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Abstract. A Video-on-Demand system usually consists of a large num-
ber of independent video servers. In order to utilize network resources
as efficiently as possible the overall network load should be balanced
among the available servers. We consider a problem formulation based
on an estimation of the expected number of requests per movie dur-
ing the period of highest user interest. Apart from load balancing our
formulation also deals with the minimization of reorganization costs as-
sociated with a newly obtained solution. We present two approaches to
solve this problem: an exact formulation as a mixed-integer linear pro-
gram (MIP) and a metaheuristic hybrid based on variable neighborhood
search (VNS). Among others the VNS features two special large neigh-
borhood structures searched using the MIP approach and by efficiently
calculating cyclic exchanges, respectively. While the MIP approach alone
is only able to obtain good solutions for instances involving few servers,
the hybrid VNS performs well especially also on larger instances.

1 Introduction

Over the last few years internet-based video-on-demand (VoD) services have
become increasingly popular. In contrast to traditional web- and file-services,
a VoD service must reserve a certain amount of bandwidth for each request in
order to guarantee uninterrupted playback. Therefore operators of VoD services
are faced with high costs for high-bandwidth network connections and server
hardware. Hence existing bandwidth resources should be utilized as efficiently
as possible in order to avoid acquisition of excess bandwidth and reduce costs.

Recent works in this field have mainly focused on distributed video server
architectures. A distributed VoD system consists of multiple video servers, each
server having a dedicated network link as well as a dedicated storage subsystem.
Because of storage capacity constraints each server can only hold replicas of a
subset of all available video files. On arrival of a user request a central dispatcher
component selects a server holding a replica of the desired video file with enough
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available bandwidth to handle the request. If no such server is available, the
request must be rejected. Thus, a common design goal of VoD systems is to
minimize the probability that a user request has to be rejected [1–4]. Zhou et
al. [5] try to achieve this goal by maximizing the replication degree while at the
same time minimizing the load imbalance degree.

In this work we present an approach to VoD load balancing based on a priori
assignment of expected requests to servers. Besides minimization of load imbal-
ance our formulation deals with a problem frequently encountered in real-world
systems which to the best of the authors’ knowledge has not yet been explicitly
addressed in literature. After determining the assignments of predicted user re-
quests and the according video-replica to the servers, the new replica assignment
still has to be realized physically. This can lead to high amounts of data being
transferred between the video servers causing considerable reorganization over-
head as well as impairing system performance. Therefore our problem formula-
tion aims at minimizing load imbalance while making a necessary reorganization
phase as short as possible at the same time. We refer to this optimization problem
as Video-Server Load Re-Balancing (VSLRB). More details on the approaches
presented here can be found in the master thesis of the first author [6].

The next section defines the VSLRB problem more formally. Section 3 gives
an overview on related work. A mixed integer programming formulation for solv-
ing small instances of the problem to proven optimality is introduced in Section 4.
Our new hybrid variable neighborhood search approach for addressing larger in-
stances is presented in Section 5. Section 6 discusses experimental results, and
Section 7 concludes this article.

2 Problem Definition

We consider a VoD system consisting of a set C of m video servers hosting a set
F of n video files. Furthermore, we are given a set T of video file types. Each
video server j ∈ C has associated a storage capacity Wj > 0 and upload and
download transmission capacities of the server’s network link denoted by Uj > 0
and Dj > 0, respectively. Finally each server j has a subset of video file types
Tj ⊆ T it accepts. In turn, each video file i ∈ F has a certain file size wi > 0, a
bitrate bi > 0 and a file type ti ∈ T . Each server j holds a set of replicas Fj ⊆ F ,
where ti ∈ Tj , ∀i ∈ Fj . Conversely each video file i is held by a set of servers
Ci ⊆ C.

Some works specifically focus on modeling of user behavior in VoD systems
[7–9]. A method for modeling video popularity combined with a method for
modeling temporal distribution of user requests can be used to estimate the
number of requests to file i during the daily peak period of user interest [5].
In this work we assume the availability of such an estimation and denote by
qi ≥ 0, ∀i ∈ F , the estimated number of requests for video file i during the daily
peak period. This allows for an estimation of the worst case load L =

∑
i∈F qibi,

i.e. when all requests predicted to occur during the peak period are active at the



same time. The worst case load is to be balanced among the available servers by
assigning the predicted requests.

