
Selecting User Queries in Interactive Job
Scheduling⋆

Johannes Varga1, Günther R. Raidl1, and Tobias Rodemann2

1 Institute of Logic and Computation, TU Wien, Vienna, Austria
{jvarga,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Offenbach, Germany
tobias.rodemann@honda-ri.de

Abstract. When solving a job scheduling problem that involves hu-
mans, the times in which they are available must be taken into account.
For practical acceptance of a scheduling tool, it is further crucial that
the interaction with the humans is kept simple and to a minimum. Re-
quiring users to fully specify their availability times is typically not rea-
sonable. We consider and extend a scenario from the literature in which
initially users only suggest single starting times for their jobs and an
optimized schedule shall then be found within a small number of in-
teraction rounds. In each round a small amount of information can be
requested by suggesting alternative time intervals, which are accepted or
rejected. We extend the scenario by another form of interaction that al-
lows to request users to indicate alternative time intervals for their jobs.
To make the best out of these limited interaction possibilities, we pro-
pose a stochastic programming approach that utilizes a Markov model
to consider the users’ availabilities. The approach is experimentally eval-
uated and compared to the approach from the literature. Results show
that the stochastic programming approach performs significantly better
than the former method from the literature, especially when being able
to request alternative time intervals from users.

1 Introduction

We consider the Interactive Job Scheduling Problem (IJSP) [6], in which human
users, e.g., the personnel of a company, need to perform jobs on some shared
machines and the availabilities of these users as well as the machines is critical.
In such situations, it is rarely practical to ask users to fully specify their avail-
ability times. Instead, we assume users initially only propose a single starting
time for each of their jobs, and a feasible and optimized schedule shall then
be found within a small number of interaction rounds. In each such interaction
round, our scheduling approach may make a small number of queries to users
to find out more about their availabilities. We investigate two different forms of
queries. For the first one, the approach proposes alternative time intervals for
the users’ jobs, which the users either accept or reject, and for the second, users
⋆ J. Varga acknowledges the financial support from Honda Research Institute Europe.

2 J. Varga et al.

are asked to provide alternative possible starting times for their jobs restricted
to a timeframe. We use a stochastic programming approach to find the queries in
each round that have the highest potential to improve the schedule. To formulate
expected costs, subject to the selected queries, we use two different stochastic
user models. The first one assumes that the users availability in a timestep only
depends on their availability in the previous timestep, and the second one as-
sumes that the user is available in up to two intervals each day with normally
distributed interval endpoints.

The IJSP has already been considered in the literature by Varga et al. [5, 6].
They only use the first, simpler, type of user query and select queries in each
round by calculating an acceptance probability for each query, discarding low-
probability queries and selecting those that improve the objective value most.
This strategy leads to good convergence towards the best achievable schedule.
Our contributions extend these works by considering an additional query type
and proposing a stochastic programming approach to get more relevant infor-
mation from the same amount of interaction.

We are not aware of any other work considering the IJSP or a similar setting.
Some approaches to solving a scheduling problem similar to our core problem
without the interaction aspect include Mixed Integer Linear Programming [7,
1], a genetic algorithm [7], as well as a greedy heuristic and local search [1].
Moreover, there is a rich literature on human-machine cooperation ranging from
cooperative optimization approaches, see e.g. Jatschka et al. [2], to the measuring
of the level of cooperation, as done for instance by Wiebel et al. [8].

The next section defines the problem formally and introduces the notation
used throughout the paper. Afterwards, Section 3 describes the user models and
how they are used to calculate probabilities and to generate samples of user
availabilities. Subsequently, Section 4 discusses our stochastic programming ap-
proach and Section 5 presents the results of an experimental evaluation. Finally,
Section 6 concludes the work and gives an outlook on future work.

