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Abstract. We present new approaches to the problem of accommodat-
ing (as a contiguous substring) every cardinality-k subset of a finite al-
phabet {1,...,n} in a string of shortest length. The key insight is that
we can reduce this problem to the Generalized Traveling Salesperson
Problem (GTSP). This allows us to leverage the availability and per-
formance of a powerful established metaheuristic solver for the GTSP.
We can use it to compute certain new optimal strings, for which we can
make observations on their structure. In addition, we derive a slightly
tightened lower bound on the minimum length of such strings. It often
is responsible for the derivation of optimality guarantees which are com-
putationally unobtainable when employing several tested different exact
solving techniques. A by-product is an intriguing class of instances for
the GTSP with a priori known (optimally) tight bounds.

Keywords: Shortest Superstrings - Generalized Traveling Salesperson
Problem - Reduction - Lower bound

1 Introduction

In this work we address computational approaches to the shortest P¥-cover prob-
lem, a variant of the Shortest Superstring Problem (SSP) [1] by Lipski Jr. [13].
Given the collection of all cardinality-k subsets of a cardinality-n alphabet, one
seeks here a shortest string over this alphabet such that, for each subset in the
collection, an arbitrary arrangement of its elements appears as contiguous sub-
string of the superstring; we call such a string a PF-cover. In this sense, the
string 1234515241352 covers all ten 3-subsets of the alphabet {1,...,5}; e.g.,
at the eighth position the occurring substring 241 is responsible for the cov-
erage of {1,2,4}. For the classical SSP no letter-rearrangements are allowed,
instead a pre-specified collection of strings (rather than sets) over a finite alpha-
bet is given, and a shortest string has to be found which contains all of them as
contiguous substrings [I]. The algorithmic study and the computation of short
so-called superstrings is motivated by applications in data compression [15] and
computational biology [I0]. In the latter field, one frequently faces the problem
to reconstruct DNA sequences from a collection of fragments (oligonucleotides)
which stem from experimentally obtained samples.
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The PX-cover problem has strong connections to the one of finding so-called
universal cycle coverings, in which the strings are cyclic, i.e., the first element
of the superstring is the successor of the last one. Recently, in [5], a necessary
divisibility-condition on n and k for the existence of so-called universal cycles
(where each k-subset is covered by one unique occurrence of a substring of length
k) has been shown to be an asymptotically sufficient condition, too. This settled
a longstanding conjecture of Chung, Diaconis, and Graham [2] formulated in
1989. Apart from selected values for n and k satisfying the particular divisibility
condition, for which this conjecture is valid and yields optimal P*-covers, the
optima’s structure is not fully understood so far. An upper bound of magnitude
(1) +O(nl*/2]) has been obtained by a combinatorial construction [14]. Further
bounds taking into account the magnitude of k as function of n can be found in [3]
for the cyclic problem version. If we more generally demand coverage of any set X
in a given subset P of the alphabet’s power set, determining the existence of such
a length-m superstring becomes NP-complete [I1I]. Computational approaches
for the problem (also due to Lipski Jr. [I3]) of superstrings of the entire power
set of a finite alphabet are presented in [I9], where also some selected results on
PF_covers are given for up to n < 7.

Pursuing an approach relying on the maximum overlap shared by suffixes
and prefixes of strings as a distance metric, we design particular instances of the
Generalized Traveling Salesperson Problem (GTSP) whose feasible solutions, i.e.,
generalized Hamiltonian cycles, correspond to feasible superstrings for the PF-
cover problem. The vertex clusters correspond to the cardinality-k subsets and
their elements to all k! strings representing the subsets. For tractable, smaller
values k < n < 15 we approach these derived GTSP instances by GLNS [I8], an
established metaheuristic software for the GTSP being a hybrid of Large Neigh-
borhood Search and Simulated Annealing. The pursued approach, furthermore,
allows to tackle a more general interpolation of the SSP and the P¥-cover prob-
lem by banning custom strings from selected clusters. With the use of intense
computational resources, we thereby get insights into the size of (near-)optimal
solutions and their structure.