This assignment of requests to servers is denoted by the assignment function
Q : F × C → IN0. Thus, Q(i, j) denotes the amount of parallel requests for file
i handled by server j. Any valid Q must satisfy the constraint

∑
j∈Ci

Q(i, j) =
qi, ∀i ∈ F . Furthermore, Q must contain only valid assignments w.r.t. allowed
file types; i.e. let P = {(i, j) ∈ F × C | ti ∈ Tj}, then

(i, j) /∈ P ⇒ Q(i, j) = 0. (1)

As a server j needs to hold a replica of a file i in order to handle requests for it,
the concrete choice of Q determines the configuration of the sets of replicas:

Q(i, j) > 0⇔ i ∈ Fj and therefore Q(i, j) = 0⇔ i /∈ Fj . (2)

The server load L(j) is expressed as the total bandwidth requirement to fulfill
all assigned requests:

L(j) =
∑
i∈Fj

biQ(i, j), ∀j ∈ C. (3)

The first goal of our assignment optimization is to minimize the sum of absolute
deviations of server loads from given target loads:

min
∑
j∈C
|ηj − L(j)|, (4)

where the ηj are chosen in a way so that
∑
j∈C ηj = L with respect to the

accepted file types Tj . The target load values ηj are pre-calculated during the
creation of an instance of VSLRB using a quadratic programming formulation,
see [6] for details.

The second optimization goal is concerned with the minimization of the reor-
ganization overhead imposed by a concrete assignment function Q. Let F j , ∀j ∈
C, denote the sets of replicas before applying the assignment optimization pro-
cedure. Whenever a replica of file i required by the newly obtained assignment
of requests is not already present on a respective server j, i.e. i ∈ Fj ∧ i /∈ F j ,
file i must be transferred to j causing undesirable excess network load. If such a
transmission occurs it should be spread over as many source servers as possible
in order to reduce network load on each of the source servers.

The time needed for the transmission of file i to server j can be estimated by

T (i, j) =
∑
k∈Ci

T (i, k, j), (5)

where Ci denotes the set of servers currently holding file i and T (i, k, j) the time
needed to transfer the part of the file contributed by source server k. The size
of the part server k contributes is proportional to its current share of the total
load caused by file i:

T (i, k, j) =
Q(i, k)wi
qi ck,j

, (6)



where Q(i, k) denotes the number of requests for file i currently assigned to
server k, qi the overall number of requests considered for file i so far, and
ck,j = min{Uk, Dj} the possible transfer rate from server k to server j. As-
suming all partial transmissions are carried out sequentially, the minimization
of the duration of the reorganization phase can now be expressed as

min
∑
k∈C

∑
j∈C, j 6=k

∑
i∈(Fj\F j)∩ Fk

T (i, k, j). (7)

A valid assignment function Q must fulfill certain further restrictions. Firstly,
no server is allowed to exceed its storage capacity, i.e.∑

i∈Fj

wi ≤Wj , ∀j ∈ C. (8)

Secondly, the inbound data volume of each server must be limited to the currently
available storage capacity:∑

i∈Fj\F j

wi ≤Wj −
∑
i∈F j

wi, ∀j ∈ C. (9)

Without this constraint a server might need to move outbound replicas before
it can receive any inbound replicas potentially leading to a deadlock situation.

3 Related Work

Similarities exist between VSLRB and other VoD-specific optimization problems
[5, 10, 11]. Other related problems arise in multi-processor scheduling [12, 13].