2 Problem Formulation and Notation

The time planning horizon T of the IJSP consists of multiple days, each with
the same number of discrete time steps. We denote with U the set of users. Each
user u ∈ U has multiple jobs Ju, J := ∪u∈UJu, and each job j ∈ J has to be
scheduled on one of multiple machines M . For the experimental evaluation, we
only use instances with a single machine, i.e. |M | = 1, but to be consistent with
the literature, we formulate our methods for an arbitrary number of machines.
Each job j ∈ J has a duration dj ∈ N in terms of the number of discrete
timesteps. Refer to the set of timesteps in which job j would run if started in
timestep t with Tj [t] = {t, t + 1, . . . , t + dj − 1} and denote with T job

j ⊆ T the
set of candidate starting times of job j ∈ J , restricted due to the fact that a job
has to finish until the end of a day and is not allowed to span multiple days.
The objective is to minimize time- and machine-dependent costs cit for using

Selecting User Queries in Interactive Job Scheduling 3

machine i ∈ M in timestep t ∈ T . It is possible to not schedule a job j ∈ J , and
this induces a penalty cost qj .

This scheduling problem can be formulated by the following Integer Linear
Program ILP(T), which is parameterized with a set of allowed starting times Tj
for each job j ∈ J .

min
∑
j∈J

∑
i∈M

∑
t∈Tj

∑
t′∈Tj [t]

cit′xjit +
∑
j∈J

qj

1−
∑
i∈M

∑
t∈Tj

xjit

 (1)

s.t.
∑
i∈M

∑
t∈Tj

xjit ≤ 1 j ∈ J (2)

∑
j∈J

∑
t∈Tj |t′∈Tj [t]

xjit ≤ 1 i ∈ M, t′ ∈ T (3)

∑
j∈Ju

∑
i∈M

∑
t∈Tj |t′∈Tj [t]

xjit ≤ 1 u ∈ U, t′ ∈ T (4)

xjit ∈ {0, 1} j ∈ J, i ∈ M, t ∈ Tj (5)

The binary variables xjit indicate with value one that job j starts on machine
i at timestep t and constraints (2)–(4) make sure that each job is scheduled at
most once, that jobs do not overlap on the same machine and that jobs of the
same user do not overlap.

Running times of jobs Ju also have to take into account user u’s availabilities,
which are only known partially. To improve the schedule, a limited amount of
interaction with the users is allowed. Initially, each user specifies a starting time
for each of their jobs that would work for them. In each of multiple rounds,
the approach determines a set of most meaningful queries and the users reply
to those queries, enriching the knowledge about their availabilities. We denote
with T avail

u the set of timesteps for which user u is known to be available at the
current stage of interaction. We consider two different types of queries. The first
one has already been used in the literature; it consists of a time interval and
the user either accepts it, if they are available in the whole interval, or rejects
it otherwise. The second and novel query type consists of a larger timeframe
and a duration and the user selects a time interval within the timeframe of the
given duration in which they are available, or indicates that there is no such
interval within the timeframe. The timeframe is chosen from a predefined set F
of timeframes. In our experiments it consists of two timeframes for each day, one
from 6am to 2pm, the other from 2pm to 10pm.

3 User Models

For high quality queries, a user response that increases the knowledge about
relevant user availability intervals has to be likely and to assess the probability
distribution over user responses, we use and compare different probabilistic mod-
els for the users from the literature [6]. To minimize assumptions about users,

4 J. Varga et al.

(a)

0start

1

ρ01 ρ10

ρ00

ρ11 (b)

s 01

11

02

12

ρ00

ρ0
1

ρ00

ρ0
1

ρ
10

ρ11

0tmax

1tmax

tρ00

ρ
10

Fig. 1. (a) Two-state Markov process and (b) corresponding unrolled state graph.
Adapted from [6].

we assume for the first model that the availability of a user in a timestep only
depends on the availability of the user in the immediately preceeding timestep.
This results in a Markov chain with two states 0 and 1, representing the user
being not available and being available, respectively, see also Figure 1a. Before
the first timestep, the user is unavailable and from one timestep to the next the
user gets available or stays unavailable with probabilities ρ01 and ρ00 = 1− ρ01,
respectively, if they were unavailable, or the user gets unavailable or stays avail-
able with probabilities ρ10 and ρ11 = 1−ρ10, respectively, if they were available.
We will refer to this model with Markov. The second model assumes the user
to be available in up to two intervals within a day. Both intervals are included
independently with a given probability and their starting time and duration
follow a normal distribution, rounded to the nearest timestep. If the intervals
overlap, we take their union. This model is referred to as Advanced and can be
formulated as a Markov chain as well, see [6] for details.

