Interactive Job Scheduling with Partially Known
Personnel Availabilities*

Johannes Vargal** [0000700037141377115]’ Giinther
R. Raidll[0000_0002_3293_177X], Elina, Rénnberg2[0000_0002_2081_2888}

3[0000—0001—6256—0060]

, and
Tobias Rodemann

! Institute of Logic and Computation, TU Wien, Vienna, Austria
{jvarga,raidl}@ac.tuwien.ac.at
2 Department of Mathematics, Linkdping University, Linkdping, Sweden
elina.ronnberg@liu.se
3 Honda Research Institute Europe, Offenbach, Germany
tobias.rodemann@honda-ri.de

Abstract. When solving a job scheduling problem that involves hu-
mans, the times in which they are available must be taken into account.
For practical acceptance of a scheduling tool, it is further crucial that the
interaction with the humans is kept simple and to a minimum. Requiring
users to fully specify their availability times is typically not reasonable.
We consider a scenario in which initially users only suggest single starting
times for their jobs and an optimized schedule shall then be found within
a small number of interaction rounds. In each round users may only be
suggested a small set of alternative time intervals, which are accepted
or rejected. To make the best out of these limited interaction possibil-
ities, we propose an approach that utilizes integer linear programming
and a theoretically derived probability calculation for the users’ avail-
abilities based on a Markov model. Educated suggestions of alternative
time intervals for performing jobs are determined from these acceptance
probabilities as well as the optimization’s current state. The approach
is experimentally evaluated and compared to diverse baselines. Results
show that an initial schedule can be quickly improved over few interac-
tion rounds, and the final schedule may come close to the solution of the
full-knowledge case despite the limited interaction.

Keywords: Job scheduling - human machine interaction - preference
learning - integer linear programming

1 Introduction

We consider a class of job scheduling problems in which the personnel of a com-
pany is involved as a bottleneck resource. The central aim is to schedule jobs
of employees in an interactive way that works from the humans’ perspectives

* J. Varga acknowledges the financial support from Honda Research Institute Europe.
** Corresponding author.

2 J. Varga, G. R. Raidl, E. Rénnberg, T. Rodemann

as simple, stress-free, and with low cognitive effort—while at the same time a
cost function is minimized. In the simplest, and from the users’ perspective most
convenient case, each user just suggests a starting time for each of her or his jobs.
As the jobs also require further shared resources, this directly obtained schedule
will rarely be feasible nor are cost-aspects considered. Ideally, we would have full
knowledge of all the users’ times at which they would be available for performing
their jobs, in which case we could solve an optimization problem in one shot.
In many practical scenarios, however, it is impossible or far too inconvenient to
request such complete information. We therefore start with the users’ initial sug-
gestions and perform a small number of simple interaction rounds to get more
freedom for finding better schedules. In each such round the solution approach
is allowed to suggest each user a small number of additional time intervals for
scheduling her or his jobs. The users are then supposed to indicate their accep-
tance or rejection of these intervals. Hereby, we intentionally avoid that users are
requested to specify larger amounts of additional availability intervals on their
own. With the increased knowledge on the users’ availabilities, the optimization
can aim at improving the solution in each round.

The main challenge we address in this work is to, in each round, come up
with meaningful queries for further time intervals to perform jobs in. Queried
time intervals are most meaningful when (a) they would allow the optimiza-
tion to obtain a better schedule and (b) the users are likely to accept them.
For example, very large time intervals may aid the optimization the most, but
as they are rather unlikely to be accepted by the users, they are usually not
that meaningful. To consider (b), the likelihood that users accept queried time
intervals, in some reasonable way, we need to exploit at least some stochastic
assumptions on the users’ unknown availabilities. Ideally, we would have precise
user-specific stochastic models available, for example derived from historic avail-
ability data. Here we assume that such information is not available and instead
build upon just a simple stochastic model represented by a two-stage Markov
process. In essence, we only assume to know average probabilities of users to be
available/unavailable in a timestep under the condition that the user is known
to be available/unavailable in the directly preceding timestep.

