
This document is a preprint accepted for EvoCOP2026.

A Denoising Diffusion Adaptive Search for the
α-Domination Problem on Social Graphs

Martin Wustinger(�) , Enrico Iurlano , and Günther R. Raidl

Algorithms and Complexity Group, TU Wien,
Favoritenstraße 9-11/192-01, 1040 Vienna, Austria

[firstName].[lastName]@tuwien.ac.at

Abstract. The α-domination problem is a generalization of the classical
dominating set problem and serves as a way to model influence struc-
tures in social networks. In this work, we build on previous research and
explore the use of denoising diffusion models to generate high-quality
solutions for this problem. Our main contribution is the introduction of
a novel variation of the Greedy Randomized Adaptive Search Procedure
(GRASP), utilizing a denoising diffusion model for the parallel construc-
tion of a diverse set of initial solutions, which we refer to as the Denoising
Diffusion Adaptive Search Procedure (DDASP). By focusing our efforts
on real-world social network graphs, we present a superior alternative
to conventional metaheuristic algorithms, as prior work has shown that
such algorithms often struggle with the unique structural properties of
these graphs. Furthermore, we address the challenge of generating viable
training data for our models, as the graphs under consideration are typ-
ically too large to be used directly. To this end, we employ two graph
generation methods to produce artificial training data derived from a set
of original input graphs. Experimental results on a benchmark suite of
Facebook graphs demonstrate that, particularly in the context of social
networks, DDASP consistently outperforms the leading metaheuristic
approach under an equivalent time budget.
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1 Introduction

The α-domination problem asks for the selection of a minimum cardinality sub-
set of vertices S ⊆ V in an undirected simple graph G = (V,E) such that each
vertex v ∈ V is either included in S or has at least a fraction 0 < α ≤ 1 of its
neighbors included [14]. This problem is a precursor to the Positive Influence
Dominating Set problem proposed by Wang et al. [35] and the Target Set Selec-
tion problem introduced by Kempe et al. [21], both of which gained popularity
and ask to meet a certain influence-demand via a static, respectively propagat-
ing, behavior of influence. These problems naturally model influence propagation
in social networks, enabling applications such as the identification of key indi-
viduals for health or marketing campaigns, where influence is expected to reach

https://orcid.org/0009-0005-0582-5786
https://orcid.org/0000-0001-7528-0834
https://orcid.org/0000-0002-3293-177X


2 M. Wustinger, E. Iurlano, and G. R. Raidl

non-targeted individuals connected to enough targeted peers. Other applications
include identifying influential members of a community for educational or polit-
ical initiatives [35]. As social networks continue to expand and grow in complex-
ity, the demand for algorithms capable of efficiently handling those large-scale
networks is becoming increasingly paramount.

Concerning the α-domination problem, Iurlano et al. [20] proposed a Greedy
Randomized Adaptive Search Procedure (GRASP) and a configuration checking-
based local search and compared them to an exact integer linear programming
formulation solved by Gurobi [17]. Results indicate that while the metaheuristics
and in particular the configuration checking approach perform well on randomly
generated benchmark graphs, these methods struggle with real social network
graphs and are often being outperformed by Gurobi within reasonable time lim-
its. We attribute this phenomenon primarily to the unique structural properties
of social networks, which are typically characterized by a few high-degree vertices
connected to many low-degree ones. In this paper, we attempt to tackle this is-
sue by employing a discrete denoising diffusion framework designed to learn how
these structural characteristics shape the space of good solutions for different
types of α-domination problem instances. Specifically, we investigate the feasi-
bility of replacing the greedy construction phase of a traditional GRASP with
such a framework, aiming to produce a high-quality set of initial solutions even
on the inherently more complex social network graphs.