The models are used to approximate acceptance probabilities of queries and
to generate plausible sets of user availabilities. This is done by unrolling the
Markov chain associated with the model by duplicating each state for each
timestep and adding a source node s and a target node t, see Figure 1b for
the unrolled state graph for the two-state Markov chain. Each state is associ-
ated with the user being unavailable or the user being available, and thus each
path corresponds to one set of user availabilities and the product of edge weights
results in the probability of that outcome. The knowledge about a day, obtained
from user replies, is incorporated by manipulating the graph appropriately to
rule out incompatible paths. Acceptance probabilities of queries are computed
based on the probability ppaths,v to reach node v from the source node s and on the
probability ppathv,t to reach the target node t from node v, see [6] for more details
on the graph construction, the calculation of ppath, and the calculation of query
acceptance probabilities from ppath. To generate sets of availabilities according
to the model and considering the knowledge gathered from user replies, we start
in the source node s and iteratively select the next node n proportional to the
product of the edge weight and ppathn,t .

4 Solution Approaches

The task in each round is to find most meaningful queries with high potential
to improve the current schedule. This task has been solved in the literature

Selecting User Queries in Interactive Job Scheduling 5

by first filtering all queries with an estimated acceptance probability below a
threshold plim from a set of candidate queries and then selecting, by solving an
ILP, those queries that improve the objective the most, assuming the queries are
accepted [6]. We refer to this approach as Markov(plim) or Advanced(plim),
depending on the underlying user model.

The drawbacks of the probability threshold approach are that queries with
probability above the threshold are treated equally, independent of their calcu-
lated probabilities, and that correlations between the replies of different queries
are not taken into account. Furthermore, the approach is tailored for yes/no
queries and does not work for the newly considered timeframe queries. To over-
come these deficiencies, we propose the following two-stage stochastic program-
ming approach that identifies queries that minimize expected costs after user
replies. This approach is greedy in the sense that it selects those queries in each
round that reduce the expected objective value the most.

min ET avail∗(ILP(T (T avail∗, stime, sframe))) (6)

s.t.
∑
j∈J

∑
t∈T

stime
jt +

∑
f∈F

sframe
jf

 ≤ b (7)

stime
jt ∈ {0, 1} j ∈ J, t ∈ T (8)

sframe
jf ∈ {0, 1} j ∈ J, f ∈ F (9)

The binary variables stime and sframe select the yes/no and timeframe queries,
respectively, that will be relayed to the users and (7) limits their number to b.
Objective (6) is to minimize expected costs for the selected queries, subject to
user availabilities T avail∗ that are assumed to be distributed according to the user
model at hand. The term T (T avail∗, stime, sframe) denotes the set of timesteps in
which jobs are allowed to start. This set is based on the user replies to the
selected queries, which are determined based on the users availabilities T avail∗.

As the expected costs involve a hard optimization problem, it is challenging
if not impossible to model the exact stochastic program by means of an ILP, and
therefore, we obtain queries by solving the sample average approximation [3]. To
do so, we first sample nsamples possible sets of user availabilities for each user
based on the user model and compute the user reply for each sample and possible
query. In case of the first form of yes/no queries, this results in the set of starting
times T

pos,(k)
j ⊆ T for each job j ∈ J , for which the reply would be positive for

sample k. For timeframe queries, this results in a set of timeframes F pos,(k)
j ⊆ F

for each job j ∈ J in which the reply would be positive and for each of these
frames f ∈ F

pos,(k)
j the starting time t

reply,(k)
jf ∈ T that the user would choose

randomly from their possible starting times within the timeframe.
With that terminology, the ILP for the approximation of the stochastic pro-

gram can be formulated as nsamples instances of the ILP from [6] of the core
scheduling problem without restricting job starting times yet, combining the ob-
jectives by taking the mean. This ILP uses variables x

