
A Directed Cut Model for the Design of the

Last Mile in Real-World Fiber Optic Networks ∗

Daniel Wagner, Carinthia University of Applied Sciences, Austria
Ulrich Pferschy, University of Graz, Austria

Petra Mutzel, University of Dortmund, Germany
Günther R. Raidl, Vienna University of Technology, Austria

Peter Bachhiesl, Carinthia University of Applied Sciences, Austria

Keywords: Network design, (Prize-Collecting) Steiner Problem, biconnectivity, ILP

1. Introduction

Fiber optic networks have recently become economically feasible for single households. Since the area-
wide expansion of fiber optic networks requires enormous financial resources, exact algorithms for finding
provably-optimal solutions of the arising network design problems are desirable. We consider the problem
of augmenting an existing network infrastructure by additional links (and switches) in order to connect it to
the given customer nodes. We distinguish between standard customers (type-1) for which a single link to
the infrastructure suffices, and important customers (type-2) that require a redundant connection. We also
consider a variant of the problem in which the condition for type-2 customers is relaxed in the sense that the
non-redundant part of the link shall not exceed a certain length (bmax-redundancy).

We distinguish between two different optimization tasks: In the Operative Planning Task, the goal is to find
a cost-efficient network augmentation for all the customers, whereas in the Strategic Simulation Task each
customer gives a certain prize, i.e., an intended return on investment, and the optimization goal is to choose
those customers whose connection provides the optimal profit.

More precisely, the problems considered are the following: We are given a connected undirected graph
G = (V, E, c, l, p, bmax) describing the spatial topology of the surrounding area of specified customer nodes,
in particularly, specifying possible cable routes. The set of nodes V is the disjoint union of the customer nodes
C and spatial nodes S (switches, possible Steiner nodes) resulting from the underlying spatial topology. The
set of customers C is the disjoint union of C1 and C2, whereby customers C1 require a single connection
(type-1) and customers C2 need to be redundantly connected (type-2). Each edge e = (i, j) ∈ E represents
a straight segment of Euclidean length le ≥ 0 where a fiber optics cable might be installed with construction
costs ce ≥ 0. In the (PCS) problem, the prizes of the potential customers are given by pi ≥ 0 for all
i ∈ C. The already existing network infrastructure is represented by the subgraph I = (VI , EI) of G. For
constructing our network, we need to consider the following constraints arising from several technical and
practical requirements in real-world network design:

• Junction constraints: Customer nodes of set C have to be connected to the existing infrastructure.
Attaching new connections to the infrastructure is only allowed at predefined junction nodes J ⊆ VI .

• Non-crossing constraint: Cable routes are not allowed to cross each other in a geometric sense.

• Biconnectivity constraints: Customer nodes of set C2 (type-2) need to be redundantly connected to the
existing infrastructure by two node-disjoint paths.

• bmax-redundancy: Occasionally, the biconnectivity constraints for the nodes in set C2 is relaxed in the
sense that such a node k ∈ C2 may be connected to any biconnected (Steiner or customer) node v via
a single path of maximum Euclidean length bmax(k).

∗This work is supported by the Austrian Research Promotion Agency (FFG) under grant 811378 and the European Marie Curie RTN
ADONET under grant 504438.

In the Operative Planning Task the objective is to find a minimum-cost connected subgraph G′ = (VG′ , EG′)
of G, VG′ ⊆ V , EG′ ⊆ E, connecting all customers in such a way that the technical constraints and re-
quirements are satisfied. This problem can be considered as a generalization of the Steiner tree problem with
additional redundancies (since typically we have |C2| < |C1|) and is therefore denoted as (STR).

In the Strategic Simulation Task the objective is to find a subgraph G′ of G and a subset of the potential
customers C ′ of C minimizing ∑

e∈EG′

ce +
∑

i∈C′\VG′

pi

so that all the technical constraints and requirements are satisfied with respect to the chosen customer set
C ′ ⊆ C. This problem can be considered as a generalization of the prize-collecting Steiner tree problem and
is therefore denoted as (PCS).