For k = 3 and n € {9,12} as well as (n,k) = (8,4) we are able to identify,
to the best of our knowledge, so-far unknown minimum-length solutions; for
other (n,k)-values a small optimality gap remains open, which we believe to
be reducible in future by tailored (meta)heuristics that further strengthen the
primal bounds. For some claims of optimality, we fall back on a—compared to the
literature on P*-covers—slightly strengthened purposefully derived dual bound

The paper is structured as follows. In Sect. 2] we provide the required no-
tation. The actual reduction to the GTSP is given in Sect. [3] followed by its
computational evaluation in Sect. 4l The validity of the dual bound ¥ is proved
in Sect. [5] which is accompanied with concluding remarks in Sect. [6]
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2 Notation and preliminary considerations

In the following we consider the alphabet [n] := {1,...,n} and call its elements
letters. A string of length m over [n] is a sequence s = (s1,...,8,) € [n]", which
we often denote by s; - - s, for simplicity; if not stated differently, we refer to
strings over [n]. We say that ¢ = ¢1---t; is a length-k infix of s, if there is a
starting position i; € {1,...,m — k+ 1} for which s;8;11 - Si4p—1 = t1ta - - .
Among the N — k + 1 length-k infixes the one corresponding to position i = 1,
respectively to ¢ = N — k + 1, constitutes the length-k prefix of s, respectively
suffix of 5. Denote by P¥ the set of all k-subsets of [n]. A string s is a superstring
for P, or for short a P¥-cover, if for each A € P¥ there exists an length-k infix ¢
of s satisfying {t1,t2,...,tx} = A. A k-subset of [n] is said to be covered \ times
by x, if there are precisely A pairwise distinct indices at which, after suitable
reordering, the elements of the k-subset appear as length-k infix. We say that x
has an associated universal cycle, compare [2], if the length-(k — 1) prefix and
length-(k — 1) suffix of  are coinciding strings and furthermore, each element in
P is covered precisely once by z. A length-k substring (or infix) of x is called
injective if it consists of k pairwise different letters.

Given two reals L, U (L < U), we use the notation clmp, (z) := max(x, L),
chnpU(w) := min(z,U), and chnpg(x) = clrnpU(chan(x)).

Lemma 1. For a minimum-length P¥-cover x the length-k prefiz of =, as well
as the length-k suffizx x, must both be injective.

Proof. Non-injective such prefixes and suffixes would give rise to shorter feasible
strings by dropping letters left and right, contradicting optimality. O

Sometimes the local injectivity not only applies to the optimal P,’f—cover’s
two extremities but to the entire string, too. The following observation states,
however, that this is not true in general.

Observation 1. For a minimum-length PF-cover x precisely one of the two
following scenarios occurs.

(i) |z| = (}) + k — 1, e.g., when x arises from an associated universal cycle,
therefore satisfies
(a) all length-k infizes of x are injective, and
(b) each k-subset of [n] is covered exactly once by x.

(it) |z| > (}) +k — 1, where the excess in length compared to the best-case mm
arises from meeting the negation of or the negation of i.€., Mon-
injectivity or excess-coverage. Representatives fulfilling both negations cannot
be excluded for general (n, k).

Proof. Concerning an arbitrary string y possesses precisely |y| —k+ 1 infixes
of length k. Therefore, in the best case, when they are all injective, we necessarily
have |z| > (7) + k — 1. To verify that the negations of and can indeed
apply jointly, consider for (n, k) = (12, 3) the shortest string



4 A. Weissenfels, E. Turlano, and G. R. Raidl

1239b128ac13b75¢c1b5397ba951785c94b3acb369723c7ab62345bad74
5823579¢1837286419a4c2a71c4a8596152a96b6a39¢c276b32a459315a
38943a148b9c6129b52946acb412c5678926c7b1a26b85143856bc5471
98613746b18a9c874c3642716a7368ab248c64527b4a78b2c83bc8

(represented over the first twelve positive hexadecimal digits) of length coinciding
with 8% = 228 (the derived dual bound in Sect. 5| covers the set {2,3, 7} twice—
at the 42th and the 69th position. On the other hand, at the 96th position, we
locate the non-injective 3-infix 6b6. O

Remark 1. As Observation 1] indicates that in general an optimizer can simul-
taneously carry local non-injectiveness as well as excess-coverage of the k-sets,
this raises the question if in such a situation one is always able to find specific
optimal representatives which experience exclusively one of the two phenomena.
For (n,k) = (5,3), on the one hand, the string 1234515241352 covers each 3-
subsets exactly once but contains the non-injective infix 515. On the other hand,
1234512413524 is an alternative optimizer doubly covering {1,2,4}, however,
consisting exclusively of injective length-3 infixes. If such particular minimizers
always exist for more general choices of (n, k) remains here an open question.