(k)
jit ∈ {0, 1}, j ∈ J, i ∈

6 J. Varga et al.

M, t ∈ T for each sample k to indicate with value one that job j is scheduled
on machine i with starting time t. We restrict job starting times according to
the selected queries and the corresponding user replies by adding the following
constraints for each sample k:

x
(k)
jit = 0 j ∈ J, i ∈ M, t ∈ T \ T pos,(k)

j (10)

∑
j′∈Ju

∑
t′∈T |Tj [t]⊆Tj′ [t

′]

stime
j′t′ +

∑
f∈F

pos,(k)

j′ |treply,(k)
j′f =t′

sframe
j′f

 ≥

∑
i∈M

∑
j′∈Ju

∑
t′∈T |Tj [t]⊆Tj′ [t

′]

x
(k)
j′it′ u ∈ U, j ∈ Ju, t ∈ T, Tj [t] ̸⊆ T avail

u (11)

Equation (10) prevents starting times that would be rejected by the user. Note
that T pos,(k)

j also includes starting times for which we already know that the user
would accept them. Inequality (11) only allows a starting time that we are not
sure about yet if a query is selected whose time interval covers the jobs’ execution
time. The sums over j′ and t′ on the left side account for the fact that, given
an accepted query of a longer job, also a shorter job could be scheduled within
the time interval of the query, and the sums over j′ and t′ on the right side
strengthen the formulation based on the idea that a disallowed shorter interval
also disallows a longer running job when covering the shorter interval. Note that
these constraints are slightly more restrictive than they need to be to make the
formulation easier and more practical. For instance, if the time intervals of two
selected queries overlap, jobs could be scheduled in the union of those intervals
and this is not covered by the formulation above.

5 Experimental Results

To test our approach, we use the smallest instances3 of [6] with one machine,
six users and 24 jobs since the sample average approximation of the stochastic
program does not scale to larger instances when using a reasonably large number
of samples. The time horizon of those instances consists of five days, each day
starting at 6am and ending at 10pm with four discrete timesteps per hour.
Users are simulated and their availability times, which are not (completely)
known to the scheduler, are generated according to the Advanced model for
which we use the following values. The probability of including an interval is
90% and the normal distributions have a standard deviation of one hour. The
mean starting times of the intervals are 9am and 1pm, respectively, and their
mean durations are four and five hours, respectively. Based on their generated
availability times, the users select one possible starting time for each of their
jobs uniformly at random and the hypothetical running times of those jobs form
the initial knowledge about the user availabilities.
3 https://www.ac.tuwien.ac.at/research/problem-instances/#ijsp

Selecting User Queries in Interactive Job Scheduling 7

Fig. 2. Convergence comparison of the threshold approach with the stochastic pro-
gramming approach.

Fig. 3. Convergence comparison for the stochastic programming approach when allow-
ing different types of queries for the Markov user model (left) and the advanced user
model (right).

We implemented the approaches in Julia 1.10 and used the solver Gurobi
11.0 to solve the ILPs. Each experiment was performed on a single thread of
an Intel Xeon E5-2640 v4 with a timelimit of 120 minutes for each ILP. For the
sample average approximation of the stochastic program, we use nsamples = 50
samples. The optimality gaps of all solutions found by Gurobi are below 45%
and their median is 4.3%.

Figures 2 and 3 compare the performance of the different approaches with
different parameters. They plot the average objective value over 30 instances of
the best schedule that is possible with a certain knowledge about user availabil-
ities. The horizontal lines show the objective value with the knowledge that is
available before any user interaction (“No Interaction”), assuming full knowledge
about user availabilities (“Full Knowledge”), and assuming that all users are—
hypothetically—available all the time (“Full Availabilities”). The curves show the
average objective values of the best schedule with the knowledge gathered by one
of the approaches with one to five interaction rounds.

Figure 2 shows a comparison of the stochastic programming approach Stoch-
Prog(Markov, TF) and StochProg(Advanced, TF) with the probability

8 J. Varga et al.

threshold approach Markov(0.5) and Advanced(0.5) from [6]. The best con-
figurations of the approaches with plim = 0.5 and only timeframe queries, re-
spectively, were chosen. The stochastic programming approach clearly performs
better with a gap to the full knowledge case after five rounds of 7.3% and 9%
for the Markov and Advanced user models, respectively, compared to gaps of
34.7% and 12.7%. Apparently, both user models work almost equally well within
the stochastic programming approach, when using only timeframe queries.

