λ. That means
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that there exists a constraint Jk with T ∩ Jk = ∅. Hence we have to add
an a to T that is contained in the violated constraint Jk. To achieve this
without violating the primal complementary slackness conditions we increase
the dual solution by increasing λJk until ∃a ∈ Jk such that the primal
complementary slackness condition is satisfied for that a. Now a can be
added to the set T . In this procedure the maximal value that can be assigned
to λJk is given by:

min
a∈Jk

(ca −
∑

J 6=Jk:a∈J
λJ) (5.10)

Exceeding that value would violate the feasibility of the dual solution and the
primal complementary slackness condition for a. This procedure of finding
a Jk, with T ∩ Jk = ∅, increasing λJk and adding a to T , can be repeated
until T represents a feasible solution.

Several enhancements for this algorithm exist including the reverse de-
lete step, or the uniform increase rule. However, those enhancements have
not been applied in the implementation of the dual-ascent algorithm for the
BDMST and HCMST problems and are left for further investigations. For
more details about those enhancements the reader is referred to [GW97].

5.2.3 Utilizing the Dual-Ascent Algorithm for the BDMST
and HCMST Problems

The method described above can be employed for the relax-and-cut approach
for the BDMST and HCMST problems that is based on the jump formula-
tion. Consider a simplified version of the jump formulation for the BDMST
and HCMST problem that is obtained by ignoring the spanning-tree con-
straints and only keeping the jump constraints. The resulting ILP is exactly
that one given by (5.6). Furthermore, we can utilize the dual variables λ of
the dual problem (5.8) as Lagrange factors for the jump constraints, which
are represented by J .

Starting without an initial solution, i.e. an empty set T , we try to find
a jump constraint J with J ∩ T = ∅ and set its corresponding dual variable
(Lagrange factor) λJ to the value of the cheapest arc a ∈ J which in turn
is added to the set T . Note that finding a jump constraint J with J ∩
T = ∅ is only trivial for the first constraint where T is still empty. Before
continuing, the costs of all arcs a ∈ J are decremented by the value of λJ .
This step ensures that the value of the cheapest arc in subsequently found
jump constraints is equal to the term (5.10) based on the original arc costs
and so the primal complementary slackness condition is satisfied. However,
to avoid a zero cost arc as the minimum cost arc in a newly identified jump
constraint all minimal cost arcs of a jump constraint J are added to T .

The approach for generating an initial pool of jump constraints described
in [DFFG05] is equivalent to the above described procedure. As mentioned
before the central issue in applying this procedure is the part of finding a
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jump constraint J such that T ∩ J = ∅. Since a jump constraint is induced
by a partition of nodes into H + 2 non-empty sets where H is the height of
the HCMST, it is too complex to directly select a set of arcs to appear in
a jump constraint. Dahl et al. solve that problem via an ILP that in turn
is solved by an appropriate solver. They claim that solving this problem is
very time consuming.

Algorithm 2 createPool()
Input: Subgraph T , Solution S, Instance I

1: T ← ∅
2: while (constraintsFound) {
3: constraintsFound← false
4: for each (arc ∈ S) {
5: partition← createPartition(T , S, arc, I.root)
6: if (isValid(partition)) {
7: constraint← storeConstraint(partition)
8: for each (arc ∈ constraint) { // add cheapest arcs of the new constraint to T

9: if (c(arc) = c(minArc)) {
10: T ← T ∪ arc
11: }
12: }
13: constraint.lambda ← c(constraint.minArc)
14: for each (arc ∈ constraint) { // reduce arc costs of arcs contained in constraint

15: c(arc)← c(arc) - constraint.lambda
16: }
17: constraintsFound← true
18: }
19: }
20: }

Another approach for solving this problem which is utilized in the algo-
rithms presented in this section is based on a breadth first search (BFS).
For simplicity we now consider T to be a set of arcs together with the nodes
adjacent to these arcs. Considering the subgraph T of the instance graph,
nodes are assigned to the sets in the partition according to their depth in a
BFS on T starting at the root node, i.e. a node labeled with 2 is assigned
to the set S2 in the partition. Not that T does not necessarily have to be
connected. If after the first BFS run some nodes of T are not yet labeled
the BFS is restarted with the last label number incremented by 1 at one of
the unlabeled nodes until the whole subgraph T is labeled. This approach
is relatively efficient by means of time complexity but the total number of
jump constraints that can be found is limited. Additionally, we do not only
try to find jump constraints with J ∩T = ∅. We also want to force arcs that
are part of a good heuristic solution as jump arcs into the constraints.
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Based on an initial feasible solution S which was generated by the ACO,
Algorithm 2 iterates over all solution arcs and tries to generate constraints
containing arcs of the solution as jump arc until no constraints can be found
at a complete loop over all solution arcs. The function isValid() checks if a
partition generated by createPartition() with the mentioned BFS algorithm
contains at least H+2 non-empty sets. If the number of sets in the partition
is < H + 2 no constraint can be created from the partition.

Algorithm 3 createPartition()
Input: Subgraph T , Solution S, Arc arc, Node root
Output: NodePartition partition

// label nodes based on arcs in T

1: max← 0
2: for (i = 0 . . .MaxLoop) {
3: shuffle the order of nodes in T ;
4: sort nodes in T according to their outdegree;
5: l← BFS(T , root) // label nodes according to depth in a BFS started at root

6: if (l > max) {
7: store labels of this so long best run
8: max← l
9: }

10: }
11: restore labels of the best found run
12: initialize partition
13: arrangeUnlabeledNodes(S, arc)
14: for each (v ∈ S) {
15: partition.putNodeIntoSet(v, v.label)
16: }
17: return partition

In Algorithm 3 the node labeling based on a BFS is executed MaxLoop
times and the whole set of node labels with the highest label number is
stored. This is done after sorting the nodes in T by their out-degree. The
nodes are shuffled in advance such that the order of nodes with the same out-
degree is different for each iteration. The motivation for repeatedly calling
the node labeling algorithm with different node orders is the higher chance
of finding a partition that has at least the minimal required number (H+2)
of sets. In practice, the loop at line 2 increases the total number of separated
jump constraints since it can be possible that several attempts are needed
to create a partition that has enough (at least H + 2) sets. However, the
benefit is limited, i.e. MaxLoop cannot be rised arbitrary to further increase
the total number of separated jump constraints. Also note that after the
BFS some nodes may remain unlabeled and the highest label can be smaller
than H + 1 (H + 2sets → S0 . . . SH+1). If the number of unlabeled nodes
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is higher than H + 1 − k where k is the highest label given to a node in
the BFS, these unlabeled nodes can be assigned to different sets with an
index > k such that a valid partition of all nodes into H + 2 non-empty sets
can be created. This is performed by the procedure depicted in Algorithm
4 by labeling the unlabeled nodes with the index of the appropriate sets.
If, on the other hand, all nodes are labeled in the BFS, i.e. the subgraph
T contains enough arcs such that every node is connected to another one
with an arc contained in T , the maximal depth k must be at least H + 1
such that a partition inducing a jump constraint J with J ∩ T = ∅ can be
created.