Some works in literature employ a comparable formalization based on a static
distribution of requests for replicas hosted on video servers but differ in their
choice of the objective function. Chen et al. [10] focus on the bin-packing aspect
of the problem, i.e. finding a minimal number of servers along with an assignment
of replicas satisfying a given access profile. The authors describe an algorithm
inspired by the transport simplex method for solving this problem. Wang et al.
[11] describe a branch-and-bound algorithm as well as a greedy heuristic for a
similar problem. Wolf et al. [4] describe a two-level procedure based on the the-
ory of resource allocation problems. In a first step, a greedy heuristic is used
to calculate a required number of replicas per video file. In a second step, these
replicas are assigned to Disk Striping Groups (DSGs) so that the forecast load
of any DSG is proportional to its stream capacity. Zhou et al. [5] focus on find-
ing a load balanced solution for a fixed number of servers. Replicas are allowed
to be recoded in order to reduce the bandwidth requirements of the according
requests. The optimization goal is to find a replica assignment that maximizes
the replication degree as well as the average bitrate and at the same time mini-
mizes the load imbalance degree. For the special case of a single fixed bitrate the
authors give an exact algorithm consisting of bounded Adams’ monotone divisor



replication and smallest load first placement. For the general case the authors
propose a heuristic based on simulated annealing. Some parallels exist between
VSLRB and special cases of the well-known multiprocessor scheduling problem.
Aggerwal et al. [12] consider a variant called load rebalancing problem. Given a
valid schedule along with job-specific relocation costs a new schedule with min-
imal makespan is to be obtained while the total relocation costs are constrained
by a given bound. The authors describe an approximation algorithm as well as
a polynomial-time approximation scheme.

Furthermore, in the terminology of a recent survey of scheduling problems
by Allaverdi et al. [13] VSLRB can be considered as a sequence-independent
batch multiprocessor scheduling problem. Requests to the same video file can
be viewed as jobs of the same family while batch setup times correspond to
the reorganization time necessary for placing a replica on a server. Despite this
correspondence the authors do not mention an objective function comparable to
the one of VSLRB.

4 Mixed Integer Programming Formulation

Given the formal definition of VSLRB from Section 2, we can model the problem
as the following mixed integer linear program (MIP).

min α
∑
j∈C

yj + β
∑
k∈C

∑
j∈C, j 6=k

1
ck,j

∑
i∈F |ti∈Tj

xi
k (1−pi

j)wi

qi
pij (10)

subject to

ηj −
∑
i∈F |ti∈Tj

bix
i
j ≤ yj , ∀j ∈ C (11)

−ηj +
∑
i∈F |ti∈Tj

bix
i
j ≤ yj , ∀j ∈ C (12)∑

j∈C|ti∈Tj
xij = qi, ∀i ∈ F (13)

pij −
xi

j

qi
≥ 0, ∀(i, j) ∈ P (14)

pij −
xi

j

qi
≤ 1− 1

qi
, ∀(i, j) ∈ P (15)∑

i∈F |ti∈Tj
wip

i
j ≤Wj , ∀j ∈ C (16)∑

i∈F |ti∈Tj
(1− p ij )wi pij ≤Wj −

∑
i∈F p

i
jwi, ∀j ∈ C (17)

xij ∈ {0, . . . , qi}, ∀(i, j) ∈ P (18)

pij ∈ {0, 1}, ∀(i, j) ∈ P (19)
yj ≥ 0, ∀j ∈ C (20)

The assignment function Q is expressed by non-negative integer decision
variables xij = Q(i, j) and the sets of replicas by binary decision variables
pij , ∀(i, j) ∈ P , where pij = 1 ⇔ i ∈ Fj . Corresponding constants xij and pij
represent the previous state before the reassignment, respectively. The objective



function (10) combines the two goal functions (4) and (7) in a linear fashion
using weights α > 0 and β > 0. Variables yj together with inequalities (11) and
(12) are used to model the absolute load deviations |ηj − L(j)|, ∀j ∈ C, of (4).
Constraints (14) and (15) define the relation between corresponding xij and pij
variables expressed in the original problem formulation by (2). Eq. (14) enforces
pij = 1 if xij > 0. Conversely, (15) enforces xij > 0 if pij = 1.

Set operations occurring in the original formulation in (7) and (9) are ex-
pressed in (10) and (17) by multiplying the respective decision variables with
appropriate constants.

Eq. (13) ensures that no request for any i ∈ F is left unassigned. Finally,
(16) is used to model the storage capacity constraints expressed in the orginal
formulation by (8).

