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Abstract

In this master thesis a generic libray of efficient metaheuristics for combinatorial

optimization is presented. In the version at hand classes that feature local search,

simulated annealing, tabu search, guided local search and greedy randomized adap-

tive search procedure were implemeted.

Most notably a generic implementation features the advantage that the problem

dependent classes and methods only need to be realized once without targeting a

specific algorithm because these parts of the sourcecode are shared among all present

algorithms contained in EAlib.

This main advantage is then exemplarily demonstrated with the quadratic as-

signment problem. The sourcecode of the QAP example can also be used as an

commented reference for future problems.

Concluding the experimental results of the individual metaheuristics reached

with the presented implementation are presented.

Kurzfassung

In dieser Diplomarbeit wird eine generische Bibliothek von effizienten Metaheuris-

tiken für kombinatorische Optimierungsprobleme vorgestellt. In der vorliegenden

Version enthält sind lokale Suche, Simulated Annealing, Tabusearch, Guided Local

Search und Greedy Randomized Adaptive Search Procedure implementiert worden.

Eine generische Implementierung bietet vorallem den Vorteil das bei einem neuen

zu lösendem Problem nur einige bestimmte problemabhängige Klassen und Metho-

den realisiert werden müssen ohne sich schon im Vorhinein einen speziellen Algorith-

mus festzulegen, da diese Klassen und Methoden von allen in der EAlib vorhanden

Metaheuristiken verwendet werden.

Die Vorteile dieser Bibliothek werden anschließend anhand des Quadratic Assign-

ment Problems ausführlich dargestellt. Dieses Beispiel dient zusätzlich auch noch

als kommentierte Referenz für zukünftige Problemimplentierungen.

Abschließend werden die Resulate der Experimente mit den verschiedenen Meta-

heuristiken präsentiert.
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All men by nature desire knowledge.

Aristotle

Chapter 1

Introduction

1.1 Motivation

Metaheuristics are a popular approach to handle computationally intractable opti-

mization problems. In the course of this master thesis an existing library dedicated

to evolutionary algorithms was extended substantially by several common known

and used metaheuristics. These metaheuristics are implemented in a generic man-

ner so that their application to a widespread variety of combinatorial optimization

problems is supported.

A generic implementation of metaheuristics is desirable because common por-

tions of many metaheuristics can be implemented problem independent and also

a significant amount of problem dependent sourcecode can be shared between the

metaheuristics, e.g. efficient evaluation of the objective value or neighborhood rele-

vant methods.

The basis for the implementation of the metaheuristics is the EAlib library which

is developed at the Vienna University of Technology, Institute of Computergraphics

and Algorithms. At the beginning of this master thesis it already contained partic-

ular classes for evolutionary algorithms and some supporting infrastructure which

was also useful for our project. The aim of this master thesis the was to extend this

existing library while trying to keep changes to the existing parts to a minimum to

maintain compatibility with present applications.

1.2 Combinatorial Optimization and Metaheuris-

tics

An optimization problem can be characterized as the selection of a “best” config-

uration or set of parameters to achieve some objective criteria. If the entities to
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CHAPTER 1. INTRODUCTION 6

be optimized are discrete, the number of feasible solutions is finite. We call such

problems combinatorial optimization problems.

A combinatorial optimization problem is specified formally by a set of problem

instances and is either a minimization problem or a maximization problem. An

instance of a combinatorial minimization problem is a pair (X , f), where the solution

set X is the set of all feasible solutions and the cost function f is a mapping f :

X ← R. The problem is to find a globally optimal solution, i.e. an x∗ ∈ X such that

f(x∗) ≤ f(x) for all x ∈ X . Maximization problems can be trivially transformed

into minimization problems by changing the sign of the cost function f .

Salient examples are the traveling sales problem and related routing and trans-

portation problems, scheduling and time-tabling, cutting and packing tasks. Most

of these problems are NP-hard. However NP-hardness does not necessarily mean

that all practically relevant instances are not solveable within acceptable time. Vice

versa, an algorithm for a polynomial-time solvable problem might be too expensive

in practice.

Many different algorithmic strategies exist to deal with this problems and the

metaheuristics, which are the main topic of this work, are among of them. Tradi-

tionally metaheuristics are considered as solution methods utilizing an interaction

between local improvement procedures and higher level strategies to overcome local

optima leading to a robust search process. In general metaheuristics contain are not

designed for a specific optimization problem. They rather can be applied to a wide

range of problems. Therefore many metaheuristics can be implemented in a generic

manner straighforward.

For the library at hand five initial metaheuristics were chosen for implementation

which are local search, simulated annealing, tabu search, guided local search and

greedy randomized adaptive search procedures.

1.3 Guide to the thesis

The thesis at hand describes the quadratic assignment problem in Chapter 2 which

we chose as an example problem to demonstrate the application of EAlib to a new

task and to illustrate the pros and cons of the implemented metaheuristics. In

Chapter 3 all featured algorithms are explained. The requirements of functionality,

design and usability of the targeted library are specified in Chapter 4 while the details

of the implemented library are stated in Chapter 5. Finaly experimental results of

solving the quadratic assignment problem using the new EAlib are presented in

Chapter 6.



Science is organized knowledge. Wisdom is organized life.

Imanuel Kant

Chapter 2

Quadratic Assignment Problem

Since the quadratic assignment problem (QAP) was mentioned first by Koopmans

and Beckmann [23] in 1957, they used the QAP to model economic activities, many

authors contributed to it, see Loiola et al. [27] for a recent survey article about

the QAP. The major attraction points of the QAP are its practical and theoretical

importance and its computational complexity — it is one of the most difficult combi-

natorial optimization problems. In general problem instances of size n ≥ 30 can not

be solved in reasonable time. Sahni and Gonzales [39] had first shown that the QAP

is a member of the class of NP-hard problems and that, unless P = NP, it is not

possible to find a polynomial ε-approximation algorithm, for a constant ε. Neverthe-

less recent results (Gutin and Yeo [20]) proved that, in the case of QAP, polynomial

approximations with factorial domination number exist. For more information on

the theory of NP-completeness Garey and Johnson [14] is recommended.

Since the QAP is very versatile, several other NP-hard combinatorial optimiza-

tion problems such as traveling salesman problem (TSP), graph partitioning, the

bin-packing problem (BPP) or the max clique problem can be formulated and solved

using QAPs [5, 27].

Prior to an exact definition of the QAP, a simpler related problem, the linear

assignment problem (LAP), is presented as a smoother introduction assignment.

After a short description of the LAP, a comprehensive explanation of the QAP, which

will cover a problem definition and various mathematical formulation approaches,

resolution methods and finally applications, will be provided.

2.1 Problem Description

Assigning objects is a common task for econimic or techinical staff. Therefore it

is not a surprise that assigment problems are among the greatest challanges in the

area of combinatorial optimization.
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CHAPTER 2. QUADRATIC ASSIGNMENT PROBLEM 8

As an introduction the linear assignment problem (LAP) is presented here. As-

sume there are two equal sized sets of objects, e.g. persons and jobs, and they are

assigned to each other by making up pair of those objects, taking one from each set

for a pair. Additionally every possible pair is given a value, which results in a n×n

matrix with n2 elements. The problem now is to find an assignment of all objects

for which the sum of the values is minimized. An example application for the LAP

is the assignment of persons to jobs.

Mathematically this problem can be formulated as follows.

min
π∈Π

n∑
i=1

ai,π(i) (2.1)

where A = [ai,π(i)] is the matrix of values for assigning object i to π(i) and further

Π is the set of all permutations of the n elements {1, . . . , n}. The LAP is polynomial

and is easily solved by the Hungarian method [27] which was proposed by Harold

W. Kuhn in 1955 [24].

Reconsidering the above description the question arises if it really true that

an assignment of two objects does not have any sideeffects on other assignments.

If this assumption does not hold, the quadratic assignemnt problem may give an

appropriate formal description of the real-world problem.

QAP is a generalization of in the linear assignment problem in a manner that

assignment can affect each another. Therefore, in addition to the value matrix —

when using QAPs it is called distance matrix — a flow matrix of same dimension

is introduced. As an example that is related to the previous mentioned one with

persons and jobs, the distance matrix can be interpreted as the distance between

the offices and the flow as the amount of interaction between these persons.

Figure 2.1: A quadratic assignment example

2.2 Formulations

Nowadays many different formulations are used. Loiola et al. [27] and Commander

and Pardalos [9] give a good survey over the existing formulations of the quadratic
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assignment problem, different resolution methods, lower bound calculation and ap-

plications.

2.2.1 Permutation Formulation

As an introduction the popular and very intuitive formulation is based on permuta-

tions is given. Thereby the QAP can be stated as follows. Let A, B and C be n×n

matrices representing flows between objects, distances between locations and costs

for assigning objects to locations, further let Π be the set of all possible permutations

of the n elements {1, . . . , n}.

min
π∈Π

n∑
i=1

n∑
j=1

ai,j bπ(i),π(j) +
n∑

i=1

ci,π(i) (2.2)

ai,j is the flow between objects i and j, bπ(i),π(j) is the distance between locations

π(i) and π(j) and ci,π(i) is the fixed cost of assigning object i to location π(i).

The formulation given contains a linear part to model fixed assignment cost.

However many authors neglect this term of the equation, since it is a LAP and thus

easy to be solved, e.g. with the Hungarian method, or because they do not need this

term for their considerations; the resulting formulation is stated below:

min
π∈Π

n∑
i=1

n∑
j=1

ai,jbπ(i),π(j) (2.3)

In the implementation of this master thesis we used the term to be minimized in

the above formula as objective function. Consequently our solution representation

consists of the permutation vector π.

2.2.2 Integer Linear Programming

Koopmans and Beckman [23] used a different formulation in their initial statement

of the quadratic assignment problem; the so-called integer linear programming (IP)

formulation. It is still of great use, since IP is a topic of ongoing research. In this

formulation the reader also can see why the problem is called quadratic, which is

not so obsious in some of the other formulations.

The general IP formulation is as follows. Let A = [ai,j] be a matrix of flows

between objects i and j and further B = [bk,p] a matrix of the distances between

positions k and p and lastly C = [ci,k] a matrix of costs for assigning object i to
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position k:

min
n∑

i,j=1

n∑
k,p=1

ai,jbk,pxi,jxk,p +
n∑

i,k=1

ci,kxi,k (2.4)

s.t.
n∑

i=1

xi,j = 1 1 ≤ j ≤ n, (2.5)

n∑
j=1

xi,j = 1 1 ≤ i ≤ n, (2.6)

xi,j ∈ {0, 1} 1 ≤ i, j ≤ n. (2.7)

The actual QAP is the problem of minizing equation above, by proper choice of

the permutation matrix X = [xi,j]. The minimand contains a term of second degree

in the unknown permutation matrix X and therefor the problem is called quadratic.

For the same reason as in the prior section the linear term regarding the fixed

costs of assigning objects to locatinos can be neglected, leading to the following

formulation:

min
n∑

i,j=1

n∑
k,p=1

ai,j bk,p xi,j xk,p (2.8)

s.t. (2.5), (2.6) and (2.7).

