
Computational Methods for Fleet
Scheduling in E-Mobility

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Johannes Varga, BSc BSc
Matrikelnummer 01526325

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Projektass.(FWF) Marc Huber, MSc

Wien, 1. August 2021
Johannes Varga Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Computational Methods for Fleet
Scheduling in E-Mobility

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Johannes Varga, BSc BSc
Registration Number 01526325

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Projektass.(FWF) Marc Huber, MSc

Vienna, 1st August, 2021
Johannes Varga Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Johannes Varga, BSc BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. August 2021
Johannes Varga

v





Acknowledgements

Here I want to express my thanks to everyone who helped and supported me in composing
this thesis.

First to my supervisor Günther Raidl and my co-supervisor Marc Huber for guiding me
in our regular meetings when I got lost in some details. With your ideas you gave this
project a direction. I am also grateful for the countless hours you spent on revising the
thesis.

Furthermore I would like to thank Honda Research Institute Europe for providing funds
for the project and especially Steffen Limmer and Tobias Rodemann for the valuable
discussions and the feedback.

I am also very grateful to my parents for providing livelihood. Thanks to you I was able
to finish this thesis and my degree without having to concern about earning my living.

Last but not least, I want to thank TU Wien and especially the research unit Algorithms
and Complexity for providing the infrastructure that was needed to complete the project.
That concerns in particular the cluster that was used to perform the computations.

vii





Danksagung

An dieser Stelle möchte ich meinen Dank all jenen aussprechen, die mich unterstützt
haben und mir dabei geholfen haben, diese Arbeit fertigzustellen.

Zuerst gebührt mein Dank meinen Betreuern Günther Raidl und Marc Huber. In den
regelmäßigen Meetings habt ihr mir mit euren Ratschlägen und Ideen eine Richtung
gegeben, wenn ich mich in Details verloren habe. Danke auch für die unzähligen Stunden,
die ihr damit verbracht habt, die Arbeit Korrektur zu lesen.

Ich möchte mich zudem beim Honda Research Institute Europe für die finanzielle Förde-
rung des Projekts bedanken und insbesondere bei Steffen Limmer und Tobias Rodemann
für die wertvollen Diskussionen und das Feedback.

Mein Dank gilt auch meinen Eltern, die für meinen Lebensunterhalt gesorgt haben und
mir damit das Verfassen dieser Arbeit und den Abschluss meines Studiums ermöglicht
haben.

Abschließend möchte ich mich bei der TU Wien und im Speziellen der Forschungsgrup-
pe Algorithms and Complexity für die Infrastruktur bedanken, die ich für die Arbeit
verwendet habe. Das betrifft in erster Linie den Cluster, der die nötigen Berechnungen
durchgeführt hat.

ix





Abstract

In this work we investigate the Fleet Scheduling Problem, which arises in the context of
E-carsharing. Given are a fleet of electric vehicles and a set of reservations. A reservation
consists of the timespan in which a vehicle is needed and the amount of energy that
is expected to be used. The task is to find a feasible assignment from reservations to
vehicles as well as a charging plan for each vehicle that minimize a cost function. The
problem can be shown to be NP-hard.

We aim to solve the problem in an exact manner. For that purpose we make use of
solvers for Mixed Integer Linear Programs (MILPs). We consider two different solution
approaches. First we formulate the problem directly as one MILP, which is strengthened
in several ways. In particular we also propose a class of strengthening constraints
that prohibit the assignment of subsets of reservations to a vehicle, if that assignment
is not possible due to charging constraints. In our second approach we perform a
Benders decomposition which decomposes the problem into a master problem (MP) and
a subproblem and solves them iteratively in an alternating manner. We perform the
decomposition in two different ways. First we do it in a more classical way, then we
choose different subsets of variables making the MP stronger and more complex and
the subproblem smaller. It turns out that the MP is the bottleneck of the Benders
decomposition. We therefore investigate different measures that aim to improve the
performance of solving the MP instances. The first measure implements Branch-and-
Check which embeds the Benders decomposition in a single Branch-and-Bound tree.
That way the MP does not need to be solved from scratch in each iteration. For the
second and third measure we speed up the solving process of the MP by solving it in an
inexact manner, either allowing a gap for the MILP solver or applying a heuristic. The
heuristic is based on General Variable Neighborhood Search and we are able to make
use of delta evaluation in order to speed up the search of the neighborhoods. We also
propose a network flow formulation that can be used to solve the subproblem. However,
we found that the network flow formulation solved with a network simplex algorithm
does not perform better than the linear program solved with a general purpose linear
program solver. Therefore we do not investigate further here.

As it turns out directly solving the single MILP usually performs better than the Benders
decomposition approach for small to medium sized problem instances. For large instances
however the MILP solvers are not able to find any reasonable primal solutions while the

xi



Benders decomposition was able to do so and therefore achieved smaller gaps. Especially
the variant that uses a heuristic for the MP is able to find good feasible solutions for
large instances, altough at the cost of not finding reasonable dual bounds for many of
these instances.



Kurzfassung

In dieser Arbeit untersuchen wir das Fleet Scheduling Problem (FSP), das bei E-
Carsharing auftritt. Dabei sind eine Flotte von Fahrzeugen und eine Menge von Reser-
vierungen gegeben. Jede Reservierung besteht aus dem Zeitraum in dem ein Fahrzeug
gebraucht wird und der Menge an Energie, die voraussichtlich verwendet wird. Aufgabe
ist es Reservierungen Fahrzeugen zuzuweisen und für jedes Fahrzeug einen Ladeplan zu
erstellen. Dabei soll eine Kostenfunktion minimiert werden. Es kann gezeigt werden, dass
das Problem NP-hart ist.