The use of denoising diffusion in the context of combinatorial optimization
is relatively new, with the first major contribution in the area made in 2023 by
Sun and Yang [34]. Denoising diffusion approaches are nowadays well known for
their outstanding performance in image generation. Their fundamental princi-
ple is that original training images are iteratively corrupted by adding Gaussian
noise, and a neural network is trained to learn the reverse process [19]. The
model effectively learns to remove noise from an image, enabling it to gener-
ate new images by iteratively applying the learned denoising step to a random
input. Sun and Yang [34] demonstrated that these concepts can be extended
to combinatorial optimization, introducing DIFUSCO, a diffusion framework
for heuristic problem solving on graphs such as the the maximum independent
set problem and the traveling salesman problem. While this approach cannot
compete with state-of-the-art solvers for these classical problems, the obtained
results are nevertheless remarkable for a rather generic and (almost) end-to-end
learning-based method. To implement the iterative denoising process for combi-
natorial optimization problems on graphs, the problems are formulated as the
task of finding a {0, 1}-valued vector, representing the inclusion or exclusion of
vertices (edges) in a candidate solution. With a graph neural network (GNN)
at its core, DIFUSCO is trained in a supervised manner on a large number of
random instances together with their corresponding (close to) optimal solutions
and produces heatmaps, i.e., vectors of confidence scores representing the likeli-
hood of inclusion for each vertex (edge) in a (close to) optimal solution. When
combined with appropriate post-processing, this approach enables the efficient
generation of a diverse set of high-quality candidate solutions in parallel. A main
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advantage of DIFUSCO over simpler GNN based methods is the fact that DI-
FUSCO can effectively capture interdependencies among vertices (edges) and
multiple modes (i.e., different close to optimal solutions) in the solution space.

Before training such models, a critical factor to consider is the acquisition of
appropriate training data. In the original work by Sun and Yang [34], the training
data was sampled from the same graph distributions as the graphs used for
testing. While this approach was feasible in their setting, it becomes non-trivial
when working with large-scale social network graphs, as the model requires high-
quality solutions of such graphs to learn effectively. Unfortunately, generating
such solutions is practically impossible, as exact solvers fail due to the sheer
size of the considered instances. Moreover, training on heuristic solutions risks
limiting the model’s performance to the quality of those heuristics, potentially
undermining the benefits of using a learning-based approach in the first place.

To address this challenge, we propose two graph generation methods, capable
of generating meaningful training data based on a given set of real-world social
network graphs, which are not only representative for those original graphs, but
are also of a much smaller size making them solvable to near optimality with con-
ventional exact solvers. The first method employs a random walk algorithm [18]
to select subsets of vertices from the original graphs and constructs the corre-
sponding induced subgraphs. The second method samples sets of expected vertex
degrees from an estimated degree distribution of the original graphs and then
employs the Chung-Lu model [2] to generate synthetic training instances.

Based on these training instances, we are able to train highly capable mod-
els, which, in combination with greedy decoding and a subsequent local search
procedure, outperform the heuristic baselines from Iurlano et al. [20] on large
social network graph instances. Our contributions can be summarized as follows:

– Comparison of two graph generation methods for creating synthetic training
data that is not only representative of the original instances, but is also
suitable for training denoising diffusion models.

– Adaptation and evaluation of the DIFUSCO framework for the α-domination
problem.

– Proposal of the Denoising Diffusion Adaptive Search Procedure (DDASP),
which combines GPU-based parallel generation of candidate solutions with
a subsequent local search to refine the results.

The remainder of this paper is organized as follows. Sect. 2 reviews related
work. Sect. 3 describes our solution approach in detail, which is empirically
evaluated in Sect. 4. Finally, Sect. 5 concludes the paper and outlines directions
for future research.

2 Related Work

The α-domination problem was first proposed by Dunbar et al. [14]. Formally,
given a proportion 0 < α ≤ 1, the goal is to find a minimum cardinality subset
of vertices S ⊆ V of an undirected graph G = (V,E) such that, for each vertex
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v ∈ V one of the following two scenarios applies: (i) v ∈ S is satisfied; or (ii)
v ∈ V \S with |S∩N(v)| ≥ ⌈α · |N(v)|⌉, where N(v) denotes the set of neighbors
of vertex v.

The constant α therefore significantly influences the nature of the problem.
Values of α sufficiently close to zero turn the problem into the classical Dom-
inating Set Problem, as we require for each closed neighborhood ({v} ∪ N(v))
at least one vertex to be included. The choice α = 1 requires the inclusion of
every neighbor of a vertex, thus covering all the edges and fundamentally turn-
ing the problem into the Vertex Cover Problem. For the purposes of this paper
we set α = 0.5; this way the α-domination problem has a close analogy to the
Target Set Selection Problem [21] with majority thresholds and also to the even
more strongly constrained problem of Positive Influence Domination proposed
by Wang et al. [35] in 2009. The main difference is that in the latter problem
the aforementioned condition (ii) must be satisfied by all vertices independent of
their inclusion in S. A more flexible generalization of α-domination is described
by Cicalese et al. [8] in the form of Vector Domination, where for each vertex an
individual number of dominators, instead of the universal α-sized share, has to
be guaranteed.