2.2.3 Trace Formulation

Since the essential information about an actual QAP instance is represented usually

with matrices it is not surprising that a formulation evolved which takes advantage of

this; the trace formulation is an approach to mathematically describe the QAP that

uses the trace of a matrix which is defined by trace A =
∑n

i ai,i. It was introduced

by Edwards [10]. Again consider A = [ai,j] a matrix of flows from object i to object

j, B = [bk,p] distances of location k and p and C = [ci,k] costs of assigning object i

to location k.

min
X∈Π

trace (AXBT + C)XT (2.9)

repectively with the linear term of the problem omitted:

min
X∈Π

trace (AXBT )XT (2.10)

where Π is the set of all n × n permutation matrices. It is often used in lower

bounds related publications.
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2.3 Lower Bounds

The knowledge of lower bounds is fundamental when developing optimization algo-

rithms to solve combinatorial or other mathematical problems. This importance of

lower bounds is two-fold. At first they are an essential part of exact algorithms,

e.g. branch-and-bound procedures. These methods, while attempting to guarantee

the global optimum, also try to avoid the total enumeration of the complete search

space. Therefore the performance of such methods depends strongly on the compu-

tational quality and efficiency of the utilized lower bounding techniques. An other

application of lower bounds is the evaluation of the quality of solutions obtained by

some heuristic algorithms (see Section 6.1 on page 52).

The quality of the lower bound can be measured by the gap between the com-

puted bound with the known optimal solution, this referred to as the tightness of

the bound, i.e. good lower bounds are closer to the global optimum. For an exact

algorithm a good bounding technique, which can find the bounds quickly1, should be

used. When used in heuristics, lower bound quality is the most important property.

One of the first suggested and best known lower bounds for the quadratic assign-

ment problem is the one presented by Gilmore [15] and Lawler [25]. The Gilmore-

Lawler-Bound (GLB) is given by the solution of linear assignment problem whose

cost matrix is gained by special inner products of the flow- and distance-matrix of

the original QAP. The advantage of the GLB is that is simple and it can be com-

puted efficiently. However, its drawback is that the gap to the optimal solution

grows with the size of problem. For this reason the GLB is a weak bound for larger

problem instances.

Due to an intensive research activity many other lower bounds have been dis-

coverd. Bounds based on mixed integer linear programming (MILP) relaxations,

eigenvalues of the flow- and distance matrix, reformulations of the above mentioned

GLB exist. Some of them, e.g. eigenvalue based bounds, really outperform the origi-

nal GLB so far tightness is concerned, but they suffer from high computation require-

ments. The most recent and promising research trends are based on semidefinite

programming (SDP), reformulation linearization. Anstreicher and Brixius [1] pre-

sented a lower bound for the QAP based on semidefinite and convex quadratic pro-

gramming, a bound using the bundle method is proposed by Rendl and Sotirov [36].

1Up to now no bound that features both advantages, tightness and computational cheapness
has been discovered.
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2.4 Solution Methods

Since its statement, many different approaches were applied to solve the quadratic

assignment problem. These can be categorized in either exact or heuristic methods.

In this section we an overview about some of the most successfull or frequent used

methods of these categories are presented.

2.4.1 Exact Algorithms

The oldest and simplest way, to resolve the quadratic assignment problem, is enu-

meration. This causes evaluation of the objective function for all n! possible permu-

tations and memorizing the best found solutions; note that there is not necesssarily

only oneoptimal solution. The computational effort for evaluating the cost of a

permutation requires O(n2) steps, which has to be computed O(n!) times yielding

exponentially sized computation times. Enumeration is very simple to code and has

small memory requirements, on the other hand its use is very limited and not of

practical relevance.

Other methods include quadratic programming, which reformulates the problem

as a 0–1 program (see Section 2.2.2 on page 9) and linear programming, which

linearizes the QAP by introducing new variables, the resulting linear program can

be solved e.g. with mixed integer linear programming methods.

Many of the above methods share the same problem; they vastly examine the

complete search space and therefore, as mentioned, only small problem instances

can be solved within a reasonable amount time.

The most successful exact resolution methods for the quadratic assignment prob-

lem incorporate branch-and-bound (BB) algorithms. Essential for BB is a good

bounding technique, because this directly affects the extent to which the search

space must be enumerated; the thighter the used bound, the more solutions can be

excluded from the exploration.

Branch-and-bound methods attract many researchers due to their potential. For

example Frazer [13] and Brixius and Anstreicher [5] describe a BB implementation

and Anstreicher et al. [2] describe a grid enabled BB implementation which was used

to solve a problem instance of size 30 to optimality. They report the utilization of

an average of 650 worker machines over a one-weekend period, which provides the

equivalent of almost 7 years of computation on one single HP9000 C3000 worksta-

tion. For an other instance of the same size they utilized the equivalent of 15 years

on a single C3000. These examples show the potential of parallelization, which is

currently one of the major fields of interest.
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2.4.2 Heuristics

Heuristic algorithms, contrary to exact algorithms, can not provide any guarantee

of optimality for the best solution obtained. The reason for the current research

on suboptimal solution methods is the fact that many of them can provide good

solutions within reasonable time constraints, which is often necessary real-world

application environments. Heuristic methods include the following categories: con-

structive, enumeration and improvement methods.

Constructive methods, which are among the earliest heuristics to solve the QAP,

try to complete a permutation with each iteration of the algorithm. The selec-

tion of each assignment is based on a heuristic selection criterion. For example

Gilmore [15] introduced one of the first constructive algorithms. Nowadays

this category of heuristics focuses new interest because metaheuristics, such as

the greedy randomized adaptive search procedure (see Section 3.5 on page 27)

incorporate them.

Enumerative methods are motivated by the expectation that an acceptable solu-

tion can be found early during a brute force exploration of the search space.

For interesting problems these methods do not enumerate the all feasible solu-

tions and therefore different termination criteria are used. Usually the number

of total iterations, or iterations between successive improvements is used, other

common criteria include a limit on the total execution time or lowering the

upper bound when no further improvements are possible after a number of

iterations. It is important to remind that any of these termination criteria can

prohibit the finding of an optimal solution.

Improvement methods correspond to local search algorithms (see Section 3.1 on

page 19. Most of the heuristics for the QAP are part of this category.

An other worthy to mention category of methods are approximate algorithms,

which are heuristics provinding quality guarantees for their solutions.

2.4.3 Metaheuristics

Metaheuristics are, as their name suggests, heuristic algorithms too, but usually

they can be adapted straighforward to a wide range of different problems; this is in

general not possible for traditional heuristics. However, as the main focus of this

master thesis lays on metaheuristcs we address them extensively in the next chapter.
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2.4.4 Research Trends

Current state of the art algorithms can be divided into two major categories, at one

side the search for optimal solutions and exact algorithms which can provide them,

and on the other side methods that can provide solutions that are good enough in

reasonable time. Of course also theoretical developments are of interest.

The main research focus for the QAP is generated by the growing interest on

metaheuristics since the end of the 1980’s because it is a popular benchmark to com-

pare algorithms. With recent generations of computer technology the QAP attracted

new attention, which lead to honorable developments in parallel algorithms.

Promising future developments seem to be possible through the hybridization of

several algorithms, which generated some interest in the past, together with paral-

lelization.

2.5 Applications

The initial motivation that lead to the formulation of the quadratic assignment

problem was:

In the light of the practical and theoretical importance of indivisi-

bilities, it may seem surprising that we possess so little in the way of

successful formal analysis of production problems involving indivisible

resources. (Koopmans and Beckmann [23])

[...]

The assumption that the benefit from an economic activity at some

location does not depend on the uses of other locations is quite inade-

quate to the complexities of locational decisions.

As the quoted statement suggests, a main field applications is allocation of re-

sources with complex interactions of the individual resources. Koopmans and Beck-

mann were economists and therefore their focus was on economic activities. Example

applications are scheduling of jobs or production lines, facility organization, hospi-

tal layout. Nevertheless the QAP is also of practical use where it is not so obvious

like dartboard design or typewriter layout. Not to forget many engineering applica-

tions. In the remainder of this section we illustrate two applications of the quadratic

assignment problem in detail.

2.5.1 Steinberg Wiring Problem

In a 1961 paper [40], Leon Steinberg proposed a backboard wiring problem. The

problem is about the optimal placement of computer components on a backboard in
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such a manner, that the total interconnecting wiring length is minimized. Improved

wiring length has two main advantages, most important it increases the performance

of the designed system, not less attractive are the decreased manufacturing costs.

The original problem instance consisted of 34 components with a total of 2625 inter-

connections which were to be placed on a backboard with 36 open positions (circles

in Figure 2.2).

6 82 3 4 5 7 9

10

1

24 25 27

28 31 34 35 36

11 12 13 14 15 16 17 18

262322212019

29 30 32 33

Figure 2.2: Original Backboard of the Steinberg Wiring Problem

Two dummy components, with no connections to any other components, are

added so that the number of components equals the number of open positions. The

use of dummy elements is a common trick to be able to formulate real-world problems

as QAPs. With this addition the mathematical formulation can be given

min
∑
i,j,k.l

ai,k bj,l xi,j xkl (2.11)

s.t.
∑

j

xi,j = 1 i = 1, . . . , n∑
i

xi,j = 1 j = 1, . . . , n

xi,j ∈ 0, 1 i, j = 1, . . . , n

where ai,k is the number of wires interconnection components i and k, bj,l is the

distance between positions j and l on the backboard and xi,j = 1 if component

i is placed at position j. Special attention is payed on the choice of the bj,l. In

the original paper Steinberg considered using 1-norm, 2-norm or squared 2-norm

distances. He further concentrated on obtaining good solutions for the 2-norm and

squared 2-norm versions of the problem. However, research interest has been directed

to the 1-norm version, which was also used by Brixius and Anstreicher [6] who

solved the initial problem instance to optimality with an exact branch-and-bound

algorithm, 40 years after its statement. The solution required approximately 186

hours of CPU time on a single Pentium III personal computer.
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2.5.2 Antenna Assembly Sequence Problem

At the National Aeronautics and Space Administration (NASA) another interest-

ing application of the quadratic assignment problem is reported by Padula and

Kincaid [33]. It is known that NASA often has to design and erect antennas (see

Figure 2.3(a)) in space for different purposes like communication with spacecrafts

(Deep Space Network). Such an antenna consists of a very large number n of truss

elements. For research purposes, the antenna structure is designed as a tetrahedral

truss with a flat top surface, which means that all nodes in the top surface of the

finite-element model are coplanar (see Figure 2.3(b)). To minimize surface distor-

tions and to the avoid internal forces during the assembly process of the antenna,

the truss elements have to be of identical length. However, due to limitations in the

manufacturing process, the length is never precisely identical. Each truss element

j has a small but measurable error ej. To overcome the impact of these errors, the

truss elements are assembled in such a way, that the errors offset each other.

(a) Antenna configuration (b) Finite element model

Figure 2.3: Conceptual design of a large space antenna (from [33])

For a mathematical formulation of the described problem of arranging the truss

elements first, an objective value has to be defined. The objective value of a concrete

arrangement is stated as the squared L2 norm of the surface distortion:

d2 = eT UT D U e (2.12)

= eT H e

where e is the vector of measured errors, U is the influence matrix such that ui,j

gives the influence of a truss length error in element j on the surface at node i and

D is a positive semidefinite weighting matrix that denotes the relative importance

of each node i at which distortion is measured. The calculation of matrix U is can
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be done with any structural analysis software package and the matrix D is often

the identity matrix. Summarizing this, the combinatorial optimization problem for

minimizing antenna distortions is stated as:

min
e∈E

n∑
j=1

n∑
i=1

ei hi,j ej (2.13)

where E are all possible permutations of the error vector e. Clearly the for-

mulation above is a quadratic assignment problem, although it is not a common

formulation; compare the permutation formulation in equation 2.3 on page 9.