Wir streben eine exakte Lösung des Problems an. Dafür verwenden wir Software zum
Lösen von Mixed Integer Linear Programs (MILPs). Die Lösung des Problems wird auf
zwei verschiedene Arten angegangen. Zuerst formulieren wir das Problem als MILP und
entwerfen eine Klasse von stärkenden Ungleichungen, die die Zuweisung einer Teilmenge
von Reservierungen an ein Fahrzeug verhindert, falls das nicht mit dem Ladeplan vereinbar
ist. Für den zweiten Ansatz führen wir eine Benders decomposition durch. Dabei wird
das MILP in ein Master Problem (MP) und eine Subproblem (SP) unterteilt, welche
in mehreren Iterationen abwechselnd gelöst werden. Die Benders decomposition wird
auf zwei verschiedene Arten durchgeführt. Einmal auf eine klassischere Art, das andere
Mal mit mehr Variablen im MP und weniger Variablen im SP. Wie sich herausstellt
wird, verglichen mit dem SP, deutlich mehr Zeit für das Lösen des MPs aufgebracht. Wir
untersuchen daher verschiedene Möglichkeiten, den Lösungsprozess für Instanzen des
MPs zu beschleunigen. Zuerst implementieren wir Branch-and-Check, das die Benders
decomposition in einen Branch-and-Bound Baum einbettet. Dadurch muss das MP nicht
in jeder Iteration vollständig gelöst werden. Der zweite und dritte Ansatz versuchen das
Lösen des MP zu beschleunigen, indem es nicht bis zur Optimalität gelöst wird. Einerseits
wird das erreicht indem bei der Lösungssoftware für MILPs eine Gap erlaubt wird.
Andererseits entwerfen wir eine auf General Variable Neighborhood Search basierende
Heuristik für das MP, die mittels Delta-Evaluation die Nachbarschaften durchsucht. Wir
haben außerdem eine Network Flow Formulierung entworfen, um das SP zu lösen. Wie
sich allerdings herausstellt ist der Network Simplex Algorithmus mit der Network Flow
Formulierung nicht schneller als eine Lösungssoftware für Linear Programs mit dem
entsprechenden Linear Program. Daher untersuchen wir diesen Ansatz nicht im Detail.

Es stellt sich heraus, dass das direkte Lösen des MILPs für kleine und mittelgroße
Instanzen besser funktioniert als der Ansatz mit der Benders decomposition. Bei großen

xiii



Instanzen kann die Lösungssoftware für MILPs allerdings keine vernünftigen Lösungen
finden. Hier kann die Benders decomposition mit guten Lösungen punkten. Insbesondere
der Ansatz mit der Heuristik findet gute Lösungen für große Instanzen, allerdings findet
diese Variante bei vielen dieser Instanzen keine duale Schranke.



Contents

Abstract xi

Kurzfassung xiii

Contents xv

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Methodological Approaches 5
2.1 Mixed Integer Linear Programming . . . . . . . . . . . . . . . . . . . . 5
2.2 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Generalized Variable Neighborhood Search . . . . . . . . . . . . . . . . 7

3 Problem Specification 11

4 Related Work 15

5 NP-Hardness of the FSP 19

6 Strengthening Constraints for Conflicting Reserverations 21

7 Network flow formulation 23

8 Benders Decomposition 25
8.1 Basic Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 Extension of the MP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3 Solving the MP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Experiments and Results 35
9.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.2 Implementation and Computing Environment . . . . . . . . . . . . . . 36
9.3 Comparison of the MILP and the Benders Decomposition . . . . . . . 36
9.4 Impacts of Individual Improvements . . . . . . . . . . . . . . . . . . . 49

xv



9.5 Impact of Scaling 𝐸sur . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.6 Impact of Reducing 𝐸res . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10 Conclusion 63

List of Figures 67

List of Tables 69

List of Algorithms 71

Bibliography 73



CHAPTER 1
Introduction

1.1 Overview

Driving with a privately owned car has been a major mean of human transportation in
western areas over the last decades. Due to the expansion of public transport in urban
areas, private cars are getting less attractive for urban residents. Still urban residents
occasionally want to use a car to travel outside the urban area. A possibility is the use
of carsharing. Due to the demand, carsharing is being implemented in over 1100 cities
world-wide [Web19].

At the same time the overall costs per kilometer of electric cars dropped below the costs
of cars with combustion engine [Web19]. The reason are the much lower running costs
that compensate the currently still higher purchase costs if the car is used extensively.
Since carsharing systems reach a high utilization compared to privately used cars, electric
cars are well suited for carsharing and lead to lower costs there.

By additionally generating the energy to charge the vehicles on-site it is possible to
reduce the costs further. The return of investment for photovoltaic plants can be as low
as three years, if providing the energy to the grid [YLTA15]. Using the generated energy
to charge the vehicles can reduce the return of investment even further.

However the long charging times pose a challenge for the scheduling of vehicles within a
carsharing system that relies on electric vehicles (EVs). On-site energy generation and
time-of-use tariffs, where the energy price is time dependent, make the scheduling even
harder. Therefore sophisticated algorithms are necessary to schedule charging and usage
of a fleet of EVs to maximize cost efficiency and provide the availability of EVs when
needed.

We formulate and investigate the Fleet Scheduling Problem (FSP) that arises in the
carsharing context with EVs and optional on-site energy generation. For the problem we

1



1. Introduction

Figure 1.1: Example for the charging plan of a single EV together with the reservations
that have been assigned to that vehicle.

Figure 1.2: Example for the energy price over time.

consider a discrete and finite time horizon. Given is a fleet of identical EVs and a set
of reservations, each having a departure and an arrival time and an estimated energy
demand. Aim is to assign reservations to vehicles and to create a charging plan for
each vehicle, while minimizing a cost function. It is also possible to leave reservations
unassigned, however this is associated with a cost, e.g. for filling this demand with a
conventional vehicle with combustion engine. Figure 1.1 shows an example of a charging
plan for a single EV. It plots the state of charge of the EV over time. Time intervals
in which the vehicle is used for a reservation are represented by boxes and the number
within the box denotes the energy demand of the reservation. Note that vehicles cannot
be charged when used for a reservation.

Charging can be performed with energy from the grid or surplus energy from the on-site
energy generation. For grid energy a time-of-use tariff is assumed. Figure 1.2 shows an
example of the time dependence of the energy price. Contrary to grid energy, surplus
energy is assumed to not cause any costs as it is the case e.g. with a photovoltaic system.
However only a time-dependent limited amount of surplus energy is available. Figure 1.3
shows the available surplus energy for an example instance. Additionally the charging
energy that is used for an optimized solution is plotted. It can be seen that most of the
surplus energy is used for charging, since it is cheaper than grid energy.