The overall scenario can also be seen as active learning, as the solution ap-
proach queries the users to learn more information, which is further exploited
in the optimization. Our main contributions are (a) to propose this general in-
teractive scheduling setting, (b) to narrow it down to a specific Interactive Job
Scheduling Problem (IJSP) to make concrete computational investigations on,
(c) an Integer Linear Programming (ILP) model as optimization core for solving
the IJSP, (d) an exact and computationally efficient calculation of the probabili-
ties for users to accept potentially queried time intervals based on the two-stage
Markov process and the already known availability information from the users,
and (e) to propose a heuristic solution approach for the IJSP that utilizes this
probability calculation. In an experimental evaluation, this solution approach is
compared to a greedy baseline approach as well as to solving the full-knowledge
case. Results show that already with a very moderate amount of interaction and

Interactive Scheduling of Personnel Activities 3

the simplistic assumptions of the two-stage Markov model, schedules may be
obtained that come close to those of solving the full-knowledge case.

In the IJSP, we assume that each job is associated with and requires one
specific user and one of a set of available machines. On each machine, only one
job can be performed at any time in a non-preemptive manner. As planning
horizon we consider several days and time is discretized. Jobs have individual
but machine-independent durations. Scheduling a job induces costs, for example
for used electricity, and we consider these costs to be time-dependent. For exam-
ple, when electricity is bought on the spot market, (expected) electricity costs
may change significantly over time. For avoiding to have to deal with infeasible
schedules, we allow that jobs remain unscheduled at additional penalty costs.
The objective is to find a feasible schedule of minimum total cost.

The core of this problem, if neglecting the users, can be described in the com-
mon three-field notation for scheduling problems as Pm||TEC, where Pm refers
to the m machines and that job durations do not depend on the machines, and
where the objective is to minimize the Total Energy Costs (TEC). The similar
problem Pm/||Ciax, TEC, which additionally takes the makespan into account
for the objective, has been considered in the literature. Solving approaches for
it include a Mixed Integer Linear Program (MILP) [10,2], a problem specific
heuristic and a genetic algorithm [10], as well as a greedy heuristic and local
search [2]|. Also similar is the scheduling problem Rm||TEC where jobs have in
general different processing times on different machines. For it, Ding et al. [5]
proposed a MILP and a Dantzig-Wolfe decomposition. The MILP was further
improved by Cheng et al. [4] and by Saberi-Aliabad et al. [§].

In interactive optimization approaches, most works only consider a single user
who guides the optimization process. For instance, Saha et al. [9] develop ap-
proaches based on evolutionary algorithms that cooperate with human designers
to find aesthetic, aerodynamic, and structurally efficient designs for automotives,
and Aghaei-Pour et al. [1] consider a multiobjective optimization problem where
the human interactively specifies preferences on the solution, which are also con-
sidered within evolutionary algorithms. Interactive optimization with multiple
users is less common. For instance, Jatschka et al. [6] consider a MILP-based
cooperative optimization approach that interacts with many users to learn an
objective function for distributing service points in mobility applications.

We perform active learning on the availability times of the users. This has also
been done in the domain of calendar scheduling. There, a calendar scheduling
agent assists the user in arranging meetings with others and to do so it learns
the user’s preferences over time. Existing approaches use decision trees [7], the
weighted-majority algorithm or the Winnow algorithm [3] for the learning task.

The next section formalizes our IJSP and introduces the ILP used as op-
timization core. Section 3 presents our solution approaches: a greedy baseline
method and the advanced heuristic that makes use of estimated acceptance
probabilities for time interval suggestions. The calculation of acceptance proba-
bilities based on a two-stage Markov model is subsequently detailed in Section 4.
Section 5 shows experimental results, and Section 6 concludes this work.