In case of the antenna assembly sequence problem simulated annealing and tabu

search where applied successfully to solve the problem. Prior to this attempts a

pairwise interchange heuristic was suggested, which was based on a simple basic

local search algorithm. It is not very surprising that the results achieved with local

search where inferior to the ones obtained by simulated annealing or tabu search.

The main advantage for NASA gained by metaheuristically optimized assembling

of the truss elements standard precision is adequate which decreases the overall costs

since cost for truss elements increase dramatically when unusual precision in length

is required.

This example shows that an engineering description of a problem can lead directly

to a convenient solution method; however this is not the usual case.



For a successful technology, reality must take precedence over
public relations, for Nature cannot be fooled.

Richard Feynman

Chapter 3

Metaheuristics

During the last decades a new kind of heuristic algorithms has emerged which tries

to use lower-level heuristic approaches to build higher-level frameworks targeted at

efficiently and effectively exploring a search space. The name metaheuristic, first

introduced in Glover [16], stems from the composition of two Greek words. Heuristic

derives from the verb heuriskein (ευρισκειν) which means “to find” and the prefix

meta means “beyond, in an upper level”.

This category of algorithms includes1 Evolutionary Computing (EC) and Genetic

Algorithms (GA), Guided Local Search (GLS), Greedy Randomized Adaptive Search

Procedure (GRASP), Iterated Local Search (ILS), Simulated Annealing (SA), Tabu

Search (TS), Variable Neighborhood Search (VNS) and many more.

For example, Glover and Kochenberger [19] and Blum and Roli [4] provide a

survey on metaheuristics and related topics and current state of the art in the

area. In this chapter we focus on the concepts and fundamental principles of the

metaheuristics implemented during this master thesis.

But before we start off some some terms need to be clearyfied. We consider a

neighborhood structure as a function N : X → 2X , which assigns each valid solution

x ∈ X a set of neighbors N (x) ⊆ X . The set N (x) is commonly named the

neighborhood of x. It is usually defined implicity through valid changes (moves) on

the solutions x ∈ X .

Furthermore we introduce a search space, i.e. a solution representation and an

objective function. In other words a search space is a collection of possible solutions

to the problem at hand, incorporation some notion of distance between the candidate

solutions.

1In alphabetical order.

18
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3.1 Basic Local Search

Basic local search (LS) is also called iterative improvement or hill-climbing because

at each iteration a move is only performed when the new solution is better than the

current solution, regarding to a defined objective function. A move is defined as the

selection of a solution s′ out of a neighborhood N (s) of a solution s.

procedure Basic Local Search
s← GenerateInitialSolution()
repeat

s′ ← ChooseNeighbor(N (s))
if f(s′) ≤ f(s) then

s← s′

end if
until termination conditions met

end procedure

Algorithm 1: Basic Local Search

In Algorithm 1 the basic algorithm is outlined in pseudocode. First of all the most

important task is to define a search space. This means a representation of real-world

objects and an objective function f are needed. Regarding the chosen representation

an appropriate neighborhood structure has to be found. A popular choice for many

combinatorial optimization problems is the 2-opt2 neighborhood because it can be

applied easy to many problems. Nevertheless, despite some exemptions, 2-opt tends

to get stuck in local optima. Some other neighborhoods are k-flip for binary strings

where the neigborhood consits of all solutions that have a Hamming-Distance less

or equal to k. A generalized 2-opt, k-opt is also known.

The GenerateInitialSolution function is needed to generate an initial solution at

which the search begins. This could happen simply by a completely random choice

or a more sophisticated construction method. As ChooseNeighbor(N (s)) function,

also called step function, theoretically any function that chooses a solution s′ out of

a neighborhood N (s) of solution s is possible, but it has turned out that only a few

are commonly used:

random neighbor picks a neighboring solution out of N (s) at random.

first improvement systematically searches N (s) and chooses the first neighboring

solution that is better than s.

best improvement completely explores N (s) and takes the best neighboring solu-

tion.

2A 2-opt move consists of removing two edges of a given solution and reconnect them in a
different way.
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Finally the termination conditions have to be defined. In case of the latter

two ChooseNeighbor(N (s)) functions the simple condition stop if no further im-

provement is made will almost always only find a local optimum. Other possible

termination conditions depend on the amount of passed CPU-Time, number of iter-

ations, number of iterations since the last improvement or any combination of these

or other conditions, which is virtually always desired.

Depending on the chosen neighborhood the basic local search algorithm often

only yields poor locally optimal solutions and is therefore only of limited use. To

address this weakness, many advanced local search methods where proposed. Among

others iterated local search [28, 29], multi-start methods [30], guided local search,

greedy randomized adaptive search procedure, simulated annealing and tabu search

have been developed.

3.2 Simulated Annealing

Simulated annealing (SA) was the first major attempt to improve basic local search,

which does not perform well if caught in a local optima — as pointed out in in the

last section. It was proposed independently by Kirkpatrick et al. [22] and Cerny [8]

during the early 1980s and it is commonly said that SA is the oldest among the

metaheuristics. Simulated annealing is inspired by the physical process of cooling

crystalline matter, hence it is often referred to as a nature inspired method.

The fundamental idea of simulated annealing is that in contrary to basic local

search moves resulting in solutions of worse quality than the current solution are

allowed with a certain probability in order to escape from local optima; these moves

are referred to as uphill moves. The probability of accepting an uphill move depends

on the actual deterioration and the current temperature, which is decreased during

the search process. The simulated annealing metaheuristic is outlined as pseudocode

in Algorithm 2 on the following page.

At first the algorithm generates an initial solution either randomly or with some

construction heuristic and initializes the so-called temperature parameter T and the

counter t. Then at each iteration of the annealing process a solution s′ ∈ N (s)

is randomly chosen and accepted as new current solution depending on f(s), f(s′)

and T . The solution s′ replaces s as new current solution if f(s′) < f(s) or, when

f(s′) ≥ f(s), with a probability which is a function of T , f(s) and f(s′). Generally

the probability is computed following the Boltzmann distribution. Metropolis et al.

[31] have used this method when they simulated the movement of particles in cooled

matter, therefore the name Metropolis-Criterion became popular for the following
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procedure Simulated Annealing
s← GenerateInitialSolution()
t← 0
T ← T0

repeat
repeat

s′ ← arbitrary solution ∈ N (s)
if f(s′) < f(s) then

s← s′

else
if Z < e−|f(x′)−f(x)|/T then

s← s′

end if
end if
t← t + 1

until temperature-update conditions met
T ← g(T ,t)

until termination conditions met
end procedure

Algorithm 2: Simulated Annealing

inequation:

Z < e−|f(x′)−f(x)|/T (3.1)

with Z = random number ∈ [0, 1)

The most crucial part in parameterizing simulated annealing is the selection of

an appropriate cooling scheme, which strongly affects convergence speed and result

quality. The idea is to decrease temperature during the search process so that at

the beginning uphill moves are accepted with a high probability which decreases

step-by-step with the following iterations. This is analogous to the natural process

of annealing metals or glass.

While temperature is relatively high the search is not biased in a strong way

and uphill moves are accepted regularly, with descending temperature the search

is biased towards classical iterative improvement and accepting uphill moves will

become unlikely; Simulated annealing can therefore be understood as a mixture of

a random walk and iterative improvement.

The cooling scheme defines the temperature T at each iteration t of the annealing

process. It consists of the definition of a starting temperature T0, a function g(T, t)

with which the actual cooling is computed and the number of iterations between

updates of the temperature. The choice of T0 can be made upon statistical data or

bounds. The number of iterations at each temperature should allow the procedure
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to reach a stable state, which means that no more moves that only are allowed at

this temperature should be necessary to reach a global optimal solution — physicists

call this state an equilibrium. This number of iterations is usually set to a multiple

of the size of the neighborhood. For updating the temperature no specific type

of function is necessary, but commonly a monotone descend function is used, e.g.

geometric cooling.

g(T, t) = T · α (3.2)

s.t. α < 1

The advantages of simulated annealing are that it is one of the best studied

metaheuristics existing. For example it is proven that under certain conditions, e.g.

infinite runtime, simulated annealing converges to a global optimum (Henderson and

Jacobson [21]). Simulated annealing is easy to implement and can be adopted to a

wide range of applications, although for good results often long runtimes are needed.

Simulated annealing is subject of continued research. Some of the more recent

trends to improve practical performance are advanced cooling schemes including

non-monotonic cooling (reheating), dynamic cooling, deterministic neighborhood

exploration, parallelization and hybridization with for example genetic algorithms

or GRASP.

3.3 Tabu Search

The elementary ideas of tabu search (TS) were first introduced by Glover [16] in

1986. Tabu search is one of the most cited and applied metaheuristics in the field of

combinatorial optimization problems. In its basic version, described in Algorithm 3

on the next page, tabu search performs a best improvement local search (see Sec-

tion 3.1 on page 19) and additionally uses a short term memory, which allows to

escape from local optima and avoids cycles during exploration of the search space.

This short term memory is implemented as a tabu list that remembers recently vis-

ited solutions and forbids moves towards them. The neighborhood of the current

solution is restricted to solutions that do not belong to the tabu list, the resulting

set is the so-called allowed set.

Similar to other metaheuristic methods an initial solution is generated randomly

or with a construction heuristic, the tabu list TL is initialized with the empty set.

At each iteration of the search process the best solution of the allowed set of the

neighborhood of the current solution is selected as new current solution and added

to the tabu list; an element of the tabu list is removed from it; usually the selection

of this element is based on recency, i.e. removal in FIFO order. An essential property
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procedure Basic Tabu Search
s← GenerateInitialSolution()
x← s
TL← ∅
repeat

X ′ ← part of N (x) that does not violate TL
x′ ← best solution ∈ X ′

add x′ to TL
remove elements older than tL iterations from TL
x← x′

if f(x) < f(s) then
s← x

end if
until termination conditions met

end procedure

Algorithm 3: Basic Tabu Search

of this process is that it allows to select new solutions with a worse solution quality

than the current solution, because the search must not stop when it finds the first

local optimum.

An important parameter is the length of the tabu list (tabu tenure). Small tabu

tenures allow the process to concentrate on small areas of the search space. On the

other side, large tabu tenures will forbid the process to revisit more solutions and

thus a better exploration of the entire search space is enforced. The tabu tenure

can be varied during the search process to improve the robustness of the algorithm

and quality of results. Robust tabu search (see Taillard [41]) changes the tabu list

length randomly during the search between a mininum and maximum size, while

reactive tabu search (see Battiti and Tecchiolli [3]) increases the tabu tenure if there

is evidence that some solutions are visited repeatedly. As a result the diversification

of the process is increased, while the tabu tenure is decreased if there is no further

improvement, which intensifies the search process.

However, the major problem of this basic tabu search algorithm is that it stores

complete solutions in its short term memory. Managing tabu lists is thus inefficient

because they make exhaustive use of memory and it takes significant computational

effort to deal with them. Therefore, instead of storing complete solutions only tabu

attributes are typically stored. These attributes characterize a performed move.