For the FSP we assume that the amount of surplus energy and the energy price are
known in advance. Energy prices in time-of-use tariffs are often made public beforehand.
If using a photovoltaic plant, the surplus energy can be forecasted using the weather
prediction. We also assume that all reservations are known in advance as well, i.e., only

2



1.2. Outline

Figure 1.3: Example of the available surplus energy of an instance and the used charging
energy for an optimized solution.

the given reservations are considered for the optimization.

We formulate the FSP as Mixed Integer Linear Program (MILP) and derive a Benders
decomposition from that formulation. Benders decomposition decomposes a MILP into
a master problem (MP) and a subproblem (SP). In a more classical approach the MP
contains all integer variables and all other variables are handled in the SP. The Benders
decomposition of the FSP is then adapted in different ways to see which measures lead
to improvements. These measures include

• adding strenghtening constraints,

• altering the distribution of variables to the MP and the SP,

• embedding the decomposition in the Branch-and-Bound procedure of the MILP
solver and

• not solving the MP in an exact manner for the first iterations, either with a heuristic
or with the MILP solver and an allowed gap.

Furthermore we investigate how a scaled surplus energy and a reduced energy for
reservations influences the practical solvability of the problem.

1.2 Outline

In Chapter 2 we begin with introducing the methodology used in the thesis. In
particular the chapter covers the basics of MILPs as well as the solution process of
their solvers, the basics of Benders decomposition and a description of the metaheuristic
Generalized Variable Neighborhood Search.

Afterwards, Chapter 3 formally defines the FSP and formulates it as MILP. Some
techniques are discussed to make the formulation smaller and stronger.

3



1. Introduction

Chapter 4 discusses related work. Besides covering problems that arise in the context
of E-carsharing, the chapter summarizes two papers that are directly related.

In Chapter 5 the FSP is proven to be NP-hard. To do so, a reduction from the FSP
to the Partition Problem is given. The idea of the reduction is borrowed from the work
of Sassi and Oulamara [SO17].

Chapter 6 derives a new class of strengthening constraints for the FSP. Since the
number of such strenghtening constraints can be huge, the separation problem for adding
the constraints lazily in a cutting plane fashion is given. Unfortunately the separation
problem turns out to be NP-hard too. Two inexact approaches to deal with the problem
in practice are proposed.

Afterwards, Chapter 7 presents a network flow formulation that can be used to
solve to subproblem.

Subsequently, Chapter 8 derives the Benders decomposition of the given MILP in
two variants. First it is derived in a more classical way with only the integer variables in
the MP. Then some of the variables of the SP are moved to the MP and the derivation is
repeated. Possibilities to solve the MP are discussed. These include a heuristic that is
based on General Variable Neighborhood Search.

Chapter 9 discusses and compares the experimental results of the different approaches
for randomly generated benchmark instances. As it turns out, the MILP formulation with
a state-of-the-art solver is superior to the Benders decompositions for small to medium
sized instances. For large instances, where the MILP solver is not able to directly find
reasonable solutions in a reasonable amount of time anymore, the Benders decomposition,
especially the variant with the heuristic, is able to find much better solutions.

Finally, Chapter 10 concludes everything and gives an outlook on possible future
work.

4



CHAPTER 2
Methodological Approaches

This chapter discusses the the methods that have been used to solve the considered prob-
lem. These are in particular Mixed Integer Linear Programming, Benders decomposition
and the metaheuristic General Variable Neighborhood Search.

2.1 Mixed Integer Linear Programming
Our problem will be formulated as Mixed Integer Linear Program (MILP). MILPs are
the instances of a very general NP-complete optimization problem which many problems
in NP can be reduced to easily. There are powerful solvers that are able to find optimal
solutions to MILPs such as Gurobi1 [Gur21] and CPLEX2. This section introduces MILPs
and describes the basics of the solution process of MILP solvers to the extend that is
needed to understand this work. For a thorough introduction to Mixed Integer Linear
Programming refer to the book of Wolsey [Wol98].

A MILP is formulated as

min 𝑐𝑇 𝑥 + 𝑑𝑇 𝑦 (2.1)
subject to 𝐴𝑥 + 𝐵𝑦 ≥ 𝑏 (2.2)

and 𝑥 ∈ Z𝑛1 (2.3)
𝑦 ∈ R𝑛2 (2.4)

with 𝑐 ∈ R𝑛1 , 𝑑 ∈ R𝑛2 , 𝐴 ∈ R𝑛1×𝑚, 𝐵 ∈ R𝑛2×𝑚 and 𝑏 ∈ R𝑚. The expression in
Equation 2.1 is the objective function and the inequalities in Equation 2.2 are called
constraints. Aim is to find vectors 𝑥 ∈ Z𝑛1 and 𝑦 ∈ R𝑛2 that minimize the objective
function or to determine that no such vectors exist. Note that it is possible to model an
equality constraint with two inequality constraints.

1https://www.gurobi.com
2https://www.ibm.com/products/ilog-cplex-optimization-studio

5

https://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio


2. Methodological Approaches

The linear program relaxation of a MILP is obtained by enlarging the domain of
𝑥 to R𝑛1 which results in

min 𝑐𝑇 𝑥 + 𝑑𝑇 𝑦 (2.5)
subject to 𝐴𝑥 + 𝐵𝑦 ≥ 𝑏 (2.6)

and 𝑥 ∈ R𝑛1 (2.7)
𝑦 ∈ R𝑛2 (2.8)

The solution space of the resulting linear program (LP) is a superset of the solution space
of the MILP. Therefore the optimal solution of the LP is a lower bound or dual bound to
the optimal solution of the MILP. Linear programs can be solved in polynomial time by
e.g. interior point methods [Gon12] and there are algorithms like the simplex algorithm
that work well in practice.

By adding constraints that remove solutions of the LP but not of the MILP, the bound can
be improved. Such constraints are called strengthening contraints or valid inequalities and
there are two kinds of them. On the one side state-of-the-art MILP solvers derive several
classes of more general valid inequalities from other constraints. On the other side the
special structure of a problem that is formulated as a MILP may allow problem-specific
valid inequalities.