3 Reduction to the (Euclidean) Generalized Traveling
Salesperson Problem

We see the considerations described in this section as a generalization of the
approach proposed in [7]. Assume we have given a vertex set V, a partition of
the vertices into clusters Ci,...,C, C V which are pairwise disjoint and cover
V,ie., U, C; =V, anedge set E = {(u,v) € V xV : C, 2 {u,v} for each p},
and a weight function w : E — Rx>. The Generalized Traveling Salesperson
Problem (GTSP) asks to minimize Zf;ll w(zi, zi41) +w(zp, 21) over all directed
cycles (z1,...,%p) € VP in G = (V, E) that contain precisely one representative
z; € C; per cluster (generalized Hamiltonian cycles). If the weight function w is
invariant under inversions of the edge direction, we call it a symmetric GTSP.
We face an Fuclidean instance if the triangle inequality applies for w [12].

Let us consider the set of all length-k injective strings over the alphabet
[n] as vertices of a GTSP instance. Moreover, let us regard two such vertices
s,t € [n]" as located in the same cluster if their letters are the same up to
reordering, i.e., {s1,...,8x} = {t1,...,tx}. We therefore have (Z) clusters of
uniform size k!. Furthermore, consider the following weight function w(s,t) :=
k — max{r € N : the length-r suffix of s coincides with the length-r prefix of t},
i.e., the minimum number of letters that have to be appended to s such that the
result contains ¢ as suffix. The larger the overlap between suffixes and prefixes
of s and ¢, respectively, the smaller will be w(s,t). Choosing, e.g., s = 234 and
t = 345 with w(s,t) = 1 # 3 = w(t, s), we see that w is not symmetric. However,
it is immediate that w keeps such instances Euclidean: In fact if w(s, t)+w(t, u) <
w(s, u), then, in order to cover u starting from a current suffix s, one would obtain
a shorter result by appending the letters responsible for the transition from s to
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Fig. 1. The constructed GTSP instance for (n, k) = (3,2). Three clusters are present,
one a singleton consisting of ¢ = 12. The directed edges’ labels specify the weight w.

t and afterwards those from ¢ to u, contradicting minimality in the definition of
w(s,u).

The following result is based on the observation that each length-k prefix of
an optimal P*-cover is injective (see Lemma |1) and P¥-covers are closed under
letter relabelings (i.e., permutations of the alphabet).

Lemma 2. Consider the injective string o = 12---k. Assume all the k! — 1
vertices different from o have been eliminated from the o-containing cluster in
the aforementioned edge-weighted graph G = (V, E,w), with the difference how-
ever, that values w(s, o) have now been overwritten by k, for each s € V \ {c};
see Fig. [1] for an illustration. Then, an arbitrary generalized Hamiltonian cycle
naturally corresponds to a PF-cover.

Proof. Such a directed cycle in fact instructs us on how to transition from a
partially constructed string starting with ¢ = 12---k: Either the transitional
weight w(z;, z;+1) = k tells us just to append the entire string z;11 to our current
partially constructed string, or if w(z;, z;41) < k, to make use of a respective part
of the suffix of z; in order to save a certain prefix of z;;1 in the concatenation.
At the same time the weight of the cycle resembles the total string length; the
particularity that each w(s,o) = k, s € V' \ {0}, is used such that, when the
cycle is eventually closed, the tour length finally takes the weight of the starting
prefix 12-- -k into account, which earlier never appeared as a successor. O

Lemma 3. Each minimum-length PF-cover is obtainable from a minimum-
weight generalized Hamiltonian cycle in the (n, k)-instance of the GTSP.

Proof. Let s = s;---5, be a minimum-length P*-cover which by Lemma
and relabeling of the letters we can assume to start with 12--- k. Assume F :=
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(F; i =1,...,(})) is any enumeration of P¥. Define the first occurrences
i; = min{h : {sp,...,Sh4x—1} = Fj}, j = 1,...,|F|. By changing the initial
enumeration of F; we can without loss of generality assume iy < -+ < iz

Clearly then iy = 1 and 47 = m — k + 1 for the optimality of s. Now if
ij41—1; < kforall1 <j < |F|then s is certainly in the solution space of the the
GTSP instance for (n, k). Assume therefore there exists j such that i;.1 —i; > k.
Then the substring s;, 1 - - - si;,, 1 does not cover a subset which is not already
covered by sp - - - Sij+k—18i;., """ Sm N contradiction to the optimality of s. [

It is immediate that a non-optimal P¥-cover in general is not always express-
ible in the fashion of a corresponding generalized Hamiltonian cycle. The pro-
posed GTSP approach can be as well used to address the aforementioned shortest
universal cycle covering problem [3II4] by relinquishing the weight-overwriting
step in Lemma [2] concerning the o-ingoing edges.