4 J. Varga, G. R. Raidl, E. Rénnberg, T. Rodemann

2 Interactive Job Scheduling Problem

The IJSP is formally introduced as follows. Let the planning period be given
by tmax-day days each with ™8 uniform timesteps, and let T = {t | t =
(tday gtime) - gday — q - gmax-day gtime — 1 ymaxl he g get of pairs where
each pair refers to a specific timestep at a specific day. To refer to a time in-
terval within a day and the corresponding set of timesteps, we use the notation
[t1, to] = {(¢327 ghime) (9% ghime)) for ¢y ¢, € T | 17 = ¢3% ghime < gtime
and adding a scalar A to a tuple ¢t € T is defined as t + A = (3% ¢time 1 A),
Denote the set of users by U and let the set of jobs of user u € U be J,.
Let each job j € J, have a duration d; € {1,...,t™*} and use the notation
T;[t] = [t,t+d; — 1] to refer to the subset of timesteps where job j is performed
if started at timestep ¢t. Furthermore, the possible starting times of job j € J are

max-day

restricted to the set T}Ob = Ulaay—; {9, 1), ..., (#9 tmax — g, 4 1)}, because
of the job duration. Denote the set of all jobs by J = |J, .y Ju, and let n = |J|.
To perform a job, two resources are needed: the availability of the user associated
with the job and a machine. Denote the set of machines by M.

Using machine ¢ € M in timestep ¢t € T' induces time-dependent cost ¢;; > 0,
e.g., for electricity depending on expected spot market prices. For a job to be
feasibly scheduled, it needs to be given non-preemptive access to its user and a
machine for the complete duration of the job. If a job j € J cannot be feasibly
scheduled, this induces cost ¢; > 0, e.g., for over-time or extra personnel. We
assume that the cost for leaving a job unscheduled is always higher than the
highest cost of scheduling it, i.e., ¢; > d; max;enm, e Cits J € J-

The dynamic and interactive aspect of our problem is represented by 7 =
(T;)jes where T; C T;Ob are the timesteps in which job j may start in when
considering the respective user’s currently known availabilities. More details on
T are addressed later.

Assuming for now T is given and fixed, we aim at finding a feasible schedule
of minimum cost. This can be expressed by the following ILP, in which the binary
decision variables x;;; indicate if job j € J is scheduled on machine ¢ € M to
start with timestep ¢ € 7}, or not.

ILP(7) min Z Z Z Z Cit' Tjit —|—qu (1 - Z Z xjit> (1)

JEJiEM tET; t' €T;[t] JEJ i€EM tET;

st Y Y mu <1 jed (2
i€M teT;
Y muc<i ieM, T (3)

JEJ teT;|t' €Tj[t]
N> mu<i welU, t'eT (4)
JEJu iEM teT;|t' €T} [t]

zjir € {0,1} jedJ, ieM, teT; (5)

Interactive Scheduling of Personnel Activities 5

The first and second term of the objective function (1) correspond to the
total cost for machine usage and unscheduled jobs, respectively. Constraints (2)
ensure that each job is scheduled at most once, constraints (3) limit the number
of scheduled jobs per machine and timestep to one, and constraints (4) limit the
number of jobs per user and timestep to one.

As indicated, this model can be solved for different sets 7 that reflect the
user availability information in the current stage of the decision-making. As
an important characteristic of the problem is that the user availability is not
assumed to be fully known, we introduce the following notation for the currently
available information. Let Tjj"a“ C T be a subset of timesteps where user u € U
has confirmed to be available. Feasible start times for each job j € .J, can then
be derived as T/ = {t € T]"-Ob | T;[t] € T3*"}. Further, let T C T refer to
time steps where job j € J is not allowed to start since the user is known to be
unavailable in at least one time step in T)[t], t € T' ji.nfeas.

Based on these confirmed availabilities and unavailabilities, it is possible to
solve the model ILP(T) for two extreme cases. For T = (T1°*);c;, only the
timesteps that the respective users have so far confirmed to be available are
included, and thus the solution to ILP((ijeaS)jeJ) is feasible for the IJSP and in

