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Abstract 

The Selective Graph Coloring Problem (SGCP) is about finding a subgraph of a particular structure 

whose chromatic number is as low as possible. The original graph is divided into several clusters, and 

from each cluster the subgraph has to contain exactly one node. This problem is NP-hard and 

therefore it is usually solved by means of heuristics.  

I implemented several variants of an algorithm making use of Variable Neighborhood Search (VNS) to 

search the space of solution candidates and then evaluating the solution using heuristic or exact 

methods. Furthermore, each variant can be used with or without a solution archive, i.e. a data 

structure in which previously found solutions are stored so that duplicates need not be re-evaluated 

but can be efficiently converted into new solutions instead. For exact computation of the chromatic 

number integer linear programming was used. To obtain an upper bound a variant of greedy coloring 

was used. Another variant of the algorithm also counts the number of conflicts that would appear if 

one color less were used. Finally, two methods were implemented to obtain a lower bound: 

maximum clique and linear programming using column generation. 

The program was tested with various instances from the literature. My algorithm often finished 

computation within a very short time, but in general it led to slightly worse results. 

  



Kurzfassung 

Beim Selective Graph Coloring Problem (SGCP) geht es darum, einen Teilgraphen mit spezieller 

Struktur zu finden, dessen chromatische Zahl so niedrig wie möglich ist. Der Ursprungsgraph ist in 

mehrere Cluster unterteilt, und von jedem Cluster muss der Teilgraph genau einen Knoten enthalten. 

Dieses Problem ist NP-schwer und wird daher meistens mit Heuristiken gelöst.  

Ich habe mehrere Varianten eines Algorithmus implementiert, der Variable Neighborhood Search 

(VNS) benutzt, um den Lösungsraum zu durchsuchen, und dann die gefundene Lösung mit 

heuristischen oder exakten Methoden evaluiert. Jede Variante kann mit oder ohne ein Lösungsarchiv 

verwendet werden. Ein Lösungsarchiv ist eine Datenstruktur, in der bereits gefundene Lösungen 

gespeichert werden, so dass Duplikate nicht neu evaluiert werden müssen, sondern effizient zu 

neuen Lösungen konvertiert werden können. Um eine obere Schranke zu errechnen, wurde eine 

Variante von Greedy Coloring verwendet. Eine weitere Variante des Algorithmus zählt auch die 

Anzahl der Konflikte, die entstünden, würde eine Farbe weniger verwendet werden. Schließlich 

wurden zwei Methoden umgesetzt, um eine untere Schranke zu berechnen: maximale Clique und 

lineare Programmierung mit Spaltengenerierung. 

Das Programm wurde mit verschiedenen Instanzen aus der Literatur getestet. Mein Algorithmus 

beendete die Berechnungen oft schon nach sehr kurzer Laufzeit, führte aber im Allgemeinen zu 

geringfügig schlechteren Ergebnissen. 
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Chapter 1

Introduction

Graphs are a useful tool for modelling real-world problems, as they can serve as
an abstraction for various things, such as networks and maps. For this reason,
the solution of problems related to graph theory may have an impact in real
life. Computer science students usually learn about some of these problems as
well as algorithms for solving them in advanced courses on algorithmics. Topics
commonly discussed in these courses include shortest path problems, finding the
maximal flow in a network, and the Traveling Salesperson Problem. Depth First
Search, Breadth First Search, Dijkstra’s algorithm, the Bellman-Ford algorithm,
the Floyd-Warshall algorithm, Johnson’s algorithm, the Ford-Fulkerson method,
preflow-push algorithms and other methods belong to the general education of
any computer scientist specializing in algorithms.

Graph coloring usually does not appear in these courses, but it is still an im-
portant problem about which many papers have been published. Applications
of graph coloring include time tabling and various forms of allocation tasks [10].
Since it is an NP-equivalent problem, various heuristics have been proposed to
get good results in a reasonable amount of time. The selective graph coloring
problem is an extension of graph coloring and for this reason, it is NP-hard as
well. It is about finding a subgraph consisting of one node of each cluster that
has a chromatic number as low as possible. For most researchers the motivation
to study this problem has been its relevance to optical networks [39]. Although
some papers have been published that propose efficient solution algorithms for
this problem, by far not all possible solution algorithms have been explored yet.
This was my motivation for choosing this problem as the topic of my diploma
thesis.

In this thesis, I will present diverse variants of a heuristic solution algorithm for
the selective graph coloring problem and the results obtained for some test in-
stances. The algorithm is based on variable neighborhood search for scanning
the solution space. Each solution is evaluated using exact or heuristic methods.
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4 CHAPTER 1. INTRODUCTION

The exact method is exact but slow. Regarding heuristics mainly an upper bound
is computed, but there are also variants calculating a number of conflicts that
would arise with one color less and giving a lower bound. In addition a solution
archive has been implemented, which makes it possible to avoid duplicates during
the search space exploration and easily find new solutions not evaluated as local
optima yet.

Figure 1.1 shows a graph with several clusters and a possible solution subgraph,
thus demonstrating what the SGCP is all about.
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Figure 1.1: a) A graph with several clusters, b) A possible solution subgraph

1.1 Graph Theory Basics

The selective graph coloring problem (SGCP) is a graph theory problem. Graph
theory deals with an abstract formalism that can be used to represent various real-
world structures, such as networks (e.g. telephone networks) or traffic structures.
A graph is a structure that consists of two sets, a set of nodes and a set of edges.
A node is an abstract entity which may represent anything, e.g. a telephone. It is
worth mentioning that the spatial structure of the graph is irrelevant. The nodes
may be located anywhere in space. It is not important where they are located or
how distant they are to each other. Edges are connections between nodes. Each
edge connects two distinct nodes. In the real world, an edge may correspond to
a line connecting two telephones, for example.

Graphs may be directed or undirected. If a graph is directed, this means that
each edge has a node for which it is an outgoing edge, and a node for which it
is an incoming edge. In this case, edges are also called arcs. However, the SGCP
deals only with undirected graphs. In undirected graphs the two nodes of each
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edge are of equal value.

Edges may have weights, that is values assigned to them. This plays a role
in many graph theoretical problems, but not in the SGCP. As a consequence we
do not consider edge weights in the SGCP.

In the SGCP nodes may be colored. That is, each node is assigned one color.
What is important is that in a proper coloring, there must not be a pair of two
nodes sharing an edge that have the same color. This is the main obstacle for
finding a solution to the SGCP.

In the graph coloring problem, an undirected graph is given, and the objective
is to determine the minimal number of colors that is needed to gain a proper
coloring of the graph. This number is also called the chromatic number of the
graph. The difference to the SGCP is that all nodes must be considered. In the
SGCP, by contrast, each node is assigned to a cluster. The objective is to find
a subgraph of the given graph which consists of one node per cluster, i.e. from
each cluster exactly one node per cluster is taken. This subgraph must have a low
chromatic number, in the optimal case the minimal chromatic number possible.

1.2 Applications

According to the literature [39], an application of the selective graph coloring
problem is the routing and wavelength assignment (RWA) problem in optical
networks. In such a network two edges (also called lightpaths) may use the same
wavelength if they do not share a common link. Therefore the problem is dual
to graph coloring, as edges instead of vertices are assigned colors. The optimal
assignment of wavelengths in such a network can thus be obtained by solving a
related instance of the selective graph coloring problem.

1.3 Formal Definition and Complexity

Given is an unweighted, undirected graph G =< V, E > with a set of nodes V and
a set of edges E. Each node is assigned to one subgraph, a so-called cluster Ci.
In total there are n disjoint clusters. The goal is to find a subgraph S = G(W )
with W =< v1, ..., vn > where vi ∈ Ci, 1 ≤ i ≤ n. The subgraph should have
a minimal chromatic number. The chromatic number is the minimal number of
different colors using which the nodes of a graph can be colored so that there is no
single pair of nodes u and v connected by an edge (u, v) that have the same color.

Thus, the SGCP is an extension of the graph coloring problem, which computer
scientists and mathematicians have studied for decades. The Graph Coloring
Problem is about computing the chromatic number of a given graph, and already
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in 1972 it was discovered to be an NP-equivalent problem [3]. Since the Graph
Coloring Problem is a subproblem of the selective graph coloring problem, the se-
lective graph coloring problem is NP-hard as well. For this reason it makes sense
to use a heuristic approach both to estimate the chromatic number of a possible
solution and to find a better solution.



Chapter 2

Literature Survey

This chapter provides an overview of the literature about the selective graph
coloring problem as well as graph coloring.

2.1 Selective Graph Coloring Problem and

Routing and Wavelength Assignment Problem

In the literature, the selective graph coloring problem is sometimes also called the
partition graph coloring problem.

Frota et al. [39] present a branch-and-cut algorithm for the partition graph col-
oring problem. It is based on an integer linear programming formulation that
generalizes the 0-1 formulation for the graph coloring problem presented in [28]
and [29]. With a branching strategy the Partition Graph Coloring Problem is
decomposed in two subproblems, and the linear relaxation bound is improved by
means of inequalities.

In an earlier publication Li et al. [22] proved that the selective graph coloring
problem is as hard as standard vertex coloring. They also proposed extensions
of well-known vertex coloring heuristics to the partition coloring problem and ap-
plied these heuristics to some instances of the routing and wavelength assignment
problem. This paper also cites a lot of papers that deal with theoretical aspects
of the routing and wavelength assignment problem.

Noronha et al. [34] propose a heuristic for solving the Partition Graph Color-
ing Problem based on tabu search.

The paper by Choi et al. [23] reviews various algorithms for solving the rout-
ing and wavelength assignment problem. We can learn from this paper that there
are actually two types of algorithms: the ones assuming static traffic either have
the objectivity to “minimize the required number of wavelengths in order to ac-

7
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commodate a given set of connections” (this corresponds to the SGCP) or to
“maximize the number of connections accommodated if the number of wave-
lengths is limited”. The other type of algorithms assumes dynamic traffic, which
means that “connection requests arrive to and depart from the network one by
one in a random manner” and the objective is to “minimize the blocking prob-
ability”. This shows that routing and wavelength assignment actually comprises
more problems than just selective graph coloring. However, the paper focuses
on the problem variants that are related to selective graph coloring. It breaks
the problem down into two subproblems, each of them being NP-complete. The
“routing problem” is nothing but the problem to search for a subgraph that hope-
fully yields a small chromatic number. The paper states that diverse variants of
shortest path algorithms are most commonly used for this problem. Regarding
the problem of selecting a solution, the paper mentions two classes of methods:
sequential selection (by means of greedy algorithms) and combinatorial selection.