Remark 2. An asymmetric GTSP instance can be converted to an equivalent
symmetric GTSP instance by adapting a folklore reduction (e.g., appearing
in [9]) from directed to undirected Hamiltonicity; it doubles the number of ver-
tices.

4 Computational experiments

In this section we study the computational feasibility of the aforementioned
GTSP approach. The GTSP instances are created in Julia 1.12.1, then are
passed to the metaheuristic solver GLNS [I8] (version) which is launched in solving
modality mode=default. The experiments were run on a server cluster consisting
of AMD EPYC 7402, 2.80GHz CPUs each with 128 GB of RAM.

To report reduced optimality gaps, we fall as well back on the improved novel
lower bound ¥ on minimum-length P*-covers derived in Sect. |5, We reserve for
GLNS a time budget proportional to the number of vertices in the instance to be
solved, such that the largest instance ((n, k) = (13,5) leading to 154321 vertices)
is solved using 48 hours of computation time. The latter is prematurely stopped
in case the incumbent’s objective function value collapses with the dual bound
B%. The results are reported in Table [I| including the optimality gap “A(%)”,
i.e., the difference of primal and dual bound, afterwards renormalized by dual
bound (and stated in percent).

Alternatively to our solver run, we can obtain for (n,k) = (8,3) a length-m
PFk_cover with m = 58 = (2) + 2 via a known universal cycle [§]—just as for
(n,k) € {(10,3),(11,13),(13,3)}. Instead for k = 3 and n € {9,12} as well
as for (n,k) = (8,4) the optimal bounds in Table [1| refer to so-far unknown
minimum-length solutions we found; Table [2] collects the respective minimizers.

While oftentimes the interplay of 3% and the output of GLNS yielded con-
vincing results, it might be interesting to mention the following insights which
we obtained when assessing the feasibility via exact methods for the GTSP (or
via naive encodings of the problem) in this concrete setting: In pivoting exper-
iments we found that a compact Mixed Integer Linear Program (MILP) [I6]
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Table 1. GLNS run on GTSP (n, k)-instances. Bold numbers indicate attained minima,
asterisks previously unknown /unproved ones.

n k Incumbent Dual 8F  A(%) Time used (min) Time limit (min)

83 58 58 0% 1 7
84 *T4 74 0% 31 31
85 65 60 8.33% 124 124
8 6 38 34 11.76% 363 363
93 *90 90 0% 1 10
94 136 129 5.43% 57 57
95 144 130 10.77% 280 280
96 102 91 12.09% 1116 1116
10 3 122 122 0% 1 14
10 4 229 213 7.51% 94 94
10 5 294 260 13.08% 563 563
10 6 256 215 19.07% 2809 2809
113 167 167 0% 11 19
11 4 359 333 7.81% 148 148
115 535 466 14.81% 1033 1033
12 3 *228 228 0% 6 25
12 4 549 504 8.93% 222 222
125 930 796 16.83% 1772 1772
133 296 288 2.78% 32 32
13 4 790 718 10.03% 320 320
135 1498 1291 16.03% 2880 2880

pp. 823f] for the GTSP attacked by a state-of-the-art solver (Gurobﬂ version
12.0.3) terminated for (n,k) = (8,3) with the optimum of 58 within five min-
utes of computation time. However, termination with the loose interval [4,277]
for the optimum was the result for (n,k) = (8,4) with a two hours time limit.
The latter and similar results lead us to not further pursue such an approach
apparently being far from competitive to those in Table

Explaining the decay of performance already for such small alphabet size
by the polynomial—but already too large—number of Single Commodity Flow
constraints, we also tried a Branch-and-Cut approach: Following Remark [2| we
relied on symmetric GTSP instances and fed them to the solver] implemented
in [6] being a recent adaptation of the framework originally proposed by [4]. Tak-
ing for comparison (n, k) = (8,4), we notice that after two hours and 3898 user
cuts, a linear programming relaxation objective of 70.66 was obtained (leading
to an almost 18 times better dual bound than the one arisen from the compact
MILP); on the downside, no feasible solution was yet found.