general provides a pessimistic bound. For T = (TJJiOb \ Tji-nfeas) jeJ, all timesteps
except those where the users are already known to be not available are included,
and the solution to ILP((T;Ob \ Tinfeas) ;¢ ;) provides an optimistic bound; but
the corresponding schedule may not be feasible with respect to user availability.
The interactive aspect of the problem is that users can be queried concerning
their availabilities. A query is represented by a pair (u, [t,t']) specifying a user
u € U and a time interval from ¢ € T to t’ € T. If the user is available in the
full interval of the query, this information is directly included in the sets 772Vl
and T]feas. If the user is unavailable in at least one timestep of the interval, the
interval is rejected and included in the set I*%. In such update, I*® is made sure
not to contain any interval that is a superinterval of another interval, as such
superintervals are redundant. The interaction with the users is made in a number
of rounds, and before each new round an updated ILP(7) can be solved. Let
the number of rounds be denoted by B € N5, and let the allowed number of
queries in each round be b € N+ (. In each round, a user may be queried multiple
times. The choice of queries to make in a round is critical for the outcome of the
scheduling, and our strategy for this is described in the next section.

3 Solving Approaches

The challenge in each round is to find a set of queries that are likely to be
accepted and reduce the objective value as much as possible if accepted. We
consider only queries that are reasonable in the following sense. They concern
the scheduling of jobs outside the users’ already known availabilities, and we do
not want to have more than one query for a user for the same day. Denote with
T = T;Ob \T]i-nfeas \T jfeas all starting times of job j that would require a con-
firmed user query. Most beneficial queries—if accepted—can then be determined

6 J. Varga, G. R. Raidl, E. Rénnberg, T. Rodemann

by solving the model ILP((T;""Y UT}**) ¢ ;) with the additional constraints

S Y st ©)

jeJieEM teT]q“ery

Y w1l weU™ el ()

JEJy iEM {gTJ‘_l“”y |gday =¢day

where the former limits the total number of user queries to b and the latter
prevents multiple queries for the same user on the same day. Having obtained
a solution x, each value of one of a variable x;; for w € U, j € J,, i € M and
te TjjOb \TJinfeas \ T]feas results in a query [¢,t + d;] for user u. We refer to this
approach to determine user queries by GREEDY.

This approach can possibly be improved by assuming that the user avail-
abilities behave according to some model that yields an acceptance probabil-
ity for each query. To exploit such probabilities, we remove the starting times
from T whose associated queries have probabilities below a given threshold
0 < pl'™ < 1, i.e., which we do not consider promising. Queries are again obtained
by solving TLP((T;"" U Tie*) e s) with constraints (6) and (7), but now with
these reduced sets 7;"""”. As model for the acceptance probabilities, the next
section proposes one based on a two-state Markov process, and consequently, we
refer to this advanced model-based solution approach by MARKOV (p'™).

4 Probability Calculation for Two-State Markov Process

Consider a single user v € U and a single day t1% € {1,...,tmaday} For better
readability we refer to the timesteps of this day in the following by Tiaay =
{1,...,t™**}. Assume that the average duration of the periods when a user
is available, and the average duration of the unavailable-periods are known.
When we want to exploit just this minimal information, it is natural to model
a user’s availabilities by a simple two-state Markov process. The two states
of this process are 0 and 1, representing that the user either is unavailable in
the current timestep or available, respectively. Moreover, let us introduce the
additional artificial timesteps 0 and t™#* 4 1 before the start of the day and
after the end of the day. In both of these timesteps, the user is not available
and therefore the corresponding state is 0. Proceeding from one timestep to
the next, we associate probabilities pgo, po1, p10, and pi; for staying in state
0, transitioning from 0 to 1, transitioning from 1 to 0, and staying in state 1,
respectively. Naturally, pgo = 1 — po1 and p11 = 1 — p1g must hold. This Markov
process is depicted in Figure 1a. The transition probabilities are computed based
on the fact that the expected number of steps the Markov process stays in state
1is 1/p10 and 1/pg; for state 0. In this section we only consider one user, and
for the sake of simplicity we omit the index regarding this user.

Given the current set of known availability times 72?1 and the set of so far
rejected time intervals I, we now want to determine the probability that the
user is available in some given time interval [r,7], 1 < 7 < 7/ < t™**_ For this

Interactive Scheduling of Personnel Activities 7

(a) e p11 (b)
po1 . P10
start @ Poo PUO %‘> Poo

Fig. 1: (a) Two-state Markov process and (b) corresponding unrolled state graph.

purpose we unroll the Markov process into a state graph over all timesteps from
0 to t™?* 4 1 as follows and illustrated in Figure 1b.

