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Abstract. Logic-based Benders decomposition is a technique to solve
optimization problems to optimality. It works by splitting the problem
into a master problem, which neglects some aspects of the problem, and
a subproblem, which is used to iteratively produce cuts for the master
problem to account for those aspects. It is critical for the computational
performance that these cuts are strengthened, but the strengthening of
cuts comes at the cost of solving additional subproblems. In this work
we apply a graph neural network in an autoregressive fashion to approx-
imate the compilation of an irreducible cut, which then only requires few
postprocessing steps to ensure its validity. We test the approach on a job
scheduling problem with a single machine and multiple time windows per
job and compare to approaches from the literature. Results show that our
approach is capable of considerably reducing the number of subproblems
that need to be solved and hence the total computational effort.

Keywords: Logic-based Benders Decomposition · Cut Strengthening ·
Graph Neural Networks · Job Scheduling

1 Introduction

Many different ways have been investigated lately to improve traditional com-
binatorial optimization methods by means of modern machine learning (ML)
techniques. For a general survey see [2]. Besides more traditional approaches
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where ML techniques are used to tune parameters or configurations of an opti-
mization algorithm or to extract problem features then utilized by an optimiza-
tion algorithm [5,6], diverse approaches have been proposed where handcrafted
heuristics for guiding a search framework are replaced by learned models. The
advantages of successful approaches are apparent: Significant human effort may
be saved by learning components of an optimization algorithm in an automated
way, and these may potentially also make better decisions, leading to better
performing solvers and ultimately better or faster obtained solutions. Given his-
torical data from a practical application scenario, a more specialized model may
also be trained to more effectively solve similar future instances of this problem.
Moreover, if characteristics of the problem change, a learned model may also be
rather easily retrained to accommodate the changes, while handcrafted methods
require manual effort.

In the context of mathematical programming techniques, in particular mixed
integer linear programming, learned models are used, for example, as primal
heuristics for diving, to approximate the well-working but computational expen-
sive strong branching [1], or to select valid inequalities to add as cuts by means
of a faster ML model that approximates a computationally expensive look-ahead
approach [14]. We focus here in particular on logic-based Benders decomposition
(LBBD) [7], which is a well-known mathematical programming decomposition
technique. The basic idea is that an original problem is split into a master prob-
lem and a subproblem that are iteratively solved in an alternating manner to
obtain a proven optimal solution to the original problem. The master problem
considers only subsets of the decision variables and constraints of the original
problem and is used to calculate a solution with respect to this subset of vari-
ables. The subproblem is obtained from the original problem by using the master
problem solution to fix the values of the corresponding variables. If the original
objective function includes master problem variables only, the purpose of the
subproblem is to augment the solution in a feasible way. If this is not possible,
a so-called feasibility cut, i.e., a valid inequality that is violated by the current
master problem solution, is derived and added to the master problem. Used as
is, this cut would only remove a small number of master problem solutions from
the master problem’s solution space and as such it is not likely to yield much
progress. It is therefore crucial for the practical performance of LBBD schemes
to strengthen cuts before adding them to the master problem. Typically, such
strengthening involves to solve additional subproblems.

As a first step towards speeding up the LBBD scheme through cut strength-
ening, we propose a learning-based approach that reduces the number of sub-
problems to be solved. For the learning part, subproblems are represented by
graphs, and consequently we use a graph neural network (GNN) as ML model.
An autoregressive approach inspired by [11] is applied to compile a promising
inequality by means of iteratively selecting and adding variables under the guid-
ance of the GNN. This GNN is trained offline on a set of representative problem
instances. As test bed we use a single-machine scheduling problem with time-
windows from [8]. Results clearly indicate the benefits of the GNN-guided cut
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strengthening over classical strengthening strategies from the literature. In par-
ticular the number of solved subproblem instances is significantly lower, which
leads to better overall runtimes to obtain proven optimal solutions.

Compared to classical Benders decomposition, which is used to solve mixed
integer linear programs decomposed so that the subproblem has continuous vari-
ables, LBBD is a generalization that allows also discrete variables in the sub-
problem. This generalization is however done at the cost of no longer having
a general strategy for deriving strong cuts from subproblem. Several different
cut-strengthening techniques have been proposed in the literature, and typically
they are described for the specific problem at hand. In Karlsson and Rönnberg
[9], techniques for strengthening of feasibility cuts have been described within a
common framework and compared on a variety of different scheduling problems
to provide an overview of this area. An extension of this work to also include
optimality cuts is found in the technical report [16].