! https://www.gurobi.com/ (accessed 2025-11-10)
2 Ttself calling the solver CPLEX (in our setup version 12.8), https://www.ibm.com/
products/ilog-cplex-optimization-studio (accessed 2025-11-10)
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Table 2. Optimal P-covers (over hexadecimal alphabet).

(n, k)| Minimizer found

1234516273158724167583467823568234652743817458124586143752

(8, 4
1365746281367812

N2

1234152631564178956794689457935683492643784537682358279182

9,3
( 91427581627159237169318425467893

=

123456271563189a7896a859a4679567a56845a39847a38754936a2863
(10, 3)|4a274926379284372538252184a1649176815371426192321782159314
529a12

123456143652789ab78ab679a68b5a7689b569b46857948a5674ab3874
(11, 3)|5b36945a397b4839b2a734b26735928a349264a237b253825a923b182b
194a195819271a261b571836a15247168241b7315481a391632791ba

(12,3) See Observation [1|

12345623561789abc89bc78ba79c679b6ca968c5ab68a59c4a876b57c4
b958b47a567ac84965cb3975864ab3854783¢c45b36c28639c2b73a9473
6a2953ac2764b2843b2643a249382735¢c173c146c192b182a183a1c245
a14591a72961b527158293152ab1742163418941bc816a791b32c5

(13,3

=

Additionally, for the decision variant of the problem, we tested an approach
where we let bitvectors one-hot encode the letters and check satisfiability of a
corresponding formula involving sums of k-near letters with the theorem prover
z3| (version, 4.12.2). Here, for (n,k) = (8,3) a 12.07%-suboptimal solution
(of length 60) could be found in five minutes computation time, but already
a 10.34%-suboptimal solution (of length 59) could not be found in two hours.
When trying to verify that there is no solution better than the known optimum
58 in Table[I] the approach failed to do so even within two hours; we conclude
that the approach seems not helpful for obtaining (near-)optimal dual bounds.

5 A new lower bound

We derive a new lower bound using ideas of the existing approach in [I3] in a
refined manner. To aid comprehension of the proof of the subsequent Theorem
consider the string s over the alphabet [6] given by

1234562.

Let (n,k) = (6,5) and assume we want to extend s to a P¥-cover § which there-
fore contains s as a prefix. Consider the letter 6. There are currently two length-5

3 https://github.com/Z3Prover/z3|(accessed 2025-11-10)
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substrings of s containing the letter 6, namely 23456 and 34562 both covering
the subset {2,3,4,5,6}. Since k = 5 and the letter 6 is in the penultimate posi-
tion of s we can give rise to new length-k substrings containing 6 by appending
up to three letters in [n] \ {6}; e.g., via the following three underlined letters:

1234562

Crucially, appending a fourth letter (non-coincident with 6) will not create a new
length-k substring containing 6. We can therefore say that extending s by three
letters (non-coincident with 6) can at most cover three new k-subsets containing
6. Hence, together with the one k-subset covered by s, we can cover at most 4
k-subsets containing 6 without appending the letter 6.

To cover the remaining (i) —4 = 1 subsets containing 6 (namely {1, 3,4,5,6}),
we consequently will have to place more occurrences of the letter 6 in §. Since
each occurrence of the letter 6 can be contained by at most k surrounding length-
k substrings which can cover at most k-subsets containing 6 we need at least
H(i) — 4) / 5] = 1 additional occurrences of 6 and hence at least two occurrences
of 6 in § and hence § must be at least 7+ 3 + 1 = 11 letters long.

Note that the behavior of the bound on this specific § does not apply to all
Py-cover as is evidenced by the P§-cover 1234561234 which is only of length
10. This idea of counting additional occurrences of certain letters is the key
ingredient for proving Theorem

Theorem 1. Let s be a string, and § be a P¥-cover containing s as infiz, i.e.,

§ = rst for some strings r and t. Then |3] > Y1, uy’ with

ot g — Clmpgﬂn(lrl’ak’i)(k} —fi—1)— Clmpglin(‘t"ak‘i)(k —l—1)
,uk;)i = k‘ ) (1)

where ay, ; counts the number of k-subsets containing i that are not yet covered by
s, and f; (respectively l;) counts the number of letters appearing strictly before
(respectively after) the first (respectively last) occurrence of i in s. The latter
numbers f; and l; are understood as oo if letter i does not even occur in s.