As the user is supposed to be not available outside of Tjaay, the initial state
at the beginning of the day is represented by the single node 0g. Then, we have
nodes 0; and 1; for each timestep ¢t € Tiaay, indicating the availability or non-
availability of the user in timestep t. We also add node Omaxy; and for now
1ymax4 1 to allow a correct modeling of the transition to the time after the con-
sidered time horizon by the two-state Markov process. All nodes of two successive
timesteps are connected with arcs corresponding to the state transitions of the
Markov process, and they are weighted with the respective transition probabili-
ties poo, po1, p1o, and pig.

Ignoring known user availabilities 722! and rejected time intervals I™ for
now, this state graph has been constructed in such a way that each path from
node 0p to either node Opmaxy1 Or lymaxiq, which we call terminal nodes, corre-
sponds to exactly one outcome of the Markov process over t™** 4 1 timesteps,
and each possible outcome of the Markov process has an individual correspond-
ing path. We refer by the probability of a path to the product of the path’s arc
weights, and with the probability of a set of paths to the sum of the paths’
probabilities. The probability of all paths from node 0y to any of the terminal
nodes is then one as this covers all possible outcomes of the Markov process.

Next, we consider the already known availability times 72" of the user by
removing all nodes 0; for 728! with their incident arcs. This effectively reduces
the set of possible paths, and thus represented Markov process outcomes, to
those where state 1 is achieved in all timesteps from T2, Moreover, we also
remove node lymaxy; with its ingoing arcs in order to model that the user is
unavailable after the last actual timestep t™2*.

To modify the graph w.r.t. the intervals in which the user is known to be
available was straightforward since all timesteps of such intervals must have
state 1. A time interval rejected by the user requires more care since it implies
only that for at least one timestep in the interval — but not necessary all —
the Markov process is in state 0. Only a rejected time interval [t,t] € I™ of
length one can thus be handled directly by removing node 1; with its incident
arcs as the Markov process has to be in state 0 in this timestep. For a longer
rejected interval [t1,t5] € I* we ensure that only paths are kept in the graph
where the Markov process achieves state 0 at least once within this interval.
More specifically, observe that if the Markov process is in timestep ¢ € [t1, 2]
and state 0 has not been obtained in timesteps [t1,t] yet, then there has to

8 J. Varga, G. R. Raidl, E. Rénnberg, T. Rodemann

o . A
Q GIN
@ B @)

Fig. 2: The state graph for ¢ma* = 4, Tavail = {21 "and I'* = {(1,3),(2,4)}.

follow at least one timestep ¢’ € [t 4 1,¢2] in which state 0 is achieved. To model
this aspect, we add further nodes 112 for t € [t;,ty — 1], [t1,t2] € I™ to our
graph. Former arcs (0;,1;41) and (1¢,1441), t € Tyaay U {0}, are now replaced
by arcs (O, i'f’H) and (1,142), respectively if there is a rejected time interval
[t1,t2] € I' starting in the next timestep t; = t + 1 and ending in timestep
ta. Note that there can be at most one interval in [t1,t2] € I rej that starts at
timestep ¢; since I™ has been guaranteed not to contain a proper subinterval
of [t1,t2]. Each new node 1’;2 further has an outgoing arc to node 0y if this
node still exists, corresponding to the transition to state 0. Moreover, there is
an outgoing arc from each node 1% to node 1;3_1 as long as t + 1 < ty for the
case of staying in state 1. Due to the absence of an arc from node 13_1 to some
successor node in which state 1 is kept, it is effectively enforced that state 0 is
reached at least once within the rejected time interval [t1,¢2]. Remaining nodes
without ingoing arcs except 0y and their outgoing arcs are pruned as they do
not play an active further role. An example of such a final state graph is shown
in Figure 2.