The complexity of the α-domination problem has been extensively studied
from theoretical perspectives in the past [11,12,16,24,25]. Most contributions
that study algorithms for solving α-domination related problems have been
made for Positive Influence Domination [1,26,33], like the one by Akbay et al. [3]
who applied the Construct-Merge-Solve-Adapt (CMSA) metaheuristic [5]. To ad-
dress the lack of literature explicitly focusing on the α-domination problem with
heuristic approaches, Iurlano et al. [20] proposed two metaheuristics: an approach
based on Configuration Checking [7](CC) and a GRASP-based one. The central
component for both metaheuristics is their Decrease-Label-and-Compensate al-
gorithm [20], which serves as a destroy-and-repair mechanism within the local
search framework. In this work, we incorporate their CC algorithm in the final
step to refine the solutions generated by the diffusion models. Additionally, their
greedy construction heuristic is adapted to decode the produced heatmaps.

The paper by Sun and Yang [34] serves as the main inspiration for this work
and provides the DIFUSCO framework, i.e., the specific denoising diffusion ap-
proach that we adapted in our proposed algorithm. While they do not address
the α-domination problem, they examine the Maximum Independent Set Prob-
lem (MISP), which is structurally related to the α-domination problem as both
involve making set-inclusion decisions for each vertex in the graph. Building on
DIFUSCO and related denoising diffusion approaches for discrete optimization
problems, several contributions have emerged [22,23,32,37], although these focus
primarily on the Traveling Salesperson Problem and the MISP. Another no-
table contribution combining metaheuristics with machine learning comes from
Sánchez et al. [31] for the Target Set Selection problem, who proposed a hybrid
method that enhances ant colony optimization through Q-learning [36].
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Fig. 1: Comparison of degree distributions between the original benchmark
graphs (Facebook, up to 15126 nodes and 1.65 · 106 edges) and various graph
generation methods. All generated graphs contain 400 vertices. The scale-free
graphs were generated with an edge count proportional to that of the Facebook
graphs. Their power-law exponent was fixed at 3.715, consistent with the esti-
mate obtained using the procedure described by Clauset et al. [9]. The other
methods do not require additional parameters.

3 Proposed Approach

In this work, we apply DIFUSCO, the denoising diffusion framework proposed
by Sun and Yang [34], to the α-domination problem. Building on the algorithms
developed by Iurlano et al. [20], we propose a method that uses a diffusion model
at its core to generate high-quality initial solutions, which are subsequently re-
fined by a configuration checking procedure making it structurally comparable
to a GRASP.

3.1 Generation of Training Data

For any supervised machine learning model to produce meaningful predictions,
the first requirement is access to suitable training data. As mentioned in the in-
troduction, this becomes particularly challenging when working with large-scale
real-world graphs, for which exact solutions are not practically attainable. Train-
ing with substantially smaller graphs is the obvious alternative, but raises the
question of how to generate such graphs in a way that they remain representative
of the original large-scale instances and how well the out-of-distribution general-
ization to larger graphs will perform. Most importantly, training graphs need to
approximately share the degree distribution and key structural characteristics
of their larger counterparts. Small enough training graphs then allow the use of
the MILP model proposed by Raghavan and Zhang [27] in combination with the
solver Gurobi [17] to solve the generated instances to (near-)optimality.

The real-world social network graphs considered in this work are the Facebook-
graphs taken from the Network Repository [29] and exhibit the expected char-
acteristic structure consisting of many low-degree vertices connected through a
few high-degree vertices. At first glance, this structure is reminiscent of scale-free
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graphs that follow an underlying power-law degree distribution [28]. To investi-
gate this, we applied the methodology of Clauset et al. [9] and estimated the av-
erage power-law exponent of our training dataset to be approximately α = 3.715.
However, when we used this exponent with the static_scale_free generator
from Julia’s Graphs package [15], the resulting instances showed a degree dis-
tribution quite different to the one of, e.g., the Facebook benchmark graphs as
illustrated in Figure 1. Even after adjusting the power-law exponent and the
edge count, the distribution of vertex degrees remained inadequate, with many
degrees being substantially under- or overrepresented in the generated scale-free
graphs.