2.2 Graph Coloring

A large number of papers have been published on graph coloring. One of the oldest
that is still frequently cited is [3], in which the author proved (among many other
things) that the graph coloring problem is NP-equivalent. Another one of the early
papers is [5], in which the author proposes a greedy algorithm for graph coloring
(recursive largest first algorithm) that yields better results than the algorithms for
this problem known before (such as the randomly ordered sequential algorithm,
the largest first algorithm, the smallest last algorithm, interchange algorithms and
the approximately maximum independent set algorithm). This algorithm is still
used nowadays, as the paper [43] shows, which presents an efficient implementa-
tion of it. The basic idea of the RLF algorithm is that in each iteration it selects
(if possible) a node that is not adjacent to any colored node and that is connected
to the largest number of uncolored nodes that are adjacent to some colored node.
If that is not possible, the process is repeated recursively on the subgraph induced
by the uncolored nodes.

A more recent classic paper is [10], in which Mehrotra and Trick propose an ap-
proach to graph coloring that is based on integer linear programming and makes
use of a technique called column generation. With this technique it is possible to
obtain an exact solution more efficiently since at first only a part of the problem is
added to the integer linear program and then, depending on the results of a dual
program, it is decided whether the primal program is expanded. This approach
can also be used for computing lower bounds by means of a linear relaxation.

The paper [42] is based on Mehrotra’s and Trick’s approach and presents an
implementation of it which is supposed to provide “numerically safe results, inde-
pendent of the floating-point accuracy of the linear programming software used”.
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The technique of column generation is also used in [44].

Hertz et al. [37] propose a novel heuristic algorithm for graph coloring which they
call variable space search. It is a variant of local search which considers “several
search spaces, with various neighborhoods and objective functions”. Whenever
the search does not manage to overcome a local optimum, the algorithm moves
from one search space to another. The algorithm actually does not try to compute
the chromatic number, but it tries whether a graph can be colored with a given
number of colors k. Thus several runs are needed in order to determine a tight
upper bound for the chromatic number.

Lue et al. [41] introduce a memetic algorithm for graph coloring, that is a heuristic
algorithm that combines an evolutionary algorithm with more traditional types of
heuristics. A genetic algorithm is also used by [24], in combination with a column
generation technique.

All the algorithms for graph coloring can be used in programs that try to solve the
selective graph coloring problem, for the subproblem of determining the chromatic
number of a solution. In order to come up with new solutions, a large number
of metaheuristics can be used. For this reason, there is an enormous number of
different approaches for the selective graph coloring problem that may lead to
success. Therefore we can expect that researchers are yet going to publish a lot
of papers dealing with the SGCP.





Chapter 3

Methods

In this chapter I am going to present all the methods for solving the SGCP I have
implemented. This also includes a couple of methods which I decided to abandon
after the first test runs because they turned out to be too inefficient.

Basically, I use the variable neighborhood search (VNS) metaheuristic to search
the solution space and various exact as well as heuristic methods to evaluate the
solutions. Evaluating a solution basically means to obtain either the exact value or
an approximation of its chromatic number. For this purpose I have implemented
an exact method using integer linear programming as well as several heuristics
determining upper and lower bounds.

There are various approaches to estimate the chromatic number of a graph. One
of them is to compute an upper bound by means of a graph coloring algorithm.
In order to determine whether a new solution is better than the currently best
known solution, it makes sense to additionally compute a couple of other param-
eters apart from the upper bound. One option is to compute a lower bound, so
that a solution is considered the better one if it has the same upper bound, but
a smaller lower bound. Another possibility is to compute the number of conflicts
that would occur if the graph was colored using one color less than estimated by
the greedy coloring algorithm. If two solutions have the same upper bound, it
makes sense to prefer the one with the lower number of conflicts.

Since I was interested in an efficient exploration of the search space (I aimed for an
execution time not exceeding 10 minutes per instance), I chose a greedy coloring
algorithm for the upper bound. It has a polynomial run time with regard to the
number of nodes since each node is assigned a color only once, and to determine
the color of a node only each neighboring node needs to be considered once. For
computing the number of conflicts if one color less were used, each node needs to
be visited only once after the graph coloring algorithm has been executed, so the
conflict determination algorithm has linear run time with respect to the number

11



12 CHAPTER 3. METHODS

of nodes. What is more costly is the computation of a (reasonable) lower bound.
One (straight-forward but very inefficient) method for this is to compute the size
of the maximal clique in the graph, which has an exponential run time in terms
of the number of nodes. Known more efficient approaches utilize linear program-
ming with column generation, but they are not polynomial time algorithms, either.

It is also possible to compute the exact value of the chromatic number by means
of integer linear programming, but due to the NP-hardness of this variant it is
only feasible for instances with a rather low number of nodes. For other instances
it takes far too long.

All variants of the algorithm can be enhanced by a solution archive, which is
an efficient way to check whether a solution has already been discovered and
evaluated once. If a duplicate is found, it does not have to be regarded again
and a new solution can be easily computed using a converting function. During
tests, however, the solution archive has not led to a significant improvement of
the quality of solutions.

3.1 Metaheuristics

What are metaheuristics? In his book [38], Sean Luke defines them as a “ma-
jor subfield” of stochastic optimization, which is “the general class of algorithms
and techniques which employ some degree of randomness to find optimal (or as
optimal as possible) solutions to hard problems”. They are applied to “I know it
when I see it” problems. These are problems in which it is not easy to find the
optimal (or even a good) solution, but if you have a solution, you can test it and
see how good it is.

Basically metaheuristics are methods of exploring some defined solution space.
They do not guarantee that you will find the optimal solution, but they are sup-
posed to make you find solutions that come close to the optimum. Usually the
solution space contains various local optima. For a good metaheuristic it is impor-
tant to be able to overcome local optima since an algorithm that gets stuck with
some local optimum will most likely not find the global optimum. According to the
No Free Lunch Theorem [11], the outputs of the various kinds of metaheuristics in
general are statistically identical. This is because good solutions are usually scat-
tered all about the search space due to the high degree of Kolmogorov randomness
almost all objective functions have [25]. Therefore, various metaheuristics can be
used for the same problem with similar chances of obtaining good results in a
reasonable time. And yet, some metaheuristics may be particularly suitable for
some special problems.
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3.1.1 Solution Representation

A valid solution of the SGCP is a subgraph S = G(W ), W =< v1, ..., vn > that
consists of n nodes which are all elements of the set of nodes V of the graph G.
Each of these n nodes must be part of a different cluster within G. Since there
are exactly n clusters, this means that the solution subgraph contains exactly one
node per cluster. Moreover, the edges that connect these nodes are part of the
solution subgraph.

For this reason, it makes sense to encode the solution as an array of integer
values. Bounds and/or the exact value of the chromatic number are stored in
separate variables.

3.1.2 Initialization

After loading the graph from a file or, alternatively, generating a new, random
graph, the program has to find an initial solution to start with. Of course it could
simply choose a random node from the set of nodes of each cluster. But this
approach would probably not often yield to a good solution. To come up with a
better initial solution, I devised and implemented the following greedy construc-
tion heuristics:

For the first cluster, select a random node from its set of nodes. Then select
the nodes for the other clusters in ascending order. Always compute the degree
of each node within the solution subgraph and select one of the nodes that have
the lowest degree.

This ensures that the maximal degree of the nodes in the initial solution is rather
small. My hypothesis is that the smaller the degree of the maximal nodes, the
more likely will it be possible to achieve a good value for the chromatic number.
As I will explain later, the maximal degree of a graph plus one is an upper bound
of its chromatic number, although usually not a very tight one.

Algorithm 1 provides pseudocode that demonstrates how the initialization pro-
cedure works.
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Algorithm 1: Initialization

select random node of cluster C0;
for i = 1, . . . , number of clusters - 1 do

bestIdx = 0;
bestCnt = 0;
for x ∈ nodes of cluster i do

if degree of node x < bestCnt then

bestIdx = x;
bestCnt = degree of node x;

select node with index bestIdx from the set of nodes of cluster i;

3.1.3 Local Search

Local search is a very simple metaheuristic which the more sophisticated variable
neighborhood descent makes use of. Basically, the heuristic scans through all the
solutions that are neighbors to a given initial solution. For example, the set of
neighbors may be the set of all solutions in which for one single cluster a different
node has been chosen than in the initial solution. The aim of local search is to find
a solution that is better than the initial solution. Upon finding such a solution,
another iteration of local search may be done, with the new solution acting as the
initial solution. The algorithm stops when no further improvement is possible.

In general there are three different strategies for local search. The one I used
is called first improvement. As soon as local search finds a solution that is better
than the initial solution, it stops. The initial solution is then overwritten by the
new (better) solution and a new iteration may be performed. Another strategy is
best improvement. An algorithm that is based on this strategy scans the entire
neighbor space and stores a pointer to the best solution, i.e. a local optimum.
Then this local optimum is used as the initial solution for the next iteration. A
third strategy is simply to choose a random neighbor.

In my program the neighborhoods differ by the number of nodes that are ex-
changed. In neighborhood number k, new nodes for k clusters are chosen.

Algorithm 2 shows in pseudocode how local search with first improvement works.
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Algorithm 2: Local Search with First Improvement

while stopping criterion is not fulfilled do

for S ∈ the set of neighbor solutions of initial solution S0 do

if S is better than S0 then

S0 = S;
exit the for loop;

3.1.4 Variable Neighborhood Descent

In variable neighborhood descent (VND) [21], we use more than one neighbor-
hood structure. The reason for this is that we can compare various local optima
in this way. VND begins with one neighborhood structure and performs a local
search. If the local search has been successful, i.e. a better solution than the ini-
tial one has been found, another iteration of local search is performed with some
neighborhood structure. Otherwise, the neighborhood structure is switched. If
the last neighborhood structure has been used and still no improvement has been
found, the algorithm exits, since we are stuck in a local optimum.

In my solution algorithm for the SGCP neighborhood structure k comprises all
the neighbors that differ from a reference solution in k nodes.

Algorithm 3 shows a general implementation of VND in pseudocode.