Each LP has a dual LP. For the above LP it is formulated as

max 𝑏𝑇 𝑧 (2.9)
subject to 𝐴𝑇 𝑧 = 𝑐 (2.10)

𝐵𝑇 𝑧 = 𝑑 (2.11)
and 𝑧 ∈ R𝑛1 , 𝑧 ≥ 0 (2.12)

Note that constraints become variables of the dual LP and variables become constraints
of the dual LP. By the strong duality theorem the optimal objective value of the dual
LP is the same as the optimal objective value of the primal LP. That implies that the
objective value of each solution to the dual LP is lower than the objective value of each
solution to the primal LP.

Branch-and-Bound is a fundamental algorithm following the concept of divide and
conquer that is used by most MILP solvers as underlying framework to find the optimal
solution to a MILP. It proceeds by repeatedly dividing the solution space into smaller
subspaces. Using the incumbent solution, i.e. the currently best one, and dual bounds the
algorithm can remove some of the subspaces without losing optimality. In particular if
the dual bound of a subspace is worse than the objective value of the incumbent solution,
the subspace cannot contain the optimal solution.

To improve the incumbent solution heuristics are invoked repeatedly. MILP solvers often
provide callback functions that are called on finding solutions by the heuristic. Such

6



2.2. Benders Decomposition

callback functions can add constraints. These so called lazy constraints or cuts are often
used, if the number of a particular type of constraint for a problem is too huge. The
callback function then determines for a solution, if it violates a constraint that has not
been added so far. If so it adds at least one constraint that is violated to the MILP to
cut off the respective part of the search space. In general not all constraints have to be
added to arrive at the optimal solution and therefore using lazy constraints for a huge
number of constraints often leads to a speedup.

2.2 Benders Decomposition
Benders decomposition is a general approach to tackle MILPs of a certain structure and
was proposed almost six decades ago by Benders [Ben62]. It works by splitting up the
problem into a master problem (MP) and a subproblem (SP). For the classical version,
the MP contains the integer variables and all constraints that only contain these integer
variables. The SP contains the remaining variables and constraints and is formulated
for a fixed solution of the MP. First the MP is solved and the values of the solution
are fixed, which leads to the SP. Extreme rays and points of the dual SP are then used
to add feasibility respectively optimality cuts to the MP. That way MP and SP are
solved in an alternating fashion, both forwarding information to the other problem. An
optimal solution to the MP that yields a feasible SP provides an upper and a lower
bound, which can be used to determine, whether the found solution is also optimal for the
overall problem. A disadvantage of this procedure is that the MP has to be solved from
scratch in each iteration. To overcome this one can embed the decomposition in a single
branch-and-bound tree. Feasibility and optimality cuts are then added as lazy constraints
in the callback function. Branch-and-bound with Benders decomposition embedded is
called Branch-and-check. In their literature review, Rahmaniani et al. [RCGR17] discuss
the Benders decomposition and variants of it in detail and investigate different speedup
strategies and extensions. Benders decomposition is useful, if a MILP formulation has
almost a diagonal block structure. If done right, the SP can then be decomposed into
multiple smaller problems that can be solved independently. That normally leads to a
speedup. Problems of such a structure occur e.g. in Stochastic Programming [VSW69].

2.3 Generalized Variable Neighborhood Search
Generalized Variable Neighborhood Search (GVNS) is a metaheuristic based on local
search. Local search starts with a solution and repeatedly improves the solution by
searching its neighborhood until there is no better solution in the neighborhood. If there
is no better solution in the neighborhood of a solution, it is also called a local optimum.
A neighborhood structure is a function that maps from solutions to sets of solutions. The
image of a solution for a given neighborhood structure is the neighborhood of that solution.
Neighborhood structures are often obtained via moves. A move applies a normally small
change to a solution. A neighborhood of a solution is then defined to be the set of all
solutions that can be obtained by applying a move of special structure to that solution.

7



2. Methodological Approaches

Variable Neighborhood Descend (VND) generalizes local search to multiple neighborhoods
𝑁1, . . . , 𝑁𝑘 and finds a solution that is a local optimum for all neighborhoods. To achieve
that, all neighborhoods are searched consecutively, restarting at the first neighborhood
upon finding a better solution. The pseudo code is given in Algorithm 2.1.

Algorithm 2.1: VND with the neighborhoods 𝑁1, . . . , 𝑁𝑘

1 Function VND𝑁1,...,𝑁𝑘
(Initial solution 𝑠0)

2 𝑠← 𝑠0 ;
3 𝑙← 1 ;
4 repeat
5 𝑠′ ← minarg𝑛∈𝑁(𝑠)𝑜𝑏𝑗(𝑛) ;
6 if 𝑠′ better than 𝑠 then
7 𝑠← 𝑠′ ;
8 𝑙← 1 ;
9 else

10 𝑙← 𝑙 + 1 ;
11 end
12 until 𝑙 > 𝑘;
13 return s ;
14 end

Local search and VND stop at the local optimum that is reached first. This local optimum
can have a bad objective value. To be able to escape local optima, General Variable
Neighborhood Search (GVNS) extends VND with shaking. Shaking chooses a random
neighbor from a given neighborhood, no matter if the neighbor has a better or worse
objective value. The pseudo code of GVNS is given in Algorithm 2.2.