E.g. in case of the traveling salesman problem when a 2-opt move is performed

the two removed edges or alternatively the two newly introduced edged may be

stored as tabu attributes, and every solution that is generated using this attributes

does not qualify for the allowed set, it is tabu. Because more than one attribute can

be defined, a tabu list is introduced for each of these attributes.
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This new type of tabu lists is much more effective, although it raises a new

problem. With forbidding an attribute as tabu, typically more than one solution is

declared as tabu. Some of these solutions that must now be avoided might be of

excellent quality and have not yet been visited. To overcome this problem, aspiration

criteria are introduced which allow to override the tabu state of a solution and thus

include it in the allowed set. A commonly used aspiration criterion is to allow

solutions which are better than the currently best known solution. A sketch of the

procedure summarizing the above techniques is provided in Algorithm 4.

procedure Tabu Search
s← GenerateInitialSolution()
x← s
TL1 . . . TLn ← ∅
repeat

X ′ ← part of N (x) that does not violate TL1 . . . TLn or satisfies at least
one aspiration criterion

x′ ← best solution ∈ X ′

add x′ to TL1 . . . TLn

remove elements older than tL iterations from TL1 . . . TLn

x← x′

if f(x) < f(s) then
s← x

end if
until termination conditions met

end procedure

Algorithm 4: Tabu Search

Additionally to the above described tabu lists, which represent a short term mem-

ory, other ways of taking advantage from information about the search history are

possible. Every piece of information collected during the search process can be use-

ful. This long term memory can be structured regarding to four principles: recency,

frequency, quality and influence. A recency-based memory records for each solution,

or attribute, the most recent iteration it was considered in, while frequency-based

memory counts how many times each solution (attribute) has been visited. This

information identifies the subset of the search space where the process stayed for a

longer number of iterations or where it only examined a limited amount of solutions,

so it is useful to control the diversification of the search process. The information

regarding quality can be used to determine good solution attributes, which can be

integrated in solution construction. Finally influence, a property regarding decisions

during the search process, allows to identify the most critical decisions.

For further information the reader is encouraged to look at two articles by Fred

Glover [17, 18], which provide a good starting-point for deeper insight into tabu

search and related methods.
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3.4 Guided Local Search

Guided local search (GLS) is a metaheuristic that sits on top of another local search

procedure. It modifies the landscape of the search space to guide the underlying

heuristic method away from already encountered local optima. The roots of the

GLS metaheuristic are in a neural-network based method called GENET (see Tsang

and Wang [43]) which is a constraint satisfaction resolution method.

As mentioned, GLS modifies the landscape of the search space, to guide the un-

derlying local search method gradually away from known local optima. To accom-

plish this it augments the objective function of the underlying local search procedure

with penalties, which makes the known local optima less attractive (see Figure 3.1).

In Algorithm 5 on page 27 the basic guided local search procedure is described in

pseudocode.

Solution space
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Figure 3.1: Escaping a local optimum with GLS

Guided local search applies the penalties to solution features which have to be

defined. These features may be any property or characteristic that can be used to

distinguish solutions; compare the tabu attributes of tabu search. E.g. in the case of

the traveling salesman problem these features could be arcs between pairs of cities

and in the case of the quadratic assignment problem facility-location assigments

(see Voudouris and Tsang [44] and Mills et al. [32]). For each defined feature fi the

following components must be provided:

• An indicator function Ii(s) that indicates whether the feature fi is present in

the current solution or not.

Ii(s) =

{
1, solution s exhibits feature i

0, otherwise
(3.3)

• A cost function ci(s) describes the cost of having the feature fi present in the



CHAPTER 3. METAHEURISTICS 26

current solution s. These costs are often defined in analogy to the objective

function.

• And finally pi, the penalty parameters, which are initialized with 0 for all

features. The penalty parameters are used to penalize features that appear in

local optima.

Given an objective function g(s), which maps each solution of the search space

to a numeric value, GLS defines a new augmented objective function h(s) which will

be used by the underlying local search procedure.

h(s) = g(s) + λ ·
n∑

i=1

Ii(s) · pi (3.4)

Updating the penalty values pi of the features when reaching a local optimum is

the crucial task in guided local search. A common way to do this is to calculate a

utility value Util(s, i) of a feature i at the current local optimum s:

Util(s, i) = Ii(s) ·
ci(s)

1 + pi

(3.5)

The penalty values of the features with maximimum utility value will be incre-

mented. Then, local search is applied again with the updated penalties and changed

augmented objective function.

The higher the costs ci(s) the higher the utility of the feature. The costs are

scaled by the penalty value to permit the search process from being totally cost

driven by taking the search history into account. A problem is that during the

search process, where more and more features are penalized, the landscape of the

search space could be distorted too much. This will make further exploration difficult

and so in addition to increasing the penalty values a multiplication rule is applied

regularly, which is smoothing the landscape again.

The λ parameter, also called regularization parameter, is used to specify the

influence of the penalty values on the augmented objective function, which controls

the diversity of the search process. With increasing λ the diversification will increase,

too. The right choice of λ is crucial. This, however, must be done individually for

each problem, because it is specific to the used objective function g(s). The difference

∆h of the values of the augmented objective function between two consecutive moves

helps to understand this.

∆h = ∆g + λ ·
n∑

i=1

∆Ii · pi (3.6)
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If the regularization parameter λ is large enough the inner local search procedure

will solely remove the penalized features and the information regarding penalty

values will fully determine the path of the search process. In contrast if, λ is to

small the local search procedure will ignore the penalty values and it will not be

able to escape from local optima. A good choice of λ is therefore in the same order

of magnitude as ∆g and the resulting moves will aim at the combined objective,

which is to improve the solution and to remove penalized features from the generated

solutions. A common solution for this problem is to introduce a α parameter which

is used to tune the now dynamically computed λ parameter, taking into account

information about the problem instance. The advantage of this method is that once

α is tuned well enough it can be used for many problem instances (see Voudouris

and Tsang [44]).

procedure Guided Local Search
s← GenerateInitialSolution()
for i = 1, . . . , n do

pi ← 0
end for
repeat

s← LocalSearch(s,g + λ ·
∑n

i=1 Ii · pi)
for all features i with maximum utility Util(s, i) do

pi ← pi + 1
end for

until termination conditions met
end procedure

Algorithm 5: Guided Local Search

Here only the main concepts of guided local search are described but many addi-

tional ideas and improvements where proposed and applied successfully in different

applications such as Fast GLS. Also several other refinements of the algorithm are

possible such as e.g. iterative penalty value updates (Voudouris and Tsang [42] and

[45]).

3.5 Greedy Randomized Adaptive Search Proce-

dure

The Greedy Randomized Adaptive Search Procedure (see Feo and Resende [11, 12]) is

a simple but powerful metaheuristic that combines a constructive heuristic with local

search. The basic structure of GRASP is outlined in Algorithm 6 on the following

page. GRASP is an iterative multi-start procedure which consists of two phases,

the construction phase builds a feasible solution, whose neighborhood is explored to
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find a local optimum in the subsequent local search phase. The best solution found

in any iteration is returned as final result of the search process.

procedure GreedyRandomizedAdaptiveSearchProcedure
repeat

s′ ← GreedyConstructSolution()
s′ ← LocalSearch(s′)
if f(s′) < f(s) then

s← s′

end if
until termination conditions met

end procedure

Algorithm 6: Greedy Randomized Adaptive Search Procedure

The construction phase itself, outlined in Algorithm 7 on the next page, is char-

acterized by two major properties: a dynamic constructive heuristic and random-

ization. It is assumed that a solution consists of a subset of components, analogous

to Section 3.4 on page 25 where these components could be used as GLS features.

During the construction phase the solution is put together step-by-step, adding a

new component in each iteration. The selection of the new component is done at

random out of the restricted candidate list (RCL). It is essential that the construc-

tion heuristic is dynamic, which means that the score for each solution component

is evaluated depending on the current partial solution. In contrast static construc-

tion heuristics assign a score to each solution component prior to the construction

process.

The most critical part of the GRASP construction phase is the BuildRestrict-

edCandidateList procedure, since it determines the strength of the heuristic bias.

An incremental cost c(e) is associated with the inclusion of a component e ∈ CL

into the currently constructed solution. Further at each iteration let cmin and cmax

be the smallest and the largest incremental costs and subsequently the restricted

candidate list is made up by the most promising components e ∈ CL, i.e. with the

best incremental costs c(e).

An easy solution for this problem is to limit the RCL by the number of its

elements. The list is made up by k components with the best incremental costs

c(e), where k is a parameter which has to be carefully tuned. In its extremes k is

either set equal to 1, resulting in a construction procedure which degenerates to a

deterministic greedy heuristic, because only the best element at each iteration would

be considered for the RCL. If k = n, where n is the size of CL, i.e the number of

possible components, the construction is done completely at random.

On the other side the restricted candidate list can be limited by the quality of the

components. Therefore a threshold parameter α ∈ [0, 1] is associated with the RCL.
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procedure GreedyConstructSolution
s← ∅
while solution s is not complete do

CL← all possible extensions e of solution s
RCL←BuildRestrictedCandidateList(CL)
e← select an element of RCL at random
s← s⊕ e

end while
end procedure

Algorithm 7: GRASP construction phase

All components whose costs c(e) are superior to the threshold value are included, so

the condition c(e) ∈ [cmin, cmin +α · (cmax− cmin)] has to be fulfilled by each element

of the RCL. In analogy to the previous RCL selection method the extreme cases

exist, too, with α = 1 resulting in a pure greedy heuristic and α = 0 equivalent to

a pure random construction.

In both cases k and respectively α are important parameters which strongly

determine the sampling of the search space and hence the quality of the resulting

solutions. It is essential to the success of GRASP that the most promising regions of

the solution space are sampled during the construction phase. Also it is important

that the constructed solutions belong to basins of attraction of different local optima

to ensure sufficient diversification. The first condition can be achieved by a good

choice of the construction heuristic and its parameters. For the second condition an

appropriate choice of the construction heuristic and the subsequent local search are

the key to success.

In the given description of the GRASP metaheuristic memory in terms of history

was not mentioned. This is one of the reasons why GRASP is often outperformed

by other metaheuristics. However, due to its simple concept GRASP is easy to

implement for many applications. For example, applications exist for the set covering

and maximum independent set problem by Feo and Resende [12] or the quadratic

assignment problem by Li et al. [26]. Also the iterations for creating candidate

solutions usually are fast and so GRASP is able to provide good quality solutions

in a short amount of time.

To improve the performance of GRASP several techniques are possible. As men-

tioned above the construction phase, especially the creation of the restricted can-

didate list, is critical. Some enhancements address this problem. With Reactive

GRASP the RCL parameter α is not constant; in each iteration it is selected from a

discrete sequence [37], yielding in a more robust algorithm. Other methods include a

biased selection of new elements from the RCL, e.g. with a probability proportional

to 1/c(e). Parallelization can also be easily applied to GRASP [38].
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Current research trends show that GRASP can gain a great performance boost if

it is used in a hybrid manner. So it is possible to use greedy constructed solutions as

starting population within evolutionary algorithms. The use of simulated annealing

or tabu search within GRASP has been applied successfully, too.



Not even the gods fight against necessity.

Simonides

Chapter 4

Requirements

At the beginning of this master thesis the basic idea was to extend the existing EAlib

[35] with some additional metaheuristics, since EAlib at that time only contained

evolutionary algorithms. The EAlib is intended to be a problem-independent C++

library suiteable for the development of efficient metaheuristics for combinatorial

optimization. It is developed at the Institute of Computergraphics and Algorithms,

Vienna University of Technology, Austria since 1999.

