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Summary. We consider a generalization of the Steiner tree problem on graphs
suitable for the design of the last mile in fiber optic networks and propose a multi
commodity flow formulation for the exact solution of this problem. Some experi-
mental results are discussed.

1 Introduction

We consider the problem of finding a most cost-efficient fiber optic network
to connect given customer nodes to an existing network infrastructure.

Given is a connected undirected graph G = (V, E, c, l, p, kmax) describing
the topology of the surrounding area of given customer nodes. Each edge
e = (i, j) ∈ E represents a straight segment of Euclidean length le ≥ 0 where
a fiber optics cable might be installed with construction costs ce ≥ 0. The
existing infrastructure is given as a subgraph I = (VI , EI) of G. Furthermore
the set of nodes V consists of the customer nodes C that shall be connected
and spatial nodes S (possible Steiner nodes) resulting from the underlying
spatial topology. The customer set C is the disjoint union of C1 and C2,
whereby customers C1 require a single connection and customers C2 need to
be redundantly connected.
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In real-world network design we have to consider several technical and
practical requirements which make the problem more difficult. We model them
by the following constraints.

• Junction constraint: Customer nodes of set C have to be connected to the
existing infrastructure. Attaching new connections to the infrastructure is
only allowed at predefined junction nodes J ⊆ VI .

• Biconnectivity constraint: Customer nodes of set C2 need to be redun-
dantly connected to the existing infrastructure by two node-disjoint paths.

• kmax-redundancy constraint: Occasionally, the biconnectivity constraint
for the nodes in the set C2 may be relaxed in the sense that such a node
may be connected to any biconnected (Steiner or customer) node v via a
single path of maximum Euclidean length kmax(k).

• Non-crossing constraint: Cable routes are not allowed to cross each other
in a geometric sense.

The Operative Planning Task (OPT) consists of finding a minimum-cost
connected subgraph G′ = (VG′ , EG′) of G, VG′ ⊆ V , EG′ ⊆ E that connects
all customers so that the technical constraints are satisfied.

An extended variant is the Strategic Simulation Task (SST) that repre-
sents a generalization of the prize-collecting Steiner tree problem [5]. For each
customer c ∈ C a prize pc ≥ 0, i.e. an intended return on investment, is in-
troduced. The problem is to find a subgraph G′ of G that connects a subset
of customers, minimizing

∑

e∈EG′

ce +
∑

i∈C\VG′

pi

so that the technical constraints are satisfied as in the OPT variant.

2 An Approach Based on Multi Commodity Flows

Multi commodity flow formulations are known to yield strong descriptions
for many network design tasks including various constrained spanning and
Steiner tree problems [1, 3, 6]. The basic idea is to send in G one commodity
from the root node 0, which results from shrinking the infrastructure I into
a single node, to each customer node k ∈ C to be connected. This already
satisfies the junction constraint.

To realize the biconnectivity constraint for each customer node k ∈ C2,
two different commodities fk and gk are sent in G from the root node 0 to the
customer node k, which may not share any edges or have nodes other than the
root 0 and k in common. With respect to the kmax-redundancy constraint we
introduce an auxiliary commodity hk in the kmax-neighborhood of customer k
that indicates the segment where commodities fk and gk flow along the same
path according to the definition of kmax-redundancy.

We define the following node, edge and arc sets.
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• Arcs connecting the root with spatial nodes: A0 = {(0, j) ∈ E | j ∈ S}
• Edges connecting two spatial nodes with respect to customer k ∈ C:

ES(k) = {(i, j) | i, j ∈ V \ {0, k}}
• Pairs of reversely directed arcs corresponding to the edges in ES(k):

AS(k) = {(i, j), (j, i) | (i, j) ∈ V \ {0, k}}.
• Arcs leading to customer node k: A(k) = {(i, k) ∈ E}
• Let A′(k) = A0 ∪ AS(k) ∪ A(k) be the set of all arcs relevant for one

customer node k ∈ C.
• With respect to the non-crossing constraint let K be the set of all pairs of

edges that are crossing.
• Let N(k) be the set of all nodes with a path to k ∈ C2, of length not longer

than kmax(k) and B(k) be the set of all arcs (i, j) ∈ A′(k), i, j ∈ N(k).

The sets K, N(k) and B(k) can be efficently determined in advance.
The following variables are used in the integer linear programming formu-

lation.

• Variables xij ∈ {0, 1}, ∀(i, j) ∈ E, indicate whether edge (i, j) is used
(xij = 1) or not (xij = 0).

• For each k ∈ C and each (i, j) ∈ A′(k), we define a variable 0 ≤ fk
ij ≤ 1.