8



2.3. Generalized Variable Neighborhood Search

Algorithm 2.2: GVNS with the neighborhoods 𝑁1, . . . , 𝑁𝑘 for VND and
�̃�1, . . . , �̃�𝑚 for shaking
1 Function GVNS𝑁1,...,𝑁𝑘;�̃�1,...,�̃�𝑚

(Initial solution 𝑠0)

2 𝑠← 𝑠0 ;
3 repeat
4 𝑙← 1 ;
5 repeat
6 𝑠′ ← random element in �̃�𝑙(𝑠) ;
7 𝑠′′ ← VND𝑁1,...,𝑁𝑘

(𝑠′) ;
8 if 𝑠′′ better than 𝑠 then
9 𝑠← 𝑠′′ ;

10 𝑙← 1 ;
11 else
12 𝑙← 𝑙 + 1 ;
13 end
14 until 𝑙 > 𝑚;
15 until stopping criteria;
16 return s ;
17 end

9





CHAPTER 3
Problem Specification

In the Fleet Scheduling Problem (FSP) we consider in this work, we are given

• a discretized planning time horizon 𝑇 = {1, . . . , 𝑡max} with each time step having
length Δ𝑡,

• a set 𝑉 = {1, . . . , 𝑛} of 𝑛 uniform EVs with

– maximal possible charging power 𝑃 max > 0 and
– battery capacity 𝐸cap > 0,

and for each vehicle 𝑣 ∈ 𝑉

– the subset of time steps 𝑇 avail
𝑣 ⊆ 𝑇 at which the vehicle is available and

– the initial energy level 𝐸𝑣,0 ≥ 0,

• a set 𝑅 = {1, . . . , 𝑟max} of reservations of vehicles, for each 𝑟 ∈ 𝑅

– the continuous set of time steps 𝑇 res
𝑟 = {𝑡start

𝑟 , . . . , 𝑡end
𝑟 } ⊆ 𝑇 in which a vehicle

is needed and
– the energy 𝐸res

𝑟 ≥ 0 that will be consumed during the reservation,

• the grid’s costs for electricity 𝑐𝑡 per unit of energy during each time step 𝑡 ∈ 𝑇 ;
note that these can also be negative to encourage the charging of vehicles beyond
the needs for the reservations,

• an assumed maximum surplus energy 𝐸surmax
𝑡 ≥ 0 available during each time step

𝑡 ∈ 𝑇 , for example from a photovoltaic system, and

• costs 𝑐uncov > 0 for covering each unit of energy required by unassigned reservations,
for example by cars with combustion engines.

11



3. Problem Specification

A solution comprises

• a partial assignment of reservations to vehicles, modeled by variables 𝑥𝑟,𝑣 ∈ {0, 1}
for 𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉 , indicating with value one that reservation 𝑟 is to be fulfilled by
vehicle 𝑣, and

• a charging plan, modeled by variables 𝑝𝑣,𝑡 ≥ 0 indicating the power by which vehicle
𝑣 ∈ 𝑉 is charged during time step 𝑡 ∈ 𝑇 .

The objective is to minimize the costs spent for grid energy and uncovered reservations
and to maximize the used surplus energy. These two objectives are combined in a linear
fashion in which the used surplus energy is weighted by a factor 𝛼.

The FSP can be expressed by the following mixed integer linear programming model.

min
∑︁
𝑡∈𝑇

𝑐𝑡𝐸
grid
𝑡 + 𝑐uncov ∑︁

𝑟∈𝑅

𝐸res
𝑟 𝑦𝑟 − 𝛼

∑︁
𝑡∈𝑇

𝐸sur
𝑡 (3.1)

s.t.
∑︁
𝑣∈𝑉

𝑥𝑟,𝑣 + 𝑦𝑟 = 1 𝑟 ∈ 𝑅 (3.2)

𝑥𝑟,𝑣 = 0 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 | 𝑇 res
𝑟 ̸⊆ 𝑇 avail

𝑣 (3.3)
𝑝𝑣,𝑡 = 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ∖ 𝑇 avail

𝑣 (3.4)
𝑝𝑣,𝑡 ≤ 𝑃 max · (1−

∑︁
𝑟∈𝑅|𝑡∈𝑇 res

𝑟

𝑥𝑟,𝑣) 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (3.5)

𝐸𝑣,0 + Δ𝑡
𝑡∑︁

𝑘=1
𝑝𝑣,𝑘 −

∑︁
𝑟∈𝑅|𝑡end

𝑟 ≤𝑡−1
𝐸res

𝑟 𝑥𝑟,𝑣 ≤ 𝐸cap

𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ends ∪ {𝑡max} (3.6)

𝐸𝑣,0 + Δ𝑡
𝑡−1∑︁
𝑘=1

𝑝𝑣,𝑘 −
∑︁

𝑟∈𝑅|𝑡start
𝑟 ≤𝑡

𝐸res
𝑟 𝑥𝑟,𝑣 ≥ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 starts (3.7)

𝐸grid
𝑡 + 𝐸sur

𝑡 =
∑︁
𝑣∈𝑉

Δ𝑡 𝑝𝑣,𝑡 𝑡 ∈ 𝑇 (3.8)

𝐸grid
𝑡 ≥ 0 𝑡 ∈ 𝑇 (3.9)

0 ≤ 𝐸sur
𝑡 ≤ 𝐸surmax

𝑡 𝑡 ∈ 𝑇 (3.10)
𝑥𝑟,𝑣 ∈ {0, 1} 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 (3.11)
0 ≤ 𝑦𝑟 ≤ 1 𝑟 ∈ 𝑅 (3.12)
0 ≤ 𝑝𝑣,𝑡 ≤ 𝑃 max 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (3.13)

Additionally used variables are:

• 𝑦𝑟, 𝑟 ∈ 𝑅: one if reservation 𝑟 is uncovered and zero else; note that these variables
can be kept continuous in the model as they will automatically get an integral value
due to equalities (3.2).

12



• 𝐸grid
𝑡 , 𝑡 ∈ 𝑇 : total amount of energy consumed from the grid during time step 𝑡.

• 𝐸sur
𝑡 , 𝑡 ∈ 𝑇 : total amount of surplus energy consumed during time step 𝑡.

By 𝑇 starts and 𝑇 ends we denote the sets of time steps in which reservations start and end,
respectively, i.e.,

𝑇 starts :=
{︁

𝑡start
𝑟 | 𝑟 ∈ 𝑅

}︁
and 𝑇 ends :=

{︁
𝑡end
𝑟 | 𝑟 ∈ 𝑅

}︁
. (3.14)

The meaning of the constraints is as follows.

• Equation 3.2 prohibits the assignment of multiple EVs to a reservation 𝑟. Further-
more it forces 𝑦𝑟 to one if no EV is assigned to reservation 𝑟.

• Equation 3.3 prevents assigning EVs when they are not available.

• Equation 3.4 prevents charging EVs when they are not available.

• Equation 3.5 prevents charging EVs when they are used in a reservation. Further-
more it prevents EVs to be assigned to multiple reservations at the same time. Note
that splitting up that constraint into two would lead to a weaker formulation.