2. A Formulation based on Directed Cuts

Previously we applied a multi-commodity flow approach [?] to our problem. Since cut formulations have
shown to provide good descriptions for many network design problems, e.g. the prize-collecting Steiner tree
problem [?] which has many similarities to our problem, we also developed such a model. The idea of the
formulation is to enforce the validity of a solution with lower bounds on the capacity of all cuts between the
root node and each customer node to be connected.

Our directed cut formulation for the described problem relies on a transformation to the problem of finding a
minimum subgraph in a related, directed graph similar as it was previously proposed for the prize-collecting
Steiner tree problem [?]. Hence, we shrink the subgraph I of the existing infrastructure in G into a single root
node 0 (hyper-node transformation) and construct a directed support graph D = (VD, AD) corresponding to
the undirected graph G. Node set VD contains the nodes of the input graph G resulting from the hyper-node
transformation. Arc set AD contains an arc (0,i) for each edge incident to the root node 0 and two reversely
directed arcs (i, j) and (j, i) for each other edge (i, j) ∈ E.

With respect to the non-crossing constraint we define a(e, e′) = 1 if the edges e, e′ ∈ E are non-crossing ones
and 0 otherwise. Crossing pairs of edges can be determined efficiently in advance. In a further preprocessing
step we determine relevant nodes and arcs with respect to the bmax-redundancy constraint. Let N(k) ⊆ VD,
∀k ∈ C2, be the set of all nodes for which a path to k of length not exceeding bmax(k) exists and B(k) ⊆ AD

be set of all arcs a = (i, j), i, j ∈ N(k). These sets can be determined efficiently, e.g. by a modification of
Dijkstra’s shortest path algorithm [?].

The following variables are used in the integer linear programming formulation.

• Variables eij ∈ {0, 1}, ∀(i, j) ∈ E, indicating whether edge (i, j) is used (eij = 1) or not (eij = 0).

• Variables xij ∈ {0, 1}, ∀(i, j) ∈ AD, indicating whether arc (i, j) is used (xij = 1) or not (xij = 0).

• Variables yi ∈ {0, 1}, ∀i ∈ VD, indicating in the (PCS) variant whether node i is connected (yi = 1)
or not (yi = 0). In the (STR) variant, these variables are fixed to 1 for nodes i ∈ C.

• Variables zi ∈ {0, 1}, ∀i ∈ VD, indicating whether node i has two node-disjoint paths to the root node
(zi = 1) or not (zi = 0).

• Variables ak
j ∈ {0, 1}, ∀k ∈ C2, ∀j ∈ N(k), indicating whether customer node k is connected to the

node j with a simple path and j is biconnected (ak
j = 1) or not (ak

j = 0).

• Variables hk
ij ∈ {0, 1}, ∀k ∈ C2, ∀(i, j) ∈ B(k), indicating whether arc (i, j) is on the path from

customer node k to its assigned biconnected node (hk
ij = 1) or not (hk

ij = 0).

2

For convenience we introduce the following notation: A set of vertices S ⊂ M and its complement S = M\S
induce two directed cuts: δ+

M (S) = {(i, j) | i ∈ S, j ∈ S} and δ−M (S) = {(i, j) | i ∈ S, j ∈ S}. We also
write x(A) =

∑
ij∈A xij for any subset of arcs A ⊂ AD.

We start with a basic integer linear programming formulation that does not consider bmax-redundancy and
only enforces node-biconnectivity for nodes in C2:

Minimize

∑

(i,j)∈E

cijeij +
∑

i∈C

pi(1− yi) (1)

subject to

x(δ−(S)) ≥ yi ∀i ∈ C, ∀S ⊂ VD \ {0} | i ∈ S (2)

x(δ−(S)) ≥ 2zi ∀i ∈ VD \ {0}, ∀S ⊂ VD \ {0} | i ∈ S (3)

x(δ−VD\{v}(S)) ≥ zi ∀i ∈ VD \ {0}, ∀v ∈ VD \ {0, i}, ∀S ⊂ VD \ {0, v} | i ∈ S (4)

zi ≥ yi ∀i ∈ C2 (5)
xij ≤ eij ∀(i, j) ∈ AD (6)
xji ≤ eij ∀(i, j) ∈ AD (7)

xe + xe′ ≤ 1 ∀(e, e′) ∈ E2 | a(e, e′) = 1 (8)