Algorithm 4 arrangeUnlabeledNodes
Input: Solution S, Arc arc

1: for each (v ∈ S) {
2: if (v is unlabeled by preceding BFS) {
3: if (nodeInSubTree(v, arc) { // check if arc is on the path from root to v

4: v.label← S.level[v] +1
5: } else {
6: v.label← S.level[v]
7: }
8: }
9: }

Algorithm 4 assigns a label to all nodes which are not present in T and
therefore are not yet labeled. The check in line 3 causes the two nodes
adjacent to arc to be labeled with numbers such that the label of the source
node is smaller than the label of the target node minus 1, which in turn
causes arc to be in the set of jump arcs. However, with an increasing number
of nodes in the subgraph T the probability of forcing an arc contained in
the heuristic solution to be a jump arc decreases.

5.3 A hybrid Algorithm Based on ACO and Relax-
and-Cut

To improve the ACO algorithm with information obtained from the relax-
and-cut approach we do not consider the node levels of a solution since the
relax-and-cut approach only delivers meaningful information on the arcs.

The Lagrangian relaxation of the ILP formulation for the HCMST can
be interpreted as follows: The costs of an arc a are reduced by the sum of the
Lagrange multipliers of all separated jump constraints that contain arc a.
The resulting reduced arc cost is denoted by αa as defined in (3.17). These
reduced arc costs provide some information about the potential of using an
arc in a solution. The larger the sum of the Lagrange multipliers for one
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arc a, the smaller will be the reduced arc cost αa, and the more promising
it will be to include this arc in the solution.

Now a hybrid version of the ACO algorithm can be developed using
two graphs as input: The instance graph with the original arc costs for the
evaluation of solutions and a modified version of that graph with reduced
arc costs as a heuristic component for the construction of solutions.

5.3.1 Adding a Heuristic Value to the Ant Colony Optimiza-
tion

The original ACO algorithm for the BDMST problem only uses the informa-
tion from the pheromone matrix to build a solution in level representation
which has to be decoded to get the final tree. As described in [Kop06] the
probability Pv,l for node v to be assigned to level l is defined as

Pv,l =
τv,l∑bD
2
c

l′=1 τv,l′
(5.11)

with τv,l being the pheromone value stored in the matrix. Now the goal is to
introduce some heuristic information into that probability as described by
Blum et al. in [BR03]. Let Hv,l denote the heuristically computed benefit
of assigning node v to level l. Then

Pv,l =
τβv,lH

γ
v,l∑bD

2
c

l′=1 τ
β
v,l′H

γ
v,l′

(5.12)

is the probability for node v to be assigned to level l that is extended by the
heuristic information Hv,l where γ = 1−β. β and γ are weighting exponents
that control how much the probability Pv,l depends on the pheromone values
or on the heuristic information.

5.3.2 Deriving a Heuristic Value from Arc Costs

As mentioned above the heuristic valueHv,l describes the benefit of assigning
node v to level l. This heuristic value could now be derived from the reduced
arc costs of the relax-and-cut algorithm. Suppose we are decoding the node
level information on the fly while assigning nodes to their levels. Each time
a node v is assigned to a certain level l we can determine which of the
previously assigned nodes in levels j < l is the cheapest predecessor, i.e. the
node u that can be used as predecessor in the tree with the cheapest arc
(u, v). The costs of that arc (u, v) can be seen as a penalty (the connection
of node v to the tree increases the objective value) and we are looking for
the node u causing the smallest penalty when connecting node v to it.

Beside the penalty, assigning a node to a level can also produce a bonus.
Again, when assigning node v to level l we now consider all previously in-
serted nodes at levels k > l. If node v is a cheaper predecessor for a node
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Figure 5.3: Concept of the penalty and bonus for the level assignment of
node v.

w at a level k > l currently connected to a node q at any level < k, node
w can be disconnected from node q and be reconnected to node v. This in
turns can be evaluated for all nodes w at a level k > l. Thus the bonus is
the sum of the positive differences between arcs (q, w) and (v, w).

The concept of the bonus and penalty is depicted in Figure 5.3. When
inserting node v at level 2 and the cheapest arc from a node at level 0 or
1 has costs of 2 the penalty is 2. Since two nodes (b and c) at level 3 can
be reconnected to node v, while at the same time saving overall costs, the
resulting bonus is (5− 2) + (6− 2) = 7.

We can define the penalty for assigning node v to level l as follows:

Qv,l = min
u∈V ′|lev(u)<l

c(u, v) (5.13)

where V ′ is the set of nodes that are previously assigned to levels, lev(u) is
the level node u is assigned to, and c(u, v) denotes the costs of the arc from
u to v.

The bonus for assigning node v to level l can be defined as follows:

Bv,l =
∑

w∈V ′|lev(w)>l

max
(

0,
[

min
q∈V ′|lev(q)<lev(w)

c(q, w)
]
− c(v, w)

)
(5.14)

Note that assigning the root node to level 0 does not result in any penalty
or bonus. It is treated separately. The resulting heuristic value Hv,l always
has to be > 0. A value of 0 would result in a probability Pv,l = 0 in (5.12).
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We can now define Hv,l as:

Hv,l =
1 +Bv,l
Qv,l

(5.15)

5.3.3 Node Level Assignment with a Heuristic Component

To be able to compute Hv,l efficiently for every node that is assigned
to a certain level, temporary values must be stored for every node. With
Algorithm 5 the assignment based on the probability Pv,l defined by (5.12)
can be performed efficiently. c(v, w) denotes the reduced costs αa of arc
a = (v, w), lev(v) denotes the level of node v, and pred(v) denotes the
direct predecessor of node v in the tree. For the loops at lines 11 and 18 the
obtained information is cached in temppred and tempsucc such that after
assigning the node v to a certain level l the predecessors can be updated in
an efficient way.