Detailed experimental tests using ILOG CPLEX 11.1 for solving this MIP
formulation clearly indicated that the performance substantially depends on the
number of servers m, while the numbers of files and requests only have minor
influence. In general, the approach yields good results in reasonable time only
for a very small number of servers (less than 5), while the performance quickly
deteriorates with larger m. For more details on these experiments we refer to [6];
selected results are also shown in Section 6.

5 Variable Neighborhood Search

Variable Neighborhood Descent (VND) [14] extends classical local search by sys-
tematically switching between multiple neighborhood structures N1, . . . ,Nkmax

in order to escape simple local optima and find better solutions that are opti-
mal w.r.t. all these neighborhood structures. For an outline of the procedure see
Alg. 5.1.

Variable Neighborhood Search (VNS) [14], shown in Alg. 5.2, is a metaheuris-
tic that has a similar basic functionality but primarily addresses diversification
and search space coverage. It also works on multiple neighborhood structures
N1, . . . , Nlmax but these are typically larger than those of the VND and searched
by just evaluating individual random moves; this process is called shaking. VNS
contains an embedded local improvement procedure for intensification. This lo-
cal improvement can be a simple local search or a more sophisticated procedure
like VND. In the latter case, the VNS is called a general VNS.

In our specific general VNS for VSLRB, all of the employed neighborhood
structures rely on the following two basic operations:

assign(i, j), (i, j) ∈ P : Assigns a request for video file i ∈ F to server j ∈ C. If
currently Q(i, j) = 0, i must be added to Fj .

unassign(i, j), (i, j) ∈ P : Unassigns a request for video file i ∈ F from server
j ∈ C. If Q(i, j) = 0 after the operation, i must be removed from Fj .

In both cases, the objective function value is updated incrementally. In case
of the second objective this can be achieved by pre-calculating the costs R(i, j)



Algorithm 5.1: Variable Neighborhood Descent (VND)
Input: Initial solution xs
x← xs
l← 1
repeat

x′ ← search Nl(x) for a better or best neighbor
if f(x′) ≤ f(x) then

x← x′

l← 1
else

l← l + 1

until l > lmax

Algorithm 5.2: Variable Neighborhood Search (VNS)
Input: Initial solution xs
x← xs
k ← 1
repeat

repeat
x′ ← pick random neighbor from Nk(x) // shaking
x′′ ← locally improve x′

if f(x′′) ≤ f(x) then
x← x′′

k ← 1
else

k ← k + 1

until k > kmax

until Stopping criteria

of placing a replica of i on server j:

R(i, j) =

{
0 if i ∈ F j∑
k∈Ci

T (i, k, j) otherwise
(21)

The VND uses the following neighborhood structures in the listed order.

5.1 Access Move Neighborhood (NMove)

The access move neighborhood contains all solutions Q reachable by moving a
request for video file i assigned to some server j to another server k accepting
type ti. The operation move(i, j, k), (i, j, k) ∈ {F × C × C | ti ∈ Tj ∩ Tk},
therefore is defined by calling unassign(i, j) and assign(i, k). As there exist m
possible source servers, at most n replicas on each source server, and at most
m− 1 target servers, this neighborhood contains O(m2n) neighboring solutions.



5.2 Access Swap Neighborhood (NSwap)

This neighborhood contains all solutions Q reachable by swapping a request for
video file i currently assigned to some server j with a request for a different file
f currently assigned to a different server c. Thus, swap(i, j, f, c), (i, j, f, c) ∈
{F ×C×F ×C | ti ∈ Tj ∩Tc∧ tf ∈ Tj ∩Tc}, performs the following basic opera-
tions: unassign(i, j), unassign(f, c), assign(i, c) and assign(f, j). When enu-
merating all possible neighboring solutions any assignment (i, j) ∈ P needs to be
considered only once for any two operations swap(i, j, f, c) and swap(f, c, i, j).
As there are at most mn assignments and therefore no more than mn movable
requests to consider, the size of the access swap neighborhood is bounded by
m(m−1)

2
n(n−1)

2 = O(m2n2).