Algorithm 3: Variable Neighborhood Descent (input: solution L, out-
put: solution L)

i = 0;
while i ≤ last neighborhood structure do

perform local search on solution L with current neighborhood
structure i;
if local search was successful then

i = 0;

else

i = i + 1;

3.1.5 Variable Neighborhood Search

A further improvement with the aim to overcome local optima is variable neigh-
borhood search (VNS) [16]. This metaheuristic makes use of either a local search
or a VND. With one of these techniques, it tries to find a solution better than
the initial one. If this attempt has been successful, the VNS resets a variable
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representing a counter to zero, otherwise it increases it by one. In either case, the
VNS modifies the discovered solution by means of a procedure called “shaking”.
If the counter has reached its maximal value, the algorithm quits, otherwise an-
other iteration of local search or VND is performed, and so on.

Algorithm 4 demonstrates VNS.

Algorithm 4: Variable Neighborhood Search (input: solution L, output:
solution L)

counter = 0;
while counter < maximal counter value + 1 do

perform shaking of current solution L;
perform local search or VND on L;
if local search or VND was successful then

counter = 0;

else

counter = counter + 1;

For the SGCP, a reasonable shaking procedure would be to change the selected
node for a given number of clusters. In my implementation this number depends
on the value of the counter variable used by the VNS, to which I add the maximum
value of k used in VND according to the current settings. So if the counter vari-
able is low, only a relatively small number of nodes will be changed. This makes
sense as a higher value of the counter variable means that the search procedure
has failed to discover a better solution several times, so we have to get away from
that local optimum.

Algorithm 5 shows a generic implementation of shaking in pseudocode.

Algorithm 5: Shaking (input: solution L, output: solution L)

for i = 1, . . . , number of nodes to be changed do

c = random number between 0 and the number of clusters - 1;
count = 0;
for x ∈ nodes of cluster c do

count = count + 1;

x = random number between 0 and count − 1;
deselect the node in L that is currently selected from the set of
nodes of cluster c;
select node in L with index x from the set of nodes of cluster c;
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3.2 Solution Evaluation

The process of solution evaluation comprises the computation of either the exact
chromatic number of a given solution or an upper bound for it, plus a lower bound
or the number of conflicts that would occur if one color less were used for coloring
the graph.

3.2.1 Upper Bound: Maximal Degree

A very simple and fast method for computing an upper bound for the chromatic
number is to compute the maximal degree of the graph. The maximal degree of a
graph increased by one is an upper bound for the chromatic number of the graph.
This works for any graph. However, this bound is not very tight in the general
case. Therefore this upper bound should only serve as a temporary value which
is to be refined by a more sophisticated algorithm, such as the greedy coloring
algorithm I am going to describe in the next section.

The validity of this upper bound can be easily seen by remembering that a valid
coloring of a graph is a coloring such that any pair of nodes u and v which are
connected by an edge (u, v) have two different colors. The degree of a node is
its number of neighbors, and the maximal degree of a graph is the degree of the
node that has the largest number of neighbors. If all d neighbors of some node u

have different colors, then u must be in yet another color. So if d is the number
of neighbors of the node with the largest degree, the number of colors we need in
order to obtain a valid coloring of the graph is at most d + 1.

In his paper [1] R. L. Brooks proved that for a connected, simple graph G, the
chromatic number is always at most equal to the maximal degree of G, unless G

is a complete graph or an odd cycle. So only if G is a complete graph or an odd
cycle, it may be necessary to add one to the maximal degree in order to obtain
the chromatic number. A complete graph is a graph in which every node u is
connected by an edge to every other node v. An odd cycle is a cycle (i.e. a struc-
ture in which there is a path from any node belonging to this structure to itself)
that consists of an odd number of nodes. To determine whether G is a complete
graph, it suffices to check whether all elements of the adjacency matrix have
been set to true; this can be done in polynomial time with respect to the num-
ber of nodes. For checking whether G is an odd cycle, depth first search may be
employed, which has a time complexity of O(|V |+|E|), so it is polynomial as well.

However, since the upper bound obtained by computing the maximal degree of
the graph will later be refined by means of greedy coloring, it is enough to take
the maximal degree plus one. This computation can be done in polynomial time
with respect to the number of nodes.



18 CHAPTER 3. METHODS

3.2.2 Upper Bound: Greedy Coloring

A tighter upper bound for the chromatic number can be obtained by a graph
coloring algorithm, such as greedy coloring. There are many variants of greedy
coloring. All of them have in common that they determine the color of each node
only once and always assign the color with the lowest feasible index. Therefore
they have polynomial run-time and thus are very efficient. The result of such an
algorithm is always a valid upper bound, but the tightness of this upper bound
depends on the order in which the nodes have been chosen. Some variants of
greedy coloring have been shown to perform very poorly.

However, initial tests led to the impression that visiting the nodes in the order of
breadth first search leads to pretty good results. As the initial node to start with,
my algorithm chooses one of the nodes with the largest degree. Then it stores its
neighbors in the queue of nodes that yet have to be colored, and after coloring
the second node, it adds the neighbors of the second node to the queue, and so on.

Algorithm 6 provides pseudocode for my variant of greedy coloring.
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Algorithm 6: Greedy Coloring (input: S = G(W ), output: chromatic
number upper bound

queue Q = empty;
u = node in W with maximal degree;
assign color 0 to node u;
maxCol = 0;
for v ∈ all nodes of the graph except u do

if there is an edge (u, v) then

add v to queue Q;

stopCondition = false;
while stopCondition == false do

while Q is not empty do

u = next node from Q;
set all elements of array colorFeasible to true;
for v ∈ W {u} do

if there is an edge (u, v) then

if a color c has been assigned to node v then
colorFeasiblec = false;

else

if v is not in queue Q then

add v to queue Q;

c = lowest number for which colorFeasiblec == true;
assign color c to node u;
if c > maxCol then

maxCol = c;

stopCondition = true;
for u ∈ W do

if u has not been assigned a color yet then

add u to queue Q;
stopCondition = false;
exit the for loop;

return maxCol + 1;

3.2.3 Minimal Conflicts Heuristic

After computing an upper bound for the chromatic number by means of greedy
coloring, it makes sense to compute the number of conflicts that would arise if
one color less were used for coloring the graph. A conflict is an edge (u, v) where
nodes u and v have been assigned the same color. To compute the number of
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conflicts, the program takes a look at all the nodes that have been assigned the
color with the largest index. The least number of neighboring nodes that share
their color is the number of conflicts this node generates.

The number of conflicts may be used as an additional criterion whether a so-
lution is better than another one with the same chromatic number.

Algorithm 7 shows a heuristic for the number of conflicts of a solution.

Algorithm 7: Number of Conflicts (input: colorization of S, output:
number of conflicts

numConflicts = 0;
for u ∈ W do

if u has the least often used color then

minOcc = ∞;
for c ∈ all possible colors do

count = 0;
for v ∈ all neighbors of u do

count = count + 1;

if count < minOcc then

minOcc = count;

numConflicts = numConflicts + minOcc;

return numConflicts;

3.2.4 Lower Bound: Maximal Clique

If there were an efficient algorithm to compute a tight lower bound for the chro-
matic number of a graph, it could be used as an additional evaluation criterion
for the solution subgraphs.

As explained in [42], the size of the maximal clique of a graph is a rather tight
lower bound for its chromatic number. A clique is a subgraph that, if isolated,
would be a complete graph. In other words, for all pairs of nodes u and v that
belong to the clique, there exists an edge (u, v). Since every node in a clique is
connected to every other node, all the nodes must be assigned pairwise different
colors. Therefore, the chromatic number of a graph in which this clique appears
cannot be lower than the size of the clique.

Unfortunately, computing the size of the maximal clique has exponential run-
time in terms of the number of nodes. Therefore it does not make sense to
use it in practice. But there is another method for computing a lower bound,
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employing linear programming. I will explain it shortly. First let me introduce
linear programming and explain how it can be used to obtain the exact chromatic
number.

3.2.5 Exact Method: Integer Linear Programming

It is possible to obtain the exact value of the chromatic number of a graph by
means of integer linear programming. However, this method is not very efficient.

Linear programming is one of the main methods of operations research. It can
be applied for systems of linear inequalities that come along with an optimality
criterion, such as the maximization or minimization of some scalar product of two
vectors. Linear programming can be solved by means of various algorithms, in-
cluding the simplex method, the ellipsoid method and the interior point method.
There are also techniques for solving some special cases of problems, such as
Dantzig-Wolfe decomposition, benders decomposition and linear relaxation.

To solve linear programs efficiently, various commercial libraries exist, such as
ILOG CPLEX, which I used in my implementation.

Integer linear programming differs from linear programming in that the variables
can only take discrete values. It is generally much harder to solve.

The standard formulation of integer linear programming for graph coloring, which
is also the one I implemented, is as follows:

xv,c be a variable that determines whether color c is assigned to node v. If
so, it is 1, otherwise it is 0.

Minimize the number of colors for which xv,c = 1

subject to
k∑

c=1

xv,c = 1 ∀ nodes v ∈ V

and xu,c + xv,c ≥ 1 ∀ colours c ∈ K ∀ edges (u, v) ∈ E

where xv,c = 1 if node v is assigned color c, otherwise 0

The objective is to minimize the number i of colors c for which there exists
at least one node v with xv,c = 1.

A linear relaxation of this program - that is, a variant in which xv,c is not limited
to 0 or 1 and can take any value in between - can be used to obtain a lower
bound. However, there is also a more efficient method for computing tight lower
bounds which makes use of an alternative formulation of the linear program and
the column generation technique.
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3.2.6 Lower Bound: Linear Programming with Column

Generation

This solution was originally proposed by Mehrotra and Trick in [10] for computing
the exact value of the chromatic number, but it can also be employed for finding
a tight lower bound. This approach is based on the notion of independent sets.
An independent set is a subset of the node set V which has the property that no
nodes of this subset are connected. Clearly, two nodes belonging to the same in-
dependent set can be safely assigned the same color. So if we start with an empty
set of nodes and consecutively add independent sets to it until all nodes of the
original graph are in this set, we can compute an upper bound for the chromatic
number, and if we manage to find the least possible number of independent sets
that need to be added to the empty set so that it becomes identical to the set of
nodes V , this number is the exact value of the chromatic number. This approach
can be formulated as a linear program as follows:

The variable xs equals 1 if independent set s is included in the solution.