After assigning every node to its level, the predecessor information ob-
tained during Algorithm 5 is discarded, and a new tree is build based on the
node level information with the original decoding procedure based on the
original arc costs described in [GvHR06].

5.3.4 The New ACO Algorithm

For the new ACO algorithm that employs the assignment of nodes to levels
as described above, the whole pheromone matrix is initialized to τv,l = 1

|V |·T0

where T0 is the objective value of an initial solution obtained with another
heuristic algorithm such as RTC or CBTC. Based on the values from the
pheromone matrix and the heuristic informationHv,l, which uses the reduced
arc costs from the relax-and-cut algorithm instead of the original arc costs of
the instance graph, nodes are assigned to levels. This level information must
be decoded by the original decoding procedure of the ACO algorithm with
the original arc costs. Every ant produces a solution in the described way
and the best ant will deposit pheromone. For details about the pheromone
evaporation and depositation process see [GvHR06].

The combination of the relax-and-cut algorithm with the ACO algorithm
can be achieved with two strategies.

1. Batch approach: After the relax-and-cut algorithm converged to a
solution, a graph with the reduced arc costs αa of the best solution is
taken as input graph for the heuristic component of ACO algorithm.

2. Interleaved approach: The ACO algorithm and the relax-and-cut
algorithm run in parallel respectively intertwined and the reduced arc
costs for the ACO are updated regularly with information from the
relax-and-cut algorithm.

However, only the first strategy has been implemented as part of this work.
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Algorithm 5 ComputeNodeLevels
1: lev(center)← 0
2: levelList[0] ← {center}, levelList[l]← ∅ for l = 1 . . . H
3: V ′ ← {center}
4: while (|V ′| 6= |V |) { // while there are unassigned nodes. . .

5: v ← pop(V \V ′)
6: penalty←∞, bonus← 0
7: bonusforlevel[l]← 0 for l = 1 . . . H
8: temppred[0] ← center
9: for (l = 1 . . . H) {

10: temppred[l] = temppred[l − 1]
11: for each (u ∈ levelList[l − 1]) { // search for the cheapest possible predecessor

12: if (c(u, v) < penalty) {
13: penalty← c(u, v)
14: tempred[l] ← u
15: }
16: }
17: if (l = 1) {
18: for (k = l + 1 . . . H) { // store all nodes assigned to level k in tempsucc[k] that can

have node v as cheapest predecessor

19: bonusforlevel[k]= 0
20: tempsucc[k]← ∅
21: for each (w ∈ V ′ | lev(w) = k) {
22: if (c(v, w) < c(pred(w), w)) {
23: bonus = bonus + c(pred(w), w)− c(v, w)
24: bonusforlevel[k] = bonusforlevel[k] + c(pred(w), w)− c(v, w)
25: tempsucc[k] ← tempsucc[k]∪{w}
26: }
27: }
28: }
29: } else {
30: bonus = bonus - bonusforlevel[l]
31: }
32: Hv,l ← 1+bonus

penalty

33: }

34: lev(v)← level for node v according to Pv,l =
τβv,lH

γ
v,lPH

l=1 τ
β
v,lH

γ
v,l

35: pred(v)← temppred[lev(v)]
36: for each (w ∈ tempsucc[k]| k > lev(v)) {
37: pred(w)← v
38: }
39: V ′ ← V ′ ∪ {v}
40: levelList[lev(v)] ← levelList[lev(v)] ∪{v}
41: }
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Chapter 6

Implementation

The program bdmstsolver which was developed as part of this thesis is
implemented as a command line application in C++ on a Linux system.
It has its origin in the program developed by Putz [Put07]. It replaces
several old classes from Putz’ implementation and introduces some new ones.
Additionally, many new algorithms have been included into existing classes
and several data structures have been replaced by more efficient ones.

Another existing part that was integrated into the bdmstsolver is an
implementation of the ACO algorithm written by Gruber [GvHR06]. Also
in this implementation several changes have been performed.

6.1 Classes and Libraries

This section gives a brief overview about the classes used in the program.
Note that not all classes are presented here, only the more important ones
and those that have been added or significantly changed are mentioned.

Classes Representing the Solution

• BDMST Solution

This class describes an abstract interface of a solution to the BDMST
problem. It contains a reference to a BDMST Instance object.

• Predecessor Solution

The class Predecessor Solution is an abstract base class represent-
ing a solution as a set of predecessor variables (for each node in the
directed tree the direct predecessor is stored). Additionally, it contains
a reference to a Bidirected Instance object.

• Predecessor IntSolution

The class Predecessor IntSolution is an implementation of the ab-
stract class Predecessor Solution.
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Classes for Instances

• Instance

This class comes from the library implemented by Gruber [GvHR06].
It represents an instance for the BDMST Problem. This class was
extended by variables to optionally hold a predefined root node such
that this class can either represent an HCMST or a BDMST instance.

• BDMST Instance

The class BDMST Instance represents a simple BDMST instance con-
taining an Instance object and providing some more functionality for
the program bdmstsolver such as output procedures.

• Bidirected Instance

Derived from BDMST Instance this class represents the instance as
a bidirected graph providing the possibility of using algorithms that
work on bidirected input graphs.

• Bidirected ArtificialRooted Instance

This class is derived from BDMST Instance and adds an artificial root
node and artificial arcs from this root node to any other node in the
instance. The uniform length of the artificial arcs is set to a multiple
of the longest arc in the instance graph.

This class also was changed in order to be able to represent both,
BDMST and HCMST instances. For HCMST instances the node used
as artificial root node is set to the original root node of the HCMST in-
stance and a flag is set to indicate that the object represents a HCMST
instance.

Classes for Handling Jump Constraints

• Node Partition

Jump constraints are induced by partitions of nodes into H + 2 non-
empty sets. Since for the creation of jump constraints manipulations
on the partitions such as making the last set singleton are necessary
the class Node Partition has been introduced to group all relevant
manipulation methods for node partitions in one class.

• Jump Constraint

Jump constraints are represented by the class Jump Constraint. It
consists of a set of arcs (the jump arcs) and some functions needed for
the subgradient optimization.
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• Jump ConstraintFactory

This class contains several methods for generating jump constraints
from given node partitions. Additionally, it contains some methods for
creating node partitions from paths violating the diameter respectively
hop constraint in an infeasible solution and checking their the validity
of produced partitions.