Now, we want to utilize this graph to derive the probability that the consid-
ered user is available in a given time interval [7,7’]. The key observation to do
this efficiently is that each path from node 0y to a node v passes through exactly
one predecessor of v. Therefore the total probability pgsff of all paths from 0g

to v, denoted by Paths(0g,v), can be computed recursively as

I S | I ORT

PePaths(0g,v) (u,u’)EP

-y X [o)] pwo)= 3 silpwo), ©)

u€N~ (v) P€Paths(0g,u) \(u,u’)EP u€N~(v)

where P denotes one specific 0g—v path represented by the corresponding set of
arcs and N~ (v) is the set of predecessors of node v. Denoting the set of successors

of node v by N*(v), the probabilities pPa" of all paths from a node v to

v,04max 41
node Oymax4 1 can be correspondingly computed recursively by

th h
oD SO N) (9)
weNT (v)

We are now interested in all those paths from 0y to Opmaxy; that stay for the
timesteps 7 to 7/ in state 1 nodes, indicating the availability of the user. Each of
these paths is composed of a path from 0g to 12, a path P from 1% to 12 that

Interactive Scheduling of Personnel Activities 9

only uses state 1 nodes, and a path from 1?2, t0 Omaxy1 for some to > 7/ + 1.
As a special case the middle segment P can also start in 1, and then it either
ends in 1,/ if no rejected interval starts within [7,7'] or otherwise in 13 for an
appropriate to > 7'+ 1. There are only a few possibilities for the middle segment
P and the probability of all paths that stay in state 1 nodes for the timesteps
from 7 to 7’ can be computed with a sum over these possibilities. For us, the
conditional probability in respect to all paths in the graph, i.e., those respecting
T2vail and 1'% and ending in Opmax 1, is of main interest, which is

path 7/ —1 path
avail / avail rrej Zpel'Paths(ﬂT’) Poy, P, " P11 pP,—/ ,0¢gmax 4 q
p ([7-77_] | T i 7Otmax+1) = path) (10)
poﬁtmax+1

where the sum is taken over all middle segments 1-Paths(7, 7’), and P, and P,/
are the first and last nodes of a middle segment P, respectively. The denomi-
nator is the probability of all paths from 0p to Omaxy1, and the nominator the
probability of only those paths that stay in state 1 nodes in timesteps 7 to 7'.

5 Experimental Evaluation

We implemented the approaches in Julia 1.8.3, using the solver Gurobi 10.0
(https://www.gurobi.com) and the package JuMP as interface to Gurobi. As
real world instances were not available to us we created artificial benchmark
instances and used them to compare the approaches with each other. Each test
run was performed on a single core of an AMD EPYC 7402 and Gurobi was
given a timelimit of 15 minutes for each ILP, which always led to final gaps
below 5%.

5.1 Instance Generation

We consider a time horizon of 148y — 5 days, each starting at 6am and ending
at 10pm, with a time granularity of 15 minutes per timestep. Random time in-
tervals are determined by a function rand _interval(pstart, gstart| ydur gdury that
first draws a random value from a normal distribution with mean p***'* and stan-
dard deviation o®'** and rounds it to the closest timestep in 7', which is then
the start of the time interval. The duration of the interval is then determined by
drawing another random value from a normal distribution with mean %" and
standard deviation ¢, rounding it to the closest positive integer. Should the
interval exceed t™2%, it is capped at this last timestep of our time horizon.

For each user u € U a set of timesteps 72*"* at which she or he is, in total,
available is determined for each day independently as follows. With a probability
of 90%, the user is assumed to be available in rand interval(9am, 1h, 4h, 1h)
and, again with a probability of 90%, the user is assumed to be available in
rand _interval(1pm, 1h, 5h, 1h). If the two intervals overlap the union is taken.