Cut inequalities (2) are also called connectivity constraints and inequalities (3) edge biconnectivity constraints
because they require a capacity of one for each cut between the root node and customer nodes with yi = 1 or
a capacity of two for zi = 1, respectively. Inequalities (4) node biconnectivity constraints, respectively. They
enforce a capacity of one for each cut between the root node and customer nodes with zi = 1 whereby each
node v ∈ VD \{0, i}may be removed from the graph. Inequalities (5) relate variables yi and zi and guarantee
biconnectivity for customer nodes in set C2 for which yi = 1. Inequalities (6) and (7) relate the arcs of the
directed support graph D with the edges of graph G. Finally, inequalities (8) guarantee the non-crossing
constraint.

The number of constraints (2), (3) and (4) is exponential in the size of the graph. Therefore we dynamically
separate this constraints within a cutting plane framework. Regarding the required node-disjointness in a first
step we determine for each node i ∈ VD \ {0} with zi > 0 a set of candidate nodes which may violate
the node-disjointness constraint. In a second step for each candidate node v violated cut inequalities (4) are
determined and added. In our cutting plane framework we utilize Cherkassky and Goldbergs implementa-
tion of the push-relabel method for the maximum flow problem [?] to perform the required minimum cut
computations.

To also consider bmax-redundancy, we assume that every customer node in k ∈ C2 must be connected to a
biconnected node by a path of length less than or equal to bmax(k). For customer nodes that require strict
biconnectedness we set bmax(k) = 0. For bmax-redundancy the whole branch-line from the customer node k
to its biconnected attachment node j has to be modeled. This requires the use of variables ak

j and hk
ij , which

however can be restricted locally to the bmax-neighborhood of each customer node k. In analogy to x(A) we
use notation hk(A) =

∑
ij∈A hk

ij for any subset of arcs A ⊂ B(k).

3

The previous formulation is adapted as follows. Inequalities (5), which force strict biconnectedness for all
customer nodes, are replaced by the following constraints:

∑

j∈N(k)

ak
j = yk k ∈ C2 (9)

ak
j ≤ zj ∀k ∈ C2, ∀j ∈ N(k) (10)

hk
ij ≤ xij ∀k ∈ C2, ∀(i, j) ∈ B(k) (11)

hk(δ−N(k)(S)) ≥ ak
j ∀k ∈ C2, ∀j ∈ N(k) \ {k}, ∀S ⊂ N(K) \ {j} | k ∈ S (12)

∑

(i,j)∈B(k)

lijh
k
ij ≤ bmax(k) ∀k ∈ C2 (13)

Equations (9) force that each selected customer node of set C2 is assigned exactly one attachment node.
Inequalities (10) ensure that any assigned attachment node is biconnected. Inequalities (11) relate variables
hk

ij of the branch-line for customer node k with the corresponding variables xij , and cut inequalities (12)
guarantee the connectedness of customer node k and its biconnected attachment node j. These constraints
are separated dynamically in our framework, too. Finally, inequalities (13) limit for each node k ∈ C2

the total length of all edges for which hk
ij = 1 to bmax(k), i.e. the maximum branch lengths are enforced.

Obviously inequalities (9) and (10) imply inequalities (5) for customer nodes k with bmax(k) = 0, since
N(k) = {k} in this case. Therefore a special handling of these customer nodes is not necessary.

3. Preliminary Experimental Results

We tested our approach on Intel Xeon 3.6GHz machines with 4GB memory using the general purpose ILP
solver CPLEX 10.0 from ILOG. Each individual run was given a time limit of 7200 seconds. The experiments
were performed using artificial grid-graph instances and real-world based instances that were constructed
from GIS-data of a German city [?].

Table 1 gives a detailed overview about characteristics of the used instance sets. For each set it shows
the number of individual instances (# Inst.), the size of graph, average number of customers per set, the
dimension of the underlying Euclidean area and the average size of the bmax-neighborhoods. Since our
currently available test instances did not contain customer specific values for bmax, we set bmax = 20 for
customers of the G0100-I{1,2,3} instances and bmax = 30 for customers of the ClgSE-I{1,2,3} instances in
the tests with bmax-redundancy enabled.