5.3 κ-Server MIP Neighborhood (Nκ−MIP)

This large neighborhood combines the VNS with the MIP approach described in
Section 4. As already mentioned, the MIP approach in general only yields good
results for instances involving a small number m of servers. Given an existing
solution Q to an instance of VSLRB, we select a small number of κ servers in
order to construct a subproblem that essentially is a smaller instance of VSLRB.
Only the variables associated with these servers are to be optimized, all the
others are fixed to their values of the current VNS solution and considered as
constants. Let C ′ denote this set of selected servers. Then, the considered set of
files and corresponding request amounts are

F ′ =
⋃
j∈C′

Fj , and q′i =
∑
j∈C′

Q(i, j), q′i =
∑
j∈C′

Q(i, j), ∀i ∈ F ′. (22)

The neighborhood of a current solution Q is implicitly defined as all feasible
solutions to this subproblem. As κ is small, the MIP approach can be used to
efficiently search this neighborhood.

A server selection C ′ leading to a promising subproblem must have two char-
acteristics:

– C ′ has to include servers j with L(j) < ηj as well as servers k 6= j with
L(k) > ηk.

– C ′ has to include at least two servers j 6= k with Tj ∩ Tk 6= ∅.

A subproblem without overlapping accepted file types is considered invalid be-
cause it does not allow for any improvement. For the task of selecting a set of
servers C ′ we employ the greedy heuristic depicted in Alg. 5.3.

For any file i ∈ F ′ there exist q′i requests to be spread over at most |A′i|
servers, where A′i = {j ∈ C ′ | ti ∈ Tj} denotes the set of servers in the subprob-
lem allowed to hold file i. As for each file i there exist(

|A′i|+ q′i − 1
q′i

)
(23)



Algorithm 5.3: Select Servers
Input: A solution Q to an instance of VSLRB
sorted ← sort servers j ∈ C by descending L(j)− ηj
C′ ← ∅
coveredTypes ← ∅
for l← 1 to bκ

2
c do

C′ ← C′ ∪ sorted [l]
coveredTypes ← Tsorted[l]

l← m
while |C′| < κ ∧ l > bκ

2
c do

if coveredTypes ∩ Tsorted[l] 6= ∅ then
C′ ← C′ ∪ sorted [l]

l← l − 1

possible assignment configurations, the size of the κ-server MIP neighborhood
is bounded by

∏
i∈F ′

(
|A′i|+ q′i − 1

q′i

)
= O

(∏
i∈F

(
κ+ qi − 1

qi

))
. (24)

5.4 Cyclic Exchange Neighborhood (NCyclic)

A neighborhood structure based on cyclic exchanges of elements between subsets
was first described by Thompson and Orlin [15]. Such a neighborhood structure
can be applied to problems that can be naturally formulated as a partitioning
problem.

Definition 1 (Generic Partitioning Problem). We are given a finite set
A = {a1, a2, . . . , an} of n elements and a cost function c : P(A) → IR, where
P(A) denotes the power set of A. Furthermore we are given an integer K ∈ IN+.
Our goal is to find a K-partition S = {S1, S2, . . . , SK} of mutually disjoint
subsets Si where

⋃K
i=1 Si = S, minimizing the total cost of c(S) =

∑K
i=1 c(Si). A

total cost function that can be expressed in this way is said to be separable over
subsets.

Clearly, VSLRB can be formulated in such a way, with A corresponding to
the entirety of all user requests and the subsets S1, . . . , SK corresponding to
the servers j ∈ C. The cost c(Sj) of a subset associated with server j can be
calculated independently from the costs of the other servers by

c(Sj) = α|ηj − L(j)|+ β
∑
i∈Fj

R(i, j) (25)

A cyclic exchange or cyclic transfer is a simultaneous cyclic shift of up to K
elements across up to K subsets. We adopt the notation of Ahuja et al. [16] to



denote a cyclic exchange with i1 – i2 – . . . – ir – i1. Each element ip ∈ A, p ∈
{1, . . . , r}, is moved from S[ip] to S[ip+1], where ir+1 = i1. We denote by S[ip]
the subset which currently contains element ip. The cost difference associated
with inserting ip in S[ip+1] and at the same time removing ip+1 from this set
can be calculated by

c(S[ip+1] ∪ {ip} \ {ip+1})− c(S[ip+1]), ∀p = 1, . . . , r. (26)

Therefore, the objective value difference induced by a complete cyclic exchange
can be written as

∆c(S) =
r∑
p=1

c(S[ip+1] ∪ {ip} \ {ip+1})− c(S[ip+1]) (27)

If ∆c(S) < 0 the according cyclic exchange is called profitable. A neighborhood
based on cyclic exchanges contains any solution reachable via a cyclic exchange
across up to K subsets. Therefore, the number of neighboring solutions is in
O(nK).