• Equation 3.6 and Equation 3.7 prevent the batteries of vehicles from getting
overcharged or exhausted. The following details have been applied to strengthen
the formulation and to reduce the number of inequalities:

– If for some time step the SoC does not exceed the battery capacity and no
reservation starts at that time step, then the SoC does not exceed the battery
capacity for the previous time step. Therefore it is sufficient to limit the SoC
only in time steps before a reservation and at the last time step.

– The SoC can only drop below zero when the energy of a reservation is sub-
tracted. Therefore, Equation 3.7 is only needed for such time steps.

– It is irrelevant for the correctness of the formulation whether the energy of a
reservation is subtracted at the start or at the end of the reservation interval
or somewhere in between. In order to make the inequalities stronger, we use
the end for Equation 3.6 and the start for Equation 3.7.

– For Equation 3.6, 𝑝𝑣,𝑡 can be added, making the constraint stronger.
– Analogously 𝑝𝑣,𝑡 can be omitted for Equation 3.7.

• Equation 3.8 links the power by which EVs are charged at each time step with the
variables for the energy used from the grid and the used surplus energy.

• Equation 3.9 to Equation 3.13 define the domains of all variables.

13





CHAPTER 4
Related Work

Brandstätter et al. classify problems that arise in the context of E-carsharing systems
into two categories [BGL+16]. The first category includes problems that decide on the
structure of an E-carsharing system. In particular determining the locations of stations
for station-based systems and distributing vehicles to existing stations fall into this
category. The second category involves problems that occur on a regular basis when
operating an E-carsharing system. This includes the relocation of vehicles where vehicles
are moved between stations to satisfy user demands. It also includes Electric Vehicle
Routing Problems.

Vehicle Routing Problems aim to assign vehicles to routes that serve geographically
distributed customers while minimizing costs [KP12]. Normally besides feasibility con-
straints like a vehicle load capacity or customer time windows are imposed. For Elecric
Vehicle Routing Problems, constraints for the limited range and charging are needed
additionally [EC19]. These problems have been studied extensively in the literature and
many algorithms for solving them have been proposed. Erdelić and Carić [EC19] discuss
different variants of Electric Vehicle Routing Problems and summarize the proposed
algorithms.

A very similar class of problems addresses the scheduling of vehicles [BK09]. Here a set
of trips, each having a location and time for departure and arrival, is given. Aim is to
find a feasible assignment from trips to vehicles that minimizes costs. Vehicles start and
end at depots. Problem variants either consider a single depot or multiple depots. Recent
advances also consider electric or mixed fleets [MO19, RPDV20].

A different kind of problem regarding EVs concentrates on the charging process. Regarding
smart grids these problems can be classified into three categories [WLDK16]. First smart
grid oriented problems address frequency regulation, voltage regulation or load flattening,
i.e. avoiding too high loads. While for smart grid oriented problems there is a central
controller, at aggregator oriented problems the smart grid instead has multiple aggregators,

15



4. Related Work

each controlling its own set of EVs. Customer oriented problems are from the point of
view of a customer. Here a customer possessing a single EV normally wants to charge
the EV while minimizing costs. Often the customer has to consider uncertainties like the
uncertainty of the electricity price.

Like Vehicle Routing Problems and Vehicle Scheduling Problems the FSP assigns reser-
vations to vehicles. However the FSP does not consider different locations. For all
reservations the EV is picked up and returned at the location, where the charging of the
EVs is performed. Regarding smart grids the FSP can be seen as aggregator oriented
problem, since multiple EVs are operated by a single entity, which is connected to the
grid. Altough the FSP has overlaps with many problems that fall into above mentioned
classes, there are only two papers that are strongly related. One of them is by Sassi and
Oulamara [SO17] and the other one by Betz et al. [BWL16]. The following paragraphs
give an overview on these two papers.

Sassi and Oulamara [SO17]. The main difference of the problem Sassi and Oulamara
are considering is the optimization objective. First, they maximize the distance that
is travelled with EVs. Then the charging costs are minimized, s.t. the distance stays
constant on its optimal value. Another difference is that the number of alternative vehicles
that can be used for uncovered reservations, e.g., petrol cars, is limited. Moreover, there
are also some differences regarding the charging process: Surplus energy is not considered,
i.e., all the energy is taken from the grid. However the grid is limited in the total power
it can deliver, so the charging processes of different EVs must also be optimized together.
Additionally to this maximum power of the grid and the maximum charging power for
each EV, there also exists a lower limit for the charging power. Thus, an EV is either
charged within its lower and upper power limits or not charged. Sassi and Oulamara
propose two heuristics to solve their problem, which they name Sequential Heuristic (SH)
and Global Heuristic (GH). The SH repeats the following steps for each EV:

• Select a subset of reservations that are non-conflicting s.t. the driven distance is as
large as possible and assign them to the EV.

• Find a charging schedule for the EV that minimizes charging costs.

Afterwards the uncovered reservations are assigned to the petrol cars. The GH works
basically the same but calculates a charging schedule for all vehicles at once after all
reservations have been assigned to vehicles. These two heuristics were compared to a
MILP formulation on random instances. Both, GH and SH, outperformed the MILP
formulation on these instances in terms of the quality of heuristic solutions. Compared
to SH, GH in general found feasible solutions on more instances and better solutions on
the instances where both heuristics found solutions. However, SH was significantly faster.

Betz et al. [BWL16] differ in their problem variant from our FSP by limiting the
number of available chargers. These chargers can have different charging powers. Betz et

16



al. also formulate their problem as a MILP and solved it using the MATLAB integrated
MILP solver. The hardest instance that could be solved within two hours included 30
trips and eight vehicles. The authors also investigated the effect on operational costs
and environmental impact when using a fleet of EVs compared to a fleet of vehicles with
combustion engines.

17





CHAPTER 5
NP-Hardness of the FSP

Sassi and Oulamara [SO17] tried to prove the NP-hardness of their fleet scheduling
problem variant called Electric Vehicle Scheduling and Charging Problem (EVSCP). The
FSP is similar to the EVSCP and indeed the idea of the proof can be adopted for the FSP.
However, we remark that the original proof in [SO17] contains a severe error because the
reduction from the used partition problem may result in an exponentially large EVSCP
instance as the size of the time horizon 𝑇 depends on an input value of the partition
problem. In the following we present an adapted and corrected proof for our FSP.