Minimize
∑

s
xs

subject to
∑

s:i∈S

xs ≥ 1 ∀i ∈ V

where xs ∈ {0, 1} ∀s ∈ S

If we apply linear relaxation on this program, so that xs may take any value
between 0 and 1, this formulation can be used to obtain a tight lower bound.
However, it is still not efficient because of the large number of variables it gener-
ates. The trick to make it more efficient is to only start with a minimal number
of independent sets (thus minimizing the number of constraints), then solve the
linear program and decide by means of a dual program whether it makes sense to
add another variable.

To determine whether another independent set should be added to the program,
the following dual problem has to be solved:

Maximize
∑

i∈V

πizi

subject to zi + zj ≤ 1 ∀(i, j) ∈ E

where zi ∈ {0, 1} ∀i ∈ V

Here, πi stands for the dual value of constraint number i in the primal prob-
lem.
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3.3 Solution Archive

Solution archives [45] are a rather new technique. The idea is to store valid solu-
tions that have already been evaluated so that they need not be evaluated again
in case the metaheuristic (e.g. an evolutionary algorithm) stumbles across them
again. A compact encoding of the solution is achieved via the data structure
“trie”, which is a tree in which one element of the solution array is stored in
each node, so to obtain a complete solution, we have to walk through the tree
from the root until the leaf representing the final element of the array. This data
structure has the advantage that the look-up time is independent of the number
of solutions stored in the trie.

Each trie node consists of a value, a pointer to one of its children and a pointer to
its “right” neighbor. In case of our problem, it makes sense to have each level of
the trie represent one cluster and have the value of the trie node be the number
of the selected node from the original graph.

If a solution already appears in the solution archive, it is possible to derive a
new solution. The algorithm has to traverse through the trie until it finds a level
that is not complete (i.e., not all nodes of the next level are already children),
and then it can build a new solution starting from the subsequent level by random
node selection.

To check whether a solution candidate is already in the archive, a hash map is
used, as it speeds up retrieval. To compute the hash value, various hash functions
can be used. One possibility is to compute h(x) = (x0 + x1b + x2b

2 + ... + xnbn)
mod k, where k is the size of the hash table, b is the basis and xi is the number
of the node that has been selected for cluster i.

3.4 Complete Algorithm

The complete algorithm is a VNS making use of the aforementioned heuristic and
exact methods for computing the chromatic number and thus evaluating solution
candidates. First an initial solution is computed by means of the initialization
method. Then a counter is set to 0, and while this counter is lower than some
maximal value (default: 5) and the time limit of 600 seconds has not expired, the
VNS calls a VND procedure to search for better solutions. If a better solution
is found, the counter is reset to 0, otherwise the counter is incremented by 1.
The solution is then either converted to a new solution by means of the solution
archive or by means of a shaking procedure. Then the next iteration of the loop
happens.

Inside the VND procedure, a counter variable k is initialized with 1. In each
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iteration neihgborhood number k is searched. If a solution is found that is better
than the currently best known solution, this solution is taken as the new best
solution, and k is reset to 1. Once a neighborhood has been completely searched,
k is increased by 1. When k equals maxK, the VND quits.

Algorithms 8 and 9 give an outline of the complete algorithm.

Algorithm 8: Complete algorithm

BestSol.Initialize;
ShakedBestSol = BestSol;
Counter = 0;
while Counter < 5 and Expired time < 600 do

TempSol = V ND(ShakedBestSol);
if TempSol.IsBetter(ShakedBestSol) then

Counter = 0;
BestSol = TempSol;

else

Counter = Counter + 1;

if solution archive is used then

ShakedBestSol = SolutionArchive.Convert(ShakedBestSol);

else

ShakedBestSol = Shake(ShakedBestSol);

return BestSol;
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Algorithm 9: Procedure VND

k = 0;
while k ≤ maxK do

TempSol = NextSol(ShakedBestSol, k);
if solution archive is used then

while Hashmap.F ind(TempSol) do

TempSol = NextSol(TempSol, k);

if neighborhood completely explored then

k = k + 1;

if TempSol.IsBetter(ShakedBestSol) and not
SolutionArchive.F ind(TempSol) then

ShakedBestSol = TempSol;
k = 0;

if solution archive is used then

SolutionArchive.Add(ShakedBestSol);
Hashmap.Add(ShakedBestSol);

return ShakedBestSol;
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Testing Environment

The implementation was done in C++. As metaheuristic for choosing a candidate
solution, the program uses VNS with VND in the inner loop. The maximal value
of k in VND has been set to 2 by default, and an additional stopping criterion is
the elapsing of 10 minutes since the beginning of the execution of the VNS. The
shaking procedure modifies a number of nodes equal to the current value of the
counter variable plus the parameter maxK, which indicates the last neighborhood
structure that is used; if this number is greater than the number of clusters, then
the number of clusters is taken instead.

For the exact computation of the chromatic number by means of integer lin-
ear programming, ILOG CPLEX 12.5 was used. The program can process input
files of the format used in the paper [39].

The following algorithm variants have been implemented:

1. Exact computation of the chromatic number by means of integer linear
programming.

2. Upper bound by means of greedy coloring combined with an estimation of
the number of conflicts that would occur if one color less were used and the
computation of a lower bound: If two solutions have the same upper bound,
the solution with the lower number of conflicts will be chosen. If both the
upper bounds and the numbers of conflicts are the same, the solution with
the smaller lower bound will be chosen.

3. Upper bound by means of greedy coloring combined with an estimation of
the number of conflicts that would occur if one color less were used.

4. Upper bound by means of greedy coloring.

For each variant there are two sub-variants, one with and one without a solution
archive.

27
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The program can be configured by means of a configuration file, in which the
following parameters may be specified:

1. printout: determines what should be printed (all steps, some steps or only
the best solution of each run and statistics).

2. conflicts: a factor with which the number of conflicts is multiplied to decide
whether a solution that has the same upper bound but a lower number of
conflicts will be preferred. It sometimes makes sense to set this to values
below 100 percent because otherwise the search would take too long.

3. start, step, stop: specify what variants of the algorithm should be used.

4. runs: the number of runs that should be performed and statistically evalu-
ated.

5. maxk: the maximum value of k for the VND.

6. maxlb: the maximum size of a buffer array used to compute the lower
bounds.

7. timelimit: the time limit.

8. maxfail: the maximum number of consecutive fails of VND runs (i.e. VND
runs that did not lead to an improvement).



Chapter 5

Computational Results

The tests were performed on the grid of the Algorithms and Data Structures group
at the Vienna UT. The program was compiled using GNU C/C++ 4.6 and ILOG
CPLEX 12.5.

To test the diverse variants of the solution algorithm, the PCP instances pro-
vided by the authors of the paper [39] were used. These instances can be freely
downloaded from the Internet [40]. In particular instances from the subdirectory
“Table2 Random Instances” have been evaluated. The name of each instance is
composed of the number of nodes, the edge density, the number of nodes per
cluster and the number of the instance.

It turned out that the VNS variants employing integer linear programming to
obtain the exact chromatic number only terminated within a reasonable time
for the smallest instances (twenty nodes), while a single run already needed more
than two hours when applied on the second smallest set of instances (forty nodes).
Therefore these variants were abandoned and only the six other variants (upper
bound plus conflicts plus lower bound by column generation, upper bound plus
conflicts, upper bound without conflicts, each with and without solution archive)
were thoroughly tested.

5.1 Preliminary Results

Each of these variants was tested on several instances of graphs with 20, 40, 60,
80, 100 and 120 nodes provided by Frota, and on 45 instances of graphs with
90 nodes with varying densities. Each variant was run thirty times (except the
slow variants with LB, which were only run three times) and then the results were
statistically evaluated by the program (mean and standard deviation). The pa-
rameter maxK of the VNS (determining the number of neighborhood structures
to be explored) was set to 2.

29
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Moreover, a couple of tests were performed using instances from the paper by
Noronha and Ribeiro (dsjc500*) [34]. All of these instances use 500 clusters. The
first instance has only one node per cluster, the second two and so on. For these
tests maxK = 1 was used since searching a 2-opt neighborhood would take long
time and due to the time limit of ten minutes the neighborhood would only be
partially explored.

Tables 5.1 - 5.16 contain the preliminary results. Legend: t = time (seconds),
Result = average value and standard deviation, UB = upper bound, C = con-
flicts, LB = lower bound computed by means of column generation, SA = solution
archive, UB same = number of incidents when a new solution has the same upper
bound as the currently best solution, UB+C same = same as “UB same” and the
number of conflicts is also the same.

We can see that the variants of the algorithm differ regarding the quality of
the result they produce. Adding the minimal conflict heuristic often improves
the quality, but not always: in some cases, the algorithm variant that just eval-
uates the upper bounds yields better results. The solution archive hardly has an
effect on the results. A solution archive serves two purposes: it enables the al-
gorithm to find duplicates, and it has a solution conversion function to generate
new solutions. Neither of these two functions apparently had a significant effect.
Regarding the conversion function, it is not better than the shaking procedure
that is used in the variants without a solution archive.

The main conclusion is that UB+C usually brings the best results and is more
efficient than UB+C+LB. The latter variant takes much processing time and for
this reason the time limit usually expires before the search is over. That is why
often the best result UB+C finds is neglected by UB+C+LB. On the other hand,
UB+C finds better solutions than UB most of the time as UB discards solutions
with the same upper bound but a lower number of conflicts. These solutions are
however considered by UB+C and in the end this strategy yields better results.

For the Frota instances in tables 5.1 - 5.15, evaluating the lower bound sometimes
leads to a slight, but insignificant improvement. This leads to the conclusion that
it is more efficient not to evaluate the lower bound. After all, it makes use of
linear programming, which is time-consuming.

The Noronha instance dsjc500.5-1 in table 5.16 contains only one node per clus-
ter. For this reason all the variants yield the same result, since effectively nothing
else than a run of the greedy coloring heuristic is performed. Thus this instance
serves as a benchmark to evaluate the effectiveness of the coloring algorithm.

Apparently the solution archive does not make any difference in table 5.16; I
counted the number of duplicates and noticed that no duplicate is ever found.
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Perhaps some duplicates would be found if the time limit had been larger and if
maxK had been set to a larger value. For these instances, evaluating the lower
bound leads to worse results. This is most probably due to the long run time
of the lower bound computation, which has the effect that fewer solutions are
explored within the time limit.