To address this limitation, we experimented with two alternative graph gener-
ation methods, described in the following. All graphs used in this study, including
real-world and generated instances, are publicly available on GitHub1.

Random Walk Subgraphs. The first method relies on a random walk proce-
dure [18]. Starting from a randomly chosen vertex in one of the original bench-
mark graphs, the algorithm performs a random walk by repeatedly jumping to
a randomly selected neighbor of the current vertex. This process continues until
the desired number of vertices has been visited. The resulting artificial training
graph is defined as the induced subgraph over these selected vertices. While this
approach yields subgraphs with overall densities similar to the originals, it fails to
preserve the original degree distribution accurately, since each vertex inherently
lacks its connections to vertices outside the subgraph. This deviation is partic-
ularly evident in the prediction dynamics of the GNN forming the core of our
denoising diffusion models, where reduced neighborhood sizes during training
cause a systematic bias toward over-classification in testing. Also see Fig. 1.

Chung-Lu Random Graphs. To address the deviation from the original degree
distributions observed in the previous method, our second algorithm prioritizes
accurately reproducing the degree distribution at the cost of no longer preserv-
ing overall graph density. We employed standard Locally Estimated Scatterplot
Smoothing (LOESS) [10], a generalization of moving averages and polynomial
regression, to estimate the degree distribution across the set of original train-
ing graphs. Each graph was weighted to ensure that all instances contribute
equally, regardless of their size. Using this smoothed model, we estimated a set
of expected degrees for the vertices in the training data. The random graph gen-
eration method by Chung and Lu [2] was then used to generate synthetic training
graphs by sampling edges based on these expected degrees, effectively mimicking
the degree distribution learned via the LOESS model. As can be seen in Fig. 1,
this method produces graphs with degree distributions closely matching those
of the original social network (Facebook) graphs.

1 https://github.com/mwustinger/ddasp-graph-data

https://github.com/mwustinger/ddasp-graph-data
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3.2 Denoising Diffusion Model

Sun and Yang [34] describe diffusion models as latent variable models. The for-
ward process progressively corrupts the data by adding noise, while the reverse
(denoising) process is learned through supervised training and gradually recon-
structs the original data. At test time, predictions are obtained by repeatedly
applying this denoising process to a randomly initialized input, ultimately yield-
ing probability values for the nodes indicating their membership in the solution
set. The neural network at the core of our models is a GNN consisting of a stack
of anisotropic graph neural network layers with edge gating, just as used in [34]
for the MISP. Vertex and edge embeddings are obtained at each layer through
sparse neighborhood aggregation using either sum, mean, or max pooling. Each
layer incorporates timestep embeddings to capture temporal dynamics, while
residual connections and normalization ensure stable training.

Since the solution space has a discrete nature, it is essential to employ diffu-
sion methods capable of handling discrete structures. Among the options avail-
able in the DIFUSCO framework, categorical diffusion performed best in our
experiments. First introduced by Austin et al. [4], categorical diffusion operates
by iteratively applying transition matrices that randomly modify the categori-
cal values of the input with a certain probability. The reverse process estimates
the original data distribution by computing reverse transition probabilities using
Bayes’ theorem. For details on the diffusion model, including the parametriza-
tion, we refer to the original paper [34] and their experiments on the MISP.

3.3 Heatmap Generation and Decoding

Due to the probabilistic nature of DIFUSCO, it cannot guarantee that its pre-
dictions on a graph correspond to valid solutions of the α-domination problem
or that a feasible solution is also minimal (i.e., no single vertex can be removed
without violating the domination condition). This makes post-processing with
a fast greedy decoding strategy important. By default, the models would pro-
duce discrete outputs, which discard valuable comparative information about
prediction confidence. To address this, the final Bernoulli sampling step of quan-
tization is omitted during inference. Consequently, the model outputs heatmaps
that assign each vertex a confidence score in the range [0, 1], rather than a (hard)
binary label.