The tests were run for both the (STR) and (PCS) problem variants with and without the non-crossing con-
straint (NCR) enabled. These different problem configurations were tested without and with bmax-redundancy,
see Tables 2 and 3, respectively. Columns %-Gap show the average relative gaps between the best integer
feasible solutions and the best lower bounds from the branch and bound tree, columns Opt list numbers of
instances from each set that were solved to provable optimality.

These preliminary results show that smaller or rather sparse problem instances can be solved with our ap-
proach within reasonable time. Furthermore the results indicate that already for small instances the bmax-
redundancy constraint seems to have great impact on the solvability, although we assumed moderate numbers
for bmax to limit the number of additional variables and constraints that have to be introduced. We also
observed that for the bmax-redundancy problem instances, the quality of the obtained feasible solutions is
quite good (already in early stages of the overall process), but the achieved lower bound is poor. Additional
experiments with larger problem instances are currently on the way.

4

Table 1: Characteristics of used instance groups.
Dimension Euclid. dim. bmax-neighborhood (avg.)

Set Inst. |V | |E| |C1| |C2| width height bmax |N(k)| |B(k)|
G0100-I1 15 100 342 10 7 100.00 100.00 20 7.38 6.38
G0100-I2 15 100 342 8 4 100.00 100.00 20 7.69 6.69
G0100-I3 20 100 342 6 4 100.00 100.00 20 5.70 4.70
G0400-I1 15 400 1482 7 4 100.00 100.00 10 8.58 7.58
G0400-I2 15 400 1482 9 7 100.00 100.00 10 8.10 7.10
ClgSE-I1 25 190 377 4 2 189.53 164.54 30 12.93 17.05
ClgSE-I2 15 190 377 9 4 189.53 164.54 30 10.23 12.54
ClgSE-I3 15 190 377 5 3 189.53 164.54 30 10.61 13.27

Table 2: Results without bmax-redundancy.
STR STR NCR PCS PCS NCR

Set Inst. Opt %-Gap Opt %-Gap Opt %-Gap Opt %-Gap
G0100-I1 15 15 0.00 15 0.00 15 0.00 15 0.00
G0100-I2 15 15 0.00 15 0.00 15 0.00 15 0.00
G0100-I3 20 20 0.00 20 0.00 20 0.00 20 0.00
G0400-I1 15 5 6.71 5 6.91 6 7.49 6 8.13
G0400-I2 15 4 3.68 3 9.12 4 4.04 3 6.40
ClgSE-I1 25 25 0.00 25 0.00 25 0.00 25 0.00
ClgSE-I2 15 15 0.00 15 0.00 15 0.00 15 0.00
ClgSE-I3 15 15 0.00 15 0.00 15 0.00 15 0.00

4. Conclusions and Future Outlook

We presented variants of the Steiner tree problem in graphs which considers biconnectivity and allows to
make a tradeoff between survivability of the designed cable-laying and the construction costs for the connec-
tion of customers in access networks.

For this problem we proposed a directed cut formulation. Our experiments showed that the bmax-redundancy
variant is much harder to solve than the strict biconnectivity variant.

A detailed comparison of the specific advantages and limits of the directed cut and the multi-commodity flow
model, especially the influence of the number of customers related to the size of the graph is ongoing work.
We are also investigating if we can improve our existing approaches, e.g. by the possibilities offered by a
column generation for the edge variables in our directed cut and multi-commodity flow model. Experimental
work with an alternative cut formulation is currently under investigation, too. Furthermore we are considering
a polyhedral analysis on our models in order to come up with additional cutting planes. In further experiments
we also plan to use additional benchmark instances used in the literature for similar problems (e.g., in [?, ?]).

Table 3: Results with bmax-redundancy.
STR STR NCR PCS PCS NCR

Set Inst. Opt %-Gap Opt %-Gap Opt %-Gap Opt %-Gap
G0100-I1 15 6 7.65 5 8.61 3 10.76 2 12.32
G0100-I2 15 9 5.08 8 6.61 7 6.90 7 7.54
G0100-I3 20 20 0.00 20 0.00 20 0.00 20 0.00
ClgSE-I1 25 24 0.20 24 0.11 22 0.37 25 0.00
ClgSE-I2 15 2 18.84 1 21.08 2 18.38 1 17.31
ClgSE-I3 15 10 5.72 2 17.78 9 5.38 2 18.95

5