• Constraint Comparator

The class Constraint Comparator provides ordering functionality for
jump constraints. With Constraint Comparator objects a multilevel
ordering of jump constraints can be performed. The original ordering
is performed in the following hierarchy:

Number of arcs, length of the shortest jump arc, average length of
jump arcs and finally the identifier. While the former three criteria
can be equal for several constraints, the identifier is unique for every
jump constraint.

Classes with Implementations of Heuristic Algorithms

• LevelConstructionHeuristics

The class LevelConstructionHeuristics implements the heuristic
used to create feasible solutions from infeasible ones obtained by the
LLBP solver. The heuristic is described in Section 3.2.3.

• BDMST UpperBoundCalc

This class provides a method to perform the computation of the upper
bound based on different heuristic algorithms. Three heuristics are
supported: CBTC, RTC (see Section 3.2.3), and ACO (see Section
4.1.1). For the CBTC and RTC heuristics a modification in this class
has been necessary to support HCMST instances.

• PheromoneMatrix

The class PheromoneMatrix is one of the core classes of the ACO
algorithm implemented by Gruber. Modifications for the support of
HCMST instances have been implemented in this class.

The extensions to the ACO algorithm described in Section 5.3 are
implemented by using an alternative method for assigning nodes to
levels.

Classes for the ILP

• Subgradient Solver
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The subgradient algorithm as described in Section 4.2 is implemented
in the class Subgradient Solver. It contains a reference to the class
LLBP Solver which is an abstract base class for Jump Solver.

• Jump Solver

This class provides the complete functionality for solving the relaxed
ILP as described by Equation (3.15).
It has a reference to a Bidirected ArtificialRooted Instance ob-
ject and a Predecessor IntSolution object. Additionally, it contains
lists of previously and newly separated jump constraints.

6.1.1 Employed Third Party Libraries

For the ease of implementation several third party libraries have been em-
ployed:

• LEDA version 5.1.1

For the representation of instance graphs and the solution the LEDA
library (Library of Efficient Data types and Algorithms) is used. It is
a C++ class library providing a large number of data structures and
algorithms in the field of graph- and network problems (see [Led06]).

• GOBLIN version 2.7.2

The GOBLIN graph library (A Graph Object Library for Network Pro-
gramming Problems) contains an efficient implementation of Edmond’s
algorithm that is used to solve the minimum spanning arborescence in
the LLBP solver (see [FPSE06]).

• Log4cpp version 0.3.5-rc3-1

Log4cpp is a logging library for C++. In the program bdmstsolver
this library controls the output (see [Bak05]).

6.2 New Data Structures and Algorithms

For efficiency reasons several data structures in the program based on Putz’
implementation have been replaced such that more efficient processing of the
contained data is possible. The following sections provide a brief overview
of new data structures and algorithms introduced to the implementation of
the bdmstsolver.

6.2.1 Constraint Sets and Parameters for Constraints

Originally jump constraints have been organized in a hash table based on
string keys. Since a constraint is exactly described by the set of contained
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jump arcs the concatenation of all strings representing the jump arcs is
unique for a constraint if all arcs are processed in the same order for every
jump constraint.

The problem with this approach is the poor performing behavior of the
vast number of string operations required when generating constraints. Ad-
ditionally, the more sophisticated handling of the constraint pool requires
the constraints to be ordered in several hierarchical categories.

To overcome this bottleneck the constraints are organized in a sorted
sequence provided by the LEDA library [Led06]. Therefore, a comparator
object for every constraint is necessary which, besides other information for
ordering, also contains a unique identifier for each constraint. Instead of a
string representing a jump constraint a reference to the vector of jump arcs
of the corresponding constraint is used as unique identifier with the benefit of
both, dramatically reduced memory consumption and shorter computation
time, especially in the process of creating constraints.

Not only the organization of the constraint pool itself has been re-
designed, also the organization of the parameters used by the subgradient
algorithm has been changed. Instead of organizing the parameters λJ and δJ
(see Section 3.1.1) in a hash table with the constraint identifiers as key, those
parameters have been relocated to the Jump Constraint class such that ev-
ery Jump Constraint object contains its corresponding Lagrange factor λJ
and component of the subgradient δJ .

6.2.2 Creation of Node Partitions

For the creation of node partitions with the path approach (see Section
4.3) and the approach described in Section 5.2.3 new algorithms have been
implemented. When building a partition starting with a path from the root
node r to a node v, with all nodes on the path being labeled according to
their depth on the path, a recursive algorithm simply assigns every node the
label of its predecessor with a special treatment for the level 0 and 1. This
recursive implementation makes the algorithm very simple.

The implementation of the BFS algorithm for the creation of initial con-
straints is designed as an iterative algorithm using the classes queue and
node array provided by the LEDA library.

6.2.3 Solution and Jump Constraint Representation

The original implementation of the class Predecessor IntSolution used
the class edge array for the representation of the predecessor variables. As
a consequence, to completely describe a solution it was necessary to iterate
over all arcs A and check if arc a is part of the solution. The time complexity
of this procedure is O(|V |2) in complete graphs where |V | is the number of
nodes in the instance. As can be seen in Equation (3.7) for the computation
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of the subgradient vector we have to iterate over the whole solution vector for
each constraint. With the edge array representing the solution as a vector
of all instance arcs with values of 0 and 1 (a 1 indicates the arc is part of
the solution), the time complexity for computing the complete subgradient
vector is O(|C||V |2) where |C| is the total number of jump constraints. To
overcome this bottleneck two new data structures have been introduced:

• A list of all solution arcs for the solution objects which clearly has
length = O(|V |) for an instance with |V | nodes.

• An edge array for the constraints indicating for each arc of the in-
stance if it is a jump arc.

As a consequence, for the computation of the subgradient vector δ we
only have to iterate over all solution arcs instead of all arcs in the instance
graph and check if the arc is a jump arc in a constraint. This reduces the
time complexity for computing the complete subgradient vector to O(|C||V |)
while not affecting the time complexity of solution and constraint generation.

6.3 Usage

In the following a detailed overview about the options and parameters of
the program bdmstsolver is given. The general syntax is:
bdmstsolver -i <instance file> [options]
The options can be grouped in several categories:

General Options

• -h, --help

Prints a message about the correct usage of the bdmstsolver.