Proof. We think of s having been (gradually) extended to § = rst, eventually
guaranteeing feasibility for the P¥-cover problem. The proof is similar to Lip-
ski Jr.’s argument [I3 p. 254] with the difference of more arduously showing
each term ﬂ;i to be a lower bound on the number of occurrences of the letter ¢
in rt (i.e., occurrences of letter ¢ in § without the occurrences in s) necessarily
needed in order to cover all k-subsets of [n] containing i. Summing these lower
bounds up for all ¢ € [n] then yields the desired estimate on the length.

We now show that is a lower bound on the aforementioned number of
occurrences. For the reader’s convenience the situation shall be thought of as
illustrated in Fig. [2] which is meant to address special cases such as f; = [; = oo
or |s| =0, too. The number of i-entries present in rt is certainly not lower than
in the following best-case meeting three aspects: Firstly, left from the f; entries
preceding the first occurrence of i there are k — 1 — f; letters leading each to a
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I”| s Il

S M
k—1-—f; fi l; k—1—1;

Fig. 2. The role of f; and I; for deriving the letter-wise lower bound ,uztz

novel coverage of one of the so-far uncovered subsets counted by ay ;. Secondly,
the same applies likewise in rightward extending direction, i.e., for ;. Thirdly, all
potentially still not-yet covered i-containing subsets in P are novelly covered
using a letter-i minimum-density, i.e., at least each k-th entry needs to host the
letter ¢ throughout the part of the string rt whose positions are not involved in
the aforementioned first two novel-coverage scenarios.

Here, in all three aforementioned scenarios, carefully taking into consider-
ation the unexceedable (length-)limits given by |r|, |t| as well as ay,, non-
occurrences (f; = l; = o0), and potential impossibilities due to divisibility
conditions of “each k-th letter’-densities (permitting to use the ceil function),
we end up with a lower bound precisely coinciding with /‘th O

Corollary 1. Letn € N, 1 < k <n and let s be a string. Let § be a Pff-cover,
that contains s as a factor, i.e., § = rst for some strings r and t. Then

. — [ ak — clmpg"* (k — f; = 1) — clmpg"* (k — 1; — 1)

1210+ 3 | ° Dy @
i=1

where ay i, fi, and l; are understood as in Theorem .

Proof. Use the simple fact that min(|r|, ax,;) < ag,; and min(|¢], ax ;) < ag,;. O

Corollary 2. Letn € N, 1 < k < n and let s be a string. For each P*-cover 3
that contains s as a prefiz, we have

. < [ay,; — clmpy™ (k — 1; — 1)
1215+ 3 | o 7 @
=1

where ay i, fi, and l; are understood as in Theorem |Z|
Proof. Set r = ¢ in Theorem [I] and use again min([t], ax;) < ax,;. O

The previous results can now be combined to obtain our desired dual bound.

Proposition 1. Any P*-cover s fulfills

SERRUAIN () (11 R
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Proof. By Lemmal[I]we may assume that s has an injective length-% prefix. Since
all P*-covers are invariant under bijective letter relabelings, we can without loss
of generality assume s;---sp = 1---k. We now want to apply Corollary [2] on
s1 -+ - 8k. Notice that this string, by design, consists of only a single injective
length-k substring and thus, in the notation of Corollary |2} aj; = (Zj) — € ks
where e; ;, = 1if ¢ < k, otherwise e; ;, = 0. Due to the particular ordering chosen,
we get that [; = k — i for ¢« < k and since the letters in {k + 1,...,n} do not
appear in $1 - - - S, we have [; = oo for 7 > k. For the case 1 <1 < k we can now
compute max(k —I; —1,0) = max(k — (k —4i) —1,0) =i — 1. For k < i <n the
computation yields vanishing maxima and thus by we have

o §[E g6

i=k+1

— kot y {%)_ik(n—k)wkﬂ, (5)

i=1

using the identity % (Zj) = (}) simplifiable to the right-hand side of {#). O
Remark 3. We have

6§k1+(nk+l){(2)-‘+§{(z>z-‘. (6)

n n

Corollary 3. For minimum-length PX-covers s the following assertions hold.
(i) If n | (Z), then agrees with the first bound of Lipski Jr. [13, p. 254], i.e.,

|s|z/3£z(’,j>+k1. (7)