The greedy decoding procedure builds upon the greedy criterion proposed
by Iurlano et al. [20]. However, the initial decisions made by the decoding are
guided by the model’s heatmap predictions, where vertices are provided to the
heuristic in descending order of confidence. To mitigate the effect of random
noise in the heatmap and to preserve some aspects of the greedy criterion, the
confidence scores are rounded half up to one decimal point. Ties are then broken
greedily based on the number of undominated neighbors among the top-ranked
vertices. A final post-processing step removes any vertices from the solution set
that are themselves dominated by the set and are not necessary to maintain the
domination of their neighbors. The removal order in this step is randomized.
The complete procedure is summarized in Algorithm 1.
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Algorithm 1: DIFUSCO Inference and Greedy Decoding
Input: Graph G = (V,E), trained DIFUSCO model M, diffusion steps T
Output: α-dominating set S of G
// Heatmap Generation
Initialize latent state for all vertices normally distributed: X ∼ N (0, 1);
for t← T to 1 do

X ← perform denoising step t on X using M;

Round latent state to confidence/heat labels: score← round(X, digits = 1);
// Greedy Decoding
Initialize α-dominating set: S ← {};
Initialize set of α-dominated vertices: D ← {};
while D ̸= V do

Select all vertices with highest score: Y ← argmaxv∈V \S{score[v]} ;
Filter by most undominated neighbors: Y ← argmaxv∈Y {|N(v) \D|} ;
Randomly pick v′ ∈ Y ; S ← S ∪ {v′}; score[v′]← −∞ ;
Update domination: D ← D∪{v′}∪{v ∈ N(v′) | |N(v)∩S| ≥ ⌈α · |N(v)|⌉}

// Postprocessing Step
for v ∈ S in random order do

if S \ {v} is a valid α-dominating set then
S ← S \ {v}

return S

3.4 Denoising Diffusion Adaptive Search Procedure (DDASP)

As noted in the introduction, our overall algorithm is inspired by the GRASP
framework, where a randomized greedy heuristic generates initial solutions that
are subsequently refined through local search. However, since the heuristics
in [20] were recognized to exhibit weaknesses on social network graphs, we in-
stead rely here on the above DIFUSCO-based solution construction.

The DIFUSCO framework [34] employs denoising diffusion to generate pre-
dictions, and its output is therefore fundamentally influenced by the randomized
initialization. Much like an image generator that produces different images from
the same prompt, this stochasticity allows DIFUSCO to produce a diverse set
of promising candidate solutions rather than a single deterministic prediction.
Consequently, DIFUSCO can serve as a natural replacement for the initial con-
struction phase of a GRASP-like algorithm. In addition, DIFUSCO runs almost
entirely on the GPU while other heuristic methods, such as the configuration
checking procedure proposed by Iurlano et al. [20], are CPU-based. This may
enable effective distribution of the workload across both devices.

The complete algorithm alternates between constructing solutions with DI-
FUSCO and refining them via local search, while maintaining the best solution
found so far. In the construction phase, a trained diffusion model generates pre-
dictions for the current graph, which are then processed by the greedy decoding
procedure described in Algorithm 1. In practice, multiple candidate solutions
can be generated in parallel by applying the denoising step to a supergraph con-
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Algorithm 2: Denoising Diffusion based Adaptive Search Procedure
Input: Graph G = (V,E), trained DIFUSCO model M
Output: α-dominating set S of G
Sbest ← V ;
while termination condition not met do

Apply Algorithm 1 to generate a set of candidate solutions S.
Select a best performing candidate solution: S ← argminS∈S{|S|}
S ← refine with CC(S);
if |S| < |Sbest| then

Sbest ← S;

return Sbest;

taining several copies of the original graph, allowing multiple outputs in a single
pass. Among these candidates, the solution with the smallest objective value,
corresponding to the α-dominating set with the smallest cardinality, is selected
for refinement. This solution is then improved using the configuration check-
ing procedure proposed by Iurlano et al. [20]. The process continues iteratively
as DIFUSCO produces new solutions. For details on the configuration checking
procedure, including its parameterization, we refer to the original paper [20].

4 Experiments

The DIFUSCO implementation by Sun and Yang [34] is publicly available and
was originally written in Python 3.8. In contrast, the α-domination heuristics of
Iurlano et al. [20] are implemented in Julia 1.10. To integrate both approaches,
we ported the code to Python 3.12 and Julia 1.11.5, respectively, and developed
a lightweight framework that calls DIFUSCO from Julia via the PythonCall
package [30].