For each job j € J, of a user u € U the duration d; is chosen uniformly at
random from 30min to 4h. Moreover, a starting time ¢; is selected at random so

https://www.gurobi.com

10 J. Varga, G. R. Raidl, E. Rénnberg, T. Rodemann

12000 | \12.:,::::
11000 3.50x10° \\
I — e —
o o
= 10000 [3>
]]
> > a
v 2 3.00x10
2 9000 g
e 5
o o
2, 2,
) 8
8000 |
o © 250x10"
7000 |
6000 2.00x10*
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Round Round

e Full Knowledge
e Optimistic
e===No Interaction
—e— Greedy

—&— Markov(0.25)
—&— Markov(0.5)
dor —a— Markov(0.75)

Unscheduled jobs
Unscheduled jobs

1 2 3 5 6 7

4
Round

(d) (m,n) = (5,250).

Fig. 3: Development of the objective value (a) and (b) respectively number of
unscheduled jobs (c) and (d) for two different instance sizes.

that the job can in principle be scheduled within 72V2*, The initially provided
set of availabilities for user u € U is then 72! = | J e, Tiltsl.

We generate 50 instances for m € {1,2,3,4,5} machines and either 25 or
50 jobs per machine n € {25m,50m}. When considering the generated user
availabilities, each machine can execute roughly 30 jobs on average, thus for
n = 25m usually it is possible to schedule all jobs, while for n = 50m this is
not the case. Each user has five jobs, thus there are either 5m or 10m users. We
allow |U| user queries in each round, for a total of seven rounds.

The costs are based on the real-world spot market prices ck™V® for electricity
in Germany from week 26 in 2022 from https://energy-charts.info. We use as cost
¢;,y = 15min- PZ-CI;W}‘, where the electric power P; is assumed to differ among the
machines ¢ € M and is thus chosen uniformly at random from [50kW,150kW].
The cost g; for not scheduling a job j € J is set to 40 Euro - d;, which is roughly

twice the cost of scheduling the job in the most expensive timesteps.

5.2 Comparison of the Approaches

We performed simulations for GREEDY and MARKOV(p'"™) with acceptance
probability thresholds p'"™ € {0.25,0.5,0.75} on all benchmark instance. After
each round we determine the best schedule that is feasible for the information

https://energy-charts.info/charts/price_spot_market/chart.htm?l=en&c=DE&interval=week&legendItems=000010000000&week=26

Interactive Scheduling of Personnel Activities 11

Table 1: Mean %-gaps of the objective values after five and seven interaction
rounds for GREEDY and MARKOV (p''™) with different limits p'™.

m n Round 5 Round 7
GREEDY | MAaRkKov(p"™) | GREEDY | MaRkov(p'™)

0.25 0.5 0.75 0.25 0.5 0.75
1 25 77.7 54.5 39.6 40.0 70.7 36.9 18.0 24.6
2 50 95.2 745 270 23.8 87.0 52.6 11.9 13.3
3 75 77.5 623 18.2 15.0 69.1 48.8 8.4 9.3
4 100 79.5 64.3 15.7 12.1 71.8 479 6.7 79
5 125 77.8 60.4 13.4 10.7 71.5 46.7 6.0 7.3
1 50 40.2 339 19.4 226 37.1 29.5 12.8 21.7
2 100 36.8 31.9 18.6 19.2 35.6 29.1 13.0 18.2
3 150 34.4 31.6 17.8 18.0 33.4 28.7 12.1 17.0
4 200 35.0 32.2 18.3 18.8 34.0 29.2 12.6 17.6
5 250 34.4 31.8 17.7 183 33.8 29.1 12.4 17.2

collected up to this round. Figure 3 shows the development of the mean objec-
tive value and mean number of unscheduled jobs, respectively, over the rounds.
Values are aggregated over the 50 instances with m = 5 machines and n = 125
respectively n = 250 jobs. Furthermore, we determine the best feasible schedule
with the information that is available before the first round (“No Interaction”),
the best schedule when ignoring user availabilities (“Optimistic”) and the best
schedule with full knowledge about the users’ availabilities (“Full Knowledge”)
and show these as horizontal lines in the figures. Table 1 additionally shows the
mean optimality gaps of the objective values from GREEDY and MARKOV(pi™)
in respect to “Full Knowledge” after five and seven rounds in percent.