This chapter is structured into a description of the functional, design and usability

requirements that were stated initially.

4.1 Functionality

Before we start off, a summary of the functionality that EAlib provided already is

given. As mentioned, EAlib included initially classes for evolutionary algorithms

(EA). In particular classes that provide a generic framework for a generational EA,

a steady state EA and an EA using the island model were implemented. Some

supporting classes designed for populations and subpopulations, chromosomes, i.e.

solutions, parameter handling and logging were provided, too. For demonstration

purposes an implementation of the simple ONEMAX problem is also included.

As mentioned the primary goal is to enhance EAlib with classes that provide a

framework for some commonly known metaheuristics. After some consideration we

selected the following five:

• Local Search

• Simulated Annealing

• Tabu Search

• Guided Local Search

31
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• Greedy Randomized Adaptive Search Procedure

Additionally an auxiliary more complex example problem should be implemented,

for which we chose the already described quadratic assignment problem. Another

important task is to enhance the existing parameter handling mechanism, because

EAlib initially only featured a global parameter namespace.

In the following we describe in detail the functional requirements on the individ-

ual components of the implementation.

Local Search

An iterative improvement algorithm as described in Section 3.1 on page 19 should be

developed. Therefore the standard step functions random neighbor, next improve-

ment and best improvement are required too.

Simulated Annealing

The implementation of the simulated annealing algorithm should be straightforward.

It should feature geometric as standard scheme, and the acceptance probability of

down hill moves is to be calculated with the Metropolis criterion.

Tabu Search

The main features desired for tabu search are handling of an arbitrary number of

tabu lists for different purposes. Due to the requirement for tabu attributes are to

be used, of course support of aspiration criteria must be provided too.

Guided Local Search

The requirements for the GLS implementation are straightforward. An appropriate

mechanism for feature evaluation is needed. Additionally it is desired that the λ

GLS parameter is automatically tuned, utilizing user provided α parameter and the

size of the current instance, as described in Section 3.4 on page 25.

Greedy Randomized Adaptive Search Procedure

GRASP has not many requirements, a simple construction heuristic must be pro-

vided and the underlying local search algorithm should be selectable.

Example Problem

Besides the actual implementation of the generic algorithms an example problem has

to be addressed. It serves two different purposes, at first it should of course show
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the possible potential of the used metaheuristics and secondly it should act as a

template for developing other applications with EAlib. But of course demonstrating

the benefits of a generic implementation of metaheuristic algorithms, like we did in

this master thesis, is also one of the aims to be achieved.

To fulfill this requirements certain aspects have to be considered:

• it must be a combinatorial optimization problem, since EAlib is designed for

this type of problems,

• computational and pratical hard to solve

• practical relevance of the problem

• existence of compareable results

• existence of standard instancances for testing purposes

• well known

• easy understandable problem structure

• adequate to fulfill demonstration purposes

Initially we considered three proplems, maximum satisfiability, quadratic assign-

ment and glass cutting. The latter one was droppen early because it is too complex

for use as a demonstraton problem. As noted, finally the quadratic assignment

problem was selected.

In particular the QAP implementation must feature all algorithms with their

specialities. I.e. appropriate step functions, tabu attributes, features for guided

local search and a construction heuristic are needed.

Parameter Handling

The initial version of EAlib only featured one global parameter namespace in an

application. Although this concept is simple and robust the major drawback of it

is, that hierarchical parameter settings are not possible.

This is not satisfactory when for example nested algorithms, like guided local

search or GRASP which incorporate another inner local search algorithm, or other

advanced methods are used. It is obvious that the inner local search should be

parametrised without tampering the parameter settings of the outer algorithm.

Apparently the extended parameter handling has to ensure compatibility with

existing applications.
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4.2 Design

Building a problem independent library is a complex task and many decisions are

not obvious at hand. Therefore designing such a library is a sophisticated task to

acccomplish. Though this master thesis is based on an existing library and so many

decisions are somewhat constrainted.

Special attention has to paid for the design of the specialities of the individual

algorithms, because they should not interfer each another, but as much as possible of

the original ideas should be realised. To accomplish this special functionality is to be

declared in a separate interface class which must be inherited if a class implements

it. Examples for such interfaces are:

• augmented objective values

• construction heuristics

• features

• tabus

• tabulists

The use of common coding patterns is also encouraged, to make live easier for

future changes and enhancements and to help developers understanding the source-

code. For example functionality should be divided in reasonable methods within a

particular class to ease customizations by users.

4.3 Usability

The EAlib is designed to help developing metaheuristics for combinatorial optimiza-

tion problems. Therefore it is important that the user-visible part of the desired

EAlib extensions meet some fundamental requirements which are summarised here:

• easy to learn and clear programming interface

• good documentation, at best with an C++ language integrated tool like doxy-

gen

• support for basic features included



Work saves us from three great evils: boredom, vice and need.

Voltaire

Chapter 5

Implementation

In this chapter a detailed description of our implementation is provided. At first a

in-depth look on the internals is given in Section 5.2 on page 37 and afterwards an

usercentric description of the interface and a guide for using the new classes is give

in Section 5.3 on page 46.

5.1 Overview

In Figure 5.1 on the next page an instant overview of the most important EAlib

classes is given in UML syntax. The figure shows the how the classes are related to

each other by inheritance, realization or an other dependency.

As depicted in the EAlib class overview the most important base classes are

ea base and chromosome, where ea base is the top level base class for all algorithms,

for both evolutionary and local search alike algorithms and chromosome is the top

level base class for user provided problems, i.e. if a new application is to be created

using EAlib it is required that the actual problem is implemented as a child class of

chromosome and if necessary of some interfaces for to provide specialized methods

for certain algorithms, e.g. guided local search.

35



CHAPTER 5. IMPLEMENTATION 36

<
<
i
n
t
e
r
f
a
c
e
>
>

ta
bu

lis
tP

ro
vi

de
r

<
<
i
n
t
e
r
f
a
c
e
>
>

ta
bu

P
ro

vi
de

r

<
<
i
n
t
e
r
f
a
c
e
>
>

fe
at

ur
eP

ro
vi

de
r

<
<
i
n
t
e
r
f
a
c
e
>
>

gc
P

ro
vi

de
r

lo
ca

lS
ea

rc
h

si
m

ul
at

ed
A

nn
ea

lin
g

ta
bu

S
ea

rc
h

gu
id

ed
LS

G
R

A
S

P

<
<
i
n
t
e
r
f
a
c
e
>
>

ch
ro

m
os

om
e

qa
pC

hr
om

<
<
i
n
t
e
r
f
a
c
e
>
>

ta
bu

A
ttr

ib
ut

e

qa
pT

ab
uA

ttr
ib

ut
e

<
<
i
n
t
e
r
f
a
c
e
>
>

fe
at

ur
e

qa
pF

ea
tu

re

ge
ne

ra
tio

na
lE

A

st
ea

dy
S

ta
te

E
A

is
la

nd
M

od
el

E
A

<
<
i
n
t
e
r
f
a
c
e
>
>

ls
ba

se

qa
pI

ns
ta

nc
e

<
<
i
n
t
e
r
f
a
c
e
>
>

po
p_

ba
se

su
bP

op
ul

at
io

n
po

pu
la

tio
n

<
<
i
n
t
e
r
f
a
c
e
>
>

st
rin

gC
hr

om

on
eM

ax
C

hr
om

pa
ra

m

<
<
i
n
t
e
r
f
a
c
e
>
>

ea
_a

dv
ba

se

<
<
i
n
t
e
r
f
a
c
e
>
>

m
ov

e

bi
tfl

ip
M

ov
e

<
<
i
n
t
e
r
f
a
c
e
>
>

gl
sS

ub
A

lg
or

ith
m

<
<
i
n
t
e
r
f
a
c
e
>
>

ea
_b

as
e

on
eP

er
m

C
hr

om

xc
hg

M
ov

e<
T

>

sw
ap

M
ov

e

ge
n_

pa
ra

m
<

T
>

pa
ra

m
V

al
id

at
or

ra
ng

eV
al

id
at

or
<

T
>

un
ar

yV
al

id
at

or
<

T
>

<
<
i
n
t
e
r
f
a
c
e
>
>

bi
nS

tr
in

gC
hr

om
<
<
i
n
t
e
r
f
a
c
e
>
>

pe
rm

C
hr

om

F
ig

u
re

5.
1:

E
A

li
b

cl
as

s
ov

er
v
ie

w



CHAPTER 5. IMPLEMENTATION 37

5.2 Class reference

In this section we present the details of the implementation at hand. It is structured

into a description of the individual classes and of the developers view of the new

parameter handling mechanism.

5.2.1 Class chromosome

chromosome

#objval: double

#objval_valid: bool

#length: int

#alg: ea_base*

#pgroup: string

+<<constructor>> chromosome()

+<<constructor>> chromosome(l:int,t:ea_base*=NULL,pg:pstring="")

+<<constructor>> chromosome(l:int,pg:pstring="")

+<<destructor>> ~chromosome()

+createUninitialized(): chromosome*

+clone(): chromosome*

+operator=(orig:chromosome&): chromosome&

+equals(orig:chromosome&): bool

+dist(c:chromosome&): double

+obj(): double

+delta_obj(m:move&): double

+applyMove(m:move&): void

+initialize(count:int): void

+mutation(prob:double): void

+mutate(count:int): void

+crossover(parA:chromosome&,parB:chromosome&): void

+locallyImprove(): void

+reproduce(par:chromosome&): void

+write(ostr:ostream&,detailed:int=0): void

+save(fname:char*): void

+load(fname:char*): void

+isBetter(p:chromosome&): bool

+isWorse(p:chromosome&): bool

+invalidate(): void

+hashvalue(): unsigned long int

+selectNeighbour(): void

+selectRandomNeighbour(): void

+selectImprovement(find_best:bool): void

+setAlgorithm(alg:ea_base*): void

#objective(): double

Figure 5.2: Class chromosome

This is the base class for all chromosomes. In EAlib the problem definition is

given by deriving a new class from chromosome and implement all the problem rele-

vant methods in a proper way, i.e. all pure virtual methods have to be implemented.

additionally depending on the desired use, other virtual methods have to be reim-
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plemented, e.g. save and load or selectRandomNeighbour and selectImprovement to

enable local search alike algorithms.