It is common to apply LBBD to problems with both allocation and schedul-
ing decisions. For example, LBBD has been applied to a single facility scheduling
problem with segmented timeline [4] and an electric vehicle charging and assign-
ment scheduling problem [17]. Other examples are [10,15].

The outline of this paper is as follows. Section 2 specifies the scheduling
problem and our LBBD scheme. Section 3 describes what we aim to approximate
with a GNN, how we make use of its predictions to strengthen cuts, and how we
collect training data, while Section 4 discusses the specific structure of the GNN,
the features used as its input, and the training procedure. Finally, Section 5
presents experimental results, and Section 6 concludes the paper.

2 Single-Machine Scheduling Problem and LBBD

In the single-machine scheduling problem we will use as test bed for our LBBD
approach we are given a set of tasks I. Each task i ∈ I may be scheduled in a
non-preemptive way within one of its possibly multiple time windows w ∈ Wi

given by a release time riw and a deadline diw ≥ riw. Task i has a processing
time pi, for which it exclusively requires the single available machine. Moreover,
if task i runs before another task j ∈ I, the time difference between the start
of task j and the end of task i has to be at least a given setup time sij . For
each task i ∈ I that is scheduled, a prize qi is collected and the objective is to
maximize these collected prizes.

An overview of the LBBD framework is shown in Algorithm 1. To apply
LBBD to our scheduling problem, we split it into a master problem (MP), which
determines the subset of tasks to be performed together with selected time win-
dows, and a subproblem (SP) for determining an actual schedule. More specif-
ically, the SP gets a set of task-time window pairs (TTWPs) X ⊆ {(i, w) : i ∈
I, w ∈ Wi} as input and checks, whether the tasks can be scheduled without
overlap within the selected time windows, also obeying the setup times. If such
a schedule exists, it is an optimal solution to the original problem. Otherwise a
feasibility cut, i.e., inequality that excludes this set of TTWPs from the MP’s



4 J. Varga et al.

Algorithm 1: LBBD scheme with cut strengthening
Data: A problem instance
Result: An optimal solution or a proof of infeasibility

1 F = ∅ /* Set of feasibility cuts */;
2 k ← 1 /* The current LBBD iteration */;
3 X ← ∅ /* The current TTWPs */;
4 while true do
5 Xk ← solve MP with feasibility cuts F ;
6 if Xk is a feasible solution then
7 X ← Xk;
8 else
9 return problem has no feasible solution;

10 end
11 Y k ← solve SP for TTWPs X;
12 if Y k is a feasible solution then
13 return optimal solution (Xk, Y k);
14 else
15 X̂ ← CutStrengthening(X);
16 F ← F ∪ X̂ ;
17 end
18 k = k + 1;
19 end

space of feasible solutions, is derived and added to the MP to prevent the same
configuration from further consideration. Thus, in our case a feasibility cut is
represented by a set of TTWPs.

2.1 Master Problem

We state the MP by the following binary linear program with variables xiw ∈
{0, 1} indicating with value one that task i ∈ I is to be performed in its time
window w ∈ Wi.

[MP(I,F)] max
∑
i∈I

∑
q∈Wi

qixiw (1)

s. t.
∑

w∈Wi

xiw ≤ 1, i ∈ I (2)

∑
(i,w)∈X

(1− xiw) ≥ 1, X ∈ F (3)

∑
i∈I

∑
w∈Wi(t1,t2)

pixiw ≤ t2 − t1, (t1, t2) ∈ T (4)

xiw ∈ {0, 1}, i ∈ I, w ∈ Wi. (5)

The objective (1) is to maximize the total prize collected by assigning tasks
to time-windows. Constraints (2) ensure that each task is scheduled in at most
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one of its time windows. All so far added feasibility cuts are represented by
inequality (3), where the elements in F are sets of TTWPs that must not appear
together in a feasible solution. Inequalities (4) are used to strengthen the MP. Set
T = {(riw, di′w′) | (w,w′) ∈ Wi×Wi′ , (i, i

′) ∈ I×I, di′w′ > riw} contains release
time and deadline pairs for which a segment relaxation is used and Wi(t1, t2) =
{w ∈ Wi | t1 ≤ riw, diw ≤ t2} is the set of time windows for task i ∈ I that starts
after t1 and ends before t2. The inequality ensures that the total processing time
of all tasks within a time interval [t1, t2) does not exceed the interval’s duration.