• -H, --version

Prints the version of the bdmstsolver.

Instance Options

• -i <filename>, --instance <filename>

<filename> specifies the filename of the instance file.

• -I <type>, --instance type <type>

Specifies the type of the input file. The following values for <type>
are supported:

– gnuplot or gp
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– santos or s

– gouveia or g

– ea

– rand ea or r

• -d <diameter>, --diameter <diameter>

The diameter of the instance. Note that only even numbers are ac-
cepted as diameter.

• -S <number>, --startnode <number>

When specifying a root node, the instance will be interpreted as a
HCMST instance with <number> being the index of the root node.

• -g <filename>, --gp lines <filename>

For GNUPLOT instances this option is used to specify the file holding
the information about the edges. In this case the file specified by
option -i only contains information about the nodes.

• -G <number>, --gouveia edges <number>

This option can be used to reduce the number of edges in a Gouveia
instance.

Options for the Lagrangian Relaxation

• -l, --lifted

Use generalized jump constraints as defined in Section 5.1.1.

• -j <strategy>, --jump separation <strategy>

Use this option to specify the strategy for the separation of jump
constraints. For <strategy> the following values are supported: p for
the path approach and l for the layered approach.

• -C <number>, --max constraints <number>

This option is used to specify the maximum size of the constraint pool.

Options for the Subgradient Optimization

• -m <number>, --maxIterations <number>

Specifies the maximal total number of iterations of the subgradient
algorithm before it terminates.

• -a <number>, --SG baseAgility TerminationLevel <number>

This option specifies the agility level that – when reached – causes the
subgradient algorithm to terminate. The default is 0.005.
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• -A <number>, --SG baseAgility ReductionAfterNoImprove
<number>

Reduce the agility after <number> iterations without any improvement.
The default is 30.

ACO Options

• -O <number>, --aco <number>

Use the ACO as additional heuristic to compute an upper bound. If
<number> is 0 the classical ACO is used to compute an initial upper
bound. If <number> is 1 the hybrid version of the ACO algorithm is
additionally used after the relax-and-cut algorithm has converged.

• --acoAnts <number>

Specifies the number of ants to be used in the ACO algorithm. The
default is 40.

• --acoRho <number>

Specifies the pheromone decay coefficient for the ACO algorithm. The
default is 0.003.

• --acoIterations <number>

Specifies the number of iterations without any improvement as a ter-
mination condition for the ACO algorithm. The default is 1000.

• --acotTimeLimit <number>

Specifies the total running time of the ACO algorithm in seconds. The
default value is -1 which means no limit.

Miscellaneous Options

• -u <method>, --upper bound method <method>

With this option it is possible to specify the heuristic used for the
computation of an initial upper bound. The two possible values are rtc
and cbtc (see Section 3.2.3). By default both methods are employed
and the best upper bound is used.

• -U <number>, --upper bound iterations <number>

Specifies the number of iterations for the calculation of the initial upper
bound computed by the heuristics RTC and CBTC. The default is 100.

• -Z, --onlyUB

Only compute an upper bound and do not start the relax-and-cut
algorithm for computing a lower bound.
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• -r, --relax

Relax an initial set of constraints before starting the relax-and-cut
algorithm (see Section 5.2).

• -V <number>, --lev nh switch <number>

This option specifies the percentage of nodes at which, when decoding
level information to the tree representation, the algorithm switches
from level lists to neighbor lists to identify the cheapest possible pre-
decessor (see [GvHR06]). This affects the VND used in the RTC and
CBTC algorithms. Note that the VND used in the ACO algorithm is
not affected by this parameter in the implementation. The default is
0.02.

Output Options

• -o <prefix>, --outputPrefix <prefix>

Specifies the output prefix for all files.

• -w (yes|no), --writheMinArbosGnuplot (yes|no)

Write the minimum arborescence to a file in gnuplot format at each
iteration. The default is no.

• -W (yes|no), --writheMinArbosGoblin (yes|no)

Write the minimum arborescence to a file in GOBLIN format at each
iteration. The default is no.

• -L <file>, --logrc <file>

Specify the path to the log4cpp configuration file. The default is
log4cpp.properties
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Chapter 7

Computational Results

To investigate the achievements of the various developments computational
experiments have been performed on benchmark instances previously used
in literature. These instances have been taken from three different sources:
The TE and TC instances with 40 and 80 nodes and the estein have been
taken from Beasley’s OR-Library [Bea90], while TE and TR instances with
20 and 30 nodes have been published by Gouveia et al. [GM03]. The c
and g instances have been originally published by Santos et al. [dSLR04].
The computations have been performed on a HP ProLiant ML110 G4 server
with an Intel Xeon 3040 CPU with 1.86 GHz and 2 MB cache and 2.5 GB
of RAM. The obtained results have been compared to results published by
Dahl et al. [DFFG05] and to the results obtained with the implementation
of Putz described in [Put07].

In the following sections a detailed overview about the experiments and
their results are given. Every experiment has been performed 30 times
and the arithmetic mean values and standard deviations (denoted as sdev
in the tables) are presented for lower and upper bounds. Values for the
computation time are arithmetic mean values too.

Parameters used for the computations which were chosen for all experi-
ments have been selected as follows:

• Parameters for subgradient optimization:

The number of iterations without any improvement after which the
agility is reduced was set to 30. For the factor to reduce the agility
0.5 was used and the agility level used as termination condition was
set to 0.005. These values are standard values suggested by Beasley
in [Bea93].

• Parameters for the constraint pool:

The maximal pool size was limited to 1000.
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• Parameters for the ACO algorithm:

The number of ants was set to 40, the iteration limit was set to 1000
and the value of the pheromone decay coefficient ρ was set to 0.003.
No time limit was used for the ACO algorithm.

7.1 Results for Small BDMST Instances

The instances for which results are presented in this section are relatively
small (20 - 40 nodes) and most of them do not describe complete graphs.
Therefore, the ACO algorithm could not be employed to compute upper
bounds for them since it requires a complete graph to ensure a tree can be
built out of the level information. The TE and TR instances describe dense
graphs, while the g instances describe sparse graphs and the c instances
are complete. In Table 7.1 NDRC denotes the non-delayed relax-and-cut
algorithm described in Chapter 4, and DRC the algorithm presented by
Putz in [Put07].