Because of the large neighborhood size the search for an improving neighbor
solution cannot be carried out via naive enumeration. In order to allow for a more
efficient method the neighborhood is represented by a so-called improvement
graph G = (V,E, δ) constructed as follows:

– For each element a ∈ A a node va ∈ V is created.
– For each valid move of an element a ∈ A from subset S[a] to subset S[b], a 6=
b, S[a] 6= S[b], an arc (va, vb) ∈ E is created.

– With each arc (va, vb) cost δva,vb
= c(S[b]∪{a}\{b})−c(S[b]) are associated.

A cycle vi1 – vi2 – . . . – vir – vi1 , ip ∈ A, ∀p ∈ {1, . . . , r}, is called subset-
disjoint if S[ip] 6= S[iq], ∀p, q ∈ {1 . . . r}, p 6= q. A negative-cost subset-disjoint
cycle directly corresponds to a profitable cyclic exchange (for a proof see [15]).
Although the problem of finding a shortest subset-disjoint cycle in a graph with
possibly negative arc costs is NP-hard, a heuristic based on the well-known
label-correcting algorithm for finding shortest paths can usually quickly identify
good solutions. See Alg. 5.4 for an outline of this procedure as described in [16].
Herein pred(v) denotes the predecessor of node v on the shortest path from any
node u to the start node s. P [u] refers to this implicitly defined path and d(u)
to the corresponding costs.

The label-correcting algorithm is built upon a data structure LIST which
stores nodes having arcs that have yet to be examined. The organization of LIST
determines the algorithm’s worst-case runtime. Ahuja et al. [16] employ a deque
implementation which performs well for sparse graphs [17] even though it leads to
exponential worst-case runtime. Because of the dense graphs usually encountered
when applying this method to VSLRB, we resort to a FIFO implementation of
LIST leading to a worst-case runtime in O(|V ||E|K).

Especially if |A| is large, two major issues have to be considered in practice:
(a) the high memory consumption and (b) the computational overhead for the



Algorithm 5.4: Modified Label-Correcting Algorithm
Input: Improvement graph G = (V,E, δ), start node s ∈ V
foreach v ∈ V \ s do

d(v)←∞
pred(v)← null

d(s)← 0
LIST ← 〈s〉
while LIST 6= ∅ do

u← pop(LIST )
if P [u] is subset-disjoint then

foreach (u, v) ∈ E do
if d(v) > d(u) + δu,v then

if P [u] contains v then
store subset-disjoint cycle or quit

else if P [u] ∪ v is subset-disjoint then
d(v)← d(u) + δu,v
pred(v)← u
LIST ← LIST ∪ v

creation of the improvement graph. A possible method to address these prob-
lems is to use a different basic set A. In our case we are also able to define
the improvement graph in terms of replica assignments rather than in terms of
requests. As for any assignment (i, j) ∈ P at most one request is moved in a
cyclic exchange both definitions of the improvement graph are equivalent, i.e.
they contain the same set of cycles. This definition of the improvement graph is
expected to lead to a smaller improvement graph:

Lemma 1. Let G1 = (V1, E1, δ1) and G2 = (V2, E2, δ2) denote improvement
graphs defined in terms of file requests and replica assignments, respectively.
Then the following holds:

1. |V2| ≤ |V1|
2. |V2| < |V1| if ∃i ∈ F : qi > m

Proof. Ad 1.: The first statement obviously holds, because there cannot be more
assignments then requests. Ad 2.: Assume that there exists a file with qi > m.
Then there must exist at least one assignment (i, j) ∈ P with Q(i, j) > 1.
Consequently the number of assignments is smaller than the number requests
and therefore |V2| < |V1|. ut

The basic set A of assignments (i, j) ∈ P, Q(i, j) > 0, contains O(mn)
elements. Creating the improvement graph requires enumeration of all pairs of
assignments in order to calculate O(m2n2) arc costs. Calculating the cost of
a single arc (vi,j , vf,c) and reverting the changes in a naive way requires the
four operations unassign(f, c), assign(i, c), unassign(i, c), and assign(f, c),
leading to a total of 4|E| operations. Algorithm 5.5 shows a more efficient way
to determine all these arc costs requiring only 2|E|+O(|A|) operations.