Instance Method t (s) Result (avg ± sd) UB same UB+C same

n20p5t2s1 UB+C+LB 16.0 3.0 ± 0.0 35.0 12.3
UB+C+LB+SA 15.3 3.0 ± 0.0 29.0 9.0
UB+C 0.0 3.0 ± 0.0 40.6 13.3
UB+C+SA 0.0 3.0 ± 0.0 31.7 9.7
UB 0.0 3.0 ± 0.0 18.6 –
UB+SA 0.0 3.0 ± 0.0 15.7 –

n20p5t2s2 UB+C+LB 13.7 3.0 ± 0.0 67.7 6.7
UB+C+LB+SA 14.3 3.0 ± 0.0 69.0 5.0
UB+C 0.0 3.0 ± 0.0 69.4 7.9
UB+C+SA 0.0 3.0 ± 0.0 61.0 4.3
UB 0.0 3.0 ± 0.0 70.3 –
UB+SA 0.0 3.0 ± 0.0 58.5 –

n20p5t2s3 UB+C+LB 17.3 3.0 ± 0.0 98.3 7.0
UB+C+LB+SA 18.3 3.0 ± 0.0 98.3 4.0
UB+C 0.0 3.0 ± 0.0 99.9 6.8
UB+C+SA 0.0 3.0 ± 0.0 100.7 4.0
UB 0.0 3.0 ± 0.0 89.7 –
UB+SA 0.0 3.0 ± 0.0 77.0 –

n20p5t2s4 UB+C+LB 15.3 3.0 ± 0.0 114.3 17.0
UB+C+LB+SA 16.0 3.0 ± 0.0 129.0 9.7
UB+C 0.0 3.0 ± 0.0 105.5 14.2
UB+C+SA 0.0 3.0 ± 0.0 106.9 9.0
UB 0.0 3.0 ± 0.0 70.2 –
UB+SA 0.0 3.0 ± 0.0 75.2 –

n20p5t2s5 UB+C+LB 13.7 3.0 ± 0.0 24.0 5.0
UB+C+LB+SA 14.7 3.0 ± 0.0 23.7 3.7
UB+C 0.0 3.0 ± 0.0 24.9 4.5
UB+C+SA 0.0 3.0 ± 0.0 24.1 1.7
UB 0.0 3.0 ± 0.0 19.0 –
UB+SA 0.0 3.0 ± 0.0 22.0 –

Table 5.1: Preliminary Results: Instances with 20 nodes
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n40p5t2s1 UB+C+LB 159.7 5.0 ± 0.0 161.7 12.3
UB+C+LB+SA 161.3 5.0 ± 0.0 120.0 10.7
UB+C 0.0 4.7 ± 0.5 149.3 13.1
UB+C+SA 0.1 5.0 ± 0.0 132.0 10.0
UB 0.0 4.7 ± 0.5 139.5 –
UB+SA 0.0 5.0 ± 0.0 134.4 –

n40p5t2s2 UB+C+LB 228.7 5.0 ± 0.0 488.7 42.7
UB+C+LB+SA 267.3 4.7 ± 0.5 304.0 29.7
UB+C 0.1 4.9 ± 0.2 336.4 31.8
UB+C+SA 0.1 4.8 ± 0.4 278.3 23.3
UB 0.1 5.0 ± 0.0 246.3 –
UB+SA 0.1 5.0 ± 0.2 195.1 –

n40p5t2s3 UB+C+LB 203.7 5.0 ± 0.0 286.3 16.0
UB+C+LB+SA 166.0 5.0 ± 0.0 223.3 8.3
UB+C 0.0 5.0 ± 0.0 251.3 13.2
UB+C+SA 0.1 5.0 ± 0.0 210.5 8.7
UB 0.0 5.0 ± 0.0 87.4 –
UB+SA 0.0 5.0 ± 0.0 77.3 –

n40p5t2s4 UB+C+LB 209.3 5.0 ± 0.0 278.0 20.3
UB+C+LB+SA 155.7 5.0 ± 0.0 84.7 11.3
UB+C 0.0 4.8 ± 0.4 213.1 18.8
UB+C+SA 0.0 5.0 ± 0.0 104.6 11.3
UB 0.1 5.0 ± 0.0 59.9 –
UB+SA 0.0 5.0 ± 0.0 45.9 –

n40p5t2s5 UB+C+LB 203.7 4.7 ± 0.5 53.0 8.0
UB+C+LB+SA 152.7 5.0 ± 0.0 56.0 7.7
UB+C 0.0 4.8 ± 0.4 54.3 8.6
UB+C+SA 0.1 5.0 ± 0.0 49.7 6.3
UB 0.0 5.0 ± 0.0 28.1 –
UB+SA 0.1 5.0 ± 0.0 35.8 –

Table 5.2: Preliminary Results: Instances with 40 nodes
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n60p5t2s1 UB+C+LB 600.0 6.0 ± 0.0 82.7 18.0
UB+C+LB+SA 607.3 6.0 ± 0.0 73.7 17.0
UB+C 0.3 6.0 ± 0.0 109.8 18.3
UB+C+SA 0.3 6.0 ± 0.0 77.7 14.0
UB 0.2 6.9 ± 0.2 77.9 –
UB+SA 0.3 7.0 ± 0.0 42.2 –

n60p5t2s2 UB+C+LB 600.0 6.0 ± 0.0 82.7 18.0
UB+C+LB+SA 607.3 6.0 ± 0.0 73.7 17.0
UB+C 0.3 6.0 ± 0.0 109.8 18.3
UB+C+SA 0.3 6.0 ± 0.0 77.7 14.0
UB 0.2 7.0 ± 0.2 77.9 –
UB+SA 0.3 7.0 ± 0.0 42.2 –

n60p5t2s3 UB+C+LB 601.0 6.0 ± 0.0 79.0 15.0
UB+C+LB+SA 603.3 6.0 ± 0.0 75.3 14.0
UB+C 0.3 6.0 ± 0.0 213.6 18.2
UB+C+SA 0.3 6.0 ± 0.0 201.7 15.0
UB 0.2 7.0 ± 0.0 162.2 –
UB+SA 0.3 7.0 ± 0.0 125.4 –

n60p5t2s4 UB+C+LB 606.3 6.0 ± 0.0 96.7 9.3
UB+C+LB+SA 601.3 6.0 ± 0.0 94.3 9.0
UB+C 0.3 6.0 ± 0.0 79.0 13.1
UB+C+SA 0.3 6.0 ± 0.0 63.4 8.7
UB 0.3 6.6 ± 0.5 222.3 –
UB+SA 0.2 7.0 ± 0.0 182.9 –

n60p5t2s5 UB+C+LB 601.3 6.0 ± 0.0 95.7 20.0
UB+C+LB+SA 602.0 6.0 ± 0.0 76.3 14.3
UB+C 0.3 6.0 ± 0.0 127.4 25.7
UB+C+SA 0.3 6.0 ± 0.0 82.5 16.6
UB 0.3 6.0 ± 0.5 330.8 –
UB+SA 0.2 7.0 ± 0.0 175.4 –

Table 5.3: Preliminary Instances with 60 nodes
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n80p5t2s1 UB+C+LB 600.7 8.0 ± 0.0 41.0 14.0
UB+C+LB+SA 612.0 8.0 ± 0.0 41.0 14.0
UB+C 1.0 8.0 ± 0.0 434.2 35.9
UB+C+SA 1.1 8.0 ± 0.0 266.7 26.4
UB 0.8 8.0 ± 0.0 144.0 –
UB+SA 0.9 8.0 ± 0.0 95.7 –

n80p5t2s2 UB+C+LB 618.7 9.0 ± 0.0 44.0 12.0
UB+C+LB+SA 615.0 9.0 ± 0.0 44.0 12.0
UB+C 1.0 8.0 ± 0.2 376.7 30.2
UB+C+SA 1.0 8.0 ± 0.0 217.9 24.2
UB 1.0 8.6 ± 0.5 265.1 –
UB+SA 1.1 8.2 ± 0.4 164.3 –

n80p5t2s3 UB+C+LB 612.0 8.0 ± 0.0 31.0 9.0
UB+C+LB+SA 612.3 8.0 ± 0.0 31.0 9.0
UB+C 1.1 8.0 ± 0.0 517.9 44.6
UB+C+SA 1.2 8.0 ± 0.0 410.1 39.2
UB 0.9 8.0 ± 0.0 177.6 –
UB+SA 0.9 8.0 ± 0.0 142.9 –

n80p5t2s4 UB+C+LB 607.0 8.0 ± 0.0 16.3 3.0
UB+C+LB+SA 602.7 8.0 ± 0.0 16.7 3.0
UB+C 1.1 7.9 ± 0.2 335.5 51.5
UB+C+SA 1.0 8.0 ± 0.0 248.4 40.1
UB 0.8 8.0 ± 0.0 92.2 –
UB+SA 0.8 8.0 ± 0.0 79.7 –

n80p5t2s5 UB+C+LB 608.7 8.0 ± 0.0 74.0 14.0
UB+C+LB+SA 604.7 8.0 ± 0.0 74.0 14.0
UB+C 1.0 7.0 ± 0.0 110.7 23.7
UB+C+SA 1.0 7.0 ± 0.0 106.7 19.7
UB 1.1 8.5 ± 0.5 325.7 –
UB+SA 1.0 8.7 ± 0.4 334.4 –

Table 5.4: Preliminary Results: Instances with 80 nodes
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n100p5t2s1 UB+C+LB 607.7 11.0 ± 0.0 10.0 1.0
UB+C+LB+SA 605.0 11.0 ± 0.0 10.0 1.0
UB+C 2.6 9.0 ± 0.0 380.0 42.4
UB+C+SA 2.6 9.0 ± 0.0 306.9 37.4
UB 3.2 10.0 ± 0.6 521.5 –
UB+SA 2.3 11.0 ± 0.0 228.3 –

n100p5t2s2 UB+C+LB 604.3 10.0 ± 0.0 13.0 1.0
UB+C+LB+SA 604.3 10.0 ± 0.0 13.0 1.0
UB+C 2.3 9.0 ± 0.0 103.4 18.1
UB+C+SA 2.2 9.0 ± 0.0 85.6 13.3
UB 2.5 9.7 ± 0.5 193.7 –
UB+SA 2.2 10.0 ± 0.0 98.3 –

n100p5t2s3 UB+C+LB 611.0 11.0 ± 0.0 23.0 8.0
UB+C+LB+SA 613.7 11.0 ± 0.0 23.0 8.0
UB+C 3.0 9.0 ± 0.0 265.9 27.3
UB+C+SA 3.0 9.0 ± 0.0 237.2 23.5
UB 2.8 9.8 ± 0.4 403.7 –
UB+SA 2.6 10.0 ± 0.0 324.6 –

n100p5t2s4 UB+C+LB 614.3 10.0 ± 0.0 10.0 2.0
UB+C+LB+SA 613.7 10.0 ± 0.0 10.0 2.0
UB+C 2.5 9.0 ± 0.0 134.5 27.3
UB+C+SA 2.5 9.0 ± 0.0 107.2 19.6
UB 2.6 9.7 ± 0.4 296.7 –
UB+SA 2.3 10.0 ± 0.0 197.8 –

n100p5t2s5 UB+C+LB 609.0 11.0 ± 0.0 17.0 5.0
UB+C+LB+SA 616.3 11.0 ± 0.0 17.0 5.0
UB+C 2.4 10.0 ± 0.2 207.7 22.2
UB+C+SA 2.3 10.0 ± 0.0 151.0 15.4
UB 2.4 10.0 ± 0.0 150.0 –
UB+SA 2.5 10.0 ± 0.0 128.8 –