As easily can be seen in these results, the new non-delayed relax-and-
cut approach with all enhancements outperforms the original delayed relax-
and-cut approach by far. The computed upper bound is the optimal value
for every instance in almost every of the 30 runs. For six instances the
computation of the lower bound could be stopped because the difference
between the lower and upper bounds was less than 1 which means that the
subgradient optimization has converged to the optimal solution (all instances
have only integer costs assigned to the edges). Note that the reason for the
large differences in computation time is not only based on the more efficient
data structures but also on very inefficient output procedures for logging in
the implementation of Putz.

7.2 Benefit of the Constraint Pool Management

As described in Section 4.4 constraints can also be deleted to be replaced by
newly separated ones if the constraint pool has reached a maximum size. In
the following the benefit of the sophisticated management of the constraint
pool is demonstrated. For comparison the computations have been executed
with the same algorithm but with a different handling of the constraint pool.
These experiments were performed on medium sized instances (complete
graphs with 41 and 81 nodes and edge costs corresponding to the Euclidean
distances taken from Beasley’s OR-Library [Bea90]).

In Table 7.2 the right results where obtained by the non-delayed relax-
and-cut algorithm with all enhancements described in Chapter 4. The re-
sults on the left hand side have been computed with the same algorithm
but the constraint pool was modified to the following behaviour: Instead of
only replacing jump constraints that have been inactive for more than two
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Instance NDRC DRC
T |V | |E| D opt LB UB Time LB UB Time

mean sdev mean sdev
TE 20 100 4 369 365.43 1.27 ∗369.00 0 7.5 321.53 370 364.9
TE 20 100 6 322 320.07 0.47 ∗322.00 0 5.5 305.25 332 498.8
TE 20 100 8 308 †307.05 0.04 ∗308.00 0 2.7 301.96 308 738.6
TE 30 200 4 599 555.31 4.91 ∗599.13 0.72 20.5 456.51 599 2151.2
TE 30 200 6 482 452.50 1.31 ∗483.53 2.92 11.6 420.34 491 1358.4
TE 30 200 8 437 419.16 0.42 ∗437.00 0 7.9 409.37 437 4448.4
TR 20 100 4 233 204.77 2.08 ∗233.00 0 8.8 192.79 233 563.8
TR 20 100 6 178 165.16 0.62 ∗178.13 0.84 6.3 164.77 178 1626.9
TR 20 100 8 154 151.98 0.08 ∗154.00 0 2.4 152.00 154 654.4
TR 30 200 4 234 182.54 2.57 ∗234.00 0 14.6 170.99 234 1074.5
TR 30 200 6 157 144.67 0.31 ∗157.00 0 8.7 139.63 157 963.8
TR 30 200 8 135 †134.14 0.11 ∗135.00 0 1.5 †134.31 135 21.3
c 20 190 4 349 344.21 0.70 ∗349.00 0 10.0 300.39 349 1642.3
c 20 190 6 298 285.92 0.47 ∗298.17 0.38 7.4 271.53 299 4617.8
c 20 190 10 324 †323.00 0.07 ∗324.00 0 4.6 319.20 332 1685.9
c 25 300 4 500 487.22 1.94 ∗500.00 0 21.7 411.97 500 4737.7
c 25 300 6 378 371.49 0.92 ∗378.07 0.37 15.5 354.60 378 5693.6
c 25 300 10 379 376.27 0.51 ∗379.80 1.00 8.1 369.48 379 2351.1
g 20 50 4 442 435.68 1.13 ∗442.00 0 4.5 389.03 446 406.5
g 20 50 6 329 †328.27 0.22 ∗329.00 0 0.7 307.00 329 316.8
g 20 50 10 359 †358.29 0.23 ∗359.00 0 0.3 †358.30 359 0.8
g 40 100 4 755 734.40 1.22 ∗755.00 0 8.5 595.54 755 768.8
g 40 100 6 599 †598.25 0.20 ∗599.13 0.5 3.1 584.67 599 209.5
g 40 100 10 574 572.97 0.06 ∗574.00 0 3.3 571.50 574 367.7

Table 7.1: The non-delayed relax-and-cut (NDRC) approach with all en-
hancements presented in this thesis vs. the delayed relax-and-cut (DRC)
approach presented by Putz in [Put07]: T denotes the type of the instance
(TE: Euclidean, TR: random, c: complete Euclidean, and g: sparse Eu-
clidean). The number of nodes (|V |), the number of edges (|E|), and the
diameter bound (D), as well as the optimal objective value (opt) are listed.
For the two approaches the lower (LB) and upper bounds (UB) together
with the running times in seconds are given.

∗In most or all of the 30 runs the optimal solution was found.
†The computation stopped because the lower bound was greater than UB− 1 i.e. the

optimal solution was identified.
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Instance simplified pool management full pool management
T |V | D LB UB Time LB UB Time

mean sdev mean sdev mean sdev mean sdev
tc40 41 4 658.43 7.60 747.00 0 78.5 673.46 6.41 747.00 0 71.5
tc40 41 6 535.64 2.02 607.07 1.01 45.3 538.23 2.30 606.80 1.00 37.9
tc40 41 8 503.34 1.03 544.57 0.50 34.6 504.45 0.84 544.50 0.51 30.8
tc40 41 10 491.39 0.73 516.00 0 30.0 492.56 0.33 516.00 0 29.7
tc80 81 4 1086.72 17.48 1303.00 0 364.3 1123.44 9.63 1303.00 0 385.6
tc80 81 6 865.64 2.34 1078.60 3.33 152.0 869.76 2.77 1078.73 2.86 130.3
tc80 81 8 842.90 2.29 980.50 1.20 127.6 846.34 1.33 980.23 0.90 132.9
tc80 81 10 834.75 0.71 924.70 0.84 105.9 835.99 0.72 924.67 0.66 111.7
te40 41 4 665.57 7.65 742.00 0 93.8 683.08 6.78 742.00 0 92.8
te40 41 6 542.58 2.22 606.00 0 42.0 545.04 1.90 606.00 0 40.0
te40 41 8 522.91 0.91 562.10 0.55 36.4 524.14 0.80 562.50 1.14 33.1
te40 41 10 513.57 0.84 537.00 0 35.5 514.76 0.73 537.03 0.18 37.2
te80 81 4 1682.93 30.43 2045.00 0 399.4 1751.54 24.49 2045.00 0 470.0
te80 81 6 1280.36 7.18 1565.63 2.03 183.3 1292.95 6.01 1566.00 1.76 173.7
te80 81 8 1204.20 2.23 1402.13 1.25 148.4 1211.26 2.44 1402.80 2.22 144.3
te80 81 10 1178.77 1.80 1299.30 3.93 157.2 1181.76 1.20 1301.80 5.14 142.2

Table 7.2: The NDRC algorithm with a simplified (left) and with the full
constraint pool management (right): Experiments have been performed for
complete BDMST instances with 41 and 81 nodes.

subsequent iterations all inactive jump inequalities can be replaced by new
ones. Additionally, they are not ordered by the number of iterations they
have been inactive but only by the number of jump arcs they contain and
the costs of the cheapest jump arc.