5.2.2 Class ea advbase

ea_advbase

+pop: pop_base*

+nGeneration: int

+nSelections: int

+nCrossovers: int

+nMutations: int

+nDupEliminations: int

+nCrossoverDups: int

+nMutationDups: int

+nLocalImprovements: int

+nTabus: int

+nAspirations: int

+nDeteriorations: int

#genBest: int

#timGenBest: double

#tmpChrom: chromosome*

+<<constructor>> ea_advbase(p:pop_base&,pg:pstring&="")

+<<constructor>> ea_advbase(pg:pstring&="")

+<<destructor>> ~ea_advbase()

+clone(p:pop_base&,pg:pstring&=""): ea_advbase*

+run(): void

+performGeneration(): void

+performCrossover(p1:chromosome*,p2:chromosome*,c:chromosome*): void

+performMutation(c:chromosome*,prob:double): void

+terminate(): bool

+replaceIndex(): int

+replace(c:chromosome*): chromosome*

+printStatistics(ostr:ostream&): void

+writeLogEntry(inAnyCase:bool=false): void

+writeLogHeader(): void

+getBestChrom(): chromosome*

+getGen(): int

+getGenBest(): int

+getTimGenBest(): double

+tournamentSelection(): int

#checkPopulation(): void

#saveBest(): void

#checkBest()

#perfGenBeginCallback(): void

#perfGenEndCallback(): void

Figure 5.3: Class ea advbase

The abstract base class for algorithms. Any new algorithm should use ea advbase

as the base class, if no other derived class suits the requirements.
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lsbase

+<<constructor>> lsbase(p:pop_base&,pg:pstring&="")

+<<constructor>> lsbase(pg:pstring&="")

+replace(p:chromosome*): chromosome*

Figure 5.4: Class lsbase

5.2.3 Class lsbase

This is the base class for local search alike algorithms, i.e. algorithms that are not

population base. To be as much compatible as possible with population based

algorithms, no additional data members are introduced, instead a fixed subset of

the population, namely the first element, is considered to be used.

5.2.4 Class localSearch

localSearch

+<<constructor>> localSearch(p:pop_base&,pg:pstring&="")

+<<constructor>> localSearch(pg:pstring&="")

+clone(p:pop_base&,pg:pstring&=""): ea_advbase*

+performGeneration(): void

Figure 5.5: Class localSearch

The localSearch class implements the basic local search functionality as outlined

in Section 3.1 on page 19. Additionally to its main base class lsbase it inherits the

glsSubAlgorithm interface class, too, because we consider localSearch as embedded

algorithm for guided local search.

5.2.5 Class simulatedAnnealing

simulatedAnnealing

#T: double

+<<constructor>> simulatedAnnealing(p:pop_base&,pg:pstring&="")

+<<constructor>> simulatedAnnealing(pg:pstring&="")

+clone(p:pop_base&,pg:pstring&=""): ea_advbase*

+performGeneration(): void

+accept(o:chromosome*,n:chromosome*): bool

+cooling(): void

Figure 5.6: Class simulatedAnnealing
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This class provides an application independent implementation of the simulated

annealing metaheuristic (see Section 3.2 on page 20). The two main steps of the sim-

ulated annealing process are subdivided into the accept and the cooling methods. As

suggested, the Metropolis-Criterion and geometric cooling are utilized. Compared

with local search, simulated annealing adds a temperature to the state; therefor the

attribute T is introduced.

In the overwritten version of the performGeneration method accept is called

when a newly selected neighbour has an inferior objective value than the current

solution. The cooling method is called accordingly to the sacint parameter.

5.2.6 Class tabuSearch

tabuSearch

+tl_ne: tabulist*

+<<constructor>> tabuSearch(p:pop_base&,pg:pstring&="")

+<<constructor>> tabuSearch(pg:pstring&="")

+clone(p:pop_base&,pg:pstring&=""): ea_advbase*

+performGeneration(): void

+isTabu(t:tabuAttribute*): bool

+aspiration(c:chromosome*): bool

Figure 5.7: Class tabuSearch

The tabuSearch class offers a basic tabu search metaheuristic (see Section 3.3 on

page 22). It utilizes a single tabulist and contained tabu attributes are considered

as tabu. To overcome the problem of prohibiting a solution that is the best known

sofar, a default aspiration criterion is implemented, too.

Chromoses used in combination with tabu search have to inherit the tabuProvider

interface class and should therefore take care of the embodied tabulists appropriately.

5.2.7 Class guidedLS

This class provides a guided local search algorithm (see Section 3.4 on page 25),

which can only be used in combination with a chromosome class that implements

the featureProvider interface; the embedded algorithm has to be derived from glsSub-

Algorithm class. This is necessary to ensure all involved classes are well prepared

with respect to the requirements of guided local search.

Statistics of the embedded algorithms are summarized, whereas the generation

counter is threated individually to avoid sideeffects related to termination criteria

and penalty resets.
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guidedLS

#f: feature*

#lambda: double

#spop: pop_base*

+<<constructor>> guidedLS(p:pop_base&,pg:pstring&="")

+<<constructor>> guidedLS(pg:pstring&="")

+<<destructor>> ~guidedLS()

+clone(p:pop_base&,pg:pstring&=""): ea_advbase*

+performGeneration(): void

+aobj(c:chromosome*): double

+delta_aobj(c:chromosome*,m:move*): double

Figure 5.8: Class guidedLS

To provide a population for the embedded algorithm an additional population is

created by using the existing chromosomes as a template. This ensures that running

the embedding algorithm has no hidden side-effects.

5.2.8 Class GRASP

GRASP

#spop: pop_base*

+<<constructor>> GRASP(p:pop_base&,pg:pstring&="")

+<<constructor>> GRASP(pg:pstring&="")

+<<destructor>> ~GRASP()

+clone(p:pop_base&,pg:pstring&=""): ea_advbase*

+performGeneration(): void

Figure 5.9: Class GRASP

The GRASP class implements the greedy randomized adaptive search procedure

metaheuristic (see Section 3.5 on page 27). It can only use chromosome derviates

that additionally implement the gcProvider interface, because the used chromsomes

are required to provide a greedy construction heuristic.

Analogous to guided local search an additional population is created to be used

by the embedded algorithm to circumvent possible side-effects.

5.2.9 Class feature

As mentioned, the guided local search metaheuristic requires the definition of fea-

tures, i.e. a method to identify if a feature is present in a given solution. This class is

an abstract base for those problem dependent feature classes, that handle the iden-

tification of the features and their penalization. Although only one feature object is
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feature

#pgroup: string

+<<constructor>> feature(pg:pstring&="")

+<<destructor>> ~feature()

+penalty(c:chromsome*): double

+delta_penalty(c:chromosome*,m:move*): double

+updatePenalties(c:chromosome*): void

+resetPenalties(): void

+tuneLambda(c:chromosome*): double

Figure 5.10: Class feature

used by the guidedLS class, it is possible to use several different types of features.

However, due to this design the, it is very simple to access the features.

5.2.10 Class tabuAttribute

tabuAttribute

#pgroup: string

+<<constructor>> tabuAttribute(pg:pstring&="")

+<<destructor>> ~tabuAttribute()

+equals(o:tabuAttribute&): bool

+hashvalue(): unsigned long int

Figure 5.11: Class tabuAttribute

This abstract class provides an interface for classes whose objects are used as

elements of a tabulist. It is important that the methods equals and hashvalue are

implemented in a proper way, because they are invoked by an internal hashing array

object of the tabulist, which requires this to methods. So tabus which should be

considered matching need to return equal hashvalues and true for the equals method.

Vice versa tabus which should not be considered as matching should at best return

different hashvalues and false for the equals method. If equal hashvalues are return

but the tabus are not matching this must be assured by the equals method. The

write method is mainly used for debugging purposes during development.

5.2.11 Class tabulist

This class provides the basic tabulist functionality as used by the tabu search meta-

heuristic. It is implemented using a hashing array to ensure efficient matching of

existing tabu attributes. An additional queue is utilized in order to memorize the

insertion sequence of the tabu attributes into the tabulist. The hashing array is uti-

lized by the match method to decide if a given tabu attribute matches any existing
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tabulist

#size: size_t

#tlist: hash_map<tabulist_entry, int>

#tqueue: queue<tabuAttribute*>

#pgroup: string

+<<constructor>> tabulist(N:int,pg:pstring&="")

+<<constructor>> tabulist(pg:pstring&="")

+<<destructor>> ~tabulist()

+clear(): void

+add(t:tabuAttribute*): void

+match(t:tabuAttribute*): bool

Figure 5.12: Class tabulist

tabu attribute. The queue is used to remove older elements from the tabulist as new

elements are added by the search process.

5.2.12 Class move and childs

<<interface>>

move

bitflipMove

+r: int

xchgMove<T>

+r: int

+o: T

+n: T

swapMove

+r: int

+s: int

Figure 5.13: Class move and childs

This classes represent moves in the neighbourhood of a chromosome. Their

objects are can be used for example within incremental update of the objective

value or as a base for tabu attributes.

5.2.13 Class qapChrom

This is the main problem specific class which coordinates the interaction of all QAP

related classes, i.e. qapInstance, qapFeature and qapTabuAttribute. It is derived

directly from chromosome and its main member is a vector containing indicies of

facilities, which represents a quaratic assignment.

Mutation is performed by swapping two elements of the solution vector. A cycle

crossover is implemented, too. Due to efficiency concerns the static data of the ac-
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qapChrom

#data: vector<int>

+<<constructor>> qapChrom(c:chromosome&)

+<<constructor>> qapChrom(pg:pstring&="")

+<<constructor>> qapChrom(t:ea_base*,pg:pstring&="")

+copy(orig:chromosome&): void

+equals(orig:chromosome&): bool

+dist(c:chromosome&): double

+initialize(count:int): void

+mutate(count:int): void

+crossover(parA:chromsome&,parB:chromsome&): void

+write(ostr:ostream&,detailed:int=0): void

+save(fname:char*): void

+load(fname:char*): void

+hashvalue(): unsigned long int

+delta_obj(m:move&): double

+applyMove(m:move&): void

+selectImprovement(find_best:bool): void

+getFeature(): feature*

+greedyConstruct(): void

Figure 5.14: Class qapChrom

tual instance is stored in a global qapInstance object. To support each implemented

algorithm (see Chapter 3 on page 18) the newly introduced interface classes feature-

Provider, tabuProvider and gcProvider are inherited and their virtual methods are

implemented accordingly. In particular the classes qapFeature support guided local

search and qapTabuAttribute tabu search. The construction heuristic proposed by

Li, Resende and Pardalos [26] implemented, too.

5.2.14 Class qapInstance

An object of this class contains all necessary data for one particular quadratic assig-

ment instance. It can load the instance data from a file whose filename is supplied

as parametere to the constructor; if no filename is specified, the file to which the

qapfile parameter is referring is loaded.

Auxilliary to the basic storage functionality the presorting stage of the con-

struction heuristic used by qapChrom is done in this class for performance reasons.

because the indices only need to be sorted once for an instance.

5.2.15 Class qapFeature

This is the specialized feature class for the quadratic assignment problem. The

essential idea is that every possible facility-location pair is threated as a feature (see

Section 3.4 on page 25). The penalties of these features can be efficiently stored in
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qapInstance

#pgroup: string

+int: n

+a: vector<int>

+b: vector<int>

+indexa: vector<pair<int,int>>

+indexb: vector<pair<int,int>>

+cost: vector<int>

+fdind: vector<int>

+<<constructor>> qapInstance()

+<<constructor>> qapInstance(pg:pstring&="")

+<<constructor>> qapInstance(fname:string&,pg:pstring="")

+initialize(fname:string&): void

+prepare(): void

+A(i:int,j:int): int

+B(i:int,j:int): int

Figure 5.15: Class qapInstance

qapFeature

#pv: vector<double>

+<<constructor>> qapFeature(pg:pstring&="")

+<<destructor>> ~qapFeature()

+penalty(c:chromsome*): double

+delta_penalty(c:chromosome*,m:move*): double

+updatePenalties(c:chromosome*): void

+resetPenalties(): void

+tuneLambda(c:chromosome*): double

Figure 5.16: Class qapFeature

a two-dimensional matrix. To maintain the benefits of an incremental update of the

objective value the change in penalty can be computed for a given move.