2.2 Subproblem

To simplify the notation, let I(X) = {i : (i, w) ∈ X} denote the set of tasks to
be scheduled. In the SP, the decision variables yi ≥ 0 represent the start time of
task i ∈ I(X). We state the SP as the following decision problem.

[SP(X)] find yi,∀i ∈ I (6)
s. t. Disjunctive((yi | i ∈ I(X)), (pi | i ∈ I(X)),

(sij | i, j ∈ I(X)), i ̸= j) (7)
riw ≤ yi ≤ diw − pi (i, w) ∈ X (8)
yi ≥ 0 i ∈ I (9)

Constraints (7) ensure that no two tasks overlap and setup times are obeyed.
Inequalities (8) guarantee that all tasks are scheduled within their time windows.

2.3 Cut Strengthening

Strengthening of feasibility cuts obtained from an infeasible subproblem is crucial
for good performance of the LBBD framework. In our case, a cut is represented
by a set of TTWPs X and is strengthened when one or more TTWPs are re-
moved from X and the newly obtained inequality is still a valid cut in the sense
that the respective SP remains infeasible. The infeasibility of the SP implies
that no feasible solutions are cut away when adding the inequality to the MP.
Ideally, a cut-strengthening procedure should provide one or multiple irreducible
cuts, which are cuts that cannot be strengthened further by removing TTWPs.
Should the MP become infeasible at some point, the problem instance is proven
infeasible.

The deletion filter cut-strengthening algorithm is based on the deletion filter
for finding an irreducible inconsistent set of constraints [3] and is used to form
an irreducible cut X̂ from a given X, see Algorithm 2. The method starts with
X̂ = X and proceeds through all TTWPs (i, w) ∈ X one-by-one, checking the
feasibility of the subproblem with (i, w) excluded. If a subproblem is infeasible,
TTWP (i, w) will be permanently removed from X̂. For example, this form of
cut strengthening was already used in [15,12]. MARCO [13] is another procedure
to strengthen cuts. While it is more expensive in terms of subproblems to check,
it systematically enumerates all irreducible feasibility cuts that can be derived
from X. We will use MARCO to collect training data for learning, while our cut
strengthening approach is based on the faster deletion filter.
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Algorithm 2: Deletion filter cut strengthening
Data: A set of TTWPs X representing a feasibility cut
Result: A set of TTWPs X̂ representing an irreducible feasibility cut

1 X̂ ← X;
2 for (i, w) ∈ X do
3 X ′ ← X̂ \ {(i, w)};
4 if SP(X ′) is infeasible then
5 X̂ ← X ′;
6 end
7 end
8 return X̂;

3 Learning to Strengthen Cuts

We now introduce our main contribution, the graph neural network (GNN) based
cut strengthening approach to speed up the LBBD scheme. The idea is to train a
GNN offline on representative problem instances and apply it when solving new
instances as guidance in the construction of a promising initial subset of TTWPs
X̂ ⊆ X that ideally already forms a strong irreducible cut without the need of
any subproblem solving. Still, our approach then has to check if the respective
SP(X̂) is feasible or not. In case the SP is feasible, further TTWPs are added
one-by-one until the SP becomes infeasible. In any case, the deletion filter is
finally also applied to obtain a guaranteed irreducible cut. The hope is that by
this approach, only few subproblems need to be solved to “repair” the initially
constructed TTWP subset in order to come up with a proven irreducible cut.