Clearly, simplifying the management in the way described above signifi-
cantly reduces the quality of the lower bounds as can be seen in the table.
This demonstrates how sensitive the relax-and-cut algorithm is regarding to
the parameters for the management of the jump constraint pool.

7.3 Results for HCMST Instances

To compare the relax-and-cut approach presented in this thesis with the
implementation of Dahl et al. [DFFG05] which is a delayed relax-and-cut
algorithm experiments have been performed on the same HCMST instances.
For these computations the constraint pool size was limited to 1000.

Table 7.3 summarizes the results for these experiments on the HCMST
instances from Beasleys OR-Library [Bea90]. Due to the utilization of the
ACO heuristic the upper bounds are significantly better than Dahl’s upper
bounds except for the tc 40 instances where they are more or less equal.
The lower bounds do not significantly differ as determined with a Wilcoxon
signed-rank test. For the statistical test the lower bounds where rounded up
to the next integral value since the instances only contain integral edge costs.
Optimal values have been taken from [DGR06]. Note that the computation
times cannot be directly compared since Dahl et al. performed their exper-
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Instance NDRC DRC ([DFFG05])
T |V | H opt LB UB Time LB UB Time

mean sdev mean sdev
tc 40 3 609 594.01 1.07 609 0 17.5 595 611 42
tc 40 4 548 539.07 0.79 548 0 16.2 541 549 40
tc 40 5 522 513.12 0.64 522 0 15.9 515 522 38
tc 40 6 - 497.03 0.07 498 0 8.7 498 498 11
tc 40 7 - 489.38 0.30 490 0 3.6 490 490 0.72
tc 40 8 - 487.21 0.22 488 0 4.5 488 488 2.8
tc 40 9 - 482.87 0.03 484 0 6.8 484 484 5.6
tc 40 10 - 481.41 0.33 482 0 3.5 482 482 0.07
tc 80 3 1072 1003.72 3.46 1078.30 2.04 102.3 986 1120 131
tc 80 4 981 897.09 2.19 982.57 0.50 88.4 901 1037 117
tc 80 5 922 862.23 1.62 925 1.78 84.1 858 971 119
tc 80 6 - 843.69 0.75 887.87 3.56 70.7 843 923 120
tc 80 7 - 836.79 0.28 864.73 1.11 57.5 838 886 107
tc 80 8 - 835.10 0.26 847.87 0.51 50.0 836 854 105
tc 80 9 - 834.18 0.81 838 0 54.7 834 838 99
tc 80 10 - 830.09 0.26 834 0 24.8 831 834 100
te 40 3 708 650.03 4.61 708 0 29.2 649 725 38
te 40 4 627 572.46 2.60 627 0 31.7 569 668 87
te 40 5 590 539.26 1.02 592.53 1.07 26.7 541 625 76
te 40 6 - 526.05 0.65 567.1 1.30 25.9 527 586 35
te 40 7 - 513.70 0.58 544.8 1 23.7 517 552 79
te 40 8 - 508.53 0.62 536 0 22.8 511 538 76
te 40 9 - 505.84 0.38 528 0 20.2 511 534 73
te 40 10 - 503.79 0.34 520 0 18.5 506 530 74

Table 7.3: Results for the NDRC algorithm (left) and the DRC algorithm
described in [DFFG05] (right): The tc and te instances describe complete
graphs with edge costs equal to the Euclidean distances. For the tc instances
the root node is located in the center of the graph, while the root node of
the te instances is located on the fringe of the graph. Note that |V | denotes
the number of nodes without the root node and H denotes the hop limit.

iments on a 2.0 GHz Pentium CPU which is not as powerful as the Xeon
CPU used for the computations of the non-delayed relax-and-cu approach
presented in this work.

7.4 Extensions of the R&C Approach

7.4.1 Initial Constraint Pool

In Section 5.2 a method for identifying a set of constraints with correspond-
ing Lagrange multipliers before the subgradient optimization starts was pre-
sented. To evaluate the benefits of this development tests have been per-
formed on larger instances taken from Beasley’s OR-Library [Bea90]. These
instances consist of 80, 90 and 100 nodes in the unit square and have edge
costs corresponding to the Euclidean distances.

For 80-node instances the number of initially identified constraints was
relatively small. On the other hand for all instances it can be observed
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Instance With I.C. Without I.C.
T |V | D LB pool size Time Diff. LB Time

mean sdev mean sdev mean sdev
estein 80 6 7.3606 0.0367 950 46.10 177.9 0.0497 7.3109 0.0319 174.6
estein 80 8 6.8513 0.0139 706 69.80 154.2 0.0093 6.8420 0.0111 142.7
estein 80 10 6.6643 0.0081 601 31.20 135.0 0.0020 6.6623 0.0063 130.7
estein 90 6 7.2768 0.0269 1000 0.00 237.2 0.0460 7.2308 0.0244 248.7
estein 90 8 6.8163 0.0146 938 45.50 194.2 0.0144 6.8019 0.0155 195.9
estein 90 10 6.6358 0.0089 775 33.70 181.8 0.0012 6.6346 0.0063 177.2
estein 100 6 7.6186 0.0421 1000 0.00 329.3 0.0435 7.5751 0.0465 316.9
estein 100 8 7.1030 0.0109 998 8.70 256.6 0.0054 7.0976 0.0103 256.8
estein 100 10 6.9029 0.0084 902 72.50 237.7 -0.0001 6.9030 0.0066 232.6

Table 7.4: Comparison of the lower bounds for BDMST instances computed
with (left) and without (right) identifying initial jump constraints.