They represent the flow of commodity fk associated to node k ∈ C from
node i to node j via edge (i, j).

• For each k ∈ C2 and each (i, j) ∈ A′(k), we further define the variable
0 ≤ gk

ij ≤ 1. They represent the flow of a second commodity gk for each
node k ∈ C2 in order to achieve the required redundancy.

• Variables yi ∈ {0, 1}, ∀i ∈ C, indicate in the SST problem whether cus-
tomer node i is connected or not. In the OPT problem, these variables are
fixed to 1.

• Variables 0 ≤ hk
ij ≤ 1, ∀(i, j) ∈ B(k), ∀k ∈ C2, indicate the used edges

(i, j) forming the branch (i.e., non-redundant path) leading to node k.

The formulation as an integer linear program is as follows:

Minimize
∑

(i,j)∈E

cijxij +
∑

i∈C

pi(1− yi) (1)

subject to

∑

(i,j)∈A′(k)

fk
ij −

∑

(j,i)∈A′(k)

fk
ji =





−yk if j = 0
yk if j = k

0 otherwise
∀k ∈ C, ∀j ∈ V (2)

∑

(i,j)∈A′(k)

gk
ij −

∑

(j,i)∈A′(k)

gk
ji =





−yk if j = 0
yk if j = k

0 otherwise
∀k ∈ C2, ∀j ∈ V (3)
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fk
ij ≤ xij ∀(i, j) ∈ A0 ∪A(k), ∀k ∈ C (4)

fk
ij + fk

ji ≤ xij ∀(i, j) ∈ ES(k), ∀k ∈ C (5)

gk
ij ≤ xij ∀(i, j) ∈ A0 ∪A(k), ∀k ∈ C2 (6)

gk
ij + gk

ji ≤ xij ∀(i, j) ∈ ES(k), ∀k ∈ C2 (7)

fk
ij + gk

ji ≤ xij ∀(i, j) ∈ AS(k), ∀k ∈ C2 (8)

fk
ij + gk

ij ≤ xij ∀(i, j) ∈ A′(k) \B(k), ∀k ∈ C2 (9)

fk
ij + gk

ij − hk
ij ≤ xij ∀(i, j) ∈ B(k), ∀k ∈ C2 (10)

hk
ij ≤ fk

ij ∀(i, j) ∈ B(k), ∀k ∈ C2 (11)

hk
ij ≤ gk

ij ∀(i, j) ∈ B(k), ∀k ∈ C2 (12)
∑

(i,j)∈B(k)

(fk
ij + gk

ij − hk
ij) +

∑

(i,j)∈A′(k)\B(k)

(fk
ij + gk

ij) ≤ 1

∀i ∈ V \ {0, k},∀k ∈ C2 (13)
∑

(i,j)∈B(k)

lijh
k
ij ≤ kmax(k) ∀k ∈ C2 (14)

xe + xe′ ≤ 1 ∀(e, e′) ∈ K (15)

The objective function (1) corresponds to the usual one in the prize-
collecting Steiner tree problem [4]. Equalities (2) and (3) are the flow con-
servation constraints, in which we distinguish root node, connection objects
and possible Steiner nodes. Constraints (4) to (8) relate the flow variables to
xij and prevent reversely directed flows over the same edge. Constraints (9)
ensure for each arc (i, j) outside of the kmax-neighborhood of node k ∈ C2

that the flows of commodities fk and gk do not both use it.
Inequalities (10) force hk

ij = 1 if fk
ij = 1 ∧ gk

ij = 1, i.e., both commodities
associated to a k ∈ C2 are routed over the same arc (i, j). If fk

ij = 0 ∨
gk

ij = 0, inequalities (11) and (12) force hk
ij = 0. Inequalities (13) limit the

outgoing flow of each node i ∈ S with respect to commodities fk and gk to
one except for the case when both commodities leave the node over the same
edge being part of the branch (hk

ij = 1). Constraints (14) limit for each node
k ∈ C2 the total length of all edges for which hk

ij = 1 to kmax(k), i.e., the
maximum branch lengths are enforced. Finally, inequalities (15) guarantee the
non-crossing constraint.

The number of variables (16) and constraints (17) used by the formulation
is as follows:

|E|+ |C|+
∑

k∈C

|A′(k)|+
∑

k∈C2

(|A′(k)|+ |B(k)|) (16)

(|V |+ |E|) (|C|+ |C2|) +
∑

k∈C2

(|AS(k)|+ |A′(k)|+ 2|B(k)|)

+ |C2| (|V | − 1) + |K| (17)
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3 Experimental Results

We tested our approach on Intel Xeon 3.6GHz machines with 4GB memory
using the general purpose ILP solver CPLEX 10.0.1 from ILOG. For each
individual run a time limit of 7200 seconds was used. The tests were performed
with artificial grid-graph instances and instances constructed from real-world
data from a German city [2].