Algorithm 3 shows our GNN-based cut strengthening in more detail, which
again receives a TTWP set X representing an infeasible SP and thus an initial
feasibility cut as input. In its first part up to line 5, the algorithm selects a
sequence of TTWPs S in an autoregressive manner steered by the GNN-based
function fΘ(I,X, S) with trainable parameters Θ. Here, I refers to the set of all
tasks of the original problem, which are provided as global information, and S is
the initially empty TTWP sequence. Function fΘ returns a TTWP (i, w) that is
appended to S as well as a Boolean indicator τ for terminating the construction.
The way how function fΘ is realized will be explained in Section 3.1 and how it
is trained in Section 3.2. In the following while-loop, the algorithm adds further
TTWPs that are again selected by function fΘ as long as the corresponding
SP remains feasible, which needs to be checked here by trying to solve the SP.
Finally, in line 10, the deletion filter is applied, where the TTWPs are considered
in reverse order as they have been previously selected by fΘ.

3.1 Function fΘ(I,X, S)

Our trainable function fΘ shall predict a best suited TTWP from X for ap-
pending it to the given TTWP sequence S as well as the termination indicator
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Algorithm 3: GNN-based cut strengthening
Data: A set of TTWPs X representing a feasibility cut
Result: A set of TTWPs X̂ representing an irreducible feasibility cut

1 S ← [] /* sequence of selected TTWPs */;
2 repeat
3 (i, w), τ ← fΘ(I,X, S);
4 append (i, w) to S;
5 until τ ;
6 while SP(S) is feasible do
7 (i, w), τ ← fΘ(I,X, S);
8 append (i, w) to S;
9 end

10 X̂ ← Deletion Filter(reverse(S));
11 return X̂;

τ , so that in the ideal case the final S represents an irreducible feasibility cut
that is also strong in the sense that it is likely binding in the final MP iteration.
In a first step of fΘ(I,X, S), a complete directed graph G = (X,A) with nodes
corresponding to the TTWPs in X is set up, and node as well as arc features
are derived from I, X, and S, cf. Section 4. Following in parts the autoregressive
approach in [11], we then apply a GNN to graph G, which returns for each node
and thus each TTWP (i, w) ∈ X \ S a value piw ∈ [0, 1] that shall approximate
the probability that, under the assumption that S does not contain a feasibility
cut yet, when appending (i, w) to S, this set is getting one step closer to contain-
ing some strong cut while including as few TTWPs not being part of this cut
as possible. More precisely, let X be the set of all irreducible strong cuts being
subsets of X. Moreover, let δ(S,X ) = minX̂∈X |S \ X̂| be the minimum number
of TTWPs any complete extension of S towards a feasibility cut must contain
that will not be part of a strong cut. Subset X ′ = {X̂ ∈ X : |S \ X̂| = δ(S,X )}
then contains those strong cuts that might be created by extending S without
increasing δ(S,X ). Values piw should therefore approximate

p̂iw =

{
1 if (i, w) ∈

⋃
X̂∈X ′ X̂

0 else.
(10)

We intentionally leave piw undefined for the case that S already contains an
irreducible cut, although in practice fΘ might indeed be called for such cases if
the termination prediction is not precise enough. These predicted values of piw
are, however, not critical as the corresponding unnecessarily appended TTWPs
in S will get removed by the finally applied deletion filter anyway.

In addition to the above piw value, the GNN further returns a value τiw ∈
[0, 1] for each TTWP (i, w) ∈ X \ S approximating the probability that when
appending (i, w) to S, this augmented set contains already an irreducible feasi-
bility cut. Function fΘ(I,X, S) evaluates the described GNN, selects a TTWP
(i, w) ∈ X \ S with maximum value piw, and returns (i, w) together with
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⌈τiw + 0.5⌋ as Boolean valued τ . Ties among piw are broken in favor of higher
values τiw and finally at random.

3.2 Collecting Training Data

The GNN is trained in an offline manner by supervised learning on a substantial
set of representative problem instances. To obtain labeled training data, the
LBBD framework is applied to each of these problem instances with the following
extensions in order to identify strong irreducible feasibility cuts. In the first step,
the LBBD scheme is performed with MARCO as cut-strengthening approach
to enumerate all possible irreducible cuts for each infeasible subproblem. Let
us denote with F the set of cuts obtained in this way over a full LBBD run.
The second step finds an irreducible subset of strong cuts of the form X ⊆
F that is actually required to get a feasible optimal solution in the master
problem in the sense that the master problem will give an infeasible solution
when removing one of those cuts. This is done by applying a deletion filter on
F using a random order, iteratively removing cuts and checking whether the
master problem still gives a feasible solution. Note that there might be other
minimal sets of irreducible cuts, which we do not encounter with this approach.