5.2.16 Class qapTabuAttribute

This tabu attribute is derived from the swapMove class. Two qapTabuAttributes

are considered equal if the resulting chromosomes are equal when the moves they

represent are applied to them.

5.2.17 Parameter handling

Originally the mechanism that EAlib used to deal with user provided parameter val-

ues had some disturbing deficiencies. At first it was not possible to handle multiple

values for one parameter, which are for example distinguished by an additional pa-

rameter namespace or parameter key. This is especially a problem when one param-

eter is used in a different context at different places within EAlib, e.g. a guided local
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qapTabuAttribute

+<<constructor>> qapTabuAttribute(pg:pstring&="")

+<<constrcutor>> qapTabuAttribute(t:qapTabuAttribute&)

+<<constructor>> qapTabuAttribute(m:swapMove&)

+equals(o:tabuAttribute&): bool

+hashvalue(): unsigned long int

Figure 5.17: Class qapTabuAttribute

search metaheuristic uses an embedded simulated annealing metaheuristic and the

two algorithms should use differently parametrized termination criteria. Secondly

only one parameter validator class was implemented, which checks if a numeric value

is in a given range.

As mentioned, a convenient solution for the first problem should maintain back-

wards compatibility. At this point the way how values of parameters are access in

EAlib helps very much, because the operator () is used when a parameter value is

access. This operator method can be changed so that it fulfills our requirements

appropriately. In particular a string parameter is added to the operator () method,

which defaults to an empty string representing the already existing global param-

eter namespace. When a different parameter key is specified the actual value is

determined in the following order:

1. value associated with parameter key

2. global parameter value

3. default parameter value defined in the sourcecode

An efficent storage container for these parameter key and value pairs is pro-

vided by the hash map class, which is an SGI/GNU extension to the C++ standard

template library.

The second problem is solved by adding a validator which can perform an unary

check such as greater or equal (≥), greater (>), equal (=), less (<), less or equal (≤)

or not equal (6=). Also the already existing range checking validator is extendend in

way that bounds can be included or excluded from the allowed range.

5.3 Usage

In this section we give a summary on how to use EAlib with new optimization

problems. As mentioned the problem description has to be incorporated in a new
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class which is derived from the chromosome class or one of its already existing

derviates depending which ever fits best the actual requirements.

However, inheriting class chromosome and implementing its pure virtual methods

enables only the basic features. Therefore the new problem class is only useable by

those algorithms that raise no specific requirements.

In EAlib this is solved by the introduction of interface classes for specific sets of

features. The usage this interface classes is not limited to problem classes and hence

it is used for algorithm classes, too. This concept has several advantages compared

with collecting all methods in the class chromosome.

• The class chromosome is kept small and manageable,

• developers do not need to take care about features they are not interested in,

• new features can be integrated without affecting existing sourcecode.

If a class is providing the functionality of an interface class it has to be derived

from it. The dynamic cast operator can be used to determine if a certain class

implements an interface.

In the remainder of this section the already existings interface classes are de-

scribed.

5.3.1 Interface aObjProvider

<<interface>>

aObjprovider

+<<destructor>> ~aObjProvider()

+aobj(c:chromosome*): double

+delta_aobj(c:chromosome*,m:move*): double

Figure 5.18: Interface aObjProvider

This interface class is to be inherited by algorithm classes that provide an addi-

tional term to the objective value of the chromosomes. The interface class glsSub-

Provider is derived from this class an should be used if the implemented algorithm

should be used nested into guided local search.

5.3.2 Interface tabulistProvider

An algorithm class that provides tabulists has to inherit this interface class, to

indicate the incorporated chromosome objects that they should use the tabulists.



CHAPTER 5. IMPLEMENTATION 48

<<interface>>

tabulistProvider

+<<destructor>> ~tabulistProvider()

+isTabu(t:tabuAttribute*): bool

+aspiration(c:chromosome*): bool

Figure 5.19: Interface tabulistProvider

5.3.3 Interface featureProvider

<<interface>>

featureProvider

+<<destructor>> ~featureProvider()

+getFeature(): feature*

Figure 5.20: Interface featureProvider

Each chromosome class that is to be used in combination with guided local search

has to inherit this interface class. An according class derived from class feature has

to be realized, too.

5.3.4 Interface gcProvider

<<interface>>

gcProvider

+<<destructor>> ~gcProvider()

+greedyConstruct()

Figure 5.21: Interface gcProvider

If a chromosome class inherits this interface class, this indicates that a greedy

construction heuristic is implemented within. This is mandatory if the greedy ran-

domized adaptive search procedure metaheuristic is applied.

5.3.5 Interface tabuProvider

Chromosome classes which are able to deal with tabulists, that means they can fill

them with tabu attributes and check if changes to them are currently tabu.
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<<interface>>

tabuProvider

+<<destructor>> ~tabuProvider()

Figure 5.22: Interface tabuProvider

5.3.6 Parameters

As mentioned EAlib provides a powerful parameter handling feature. These param-

eters are used to configure the application. There exist parameters for a variety of

domains, e.g.:

• algorithm configuration,

• problem specification,

• termination criteria,

• logging facility.

During this master thesis many parameters where added, some where changed in

their semantics while others are only used. To illustrate what a user can customize

a detailed overview of the parameters affecting this master thesis is given:

eamod The actual Algorithm to use. Currently the following choices are available:

• 0: steady-state EA,

• 1: generational EA,

• 2: steady-state EA with island model,

• 3: generational EA with island model,

• 4: simple randomized local search,

• 5: simulated annealing,

• 6: tabu search,

• 7: greedy randomized adaptive search procedure,

• 8: guided local search.

Default: 0

maxi Should be maximized? True if maximization, false for minimization.

Default: 1
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mvnbop Neighbour selection function to use

• 0: random neighbour,

• 1: next improvement,

• 2: best improvement.

Default: 0

tgen The number of generations until termination.

Default: 100000

tcgen The number of generations for termination according to convergence.

Default: 0

tobj The objective value for termination when tcond==2.

Default: 0

ttime Specifies the amount of time the algorithm is allowed to run in user-space.

Default: 0

glsa Tuning parameter for the influence of penalties in guided local search.

Default: 0.5

glsri Interval of generations after which a penalty reset should be performed. If

this value is 0 penalty resets will be disabled.

Default: 0

sacint Specifies the number of iterations between two successive cooling steps, in

other words, the number of iterations for which the simulated annealing process

stays at a certain temperature level.

Default: 1

satemp Specifies the starting temperature of the simulated annealing process.

Default: 1.0

tlsize Specifies the default size of newly created tabu lists.

Default: 10

qapfile This parameter specifies from which file the qapInstance object should read

the actual instance data. The format of the problem data is the same as used

by the QAPLIB [7] instances:
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n

A

B

where n is the size of the instance, and A and B are either flow or distance

matrix.

Default: “”

saca Specifies the slope for the geometric cooling of the simulated annealing process.

g(T, t) = T ∗ saca, 0 < saca < 1

Default: 0.95

graspa Alpha parameter for GRASP. It is used in the both stages of the QAP

construction heuristic and controls the candidate restriction.

Default: 0.5

graspb Beta parameter for GRASP. It is used in the first stage of the QAP con-

struction heuristic and controls the candidate restriction.

Default: 0.1



By far the best proof is experience.

Sir Francis Bacon

Chapter 6

Experimental Results

To be able to compare the results from this different methods many internet available

QAP instances are used, the probably most important collection of instances is the

QAPLIB [7].

Of special interest are problem instances with a known optimal solution, espe-

cially if they are of larger size. To address this requirement some algorithms for

construction of such instances where proposed, for example the by Palubeckis [34].

6.1 Test Cases

Because the larger quadratic assignment problem instances are computationally

intractable, suboptimal algorithms such as the previous mentioned heuristics and

metaheuristics are very popular and enjoy wide use. However, when dealing with

new methods the quality and other properties such as robustness are important to

know before they can be applied in daily business or other critical environments.

Usually new algorithms are tested on QAP instances from the QAPLIB (see

Burkard, Karisch and Rendl [7]) which is a public internet available collection of

well known instances which allows to compare algorithms with each other. However,

the problem when using especially larger benchmark problems from QAPLIB is that

the optimal solutions are not known in general and one has to rely on lower bounds

(see Section 2.3 on page 11).

To overcome this problem an other set of test cases can be used. Those are

generated by special algorithms whose output are not only the matrices which the

define the problem but also with a provable known optimal solution. It has been

shown that instances generated by such algorithms are rather hard to solve for some

metaheuristics, namely simulated annealing, tabu search and others [34].

52
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6.2 Test Setup and Procedure

Our tests were performed on an ordinary desktop computer with GNU Linux in-

stalled. The key data of this testing system is listed below:

CPU Intel Pentium 4 2.8 GHz
OS Linux 2.4.21

GNU Libc 2.3.2
Compiler GCC 3.3.1

binutils 2.14.90.0.5

Table 6.1: System setup

We compiled EAlib and our test application for the quadratic assignment problem

with all documented speed optimizations enabled, i.e. with switch -O4.

The test instances are all included in the already mentioned QAPLIB problem

library. Each algorithm had to solve each instance 25 times, whereat each run had

a time limit of five minutes to complete. The parameter settings for the particu-

lar instances were made upon our knowledge which we obtained during preceeding

experiments.

In the following tables the parameter settings for each algorithm are given which

were not at their default value.

Parameter Value
maxi 0
ttime 300
tgen 0
tcgen 5000

Table 6.2: Parameter settings for Local Search

During the testruns of local search the tcgen parameter was set so that the

search process could terminate if now improvement was made for 5000 iterations,

which occurred quite of often. However, this parameter setting did not affect the

achieved results significantly.

Parameter Value
maxi 0
ttime 300
tgen 0

Table 6.3: Parameter settings for Simulated Annealing

For simulated annealing the parameters controlling the temperature schedule

were set to estimated values dependig on the size of the problem instance to solve

and the order of magnitude of the corresponding objective value.
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Parameter Value
maxi 0
mvnbop 2
ttime 300
tgen 0

Table 6.4: Parameter settings for Tabu Search

The parameter tlsize which controls the length of the tabulist was set depending

on the actual problem instance. The value chosen was in order of magnitude of the

size of instance to solve.

Parameter Value
glsri 5000
maxi 0
ttime 300
tgen 0
sub.eamod 4
sub.ttime 0
sub.tcgen 500

Table 6.5: Parameter settings for Guided Local Search

Parameter Value
maxi 0
ttime 300
tgen 0
sub.eamod 4
sub.ttime 0
sub.tcgen 500

Table 6.6: Parameter settings for GRASP

Additionally the tobj parameter has been set accordingly so that each testrun

at which global optimum was found was terminated as soon as this global optimum

was reached. This parameter setting did not change the results but sped up the

experiments significant.

6.3 Results

For the comparison of the individual algorithms which were implemented and inter-

pretation of the results four different charaterisic values are used, which in combi-

nation give a good insight into the data obtained during the experiments.
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• count of reached optima per problem instance. It is a measure for stability of

the search process. For the overall statistics the sum of the particular instances

is used,

• best objective value per problem instance indicates primarily the potential qual-

ity of the search process,

• mean objective value is a measure for both quality and stability of an algorithm.

However, outliers can have great influence on its value,

• deviation of objective value indicates the robustness of the search process.