The tests were run for both the OPT and SST problem variants with and
without the non-crossing constraint (NCR) enabled. These different prob-
lem configurations were tested with (Table 2) and without (Table 1) kmax-
redundancy. The tests with kmax-redundancy enabled used a kmax of 20 for
the G0100-I{1,2,3} instances, 10 for G0400-I{1,2}, 30 for the ClgS-E instances,
100 for the ClgM-E instances and 150 for the ClgN1B-I{1,2} sets.

The column %-Gap shows the average gap between the best integer feasible
solution and the best lower bound from the branch and bound tree, the column
Opt shows the number of instances from a set that were solved to optimality.

Dimension OPT OPT NCR SST SST NCR
Set # |V | |E| |C1| |C2| Opt %-Gap Opt %-Gap Opt %-Gap Opt %-Gap

G0100-I1 15 100 342 10 7 15 0.00 15 0.00 15 0.00 15 0.00
G0100-I2 15 100 342 8 4 15 0.00 15 0.00 15 0.00 15 0.00
G0100-I3 20 100 342 6 4 20 0.00 20 0.00 15 0.00 15 0.00
G0400-I1 15 400 1482 7 4 10 1.74 10 0.96 9 1.83 8 2.74
G0400-I2 15 400 1482 9 7 9 0.90 10 1.16 8 1.20 8 1.68

ClgS-E 25 190 377 4 2 25 0.00 25 0.00 25 0.00 25 0.00
ClgM-E 25 1757 3877 5 2 14 0.90 16 0.63 14 0.86 17 0.95
ClgN1B-I1 20 2804 3082 9 3 17 0.13 17 0.11 18 0.12 19 0.05
ClgN1B-I2 20 2804 3082 4 5 19 0.00 19 0.00 20 0.00 20 0.00

ClgN1E-I1 20 3867 8477 4 7 3 3.48 4 4.72 2 6.82 4 4.47
ClgN1E-I2 20 3867 8477 6 4 1 5.11 0 4.84 1 5.00 1 5.66
ClgN1E-I3 20 3867 8477 7 6 2 8.81 1 8.81 1 9.18 1 6.67

Table 1. Results without kmax-redundancy.

This results show that at least smaller or rather sparse problem instances
can be solved with our model within reasonable time. Some larger problem
instances could be solved to provable optimality, too. Furthermore the results
indicate that the kmax-redundancy constraint has a great impact on the solv-
ability of the problem instances, although we used moderate numbers for kmax

to limit the number of additional variables and constraints that have to be
introduced.

4 Conclusions and Future Outlook

We presented a generalization of the Steiner tree problem in graphs which
allows to make a tradeoff between survivability and costs for the connection
of customers in access networks.
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Dimension OPT OPT NCR SST SST NCR
Set # |V | |E| |C1| |C2| Opt %-Gap Opt %-Gap Opt %-Gap Opt %-Gap

G0100-I1 15 100 342 10 7 13 0.56 13 0.78 13 0.75 13 0.75
G0100-I2 15 100 342 8 4 15 0.00 15 0.00 15 0.00 15 0.00
G0100-I3 20 100 342 6 4 20 0.00 20 0.00 20 0.00 20 0.00
G0400-I1 15 400 1482 7 4 1 6.76 1 7.18 1 7.25 2 7.63
G0400-I2 15 400 1482 9 7 0 8.75 1 8.24 0 8.35 0 8.75

ClgS-E 25 190 377 4 2 25 0.00 25 0.00 25 0.00 25 0.00
ClgM-E 25 1757 3877 5 2 0 4.26 1 7.93 0 3.86 1 4.35
ClgN1B-I1 20 2804 3082 9 3 4 2.97 4 3.44 3 3.26 3 3.74
ClgN1B-I2 20 2804 3082 4 5 3 7.34 2 6.55 2 8.47 3 6.41

Table 2. Results with kmax-redundancy.

Furthermore we proposed a multi commodity flow formulation for this
problem. Our experiments showed that although the kmax-redundancy con-
straint is a relaxation of the more strict biconnectivity constraint it is much
harder to solve.

Currently, we are investigating a formulation based on directed cuts. Cut
formulations have shown to be superior to flow formulations in the context of
Steiner tree problems and prize-collecting Steiner tree problems. So we expect
to gain improved results with this aproach.
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