We reduce the partition problem, which is known to be NP-complete [Kar72], to the
decision variant of the FSP. The decision variant of the FSP asks whether or not there is
a solution that has an objective value less than or equal to a given 𝑐max. The partition
problem can be stated as follows.

Partition Problem
Input: A multiset 𝑃 = {𝑎1, . . . , 𝑎𝑚} of positive integers that sum up to 2𝑠.
Question: Is there a partition {𝑀1, 𝑀2} of {1, . . . , 𝑚} , s.t.

∑︀
𝑖∈𝑀1 𝑎𝑖 = 𝑠 =∑︀

𝑖∈𝑀2 𝑎𝑖?

Theorem 1. The FSP is NP-hard.

Proof. Given an instance of the partition problem, an instance of the decision variant of
the FSP is constructed as follows.

• For each integer in 𝑃 there is a time step: 𝑇 = {1, . . . , 𝑚}

• There are two EVs: 𝑉 = {1, 2}

• Both EVs have

19



5. NP-Hardness of the FSP

– a battery capacity and an initial energy level of 𝑠: 𝐸cap = 𝑠, 𝐸1,0 = 𝐸2,0 = 𝑠

– no charging capabilities: 𝑃 max = 0
– an unlimited availability: 𝑇 avail

1 = 𝑇 avail
2 = 𝑇

• For each integer in 𝑃 there is a reservation: 𝑅 = {1, . . . , 𝑚}

– All reservations are non-overlapping: 𝑇 res
𝑟 = {𝑟}, 𝑟 ∈ 𝑅

– The energy consumption of a reservation is: 𝐸res
𝑟 = 𝑎𝑟

• There are only costs for uncovered reservations: 𝑐uncov = 1, 𝑐𝑡 = 0, 𝑡 ∈ 𝑇 , 𝛼 = 0

• The objective value has to be less than or equal to zero: 𝑐max ≤ 0

• No surplus energy is available: 𝐸surmax
𝑡 = 0, 𝑡 ∈ 𝑇

Assume we have a solution for this problem instance. This solution cannot have uncovered
reservations as they would increase the objective value to a positive value. Therefore, the
two EVs have to cover all reservations. The total energy consumption of all reservations
is 2𝑠. Both vehicles have an initial energy level of 𝑠 and no recharging possibilities.
Therefore the energy level of both vehicles is zero after time step 𝑚, and the energy
consumptions of the reservations served by a single vehicle sum up to 𝑠. This gives a
solution for the corresponding partition problem:

𝑀𝑣 := {𝑖 | 𝑥𝑣,𝑖 = 1, 𝑖 = 1, . . . , 𝑚} 𝑣 ∈ 𝑉 (5.1)

Given a solution to the partition problem, a corresponding solution to the FSP is
constructed by assigning each vehicle 𝑣 ∈ 𝑉 to the reservations corresponding to 𝑀𝑣.
Due to a similar reasoning as above, the solution to the FSP has to be feasible.

Overall, there is a solution to the partition problem, iff there is a solution to the
corresponding FSP. As all the described transformations can be done in polynomial time,
it follows that the FSP is NP-hard.

20



CHAPTER 6
Strengthening Constraints for

Conflicting Reserverations

Let 𝑅′ ⊆ 𝑅 be a set of non-overlapping reservations to which vehicle 𝑣 ∈ 𝑉 is assigned to.
The maximal achievable energy level 𝐸max

𝑣,𝑡 (𝑅′) of vehicle 𝑣 for 𝑡 ∈ 𝑇 ∪ {0} in dependence
of 𝑅′ can be calculated by

𝐸max
𝑣,𝑡 (𝑅′) =

⎧⎪⎪⎨⎪⎪⎩
𝐸𝑣,0 if 𝑡 = 0
min(𝐸max

𝑣,𝑡−1(𝑅′) + 𝑃 maxΔ𝑡, 𝐸cap) if 𝑡 ∈ 𝑇 avail
𝑣 ∖

⋃︀
𝑟∈𝑅′ 𝑇 res

𝑟

𝐸max
𝑣,𝑡−1(𝑅′)−

∑︀
𝑟∈𝑅′|𝑡=𝑡start

𝑟
𝐸res

𝑟 otherwise.
(6.1)

If 𝐸max
𝑣,𝑡 (𝑅′) would be negative at a time step, not all reservations of 𝑅′ can be assigned

together to vehicle 𝑣. In other words at least one reservation in 𝑅′ may not be assigned
to vehicle 𝑣 in this case, which yields the inequality∑︁

𝑟∈𝑅′

𝑥𝑟,𝑣 ≤ |𝑅′| − 1. (6.2)

This kind of constraint in general strengthens the MILP formulation, i.e., there are
solutions to the LP relaxation of the model that do not fulfill Equation 6.2. Take
for example the FSP instance with one vehicle of capacity and initial SoC 3 and two
reservations 1 and 2 having a reservation energy of 2 and reservation intervals 𝑇 res

1 = {1}
and 𝑇 res

2 = {2}. Then the LP relaxation of the MILP formulation in Chapter 3 has a
solution with 𝑥1,1 = 𝑥2,1 = 0.75, which does not fulfill Equation 6.2 for 𝑅′ = {1, 2}. Still
𝐸max

1,2 ({1, 2}) = −1 is less than zero and therefore the constraint can be added. A problem
is that the number of these inequalities can get exponentially large in |𝑅|. Therefore we
consider the dynamic separation of such inequalities in a branch-and-cut approach. The
respective separation problem can be stated for a specific vehicle 𝑣 ∈ 𝑉 as follows.

21



6. Strengthening Constraints for Conflicting Reserverations

Separation Problem
Input: For each 𝑟 ∈ 𝑅: 𝑥𝑟,𝑣 ∈ [0, 1], 𝐸res

𝑟 ≥ 0, 𝑇 res
𝑟 ⊆ 𝑇 . Furthermore 𝑃 max, Δ𝑡,

𝐸cap and for each 𝑣 ∈ 𝑉 : 𝐸𝑣,0 and 𝑇 avail
𝑣 .