T |V | D Original ACO Hybrid ACO

mean sdev mean sdev
estein 100 8 8.3911 0.0000 8.6088 0.0392
estein 100 10 7.8528 0.0067 8.1583 0.0195
estein 100 12 7.5485 0.0013 7.7849 0.0227
estein 100 14 7.3456 0.0055 7.5271 0.0217
estein 250 8 14.5659 0.0842 15.0912 0.0793
estein 250 10 13.4172 0.0317 14.0329 0.0492
estein 250 12 12.6901 0.0384 13.3669 0.0552
estein 250 14 12.1801 0.0190 13.0112 0.0313

Table 7.5: Upper bounds computed for compete BDMST instances with 100
and 250 nodes by the original and the hybrid ACO algorithm.

that the number of initial constraints is higher in case the diameter bound
is tighter. Table 7.4 also shows a comparison of the lower bounds. Un-
surprisingly, the approach with the initial identification of jump constraints
leads to tighter lower bounds whereas a significant improvement according
to running times cannot be noticed . As determined with a Wilcoxon rank
sum test for the individual instances, the initial constraint pool especially
improved the lower bounds for instances with small diameters.

7.4.2 Hybrid ACO Algorithm and Generalized Jump Con-
straints

For both, the hybrid ACO algorithm and the utilization of the generalized
jump constraints, the results are relatively clear. Neither of the two ap-
proaches resulted in any improvements.

The hybrid ACO algorithm could not reach the value of the original
one from [GvHR06] (which makes no use of a heuristic component during
the assignment of nodes to levels) in any of 80 experiments for complete
instances with 100 and 250 nodes. In fact there was a significant gap between
the values of the original and the hybrid algorithm as shown in Table 7.5.

Also using the generalized jump constraints in the relax-and-cut algo-
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rithm has shown a very poor performance. The main point is that the R&C
approach already has problems to converge to a solution that satisfies all
separated simple jump constraints. Therefore, the expected improvement
was limited, not last to the fact, that the reduction of the solution space by
using generalized jump inequalities is small in contrast to the simple ones.
Preliminary tests have confirmed these assumptions.
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Chapter 8

Conclusions

In this thesis an existing relax-and-cut algorithm for the BDMST problem
has been extended to also provide solutions for the HCMST problem. In
addition, it has been enhanced in several ways. Computational experiments
have been performed on BDMST and HCMST instances and results were
compared to previously published ones for both problems.

The basic ILP model to solve the problem makes use of so-called jump
constraints to ensure the diameter respectively the hop bound. Since the
number of jump constraints is exponential they have to be separated dynam-
ically. The original delayed relax-and-cut algorithm based on Lagrangian
relaxation presented in [Put07] to compute high quality lower bounds has
been changed to a non-delayed relax-and-cut algorithm. While in the de-
layed R&C algorithm violated jump constraints are only identified and re-
laxed after the subgradient optimization has converged to some degree, the
non-delayed R&C algorithm identifies constraints at every iteration of the
subgradient optimization. In addition, another method for identifying con-
straints was employed and a sophisticated management of the pool of jump
constraint was developed to limit the number of jump inequalities to be
handled simultaneously. The mentioned enhancements and the utilization
of a metaheuristic, namely the ant colony optimization to compute upper
bounds, have lead to significant improvements compared to the original al-
gorithm. With the new approach significantly tighter lower bounds are ob-
tained and computation times are by far lower. Computational experiments
have also shown that the management of the constraint pool has a great
impact on the quality of lower bounds.

In addition to those enhancements, several extension have been devel-
oped. Since the relax-and-cut algorithm identifies jump constraints during
the subgradient optimization it starts in general without any constraints.
Therefore, a method for identifying promising constraints in advance was
developed that does not rely on infeasible candidate solutions obtained dur-
ing the runtime of the subgradient optimization. This identification of an
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initial constraint pool is based on a dual ascent algorithm. While for small
instances the initial pool of constraints does not have any effect on the lower
bounds a slight benefit of this extension can be seen for larger instances with
tight diameter bounds. Although this extension results in longer running
times the overall penalty in computation time is relatively small.

The other two extensions developed in this thesis are the modification of
the model for using generalized jump constraints and the development of a
hybrid version of a previously existing metaheuristic, namely an ant colony
optimization (ACO).

The concept of the original ACO algorithm is the assignment of nodes
to levels according to a probability given by pheromone values in a positive
feedback system. A valid BDMST or HCMST is built from this node level
information using a decoding procedure. The hybrid version determines
this probability not only based on pheromone values but also on heuristic
information obtained by the relax-and-cut algorithm, while the decoding
procedure itself remains unchanged. Unfortunately, experiments have shown
that solutions obtained with the hybrid ACO algorithm are not as good as
solutions from the original ACO.

The approach using generalized jump constraints has shown a very poor
performance in preliminary tests and therefore has not been subject to ex-
haustive experiments.

To conclude, all enhancements developed for the relax-and-cut algorithm
have improved its performance and the quality of the lower as well as upper
bounds. Also the extension with an initial pool of jump constraints had a
positive effect on the lower bounds obtained by the relax-and-cut algorithm.
However, the hybrid ACO algorithm and the employment of the generalized
jump constraints did not lead to any improvements.

8.1 Future Work

Results of this work suggest that there is still room to further improve the
presented algorithms. The dual ascent algorithm for the initial identifica-
tion of jump constraints could be modified such that not every identified
constraint is directly added to the constraint pool. It could be possible to
iteratively identify sets of constraints and only select the tightest constraint
out of one set to be added to the constraint pool. Therefore, the tightness
could be measured using the number of jump arcs and the cost of the min-
imum cost jump arc in the constraint. Also the uniform increase rule or
reverse delete step (see [GW97]) could be adopted for this algorithm.

Probably the hybrid ACO algorithm could be enhanced such that it com-
putes results better than that of the original ACO algorithm. A possible
approach would be to include a more sophisticated weighting of the heuristic
values that – besides the pheromone values – form the basis for the proba-
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bilistic assignment of nodes to levels. The heuristic values computed with
the described method in this thesis might not be meaningful enough for the
first nodes assigned to levels. Thus, it could be promising to increase the
weights of the heuristic values for nodes that are inserted after most of the
other nodes have already been assigned to levels.

Regarding the relax-and-cut algorithm it could be interesting to re-
place the classical subgradient optimization with the volume algorithm (see
[BA00]). It could also be interesting to extend the management of the con-
straint pool since the relax-and-cut algorithm has shown to be relatively
sensitive regarding the management of this pool.
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