For each training instance I we perform the above procedure and collect for
each Benders iteration a tuple (I,X,F ,X ) where X denotes the TTWPs of the
SP and thus original feasibility cut and X = {X̂ ∈ F : X̂ ⊆ X ∧ X̂ is strong} is
the set of strong cuts that can be derived from X. These tuples are then used
to derive training samples for the GNN.

This is done by performing for each tuple (I,X,F ,X ) rollouts that simulate
the derivation of feasibility cuts without needing to actually solve any further
subproblems. Algorithm 4 details this rollout procedure. In each iteration of
the loop, step 7 selects a TTWP that brings S one step closer to containing
a strong cut from X and adds it to S. This is repeated until S is a superset
of an irreducible cut. Note that in this procedure, the order of the elements in
S does not matter, and we therefore realize it as a classical set in contrast to
Algorithm 3, where S needs to be an ordered sequence. Additionally, in each
iteration the training, labels p̂ = (p̂iw)iw∈X and τ̂ = (τiw)iw∈X are calculated
based on the definitions of piw and τiw from Section 3.1 and a training sample is
added. The notation J·K denotes Iverson brackets, i.e., JCK is 1 if the condition
C is true and 0 otherwise.

4 Graph Neural Network

The architecture of our GNN is shown in Figure 1. Remember that the nodes of
our graph correspond to the TTWPs of an original feasibility cut X. For each
node (i, w) ∈ X, vector xiw shall be the vector containing all node features and
x the respective matrix over all nodes. An initial node embedding h0 of size 64
per node is derived by a linear projection with trainable weights. Moreover, for
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Algorithm 4: The rollout procedure to construct training samples from
a tuple (I,X,F ,X ).

Data: Original feasibility cut X, all irreducible cuts F , strong cuts X .
Result: A set T of training samples, a sample being a tuple (I,X, S, p̂, f̂),

where I is the set of all tasks with their attributes and p̂ and f̂ are
the labels.

1 S ← ∅;
2 T ← ∅;
3 repeat
4 p̂iw ← J(i, w) ∈

⋃
X̂∈X ′ X̂K ∀(i, w) ∈ X \ S;

5 f̂iw ← J∃X̂ ∈ F : X̂ ⊆ S ∪ {(i, w)}K ∀(i, w) ∈ X \ S;
6 T ← T ∪ {(I,X, S, p̂, f̂)};
7 select (i, w) ∈

⋃
X̂∈X ′ X̂ uniformly at random;

8 S ← S ∪ {(i, w)};
9 until ∃X̂ ∈ F : X̂ ⊆ S;

10 return T ;

x Linear

y Linear

MHA Batch-Norm FF(512) Batch-Norm FF(64) p

FF(64) τ
3x

Fig. 1: Architecture of the GNN.

all arcs in A and their features, we also derive an arc embedding hA of size 32
per arc by a trainable linear projection.

We apply a transformer-based convolution layer that also considers arc em-
beddings, implemented in Pytorch Geometric, with 8 heads, skip connections,
and batch normalization, followed by a feed-forward layer with a hidden sub-
layer of dimensionality 512, parametric rectified linear units (PReLUs) as non-
linearity, and again with skip connections and batch normalization, similar as
in the encoder part of [11] and usually done in transformers [18]. This multi-
head attention layer plus feed-forward layer is repeated k = 3 times. We chose
hyper-parameters by hand based on preliminary experiments and guided by [11].

In contrast to transformers and [11], we do not follow an encoder/decoder
architecture, but keep things simpler. To obtain output values piw and τiw for
each node (i, w), we further process the so far obtained node embeddings hk

iw

by two independent feed-forward neural networks with one hidden layer of di-
mensionality 64 and single final output nodes with sigmoid activation functions,
respectively. In the autoregressive approach, the whole GNN is completely eval-
uated in each step with updated features, in particular concerning the already
selected TTWPs. Output nodes for already selected TTWPs are masked out.