In the following, we evaluate our proposed approach on a selection of so-
cial network graphs from the Network Repository [29], a collection of real-world
networks and benchmark datasets. We selected a total of 20 graphs from the cat-
egory Facebook Networks and randomly split them into an equally sized training
and test set, with the additional constraint that the graphs analyzed by Iurlano
et al. [20] were included in our test set to ensure comparability. The graphs in
the training set are very large, with an average of 10,823 vertices and 477,190
edges, making it practically infeasible to compute optimal solutions using clas-
sical methods such as an ILP approach. Therefore, we employed the two graph
generation methods described in Sect. 3 to derive a large number of representa-
tive artificial training graphs from the small set of original training graphs. For
each method, we generated 1,000 graphs, each containing 400 vertices and on
average 2,910 edges for the Random Walk subgraphs and 15,865 edges for the
Chung-Lu Random graphs. These generated graphs are large enough to capture
the structural characteristics of the original graphs while remaining small enough
to be solvable by exact methods. Each generated graph was then solved using the
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basic MILP model proposed by Raghavan and Zhang [27] in combination with
Gurobi 12.0.1 [17], imposing a time limit of five minutes and using 48 threads
on an AMD EPYC 9274F 24-core processor. The resulting average optimality
gaps returned by Gurobi were 7.2% for the Random Walk subgraphs and 3.7%
for the Chung-Lu random graphs.

4.1 Experimental Setting

To evaluate the performance of our proposed approach, we computed several
baselines for comparison. However, since the DIFUSCO framework is primarily
implemented in Python and executed on the GPU, whereas the other heuristics
are implemented in Julia and executed on the CPU, direct performance compar-
isons are inherently challenging. We limited the maximum number of threads on
the CPU and possibly the GPU to one each and measured the wall-clock times
taken by all our algorithms. Thus, we allowed our DIFUSCO-based approach
to use both, the CPU and the GPU simultaneously, but just with one thread
per device. All experiments, including the neural network training, were done on
a machine with an AMD EPYC 9274F 24-core processor and an NVIDIA A40
GPU.

Our main baseline was computed using the basic MILP model proposed by
Raghavan and Zhang [27] solved with Gurobi [17] (gurobi). Although also re-
stricted to a single thread, the maximum time budget for this computation was
set to 3,600 seconds for all experiments. To cover existing metaheuristics, we in-
cluded the greedy algorithm (greedy) and the configuration checking procedure
(CC) from Iurlano et al. [20]. The greedy algorithm had no specific time bud-
get and completed even on the largest instances within seconds, while CC was
given a budget of |V |/20 seconds for each graph, thus, up to 750 seconds. Note
that in Table 1, the results listed for greedy serve as the initialization for the
corresponding CC runs. As shown by Iurlano et al. [20], the relaxed neighbor-
hood notation in their local search framework enabled the exploration of many
promising candidate solutions for the α-domination problem, whereas repeatedly
restarting from randomized greedy constructions, as done in GRASP, was found
to be counterproductive. Consequently, we did not further pursue a GRASP
baseline and instead focused on comparing to their strongest method.

In total we trained one model for each combination of GNN aggregation
method (sum, mean, max ) and training graph type, resulting in six models for
the subsequent comparison. We hereafter distinguish between Random Walk
models and Chung-Lu models referring to the set of synthetic graphs used dur-
ing training. Each graph neural network model consists of eight hidden layers
with 256 nodes per layer, employs categorical diffusion. Increasing the number
of layers or their size did not yield significant improvements in performance.
Training was performed for 50 epochs with a batch size of eight and 1000 diffu-
sion steps. During inference, the number of denoising steps was reduced to 100,
which, combined with rounding, yielded competitive results at a fraction of the
computational cost than when performing 1000 denoising steps.
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4.2 Main Results

As previously mentioned, we trained a total of six diffusion models. As will be de-
tailed in Sect. 4.3, the models using sum aggregation consistently outperformed
the others, so only their results are reported in Figure 2 and Table 1, while a com-
parison between the different aggregation methods is presented in Figure 3. To
highlight the contribution of the refinement phase, we present results for both
the isolated construction procedure of DIFUSCO (difusco) and the complete
DDASP (ddasp). The results presented under difusco correspond to repeatedly
applying DIFUSCO trained on our artificial training graphs followed by greedy
decoding to obtain candidate solutions, whereas the ddasp results include the
full algorithm, i.e., construction through DIFUSCO and subsequent refinement
via local search. The time budget for these experiments was again set to |V |/20
seconds, matching the metaheuristic baseline.