Obviously the latter three indicators can not be compared directly among differ-

ent problem instances. Therefore they are presented in %-gap notation relative to

the known global optimal solution. The %-gap of an objective value x relative to

the global optimum opt is calculated as follows:

%− gap(x, opt) =
x− opt

opt
× 100% (6.1)

At first table 6.7 and accordingly figures 6.1 and 6.2 show the overall results of

each algorithm for all test instances together, i.e. the sum of the number of reached

optimas and the mean %-gap across all testruns. With the obtained results no

definitive winning algorithm can be declared. Nevertheless the results show clearly

which of the implemented methods are well suited to solve quadratic assignment

problems.

Algorithm # Opt Mean %-gap
Local Search 2 9.22
Simulated Annealing 132 3.47
Tabu Search 186 0.91
Guided Local Search 494 0.29
GRASP 485 0.12

Table 6.7: Overall results

Looking at the detailed results presented in follwing tables (6.8, 6.9, 6.10, 6.11

and 6.12) show that guided local search and GRASP are indeed clearly outperform-

ing the other algorithms.

This is not very surprising because both guided local search and GRASP include

received considerable more problem dependent knowledge in their implementation

than the other metaheuristics implemented during this master thesis.

It is also worthy to mention that guided local search and GRASP were the only

algorithms which were able to find distinct optimal solutions if the problem instance
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Figure 6.1: Overall mean %-gap

has more than one. This capability is allegable with the major strengths of these

algorithms. GLS gradually moves away from attractive solutions and therefor the

embedded random local search is able to reach widespread areas of the search space.

GRASP operates somewhat different, its strenghts lies the randomized greed heuris-

tics which, in the optimal case, produces good starting solutions for the embedded

local search procedure, which are distributed among the whole search space.

An other important feature that table 6.11 and 6.12 show is that the quality of

the obtained solutions only decreases somewhat and so these solutions, altough not

global optimal, can be adequate, too.

Tabu search also achieved good results in terms of the mean %-gap. However, it

has reached significant fewer global optima than guided local search or GRASP and

the deviation values indicate that the stability of the search process is somewhat

deteriorated. A reason for this behavior is the fixed tabulist length which could

cause a either a lockout of interesting regions of the search space when the tabulist

is too long or the search process gets stuck around a local optimum when the tabulist

is too short.

The results obtained with the simulated annealing metaheuristc were mixed.

For some problem instances, especially instances from the bur collection and smaller

instances from the other collections, simulated annealing clearly performs better

than tabu search. On the other side some results, e.g. for instances from the chr

collection, are not very satisfactory. This indicates that simulated annealing, in its
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Figure 6.2: Overall count of reached global optima

traditional fashion, suffers from a worse stability of the obtained results when applied

to the quadratic assignment problem, which could be an effect of the geometric

cooling schedule. An improvement like reheating or an occasional perturbation phase

might yield better solutions.

As expected local search only yields a few global optimal solutions but although

no global optimal solution was found for many problem instances especially from

the bur set the obtained solutions were nearly optimal. This implies that the chosen

neighborhood structure is well suited for solving the quadratic assignment prob-

lem which is certainly important for the other metaheuristics, too. However, it is

somewhat surprising that only results for the instances from the chr set were very

unsatisfactory.

The following tables show the results of our tests per algorithm and test instance.
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Optimum %-gap
Instance absolute count Best Mean Deviation
bur26a 5426670 0 0.13 0.35 0.17
bur26b 3817852 0 0.20 0.50 0.22
bur26c 5426795 0 0.00 0.36 0.36
bur26d 3821225 0 0.02 0.46 0.49
bur26e 5386879 0 0.01 0.36 0.31
bur26f 3782044 0 0.02 0.43 0.37
bur26g 10117172 0 0.02 0.38 0.32
bur26h 7098658 0 0.02 0.43 0.34
chr12a 9552 1 0.00 44.35 31.81
chr15a 9896 0 23.54 49.39 22.19
chr20a 2192 0 18.80 47.13 15.03
nug12 578 0 2.08 5.81 2.84
nug14 1014 0 1.18 4.52 1.58
nug15 1150 0 1.04 4.75 2.10
nug20 2570 0 2.33 4.65 1.34
nug25 3744 0 1.12 3.92 1.69
nug30 6124 0 2.06 4.46 1.07
tai10a 135028 0 0.59 5.65 3.12
tai12a 224416 1 0.00 8.82 3.37
tai15a 388214 0 1.86 4.61 1.78
tai17a 491812 0 2.74 5.89 1.67
tai20a 703482 0 2.41 5.67 1.62

Table 6.8: Local Search results
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Optimum %-gap
Instance absolute count Best Mean Deviation
bur26a 5426670 1 0.00 0.14 0.05
bur26b 3817852 7 0.00 0.14 0.09
bur26c 5426795 2 0.00 0.03 0.05
bur26d 3821225 1 0.00 0.03 0.08
bur26e 5386879 6 0.00 0.01 0.01
bur26f 3782044 1 0.00 0.09 0.14
bur26g 10117172 2 0.00 0.02 0.01
bur26h 7098658 2 0.00 0.06 0.17
chr12a 9552 18 0.00 4.18 7.74
chr15a 9896 2 0.00 16.68 10.72
chr20a 2192 0 7.21 33.85 50.55
nug12 578 23 0.00 0.61 2.77
nug14 1014 5 0.00 3.66 5.53
nug15 1150 8 0.00 1.84 5.06
nug20 2570 3 0.00 2.44 5.05
nug25 3744 4 0.00 2.93 6.88
nug30 6124 1 0.00 2.58 5.77
tai10a 135028 23 0.00 0.16 0.56
tai12a 224416 20 0.00 0.62 1.34
tai15a 388214 1 0.00 1.58 0.93
tai17a 491812 1 0.00 1.75 1.00
tai20a 703482 1 0.00 2.89 2.83

Table 6.9: Simulated Annealing results
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Optimum %-gap
Instance absolute count Best Mean Deviation
bur26a 5426670 3 0.00 0.19 0.11
bur26b 3817852 0 0.02 0.37 0.19
bur26c 5426795 4 0.00 0.22 0.28
bur26d 3821225 0 0.00 0.31 0.37
bur26e 5386879 2 0.00 0.25 0.27
bur26f 3782044 1 0.00 0.40 0.42
bur26g 10117172 2 0.00 0.13 0.17
bur26h 7098658 0 0.00 0.45 0.34
chr12a 9552 20 0.00 1.18 2.41
chr15a 9896 25 0.00 0.00 0.00
chr20a 2192 1 0.00 8.85 6.46
nug12 578 8 0.00 1.36 1.40
nug14 1014 16 0.00 0.87 1.55
nug15 1150 7 0.00 1.26 1.56
nug20 2570 5 0.00 1.16 1.10
nug25 3744 9 0.00 0.63 1.14
nug30 6124 4 0.00 0.75 1.09
tai10a 135028 23 0.00 0.04 0.13
tai12a 224416 25 0.00 0.00 0.00
tai15a 388214 19 0.00 0.19 0.87
tai17a 491812 5 0.00 1.00 0.95
tai20a 703482 7 0.00 0.52 0.81

Table 6.10: Tabu Search results
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Optimum %-gap
Instance absolute count Best Mean Deviation
bur26a 5426670 25 0.00 0.00 0.00
bur26b 3817852 25 0.00 0.00 0.00
bur26c 5426795 25 0.00 0.00 0.00
bur26d 3821225 24 0.00 0.00 0.00
bur26e 5386879 25 0.00 0.00 0.00
bur26f 3782044 25 0.00 0.00 0.00
bur26g 10117172 25 0.00 0.00 0.00
bur26h 7098658 25 0.00 0.00 0.00
chr12a 9552 25 0.00 0.00 0.00
chr15a 9896 10 0.00 0.93 0.85
chr20a 2192 1 0.00 5.22 3.47
nug12 578 25 0.00 0.00 0.00
nug14 1014 25 0.00 0.00 0.00
nug15 1150 25 0.00 0.00 0.00
nug20 2570 25 0.00 0.00 0.00
nug25 3744 25 0.00 0.00 0.00
nug30 6124 25 0.00 0.00 0.00
tai10a 135028 25 0.00 0.00 0.00
tai12a 224416 25 0.00 0.00 0.00
tai15a 388214 25 0.00 0.00 0.00
tai17a 491812 25 0.00 0.00 0.00
tai20a 703482 9 0.00 0.26 0.22

Table 6.11: Guided Local Search results
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Optimum %-gap
Instance absolute count Best Mean Deviation
bur26a 5426670 25 0.00 0.00 0.00
bur26b 3817852 25 0.00 0.00 0.00
bur26c 5426795 25 0.00 0.00 0.00
bur26d 3821225 25 0.00 0.00 0.00
bur26e 5386879 25 0.00 0.00 0.00
bur26f 3782044 25 0.00 0.00 0.00
bur26g 10117172 25 0.00 0.00 0.00
bur26h 7098658 25 0.00 0.00 0.00
chr12a 9552 25 0.00 0.00 0.00
chr15a 9896 25 0.00 0.00 0.00
chr20a 2192 0 0.18 2.02 1.56
nug12 578 25 0.00 0.00 0.00
nug14 1014 25 0.00 0.00 0.00
nug15 1150 25 0.00 0.00 0.00
nug20 2570 25 0.00 0.00 0.00
nug25 3744 24 0.00 0.00 0.01
nug30 6124 1 0.00 0.30 0.16
tai10a 135028 25 0.00 0.00 0.00
tai12a 224416 25 0.00 0.00 0.00
tai15a 388214 25 0.00 0.00 0.00
tai17a 491812 25 0.00 0.00 0.00
tai20a 703482 10 0.00 0.23 0.21

Table 6.12: GRASP results
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In the following figures the results of the algorithms are grouped per test instance

to show which instances were tackled best by what algorithms.

Figure 6.3: Mean %-gap for bur Instances
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Figure 6.4: Mean %-gap for chr instances

Figure 6.5: Mean %-gap for nug instances
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Figure 6.6: Mean %-gap for tai instances



A conclusion is the place where you got tired of thinking

Steven Wright

Chapter 7

Conclusions

After an elaborated introduction of the quadratic assignment problem and the im-

plemented metaheuristics this thesis presented a generic library for metaheuristics

and its application to the QAP.

The already existing foundations of the EAlib library have been improved to meet

the requirements for the new generic metaheuristics. In particular interfaces classes

have been introduced that allow fine grained modelling of new classes and support

runtime queries for implemented features of specific components. Additionally the

parameter handling mechanism has been extended with parameter groups that allow

to denote different groups of parameter values for different components in EAlib.

With this enhanced EAlib generic versions of the local search, simulated an-

nealing, tabu search, guided local search and greedy randomized adapetive search

procedure metaheuristics have been implemented. The latter two algorithms also

introduced an efficient way of handling an embedded algorithm.

All considered metaheuristics have then been applied to the quadratic assignment

problem which showed that only some special parts need to be implemeted separately

and most of the problem dependent sourcecode can be shared among all algorithms

involved.

Of course there are many interesting and useful ideas and task left open for future

work.

• implement more interesting algorithms like antcolony optimization, variable

neighborhood search or iterated local search,

• add more “standard” features to the implemented algorithms, e.g. dynamic

tabulist length, reheating, disturbance methods

• itegrate useful template chromosomes, e.g. a generic string chromosome,

• provide additional language bindings e.g. for Java and C#.
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