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.TransformerConv.html#torch_geometric.nn.conv.TransformerConv
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As we do binary classification, we use binary cross-entropy as loss function:

L(p, p̂, τ, τ̂) = 1

2
(L(p, p̂) + L(τ, τ̂)) (11)

with
L(p, p̂) = 1

|V \ S|
∑

v∈V \S

−(p̂v log pv + (1− p̂v) log(1− pv)) (12)

and
L(τ, τ̂) = 1

|V \ S|
∑

v∈V \S

−(τ̂v log τv + (1− τ̂v) log(1− τv)). (13)

The list of node and arc features we use is given in Table 1. There are three
additional features with the values from the last three arc features from the
reverse arc. Features corresponding to points in time are scaled with function

time-scaling(t) = (t−min
i,w

(riw))/(max
i,w

(diw)−min
i,w

(riw)), (14)

over all tasks i and their time windows w in the whole set of training instances.
All other features are either normalized across the training data to values within
[0,1] or kept if they are already reasonably distributed. We further compute a
basic schedule from the TTWPs in X with a variation of the earliest deadline
first (EDF) rule. This greedy heuristic selects the task with the earliest deadline
of only those tasks, whose release time is before the ending time of the previously
scheduled task. If all unscheduled tasks have a later release time, the unscheduled
task with the next release time is scheduled next. Some of the features are based
on the start times sEDF

i and end times eEDF
i of the tasks i ∈ I in this schedule.

5 Experimental Evaluation

We implemented our approach in Python 3.10.8 using pytorch_geometric6 for
the GNN and used the MILP solver Gurobi7 9.5 and the CP solver CPOp-
timizer8 20.1 to solve the master and the subproblem instances, respectively.
To evaluate our approach we use benchmark instances that are generated as
described in [8] for the avionics application with m = 3 resources. Note that
the problem formulation in [8] differs in having secondary resources, but we
are able to model this aspect with setup times. We consider instance sizes
n ∈ {10, 15, 20, 25}, for which we are able to find optimal solutions by the LBBD
approach in most cases in reasonable time.

For each instance size between 300 000 and 600 000 training samples were
collected from 2 000 to 200 000 independent instances, see Table 2 for details on
the training. In each of 40 to 300 epochs we train with minibatches of 64 samples,
6 https://pytorch-geometric.readthedocs.io/
7 https://www.gurobi.com/
8 https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer

https://pytorch-geometric.readthedocs.io/
https://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
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Table 1: Node and arc features. For a node feature (i, w) denotes the TTWP
associated with the node, for an arc feature (i1, w1) represents the TTWP of the
source node and (i2, w2) the TTWP of the target node.

Formula Type Normalization Meaning

J(i, w) ∈ SK node - Whether the TTWP has al-
ready been selected

|S|/|X| node - Fraction of selected TTWPs
pi node normalized Processing time
riw node time-scaling Release time
diw node time-scaling Deadline
diw − riw node normalized Length of the time window
qi/maxj∈I(qj) node - Relative prize
diw − riw − pi + 1 node normalized Absolute flexibility of schedul-

ing the job
1− pi/(diw − riw) node - Relative flexibility of schedul-

ing the job
Jdiw − riw > piK node - Whether there is any flexibil-

ity in scheduling the job
sEDF
i node time-scaling EDF start time
eEDF
i node time-scaling EDF end time

JsEDF
i = riK node - Whether the EDF start time is

at the release time
JeEDF

i = diK node - Whether the EDF end time is
at the deadline

JeEDF
i > diK node - Whether the task is late in the

EDF schedule
max(eEDF

i − di, 0) node time-scaling Lateness of the task in the
EDF schedule

si1i2 arc normalized Setup time
JsEDF

i2 = eEDF
i1 + si1i2K arc - Whether the two tasks cannot

be any closer than in the EDF
schedule

max(sEDF
i2 − eEDF

i1 , 0) arc normalized Time difference of the EDF
schedule

- arc normalized Overlap of the time windows
Jri1w1 ≤ ri2w2 < di1w1K arc - Whether time window w2

starts within time window w1

Jsi1i2 > 0K arc - Whether there is a non-zero
setup time

- arc - Whether task i2 is the direct
successor of task i1 in the EDF
schedule
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Table 2: Characteristics of the training.
n 10 15 20 25

# of training instances 200 000 60 000 20 000 2 000
# of training samples 547 893 354 030 339 263 322 955

# of epochs 40 40 200 400

# of test instances 20 000 6 000 2 000 200
# of test samples 54 723 35 178 33 493 37 832

Recall of p-values [%] 92.00 82.92 80.91 81.15
Precision of p-values [%] 91.44 86.44 80.32 80.64

Recall of τ -values [%] 98.07 94.66 86.17 74.55
Precision of τ -values [%] 93.00 90.21 86.75 68.81

using the ADAM optimizer with a learning rate of 3 ·10−4. For regularization we
use dropout before each transformer-based graph convolution layer, before each
feed-forward layer, and on the normalized attention coefficients with a dropout
probability of 25% for n ∈ {10, 15, 20} and 10% for n = 25.