In Figures 2 and 3 as well as Table 1, rw denotes the Random Walk training
set, cl the training set generated via the Chung-Lu method, and sum, mean, max
denote the aggregation method used in the GNN. For each graph in the test set,
we conducted a total of 30 experiments under these settings but with different
random seeds. Let SG denote the solution returned by our Gurobi benchmark, S
the solution returned by one of our algorithms. The %-gap, which quantifies the
difference in solution quality, is given by (|S|−|SG|)/|SG| and is stated in percent.
Figure 2 shows the probability density functions of the %-gap achieved by the
different approaches across the 30 experiments for each graph, providing a fair
comparison between the heuristic baselines and the results computed using the
DIFUSCO-based methods. Moreover, Table 1 reports the means and standard
deviations of the objective values.

Although the MILP approach initially produced competitive results, its ef-
fectiveness declined rapidly as the graph size increased despite having a larger
time budget, eventually being outperformed by all other methods. The greedy
algorithm (greedy) served as the input to the configuration checking procedure
(CC ) and therefore provides a baseline for assessing the improvements achieved
by that procedure. However, because the greedy algorithm was executed only
once for this purpose, it terminated significantly faster than the other heuris-
tics, making a direct comparison problematic. In the context of social network
graphs, this improvement of the configuration checking procedure was unfortu-
nately smaller than expected, which is consistent with the observations of Iurlano
et al. [20].

To assess the statistical significance of the results, we performed Wilcoxon
Signed-Rank Tests [13] on the median %-gaps for each test instance. Comparing
the configuration checking procedure to the DDASP trained on the Random
Walk dataset using sum aggregation, as well as the DDASP trained on the
Chung-Lu dataset with sum aggregation, yielded a p-value of 0.0020. A direct
comparison between the two DDASP variants resulted in a p-value of 0.0039.
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Fig. 2: Comparison between the configuration checking baseline and our algo-
rithms involving the DIFUSCO framework.

Table 1: Objective values of the best-performing methods. For each method the
mean (µ|S|) and standard deviation (σ|S|) of the objective values of the individual
experiments is given. Best mean values are printed in bold.

Graphs Baselines Random Walk (sum) Chung-Lu (sum)
Instance |V | µdeg gurobi greedy CC difusco ddasp difusco ddasp

µ|S| σ|S| µ|S| σ|S| µ|S| σ|S| µ|S| σ|S| µ|S| σ|S| µ|S| σ|S|

fb-Amherst41 2235 81.4 738 806.3 6.8 787.3 4.3 781.8 3.3 771.1 4.3 759.5 2.6 758.1 2.8
fb-Princeton12 6596 88.9 2208 2313.0 7.0 2280.3 9.5 2266.9 6.6 2228.7 6.9 2176.9 3.5 2174.3 3.8
fb-Dartmouth6 7694 79.0 2465 2588.2 6.0 2565.1 11.3 2510.0 5.5 2488.0 4.6 2452.8 3.5 2448.7 3.6
fb-Yale4 8578 94.5 2928 3059.5 10.7 3032.0 8.4 3023.6 6.7 2976.0 8.7 2923.8 5.1 2915.8 5.0
fb-Maine59 9069 53.6 3167 3241.1 9.1 3212.6 11.7 3038.2 4.1 3035.9 3.2 3044.3 2.8 3043.9 2.4
fb-Stanford3 11586 98.1 3902 3965.4 12.6 3928.5 14.1 3974.8 7.5 3870.2 11.7 3835.4 4.3 3807.9 5.3
fb-Columbia2 11770 75.5 4005 4075.8 10.1 4025.5 18.3 3944.6 4.7 3887.9 6.9 3848.9 3.8 3843.1 4.7
fb-NotreDame57 12155 89.1 5804 4469.8 10.5 4402.0 16.4 4372.8 7.3 4294.9 10.1 4234.2 4.1 4226.2 5.3
fb-Baylor93 12803 106.2 6132 4649.8 12.1 4613.6 9.0 4602.3 8.6 4532.6 12.9 4424.4 5.2 4409.5 5.8
fb-Harvard1 15126 109.0 6826 5263.2 16.2 5187.0 22.8 5310.8 7.2 5087.4 25.4 5148.4 7.7 5047.6 10.7