Algorithm 5.5: Create VSLRB improvement graph
Input: A solution Q to an instance of VSLRB
foreach c ∈ C do

foreach f ∈ Fc do
V ← V ∪ {vf,c}
cold ← c(Sc)
unassign(f, c)
foreach j ∈ C | j 6= c do

foreach i ∈ Fj | ti ∈ Tc do
V ← V ∪ vi,j
assign(i, c)
cnew ← c(Sc)
E ← E ∪ (vi,j , vf,c)
δvi,j ,vf,c ← cnew − cold
unassign(i, c)

assign(f, c)

5.5 Neighborhoods of VNS

VNS as depicted in Alg. 5.2 performs shaking by selecting random neighbors
from its own neighborhood structures N1, . . . , Nkmax in order to escape from local
optima found by the embedded VND. In our case, shaking in a neighborhood
Nk is realized by performing k consecutive random moves using the Access Swap
Neighborhood (see Section 5.2).

6 Experimental Results

In this section, we present representative test results for the proposed MIP and
hybrid VNS. We created ten random instances with different characteristics re-
flecting real-world scenarios. The main characteristics of these test instances are
listed in Table 1. Column Z refers to the objective value of the randomly gen-
erated initial assignment (i.e. the situation prior to the re-assignment). Three
different file types are used: T = {Thumbnail,Preview,HiRes}. Video runtimes
and bitrates bi were randomly generated using an upper limit of 1800 seconds
and 512 kbit/s, respectively. The video file size wi was derived from these values.
The number of expected requests qi was estimated using a Zipf-like distribution
[5] based on randomly assigned video popularities.

Video server characteristics were manually defined. We consider situations
with uniform sets Tj = T , ∀j ∈ C, i.e. instances where any server may receive
files of any type, as well as situations with non-uniform sets Tj as listed in Table
1. The other server properties Uj , Dj and Wj were chosen uniformly for all
instances. Uj and Dj are set to 25 MBit/s except for instances 2 (35 MBit/s), 3
(250 MBit/s), 4 (500 MBit/s), and 5 (250 MBit/s). Wj is set to 180 GB for all
instances except for instance 4 where Wj is set to 250 GB. More details can be
found in [6]. All test instances are available from the authors upon request.



Table 1: Test instances.

Instance |C| |F |
P
i∈F qi Z Tj

1 4 60 489 30710.20 2x {HiRes}, 2x {Preview,Thumbnail}
2 4 300 637 13152.30 uniform
3 5 1200 1328 32844.49 2x {HiRes}, 2x {Preview,HiRes},

1x {Thumbnail,Preview}
4 7 3000 3064 14492.57 uniform
5 12 4500 4547 24711.20 uniform
6 3 15000 15238 192513.20 1x {HiRes}, 1x {Preview,HiRes}, 1x T
7 20 9000 9027 58700.34 1x {HiRes}, 1x {Preview,HiRes}, 18x T
8 20 3000 3064 31709.60 1x {HiRes}, 1x {Preview,HiRes}, 18x T
9 25 3000 3406 36424.82 1x {HiRes}, 1x {Preview,HiRes}, 23x T
10 25 12000 12680 68269.14 1x {HiRes}, 1x {Preview,HiRes}, 23x T

All tests have been performed on a Linux machine with four 2 GHz dual core
AMD Opteron processors and 8 GB RAM. For solving the MIP we used the
commercial solver ILOG CPLEX 11.1.