Table 5.5: Preliminary Results: Instances with 100 nodes
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n120p5t2s1 UB+C+LB 631.3 13.0 ± 0.0 24.7 12.0
UB+C+LB+SA 639.0 13.0 ± 0.0 25.0 12.0
UB+C 5.2 10.9 ± 0.3 425.3 45.2
UB+C+SA 5.0 11.0 ± 0.0 256.5 31.4
UB 5.2 11.0 ± 0.0 393.6 –
UB+SA 5.2 11.0 ± 0.0 233.1 –

n120p5t2s2 UB+C+LB 614.7 13.0 ± 0.0 11.3 6.0
UB+C+LB+SA 603.0 13.0 ± 0.0 11.0 6.0
UB+C 5.0 11.0 ± 0.0 223.4 33.2
UB+C+SA 5.1 11.0 ± 0.0 136.3 21.5
UB 6.4 11.3 ± 0.5 526.3 –
UB+SA 5.6 11.8 ± 0.4 272.3 –

n120p5t2s3 UB+C+LB 606.7 12.0 ± 0.0 11.3 1.0
UB+C+LB+SA 606.3 12.0 ± 0.0 11.7 1.0
UB+C 5.0 11.0 ± 0.0 229.8 21.3
UB+C+SA 5.1 11.0 ± 0.0 152.8 14.3
UB 5.4 11.5 ± 0.5 166.2 –
UB+SA 5.4 11.4 ± 0.5 148.7 –

n120p5t2s4 UB+C+LB 602.7 12.0 ± 0.0 11.3 2.0
UB+C+LB+SA 603.7 12.0 ± 0.0 11.3 2.0
UB+C 5.9 10.8 ± 0.4 329.6 35.3
UB+C+SA 5.6 11.0 ± 0.0 188.3 22.6
UB 5.5 11.3 ± 0.5 338.0 –
UB+SA 5.0 11.6 ± 0.5 165.7 –

n120p5t2s5 UB+C+LB 602.0 12.0 ± 0.0 14.0 1.0
UB+C+LB+SA 603.7 12.0 ± 0.0 14.0 1.0
UB+C 6.2 11.0 ± 0.0 721.1 29.6
UB+C+SA 6.3 11.0 ± 0.0 553.2 24.7
UB 5.6 11.8 ± 0.4 397.4 –
UB+SA 5.2 12.0 ± 0.2 215.7 –

Table 5.6: Preliminary Results: Instances with 120 nodes
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p1t2s1 UB+C+LB 600.0 3.0 ± 0.0 936.7 48.3
UB+C+LB+SA 600.0 3.0 ± 0.5 944.7 49.0
UB+C 0.6 3.0 ± 0.0 3084.4 65.4
UB+C+SA 0.7 3.0 ± 0.0 1846.3 55.1
UB 0.6 3.0 ± 0.0 703.9 –
UB+SA 0.6 3.0 ± 0.0 331.2 –

n90p1t2s2 UB+C+LB 600.0 3.0 ± 0.0 764.7 31.3
UB+C+LB+SA 600.0 3.0 ± 0.0 725.3 30.7
UB+C 0.6 3.0 ± 0.0 2002.2 40.6
UB+C+SA 0.6 3.0 ± 0.0 1326.9 34.5
UB 0.6 3.0 ± 0.0 464.8 –
UB+SA 0.6 3.0 ± 0.0 401.1 –

n90p1t2s3 UB+C+LB 600.0 3.0 ± 0.0 571.7 33.0
UB+C+LB+SA 600.0 3.0 ± 0.0 596.3 33.0
UB+C 0.8 3.0 ± 0.0 3361.3 92.5
UB+C+SA 0.9 3.0 ± 0.0 1862.9 74.5
UB 0.6 3.0 ± 0.0 649.0 –
UB+SA 0.6 3.0 ± 0.0 335.1 –

n90p1t2s4 UB+C+LB 600.0 3.0 ± 0.0 996.3 92.0
UB+C+LB+SA 600.0 3.0 ± 0.0 1000.0 92.0
UB+C 0.6 3.0 ± 0.0 2767.5 51.0
UB+C+SA 0.6 3.0 ± 0.0 1775.3 42.7
UB 0.6 3.0 ± 0.0 1020.4 –
UB+SA 0.5 3.0 ± 0.0 992.5 –

n90p1t2s5 UB+C+LB 600.0 3.0 ± 0.0 538.7 30.0
UB+C+LB+SA 600.0 3.0 ± 0.0 538.7 30.0
UB+C 0.7 3.0 ± 0.0 1259.6 36.1
UB+C+SA 0.7 3.0 ± 0.0 598.2 28.9
UB 0.6 3.0 ± 0.0 458.0 –
UB+SA 0.6 3.0 ± 0.0 318.4 –

Table 5.7: Preliminary Results: Instances with 90 nodes, density 0.1
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p2t2s1 UB+C+LB 600.0 4.0 ± 0.0 138.3 16.3
UB+C+LB+SA 600.0 4.0 ± 0.0 139.0 17.0
UB+C 0.9 4.0 ± 0.0 331.9 29.4
UB+C+SA 0.9 4.0 ± 0.0 301.6 22.4
UB 0.8 5.0 ± 0.0 1015.6 –
UB+SA 0.8 5.0 ± 0.0 623.9 –

n90p2t2s2 UB+C+LB 604.0 4.0 ± 0.0 146.0 41.0
UB+C+LB+SA 607.0 4.0 ± 0.0 146.0 41.0
UB+C 1.1 4.2 ± 0.4 1754.4 87.5
UB+C+SA 1.1 4.4 ± 0.5 1617.4 64.7
UB 0.7 5.0 ± 0.2 1239.0 –
UB+SA 0.7 5.0 ± 0.0 1217.0 –

n90p2t2s3 UB+C+LB 600.0 4.0 ± 0.0 136.7 28.0
UB+C+LB+SA 600.0 4.0 ± 0.0 137.0 28.0
UB+C 0.8 4.0 ± 0.0 176.2 31.7
UB+C+SA 0.9 4.0 ± 0.0 156.9 27.7
UB 0.8 5.0 ± 0.0 1211.4 –
UB+SA 0.8 5.0 ± 0.0 727.7 –

n90p2t2s4 UB+C+LB 600.0 4.0 ± 0.0 151.7 10.0
UB+C+LB+SA 603.7 4.0 ± 0.0 135.3 10.0
UB+C 0.7 4.0 ± 0.0 249.0 12.6
UB+C+SA 0.8 4.0 ± 0.0 153.3 10.0
UB 0.8 4.8 ± 0.4 1198.3 –
UB+SA 0.8 5.0 ± 0.0 781.7 –

n90p2t2s5 UB+C+LB 600.0 5.0 ± 0.0 283.3 42.0
UB+C+LB+SA 600.0 5.0 ± 0.0 282.0 42.0
UB+C 0.9 4.0 ± 0.0 359.2 49.7
UB+C+SA 0.9 4.0 ± 0.0 348.6 46.0
UB 0.9 5.0 ± 0.0 688.5 –
UB+SA 0.9 5.0 ± 0.0 489.8 –

Table 5.8: Preliminary Results: Instances with 90 nodes, density 0.2
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p3t2s1 UB+C+LB 600.7 6.0 ± 0.0 79.0 14.0
UB+C+LB+SA 601.0 6.0 ± 0.0 79.0 14.0
UB+C 1.1 5.0 ± 0.0 220.4 33.9
UB+C+SA 1.1 5.0 ± 0.0 197.8 31.0
UB 1.0 6.0 ± 0.0 188.4 –
UB+SA 1.0 6.0 ± 0.0 165.1 –

n90p3t2s2 UB+C+LB 609.7 6.0 ± 0.0 106.3 23.0
UB+C+LB+SA 600.0 6.0 ± 0.0 105.0 23.0
UB+C 1.3 5.9 ± 0.3 1649.9 85.2
UB+C+SA 1.2 6.0 ± 0.0 1192.0 69.7
UB 1.0 6.0 ± 0.0 214.9 –
UB+SA 1.0 6.0 ± 0.0 130.8 –

n90p3t2s3 UB+C+LB 608.0 6.0 ± 0.0 31.0 6.0
UB+C+LB+SA 607.7 6.0 ± 0.0 31.0 6.0
UB+C 1.1 6.0 ± 0.0 675.9 21.6
UB+C+SA 1.1 6.0 ± 0.0 387.7 14.7
UB 1.3 6.3 ± 0.4 1421.9 –
UB+SA 1.3 6.0 ± 0.0 932.3 –

n90p3t2s4 UB+C+LB 606.3 6.0 ± 0.0 83.0 17.0
UB+C+LB+SA 610.7 6.0 ± 0.0 83.0 17.0
UB+C 1.3 5.7 ± 0.5 1033.7 20.6
UB+C+SA 1.1 6.0 ± 0.0 658.6 13.8
UB 1.0 6.0 ± 0.0 320.5 –
UB+SA 1.0 6.0 ± 0.0 274.5 –

n90p3t2s5 UB+C+LB 609.0 6.0 ± 0.0 66.7 5.0
UB+C+LB+SA 613.0 6.0 ± 0.0 66.3 5.0
UB+C 1.2 6.0 ± 0.0 353.6 14.6
UB+C+SA 1.2 6.0 ± 0.0 192.0 7.2
UB 1.1 6.0 ± 0.0 363.6 –
UB+SA 1.2 6.0 ± 0.0 317.8 –