(it) If nt (}), then (@), using r := (}) mod n, can be written as
o) > 85 = nﬁﬂ " m 1 (s)

n

Proof. Let us first address the proof of Since n | (}) we have that

94 [4]-5

for all ¢ < k — 1 and by means of Remark [3] we get that
ls| >k —1+(n—k+1) (&) +I§ ) _i
- n ~ | n k

=/€—1+(n—k+1)@+(l€—1)@

n n
n
= k-1
(k)+ ,



12 A. Weissenfels, E. Turlano, and G. R. Raidl

which is exactly the estimate of Lipski Jr. [13] p. 254].
Next, let us prove|(ii)| Let r = (}) mod n. Clearly r > 0 due to n { (}). Since
the index 7 < k—1 in the sum of and thus i/k < 1, we are interested in when

2- ][9]

Clearly this is the case exactly when r/n — i/k < 0 which can be equivalently
rewritten as ¢ > kr/n and since ¢ € N this is again equivalent to ¢ > [kr/n].
Applying our newfound knowledge to @ we get

ls|>k—1+(n—k+1) [ ]+Z“}
=1

)

n

ek [ Q][R (- [7)
W] )

It is a natural question to ask when exactly (or even if) the lower bound 3%

compares favorably to the two simpler bounds due to Lipski Jr. [I3] p. 254]. In
order to answer this question we first need the following intermediate result.

Proposition 2. If n{ (}), then the lower bound in is strictly tighter than
the one due to Lipski Jr. [13, p. 254], i.e., with (Z) mod n =r > 0, we have

(2] ()

Proof. Let r = () mod n. By using the fact that [(})/n] = ((}) +n—r) /n,
we can rewrite (8]) slightly differently as

|s| > (Z) + ﬁﬂ bt (rt1). 9)

Therefore our proof reduces to showing that

(Z)-i- ﬁﬂ - (r+1)> <Z>+k—1,

which holds due to r < n and the chain of inequalities

r—{-‘ §r—k—7n=£(n—k)<n—k.
non
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Theorem 2. The following inequality

Br >max<<2) —&-k—l,n{(?-‘)

holds, with equality if and only if kr < n where r = (Z) mod n.

Proof. Assume first that n | (Z) Then we may apply the case of Corollary
and we get that

= <Z> +k—1=maX<<Z) +k—1,n[<g)D ;
) )/n] (1) for r = (}) mod n = 0 and therefore
k

indeed with equality since n[(z =
kr =0 < n. Next, assume n { (” and hence r = (Z) mod n > 0. By the case of

Corollary we have that

k (Z) kr
=n|-"* — | =1
=S [
Let us further assume that kr > n. Then by Proposition [2f we see that 5% >

(}) + k — 1, clearly implying 8F > n[(})/n]. On the other hand if 1 < kr <n
then again by means of Proposition [2|and the fact that [kr/n] —1 = 0 we have

that .
Bh zn{(k)-‘ > (n) +k—1,
n k

completing the proof. O

Remark 4. For the more constrained problem of covering all the subsets of [n]
studied by Lipski Jr. [I3], the tightest-known bound (see also [17, Seq. A348574])

is automatically strengthened by 8i"/?!.

6 Conclusion

We adopted a GTSP-based viewpoint on PX-covers turning out to be an equiv-
alent characterization for optimal solutions. This approach would also allow to
model more flexible versions of the problem where only a custom selection of
strings representing the set is needed to be covered (in the most restrictive case
we recover instances of the shortest superstring problem), and more general de-
signs of the clusters would be conceivable. The derived lower bound 8¥ appears to
be near-optimal, making our class of GTSP instances particularly appealing for
the performance-study of exact solvers; additionally one might want to fall back
on the subclass whose known optimality results from the literature on universal
cycles [8]. Our results lead to several remaining open problems, in particular the
following ones.
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— Can we always find optima exhibiting exclusively excess-coverage or exclu-

sively non-injectivity (see Remark, when at least one of them must appear
(see Observation [I)?

— Can the bound in Theorem [I] be exploited for an efficient Branch-and-Bound

approach; and is the bound S* an optimal one for & = 3? (By [§] and
Theorem [2| this already applies for all n > 8 which are nondivisible by 3.)

— Can we strategically partition the k-subsets such that we can separately use

the GTSP approach on smaller instances and merge the arising cycles?

Disclosure of Interests. The authors have no competing interests.
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