4.3 Comparison of Different Aggregation Methods

One of the most important parameters influencing the performance of our de-
noising diffusion models was the choice of the aggregation method. The diffu-
sion models studied by Sun and Yang [34] primarily employ sum to aggregate
neighborhood information at each layer of the denoising step. The DIFUSCO
framework, however, also supports other well-known aggregation methods, such
as mean aggregation, which computes the arithmetic mean of the neighborhood
information, and max aggregation, which takes the largest value among the
neighbors. Our experiments confirmed that sum is the most effective aggrega-
tion method in the context of the α-domination problem and likely explains its
extensive use in the original study. Unlike mean and max aggregation, which
largely ignore vertex degree, sum reflects this important aspect more directly,
as each neighbor directly contributes to the aggregate.
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Fig. 3: Comparison of the construction procedure using different DIFUSCO mod-
els trained on different training graph types (Random Walk vs. Chung-Lu) and
using different GNN aggregation methods (sum, mean, max ).

However, this prominent effectiveness comes with an important caveat. The
sum aggregation performs well only when the degree distributions of the training
and test graphs are similar. In early experiments on artificial scale-free graphs,
models using sum aggregation quickly began to over-classify. In extreme cases,
nearly all vertices were labeled as part of the α-dominating set, rendering the
predictions meaningless. This observation motivated us to carefully design ar-
tificial training data that especially tries to replicate the degree distribution of
the original training graphs. We argue that this is also the main reason why the
Chung-Lu dataset outperforms the Random Walk dataset, as its degree distri-
bution is more in line with the original training data.

Figure 3 shows the %-gap of the isolated construction procedure using DI-
FUSCO relative to the solutions computed by Gurobi. While the Random Walk
training set performed worse overall than the Chung-Lu training set, the results
indicate that the choice of aggregation method has far greater impact. For both
training datasets, only the models using sum aggregation are competitive with
the heuristic baselines.

4.4 From Heatmaps to Greedy-Decoded Solutions

Lastly, we examine the performance of our diffusion models to predict valid
solutions, by comparing them to the solutions obtained after greedy decoding.
We treat the rounded output of the denoising diffusion models as the prediction
and the corresponding greedy-decoded solution as the reference. It is important
to note that this does not directly assess the absolute performance of the models,
which was investigated in the previous sections, as combinatorial optimization
problems typically have many close to optimal solutions, and thus no unique
ground truth exists. Rather, the following helps us quantify the deviation of
the model’s confidence scores from the final greedy solution i.e., the extent of
corrective adjustments the greedy decoding performs.

Figure 4 shows on the left side Receiver Operating Characteristic (ROC)
curves, which relate the False Positive Rate to the True Positive Rate and thereby
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(a) ROC Curves (b) Precision–Recall Curves

Fig. 4: Comparison of ROC and Precision–Recall curves for the evaluated models.

indicate how effectively the models rank vertices that ultimately appear in the
final decoded solution. On the right, Precision-Recall (PR) curves are presented
illustrating the models’ abilities to identify vertices that are ultimately used
by the greedy decoding procedure. Although there is no direct correspondence
between the overall model performance and the associated ROC and PR curves,
models employing sum aggregation consistently exhibit clearly superior curves
and larger areas under the curve (AUC). This indicates that in order to achieve
better performance, it helps when the denoising diffusion models already return
confidence scores that closely align with meaningful solutions and less work has
to be done by the greedy decoder.

5 Conclusions

We proposed DDASP, the Denoising Diffusion Adaptive Search Procedure, to
solve the α-domination problem on large-scale social network graphs. To effec-
tively train the employed denoising diffusion models, we introduced two graph
generation methods for producing suitable training data that approximate the
degree distribution of the original graphs while remaining solvable by a MILP
model in combination with Gurobi. By incorporating the configuration checking-
based local search from [20] into our adaptation of the DIFUSCO framework,
we were able to surpass both the heuristic and Gurobi baselines, achieving sta-
tistically significant improvements on a benchmark set of large, real-world social
network graphs.

For future work, we plan to broaden our evaluation of denoising diffusion
models, potentially implementing them natively in Julia to simplify the current
Python/Julia interaction or explore alternative implementations. Preliminary
trials with a GATv2 [6] graph neural network in place of the anisotropic GNN
produced mixed results, motivating further investigation. Finally, we aim to
extend DDASP to other combinatorial optimization problems, with the expec-
tation that machine learning can once again capture and exploit their structural
properties to enhance classical heuristic methods.
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