Table 5.9: Preliminary Results: Instances with 90 nodes, density 0.3
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p4t2s1 UB+C+LB 602.0 7.0 ± 0.0 42.3 11.3
UB+C+LB+SA 606.7 7.0 ± 0.0 39.0 11.0
UB+C 1.4 7.0 ± 0.0 293.5 33.6
UB+C+SA 1.4 7.0 ± 0.0 235.5 26.4
UB 1.4 7.1 ± 0.3 458.0 –
UB+SA 1.2 7.4 ± 0.5 338.2 –

n90p4t2s2 UB+C+LB 624.7 8.0 ± 0.0 56.0 8.0
UB+C+LB+SA 623.0 8.0 ± 0.0 56.0 8.0
UB+C 1.4 7.0 ± 0.2 206.3 15.7
UB+C+SA 1.4 7.0 ± 0.0 178.2 10.9
UB 1.2 7.0 ± 0.0 245.7 –
UB+SA 1.2 7.0 ± 0.0 154.4 –

n90p4t2s3 UB+C+LB 602.3 8.0 ± 0.0 56.7 5.0
UB+C+LB+SA 608.3 8.0 ± 0.0 57.0 5.0
UB+C 1.4 7.0 ± 0.0 240.8 30.7
UB+C+SA 1.4 7.0 ± 0.0 186.8 25.0
UB 1.3 7.4 ± 0.5 354.6 –
UB+SA 1.3 7.4 ± 0.5 192.6 –

n90p4t2s4 UB+C+LB 604.7 7.0 ± 0.0 59.0 14.0
UB+C+LB+SA 604.0 7.0 ± 0.0 59.0 14.0
UB+C 1.2 7.0 ± 0.0 92.4 27.4
UB+C+SA 1.2 7.0 ± 0.0 90.2 21.1
UB 1.2 7.9 ± 0.2 453.4 –
UB+SA 1.2 8.0 ± 0.0 260.2 –

n90p4t2s5 UB+C+LB 613.7 9.0 ± 0.0 25.0 6.0
UB+C+LB+SA 601.0 9.0 ± 0.0 22.0 5.0
UB+C 1.5 7.9 ± 0.3 321.7 28.0
UB+C+SA 1.3 8.0 ± 0.0 134.3 15.5
UB 1.6 7.0 ± 0.0 247.2 –
UB+SA 1.6 7.0 ± 0.0 239.3 –

Table 5.10: Preliminary Results: Instances with 90 nodes, density 0.4
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p5t2s1 UB+C+LB 609.0 10.0 ± 0.0 23.0 8.0
UB+C+LB+SA 610.3 10.0 ± 0.0 23.7 8.0
UB+C 1.8 9.0 ± 0.0 165.6 36.3
UB+C+SA 1.8 9.0 ± 0.0 145.2 30.7
UB 1.6 9.0 ± 0.0 311.8 –
UB+SA 1.6 9.0 ± 0.0 296.0 –

n90p5t2s2 UB+C+LB 609.3 9.0 ± 0.0 27.0 6.0
UB+C+LB+SA 609.3 9.0 ± 0.0 27.0 6.0
UB+C 1.4 8.0 ± 0.0 83.5 14.5
UB+C+SA 1.5 8.0 ± 0.0 75.3 11.3
UB 1.9 9.0 ± 0.3 340.1 –
UB+SA 1.8 9.1 ± 0.4 337.0 –

n90p5t2s3 UB+C+LB 612.3 9.0 ± 0.0 39.0 0.0
UB+C+LB+SA 600.0 9.0 ± 0.0 39.0 0.0
UB+C 1.5 8.0 ± 0.0 170.1 10.8
UB+C+SA 1.6 8.0 ± 0.0 161.5 8.0
UB 1.4 8.9 ± 0.2 235.0 –
UB+SA 1.4 9.0 ± 0.0 103.5 –

n90p5t2s4 UB+C+LB 603.3 10.0 ± 0.0 47.7 14.7
UB+C+LB+SA 605.3 10.0 ± 0.0 47.7 14.7
UB+C 1.7 8.9 ± 0.2 352.3 36.7
UB+C+SA 1.6 9.0 ± 0.0 223.0 28.4
UB 1.4 9.0 ± 0.0 197.9 –
UB+SA 1.4 9.0 ± 0.0 150.4 –

n90p5t2s5 UB+C+LB 610.0 10.0 ± 0.0 25.3 6.0
UB+C+LB+SA 609.0 10.0 ± 1.0 25.0 6.0
UB+C 1.8 9.0 ± 0.0 222.6 16.4
UB+C+SA 1.8 9.0 ± 0.0 178.3 14.0
UB 1.7 9.7 ± 0.5 330.7 –
UB+SA 1.6 9.8 ± 0.4 193.5 –

Table 5.11: Preliminary Results: Instances with 90 nodes, density 0.5
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p6t2s1 UB+C+LB 608.3 12.0 ± 0.0 15.3 3.0
UB+C+LB+SA 614.3 12.0 ± 0.0 15.0 3.0
UB+C 2.0 10.0 ± 0.0 330.2 71.5
UB+C+SA 2.1 10.0 ± 0.0 291.0 62.6
UB 1.9 10.7 ± 0.5 382.6 –
UB+SA 2.2 10.3 ± 0.5 292.9 –

n90p6t2s2 UB+C+LB 612.7 11.0 ± 0.0 13.0 4.0
UB+C+LB+SA 613.0 11.0 ± 0.0 13.0 4.0
UB+C 1.6 10.0 ± 0.0 99.9 30.7
UB+C+SA 1.6 10.0 ± 0.0 90.9 26.2
UB 1.5 11.0 ± 0.0 99.3 –
UB+SA 1.6 11.0 ± 0.0 64.1 –

n90p6t2s3 UB+C+LB 605.7 11.0 ± 0.0 28.0 14.0
UB+C+LB+SA 608.0 11.7 ± 1.0 24.7 10.3
UB+C 1.6 10.2 ± 0.4 274.8 32.7
UB+C+SA 1.6 10.2 ± 0.4 155.4 19.2
UB 1.8 10.9 ± 0.6 643.4 –
UB+SA 1.5 11.6 ± 0.7 465.0 –

n90p6t2s4 UB+C+LB 606.0 12.0 ± 0.0 34.3 7.0
UB+C+LB+SA 601.0 12.0 ± 0.0 34.7 7.0
UB+C 2.3 10.0 ± 0.0 219.2 39.1
UB+C+SA 2.2 10.0 ± 0.0 197.0 34.6
UB 1.6 11.0 ± 0.2 136.0 –
UB+SA 1.6 11.0 ± 0.0 128.4 –

n90p6t2s5 UB+C+LB 613.3 12.0 ± 0.0 18.0 5.0
UB+C+LB+SA 616.0 12.0 ± 0.0 18.0 5.0
UB+C 2.0 10.5 ± 0.6 378.3 50.7
UB+C+SA 2.0 10.6 ± 0.5 263.9 31.8
UB 1.7 10.9 ± 0.3 289.1 –
UB+SA 1.8 10.8 ± 0.4 206.1 –

Table 5.12: Preliminary Results: Instances with 90 nodes, density 0.6
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p7t2s1 UB+C+LB 611.0 13.0 ± 0.0 30.0 8.0
UB+C+LB+SA 613.3 13.0 ± 0.0 30.0 8.0
UB+C 2.0 12.7 ± 0.4 250.8 23.0
UB+C+SA 2.0 12.8 ± 0.4 163.9 16.0
UB 2.3 12.4 ± 0.5 270.1 –
UB+SA 1.7 13.0 ± 0.0 164.8 –

n90p7t2s2 UB+C+LB 612.3 13.0 ± 0.0 10.3 1.0
UB+C+LB+SA 605.3 13.0 ± 0.0 10.0 1.0
UB+C 1.8 12.9 ± 0.2 203.3 15.7
UB+C+SA 1.7 13.0 ± 0.0 101.4 8.1
UB 2.4 12.9 ± 0.5 399.2 –
UB+SA 1.8 13.9 ± 0.2 284.6 –

n90p7t2s3 UB+C+LB 613.0 13.0 ± 0.0 17.0 7.0
UB+C+LB+SA 613.7 13.0 ± 0.0 17.0 7.0
UB+C 2.1 12.7 ± 0.5 114.8 20.6
UB+C+SA 2.0 12.9 ± 0.3 68.4 11.6
UB 1.7 12.0 ± 0.0 92.0 –
UB+SA 1.7 12.0 ± 0.0 72.0 –

n90p7t2s4 UB+C+LB 601.7 13.0 ± 0.0 19.3 8.0
UB+C+LB+SA 603.7 13.0 ± 0.0 19.3 8.0
UB+C 2.2 11.9 ± 0.2 195.8 31.2
UB+C+SA 2.1 12.0 ± 0.0 122.6 23.5
UB 1.7 13.0 ± 0.0 77.4 –
UB+SA 1.7 13.0 ± 0.0 52.8 –

n90p7t2s5 UB+C+LB 611.0 13.0 ± 0.0 18.0 7.0
UB+C+LB+SA 606.7 13.0 ± 0.0 17.3 6.3
UB+C 1.7 13.0 ± 0.0 221.2 37.9
UB+C+SA 1.8 13.0 ± 0.0 138.8 27.2
UB 1.9 13.0 ± 0.0 103.7 –
UB+SA 1.9 13.0 ± 0.0 88.2 –