First, we compare the performance of the LBBD with our approach as cut-
strengthening procedure, denoted by GNN, to the deletion filter where the order
of the TTWPs is (a) random (Random), (b) dictated by the instance (Sorted),
or (c) sorted by decreasing slack as done by Coban and Hooker [4] (Hooker).
For this comparison we ran each approach for each benchmark instance on a
single core of an AMD Ryzen 9 5900X without using a GPU. The results for
n = 20 and n = 25 are shown in Figure 2 in the form of cumulative distribution
plots. Each plot shows how many instances could be solved to optimality out
of 100, with which number of subproblems to be solved, in which time, and
within how many major LBBD iterations. As can be seen, our GNN-based cut-
strengthening procedures significantly reduce the number of subproblems that
have to be solved as well as the total runtimes. For example, for n = 20 GNN
on average only needs to solve ≈ 30.4% of the number of subproblems Hooker
has to solve and requires only ≈ 54% of Hooker ’s time. The number of LBBD
iterations is similar for all methods, which means that the time savings are only
achieved by reducing the number of subproblems that had to be solved.

Progress of the bounds. In each iteration of the LBBD we obtain a dual bound
from the solution to the master problem. Concerning primal bounds, note that
any set of TTWPs for which the subproblem is feasible represents a feasible
solution to the overall problem. We use as primal bound the value of the best
such solution encountered during the cut strengthening procedure. The average
development of those primal and dual bounds for n = 20 and n = 25 tasks are
shown in Figure 3. Observe that the GNN-based approach performs significantly
better in respect to the dual bound with an average percentage gap to the optimal
solution of 4.85% after four seconds for n = 25 compared to 10.6% for Hooker.
However the primal bounds perform mostly worse. This can be explained by the
fact that the subproblem for the GNN-based cut strengthening is only called
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Fig. 2: Cumulative distribution diagrams with the number of solved instances
over the number of subproblems solved, the running time and the number of
Benders iterations performed.
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Fig. 4: Cumulative distribution diagrams showing the performance of the models
trained on instances of size n = 10, n = 15, n = 20 and n = 25, respectively, on
instances of size n = 25 and comparing to the performance of Hooker.

for smaller sets of TTWPs, which have a worse objective value. We remark
that we do not focus here on getting good heuristic solutions and thus primal
bounds early. To improve on this aspect, it would be natural to include some
primal heuristics, such as a local search or more advanced metaheuristic for
strengthening intermediate heuristic solutions.

Out-of-distribution generalization. So far we applied GNN only to instances
of the same size as the neural network model has been trained with. Now, we
investigate the out-of-distribution generalization capabilities in the sense that the
models trained on instances with n ∈ {10, 15, 20} tasks, respectively, are applied
to larger instances with 25 tasks. Figure 4 shows the corresponding cumulative
distribution plots for GNN and compares them to Hooker. The generalization
works surprisingly well and GNN trained with n = 15 works even slightly better
than the model trained with n = 25, requiring a geometric mean time that is
only ≈ 76% of Hooker ’s.

6 Conclusion

We trained GNNs to guide the cut-strengthening in logic-based Benders decom-
position. An autoregressive approach is used, where the GNN first constructs
a preliminary inequality, which is postprocessed to ensure that it is indeed an
irreducible cut. The approach is tested on a single machine scheduling problem
with time windows. For this problem the number of Benders subproblems solved
can be reduced down to one third and up to half of the runtime can be saved
on average. It is up to future work to scale up the training of the GNN to larger
instance sizes. Results suggest that generalization of the GNN to larger instance
sizes works quite well and thus curriculum learning seems to be promising.
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