Figure 3 compares the stochastic programming approach when allowing only
yes/no queries (“YN”), only timeframe queries (“TF”) and both (“YN+TF”) for
the Markov model and for the Advanced model. The approach with time-
frame queries performs with final gaps of 7.3% (Markov) and 9% (Advanced)
significantly better than the one with yes/no queries with final gaps of 26.7%
(Markov) and 47% (Advanced). This is not surprising since the user gives
more information with each reply to a query. A bit surprising is the fact that
only allowing timeframe queries results in a better performance than allowing
both types of queries (final gaps 21.2% and 32.7%) considering the fact that the
latter could only select timeframe queries. We explain this with the approxima-
tion error related to the limited amount of samples. While the expected objec-
tive predicts the actual objective after the users replies quite well for timeframe
queries with a mean difference of 1.1%, allowing only yes/no queries results in a
mean difference of 17.7%. This indicates that timeframe queries are better com-
patible with the sample average approximation than yes/no queries. But yes/no
queries might still benefit from stochastic programming, either by using more
samples for the approximation, or by using a more advanced approach to solve
it such as the one described in [4], where the expected objective is estimated by
a neural network.

6 Conclusion

We investigated the problem of selecting meaningful queries of two different
types in an interactive scheduling setting, proposed a stochastic programming
approach and compared it with the state-of-the-art. The stochastic programming
approach converges significantly faster than the probability threshold approach
from the literature. Furthermore, the query type that asks the user to specify
alternative running times for their jobs works better than proposing alternative
running times to the users.

To solve the stochastic program, we formulated the sample average approx-
imation and solved it with an Integer Linear Programming solver. While this
is easy to implement and works reasonably well, it does not scale well to larger
instances and has a considerable approximation error. In future work, we plan
to overcome these issues by using a more advanced stochastic programming
method, such as estimating expected costs via a neural network.

Selecting User Queries in Interactive Job Scheduling 9

References

1. Anghinolfi, D., Paolucci, M., Ronco, R.: A bi-objective heuristic approach for green
identical parallel machine scheduling. European Journal of Operational Research
289(2), 416–434 (2021)

2. Jatschka, T., Raidl, G.R., Rodemann, T.: A general cooperative optimization ap-
proach for distributing service points in mobility applications. Algorithms 14(8)
(2021)

3. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approxi-
mation method for stochastic discrete optimization. SIAM Journal on optimization
12(2), 479–502 (2002)

4. Kronqvist, J., Li, B., Rolfes, J., Zhao, S.: Alternating mixed-integer programming
and neural network training for approximating stochastic two-stage problems. In:
Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds.)
Machine Learning, Optimization, and Data Science. pp. 124–139. Springer Nature
Switzerland, Cham (2024)

5. Varga, J., Raidl, G.R., Rönnberg, E., Rodemann, T.: Interactive job scheduling
with partially known personnel availabilities. In: Dorronsoro, et al. (eds.) OLA 2023:
Optimization and Learning. Communications in Computer and Information Science,
vol. 1824, pp. 236–247. Springer (2023)

6. Varga, J., Raidl, G.R., Rönnberg, E., Rodemann, T.: Scheduling jobs using queries
to interactively learn human availability times. Computers & Operations Research
167, 106648 (2024)

7. Wang, S., Wang, X., Yu, J., Ma, S., Liu, M.: Bi-objective identical parallel machine
scheduling to minimize total energy consumption and makespan. Journal of Cleaner
Production 193, 424–440 (2018)

8. Wollstadt, P., Krüger, M., Wiebel-Herboth, C.B.: Quantifying cooperation between
rule-based hanabi agents using information theory. In: Lukowicz, P., Mayer, S.,
Koch, J., Shawe-Taylor, J., Tiddi, I. (eds.) HHAI 2023: Augmenting Human In-
tellect: Proceedings of the Second International Conference on Hybrid Human-
Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, vol. 368,
pp. 422–425. IOS Press (2023)