We observe that MARKOV(0.5) and MARKOV(0.75) quickly converge towards
the best possible schedule. For n = 125, the original objective values without
interaction could almost be halved after already five rounds, while for n = 250,
18% and 15% of the original costs could be saved after seven rounds. Moreover,
for n = 125, the final optimality gaps of these two approaches are by a factor
of more than nine better than the final gap of GREEDY. In contrast pi™ = 0.25
leads to much slower convergence with an improvement over GREEDY of only
roughly 35%. Remarkably, MARKOV(0.75) performs best in the first rounds,
while MARKOV(0.5) catches up later on and performs best in the end. The reason
is that the two-state Markov process has the steady state between 0.5 and 0.75
and therefore MARKOV(0.75) does not query days it knows nothing about while
MARKOV(0.5) does; while it takes more iterations to get enough information
about these days, this information provides more flexibility in scheduling the
jobs.

6 Conclusions

We considered a job scheduling problem in which humans are involved as re-
source and where their availabilities can only be partially revealed in a small
number of interaction rounds, within which few time interval queries can be

12 J. Varga, G. R. Raidl, E. Rénnberg, T. Rodemann

made. The proposed solution approach calculates probabilities for users to ac-
cept suggested time intervals based on a two-state Markov process. An ILP is
used as optimization core and to select time intervals for the next round of
queries, aiming for sufficiently high probabilities of acceptance and a maximum
cost reduction. Experiments on artificial test instances show that an initial so-
lution quickly improves over the interaction rounds and may soon get close to
a solution of the full-knowledge case, despite the very restricted interaction and
the simple assumptions of the two-state Markov process. In future work it would
be interesting to replace the proposed probability computation by a machine
learning model trained on historic user availability data. Moreover, alternative
ways to consider the estimated acceptance probabilities of user queries in the
optimization core should be investigated.

References

1. Aghaei-Pour, P., Rodemann, T., Hakanen, J., Miettinen, K.: Surrogate assisted
interactive multiobjective optimization in energy system design of buildings. Op-
timization and Engineering 23(1), 303-327 (2022)

2. Anghinolfi, D., Paolucci, M., Ronco, R.: A bi-objective heuristic approach for green
identical parallel machine scheduling. European Journal of Operational Research
289(2), 416434 (2021)

3. Blum, A.: Empirical support for winnow and weighted-majority algorithms: Results
on a calendar scheduling domain. Machine Learning 26(1), 5-23 (1997)

4. Cheng, J., Chu, F., Zhou, M.: An improved model for parallel machine scheduling
under time-of-use electricity price. IEEE Transactions on Automation Science and
Engineering 15(2), 896-899 (2018)

5. Ding, J.Y., Song, S., Zhang, R., Chiong, R., Wu, C.: Parallel machine schedul-
ing under time-of-use electricity prices: New models and optimization approaches.
IEEE Transactions on Automation Science and Engineering 13(2), 1138-1154
(2016)

6. Jatschka, T., Raidl, G.R., Rodemann, T.: A general cooperative optimization ap-
proach for distributing service points in mobility applications. Algorithms 14(8)
(2021)

7. Mitchell, T.M., Caruana, R., Freitag, D., McDermott, J., Zabowski, D., et al.:
Experience with a learning personal assistant. Communications of the ACM 37(7),
80-91 (1994)

8. Saberi-Aliabad, H., Reisi-Nafchi, M., Moslehi, G.: Energy-efficient scheduling in an
unrelated parallel-machine environment under time-of-use electricity tariffs. Jour-
nal of Cleaner Production 249, 119393 (2020)

9. Saha, S., Minku, L.L., Yao, X., Sendhoff, B., Menzel, S.: Exploiting linear interpo-
lation of variational autoencoders for satisfying preferences in evolutionary design
optimization. In: 2021 IEEE Congress on Evolutionary Computation. pp. 1767—
1776 (2021)

10. Wang, S., Wang, X., Yu, J., Ma, S., Liu, M.: Bi-objective identical parallel machine
scheduling to minimize total energy consumption and makespan. Journal of Cleaner
Production 193, 424-440 (2018)

	Interactive Job Scheduling with Partially Known Personnel Availabilities