We compare four variants of the VNS: VNSsimple only includes the simple
move and swap neighborhood structures, VNSMIP additionally exploits the κ-
server MIP neighborhood structure with κ = 2, VNSCyclic the cyclic exchange
neighborhood structure NCyclic, and VNSMIP+Cyclic both of them. The weighting
factors α and β in the objective function (10) were both set to 1. In the VND, we
moved from solution x to solution x′ only if the relative objective improvement
|f(x)−f(x′)|

f(x) was at least 0.01%.
In order to evaluate the performance 30 runs were performed per VNS variant

and test instance. Table 2 shows average objective values Z̄ of final solutions,
corresponding standard deviations σZ , and average runtimes t̄ for each variant as
well as a comparison to results obtained using the MIP approach when using the
average VNSMIP+Cyclic (or VNSMIP) runtimes as time limits. Column lb further
lists the lower bounds obtained from CPLEX.

Even though we employed techniques to reduce the improvement graph size
for the cyclic exchange neighborhood (see Sect. 5.4), this data structure became
too large to be held in memory for instances 6, 7 and 10. Thus, this neighborhood
structure could not be used in these cases.

The pure MIP approach performs well for instances with a limited number of
servers. For test instances 1, 2, 3 and 6, which all feature at most four servers the
MIP approach produced better results than all of the VNS variants. We exploited
this behavior in the κ-Server MIP neighborhood of VNS. The variant VNSsimple

yielded slightly better results than the MIP approach only for instances 5 and 8.
The high potential of the two more complex neighborhood structures becomes
evident in the case of the large instances 4, 5 and 7 to 10. The best results
for these instances were obtained whenever NCyclic was available, either with
VNSMIP+Cyclic (instances 4 and 5) or VNSCyclic (instances 8 and 9). VNSMIP

produces only slightly worse results, but Wilcoxon rank sum tests confirmed
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the significance of these differences with error levels of less than 2.5% on all
instances but the first two. An advantage of VNSMIP, however, are its generally
considerably shorter runtimes. For instances 7 and 10, when NCyclic was not
available, the best results also were obtained with VNSMIP.

The bad VNS performance in case of instance 3 is due to its very special
structure. In the optimal solution for this instance, only one of several servers
accepting the file type Preview must be assigned all requests for files of this
type. Therefore this particular server must only receive requests without giving
off any, which is not achievable using simple swaps or cyclic exchanges. N2−MIP

is not able to relieve this situation either, because of a weakness in the algorithm
used to construct the subproblem: Whenever only one server j ∈ C falls below
its target load ηj and at the same time exhibits no overlap in accepted file types
with the bκ2 c heaviest loaded servers, the algorithm cannot determine a valid
server selection.

Furthermore, we investigated the contribution of each of the described neigh-
borhood structures in runs of VNSMIP+Cyclic. For each instance and each neigh-
borhood structure NMove, NSwap, N2−MIP and NCyclic Table 3 lists the average
number of improvements f̄ , the average total value by which solutions’ objective
values could be improved ∆̄, and the average time consumed t̄. For the major-
ity of the considered test instances N2−MIP turned out to be the most effective
neighborhood structure in terms of total improvement as well as in terms of
consumed runtime. Nonetheless, NCyclic was still capable of achieving further
improvements at the cost of significantly larger runtimes.

7 Conclusion and Future Work

In this work we presented two approaches for solving a particular Video-Server
Load Re-Balancing (VSLRB) problem. First, we described a MIP formulation
which we solved by a general purpose MIP solver. This approach is able to iden-
tify high-quality solutions for problem instances involving a small number of
servers. For solving larger instances in a better way, we developed a VNS with
an embedded VND. Besides the simple move and swap neighborhood structures,
two more sophisticated large neighborhood search methods are included: The
benefits of the MIP-approach are exploited in the κ-Server MIP neighborhood,
and a variant of a cyclic exchange neighborhood, adapted to cope with very
large improvement graphs, is searched by an efficient label-correcting shortest
path algorithm. On average, the VNS approach was able to identify substan-
tially better solutions than the MIP approach for all of the six test instances
involving more than five servers. Both large neighborhood methods are able to
dramatically boost the performance of the simple VNS variant, although the
additional contributions of NCyclic are (naturally) rather small when applied in
conjunction with the MIP-based neighborhood search. Future work might ad-
dress certain weaknesses with special scenarios like the one illustrated with test
instance 3 by considering further neighborhood structures.
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