Table 5.13: Preliminary Results: Instances with 90 nodes, density 0.7
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p8t2s1 UB+C+LB 615.3 15.3 ± 0.5 11.3 5.0
UB+C+LB+SA 616.7 15.0 ± 0.0 11.3 5.0
UB+C 1.5 15.0 ± 0.0 47.0 9.9
UB+C+SA 1.5 15.0 ± 0.0 45.3 7.0
UB 1.8 15.4 ± 0.5 59.0 –
UB+SA 1.8 15.4 ± 0.5 44.8 –

n90p8t2s2 UB+C+LB 602.3 15.0 ± 0.0 30.0 16.0
UB+C+LB+SA 605.3 15.0 ± 0.0 30.0 16.0
UB+C 1.9 15.0 ± 0.0 65.7 23.2
UB+C+SA 1.9 15.0 ± 0.0 53.5 17.2
UB 2.2 14.8 ± 0.4 140.4 –
UB+SA 2.0 15.0 ± 0.0 117.0 –

n90p8t2s3 UB+C+LB 613.0 16.0 ± 0.0 60.0 17.0
UB+C+LB+SA 609.7 16.0 ± 0.0 60.3 17.0
UB+C 2.2 15.0 ± 0.0 134.2 32.9
UB+C+SA 2.1 15.0 ± 0.0 104.4 25.2
UB 2.2 16.3 ± 0.4 329.6 –
UB+SA 2.0 16.5 ± 0.5 205.2 –

n90p8t2s4 UB+C+LB 609.0 15.0 ± 0.0 67.3 14.0
UB+C+LB+SA 614.3 15.0 ± 0.0 68.0 14.0
UB+C 2.3 15.0 ± 0.0 263.1 31.4
UB+C+SA 2.4 15.0 ± 0.0 175.5 23.1
UB 2.8 14.7 ± 0.7 355.4 –
UB+SA 2.3 15.6 ± 0.5 297.0 –

n90p8t2s5 UB+C+LB 610.0 15.0 ± 0.0 16.0 5.0
UB+C+LB+SA 608.7 15.0 ± 0.0 16.0 5.0
UB+C 2.4 15.1 ± 0.8 306.8 52.2
UB+C+SA 1.8 16.0 ± 0.0 173.9 32.1
UB 2.0 15.7 ± 0.5 119.1 –
UB+SA 1.8 16.0 ± 0.0 83.3 –

Table 5.14: Preliminary Results: Instances with 90 nodes, density 0.8
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n90p9t2s1 UB+C+LB 600.0 20.0 ± 0.0 170.3 53.7
UB+C+LB+SA 600.0 20.0 ± 0.5 168.0 168.0
UB+C 2.3 18.0 ± 0.0 263.4 64.7
UB+C+SA 2.3 18.0 ± 0.0 232.9 59.9
UB 2.1 19.0 ± 0.2 108.3 –
UB+SA 2.0 19.0 ± 0.0 89.8 –

n90p9t2s2 UB+C+LB 600.0 19.0 ± 0.0 82.0 29.0
UB+C+LB+SA 600.0 19.0 ± 0.0 82.0 29.0
UB+C 2.6 19.0 ± 0.2 244.0 41.2
UB+C+SA 2.4 19.0 ± 0.0 146.3 26.7
UB 2.0 19.0 ± 0.0 42.4 –
UB+SA 1.9 19.0 ± 0.0 27.3 –

n90p9t2s3 UB+C+LB 607.3 19.0 ± 0.0 122.0 53.0
UB+C+LB+SA 601.0 19.0 ± 0.0 122.0 53.0
UB+C 2.7 19.2 ± 0.6 388.0 160.3
UB+C+SA 2.2 19.7 ± 0.7 192.1 84.8
UB 2.2 19.9 ± 0.3 163.0 –
UB+SA 2.1 20.0 ± 0.0 107.4 –

n90p9t2s4 UB+C+LB 600.0 18.0 ± 0.0 148.7 78.0
UB+C+LB+SA 600.0 18.0 ± 0.0 148.7 78.0
UB+C 2.7 17.8 ± 0.4 222.9 114.3
UB+C+SA 2.3 18.0 ± 0.0 175.0 96.9
UB 2.1 18.0 ± 0.0 50.1 –
UB+SA 2.0 18.0 ± 0.0 41.7 –

n90p9t2s5 UB+C+LB 616.7 20.0 ± 0.0 49.0 28.0
UB+C+LB+SA 619.3 20.0 ± 0.0 49.3 28.0
UB+C 2.4 18.0 ± 0.0 114.9 51.8
UB+C+SA 2.2 18.0 ± 0.0 100.3 43.9
UB 2.2 18.9 ± 0.3 143.9 –
UB+SA 2.1 19.0 ± 0.0 99.3 –

Table 5.15: Preliminary Results: Instances with 90 nodes, density 0.9
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

dsjc500.5-1 Greedy Coloring 1.0 73 0 0

dsjc500.5-2 UB+C+LB 618.3 70.0 ± 0.0 6.3 1.0
UB+C+LB+SA 618.0 70.0 ± 0.0 7.0 1.0
UB+C 600.0 66.0 ± 0.0 231.2 87.0
UB+C+SA 600.0 66.0 ± 0.0 214.0 81.0
UB 528.0 66.0 ± 0.0 169.2 –
UB+SA 533.0 66.0 ± 0.0 118.2 –

dsjc500.5-3 UB+C+LB 613.7 68.0 ± 0.0 2.7 0.0
UB+C+LB+SA 609.7 68.0 ± 0.0 3.0 0.0
UB+C 600.0 65.0 ± 0.0 220.4 81.8
UB+C+SA 600.0 65.0 ± 0.0 220.7 81.8
UB 600.0 65.9 ± 0.3 192.4 –
UB+SA 600.0 66.0 ± 0.0 149.1 –

dsjc500.5-4 UB+C+LB 608.0 70.0 ± 0.0 7.0 0.0
UB+C+LB+SA 614.0 70.0 ± 0.0 6.7 0.0
UB+C 600.0 65.0 ± 0.0 305.7 155.3
UB+C+SA 600.0 65.0 ± 0.0 306.0 155.2
UB 600.0 66.2 ± 0.9 286.5 –
UB+SA 600.0 66.4 ± 0.7 264.6 –

Table 5.16: Preliminary Results: Instances from Noronha’s paper
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5.2 Discussion and Final Results

Since the results of Frota’s and Noronha’s algorithms are better than the results
of my algorithm most of the time, I made investigations for what might be the
reason. The first guess was that perhaps the greedy coloring is not optimal. Alas,
for test instances with 20, 40 and 60 nodes the upper bound the greedy coloring
computed matched the exact chromatic number of the solution which the algo-
rithm considered the best one (see table 5.17). For instances with more nodes
it was not possible to make this comparison since the exact computation took
too long. But if we take a look at dsjc500.5-1, we see that Noronha’s algorithm
performed better than my variant of greedy coloring. This leads to the conclusion
that greedy coloring is probably good for instances with a low number of nodes,
but the more nodes are used, the worse it performs. This opens a possibility for
further research, trying the same VNS with a different heuristic. It is also possible
that even with instances with a rather small number of nodes, greedy coloring
leads to a suboptimal result since it may select a solution although another solu-
tion having the same upper bound would have a lower exact chromatic number.

What was also tried was a modification of the parameters: instead of five con-
secutive failing VND runs (not leading to an improvement), twenty were allowed
(table 5.18). The time limit was accordingly increased to 1800 seconds, but it
was only reached in Noronha’s instances. However, the results are not all too
different. This has brought me to the conclusion that a further increase of the
number of consecutive failing VND runs will probably not lead to any (significant)
improvement; five consecutive failing VND runs seem to suffice.

Instance Exact UB+C

n20p5t2s1 3 3

n40p5t2s1 5 5

n60p5t2s1 6 6

Table 5.17: Comparison of exact results and upper bounds
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Instance Method t (s) Result (avg ± sd) UB same UB+C same

n20p5t2s1 UB+C 0.0 3.0 ± 0.0 62.3 15.6

n40p5t2s1 UB+C 0.2 4.6 ± 0.5 239.0 15.6

n60p5t2s1 UB+C 0.0 6.0 ± 0.0 103.9 18.4

n80p5t2s1 UB+C 2.6 8.0 ± 0.0 453.5 36.7

n100p5t2s1 UB+C 6.6 9.0 ± 0.0 389.4 44.0

n120p5t2s1 UB+C 16.0 10.8 ± 0.4 488.3 48.6

dsjc500.5-2 UB+C 1800.0 66.0 ± 0.0 215.0 81.0

dsjc500.5-3 UB+C 1800.0 65.0 ± 0.0 369.0 156.0

dsjc500.5-4 UB+C 1800.0 64.0 ± 0.0 813.1 409.7

Table 5.18: Preliminary Results: Modified parameters (up to 20 failing VND
runs allowed, time limit 1800 seconds)

Instance(s) Min. Max. My best result (avg ± sd) t (s) of my result

n20p5t2s* 3 3 3.0 ± 0.0 0.0

n40p5t2s* 4 4 4.7 ± 0.5 0.0

n60p5t2s* 5 5 6.0 ± 0.0 0.3

n80p5t2s* 6 6 7.0 ± 0.0 1.0

n100p5t2s* 6 7 9.0 ± 0.0 2.2

n120p5t2s* 7 8 10.8 ± 0.4 5.9

dsjc500.5-1 51 55 73.0 ± 0.0 1.0

dsjc500.5-2 45 49 66.0 ± 0.0 528.0

dsjc500.5-3 43 46 65.0 ± 0.0 600.0

dsjc500.5-4 42 44 65.0 ± 0.0 600.0

Table 5.19: Final Results including data from Frota’s and Noronha’s papers;
for Frota’s instances, these are aggregated results
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Conclusions

Within this work I developed and implemented diverse variants of an algorithm
that solves the selective graph coloring problem. The thesis first defines the prob-
lem, introduces a practical application and discusses the complexity of the chosen
approach. After a literature survey on both the SGCP and graph coloring in gen-
eral, the algorithmic approach is discussed in detail. This discussion starts with
an introduction to metaheuristics, especially the ones used in this algorithm (vari-
able neighborhood descent and variable neighborhood search). Then the solution
representation is described, followed by different ways of evaluating the solution.
Both heuristic approaches (upper bound, number of conflicts, lower bound) and
an exact method (integer linear programming) are presented. Moreover, the cho-
sen approach for a solution archive is discussed. After an outline of the complete
algorithm, the testing environment is described, and then the results of the tests
performed on the chosen instances are listed.

The results have in general been not as good as expected: The performance of the
algorithm is not quite comparable to the solutions of other researchers. This may
be due to the greedy coloring heuristic used, so further research should focus on
trying other heuristics. At least the implementation has shown that computing a
lower bound of the chromatic number in addition to the upper bound (where the
upper bound is the primary evaluation criterion, in case of identical upper bounds
the number of conflicts is considered, and if these are still the same the solution
with the smaller lower bound is preferred) is time-consuming and does not lead
to a significant improvement, if at all. Solution archives have not proven effective
either. So the method using upper bound and number of conflicts as evaluation
criteria seems to be the best strategy.
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