Question: Does there exist a non-overlapping set of reservations 𝑅′ ⊆ 𝑅 with 𝑇 res
𝑟 ⊆

𝑇 avail
𝑣 s.t. 𝐸max

𝑣,𝑡 (𝑅′) < 0 for some 𝑡 ∈ 𝑇 ∖ {1} and
∑︀

𝑟∈𝑅′ 𝑥𝑟,𝑣 > |𝑅′| − 1?

For the special case of 𝑃 max = 0, 𝐸cap sufficiently large, and unlimited availabilities
(𝑇 avail

𝑣 = 𝑇 ), the maximal achievable energy can be calculated in an easy way by

𝐸max
𝑣,𝑡 (𝑅′) = 𝐸𝑣,0 −

∑︁
𝑟∈𝑅′|𝑡start

𝑟 ≤𝑡

𝐸res
𝑟 . (6.3)

The condition 𝐸max
𝑣,𝑡 (𝑅′) < 0 then becomes

∑︀
𝑟∈𝑅′ 𝐸res

𝑟 > 𝐸𝑣,0 as it is sufficient to check
for 𝑡 = 𝑡max. If no reservations in 𝑅 overlap with each other, the separation problem
corresponds to (the decision version of) the 0–1 knapsack problem with item weights
1−𝑥𝑟,𝑣, capacity one, and item values 𝐸res

𝑟 . Therefore the separation problem is NP-hard.

One way to deal with the separation problem in practice is to discretize all values 𝑥𝑟,𝑣

and to apply dynamic programming over
∑︀

𝑟∈𝑅′(1− 𝑥𝑟,𝑣) with the reservations ordered
by their start times, maximizing 𝐸max

𝑣,𝑅′ (𝑡) for each intermediate result. Alternatively, one
could discretize the energy and minimize

∑︀
𝑟∈𝑅′(1− 𝑥𝑟,𝑣).

In practice it seems reasonable to apply a fast greedy heuristic to possibly identify a
violated inequality and the more complex dynamic programming approach only when the
heuristic does not succeed. We implemented such a heuristic and tested it with the MILP
formulation solved by Gurobi. However that did not lead to a speedup and therefore we
did not implement the more elaborate dynamic programming algorithm.

One can also initially check all pairs of non-overlapping reservations and provide respective
valid inequalities already from the beginning instead of later separating all of them
dynamically. We tried that approach for the Benders decomposition, but again it did not
lead to a speedup. More on that result in Chapter 9.

22



CHAPTER 7
Network flow formulation

As already pointed out in [SO17] certain variants of the charging scheduling problem can
be modeled as minimum cost flow problems. Minimum cost flows in capacitated networks
can be efficiently determined by dedicated algorithms like, for example, network simplex,
which can be more efficient than a more general linear programming solver.

For now, let us assume we have known values for the assignment variables 𝑥, like for
example for the SP of a Benders decomposition of the problem. We are then able to
calculate an optimal charging plan 𝑝 by determining a minimum cost flow in the network
depicted in Figure 7.1. Edge capacities are given in green, edge costs in red. The flow
flowing from 𝑠 to 𝑡 has to be sufficiently large, e.g.

∑︀
𝑟∈𝑅 𝐸res

𝑟 +𝑛𝐸cap. Nodes are arranged
in a grid. For each vehicle the grid has a row and for each time step it has a column.
Given a vehicle 𝑣, a time step 𝑡 and the corresponding node, the flow entering that node
from the left represents the state of charge of vehicle 𝑣 at time step 𝑡− 1. The state of
charge of a vehicle may never exceed 𝐸cap, therefore 𝐸cap is used as capacity for these
edges. 𝑀 is a constant that is sufficiently large to force a flow of 𝐸𝑣,0 into the node of
vehicle 𝑣 and time step 1. Charging happens by adding flow from the nodes above, which
can take 𝐸surmax

𝑡 flow from the source node at cost −𝛼 and arbitrary much flow at cost
𝑐𝑡. Available vehicles can be charged with 𝐸max := Δ𝑡𝑃 max flow, non-available vehicles
cannot be charged. For each reservation the reservation energy has to be taken away.
That is achieved with arcs of cost −𝑀 and capacity 𝐸res

𝑟 that go dirctly to the target
node.

The network can be used to determine the optimal solution to the SP of the more classical
Benders decomposition of the FSP, which will be explained in Section 8.1. An efficient
algorithm that solves the Minimum Cost Flow Problem is network simplex. However we
found that the formulation with the network simplex algorithm does not perform better
than Gurobi 9.11 [Gur21] with the linear program. Therefore we will use an LP solver

1https://www.gurobi.com

23

https://www.gurobi.com


7. Network flow formulation

s

t

v=1

v=2

v=n

t=1 t=2 t=tmaxt=0

E1,0

E2,0

En,0

-M

-M

-M

Emax

Emax Emax

Emax

Emax

Emax

Emax

Esurmax
1

-� c1

Esurmax
2

-�
Esurmax

tmax
-�c2 ctmax

-M -M -MEres1 Eres2 Eresrmax

Ecap

Ecap

Ecap-Eres1

Ecap

Ecap

Ecap-Eres2 Ecap

Ecap

Ecap-Eresrmax

Ecap

Ecap

Ecap

Figure 7.1: Minimum cost flow network for determining a charging plan for given
assignments 𝑥. Edge capacities are given in green, edge costs in red. No given edge
capacity means a capacity of ∞, no given edge cost means a cost of 0. 𝐸max := Δ𝑡𝑃 max.

for solving the SP.

24



CHAPTER 8
Benders Decomposition

8.1 Basic Benders Decomposition
We now apply the Benders decomposition to our MILP from the previous section, coming
up with the respective master and subproblems as well as the dual problem of the latter,
which is needed for deriving the Benders cuts.

8.1.1 Master- and Subproblems

The following master problem (MP) only considers the assignment variables 𝑥𝑟,𝑣, 𝑟 ∈
𝑅, 𝑣 ∈ 𝑉 and 𝑦𝑟, 𝑟 ∈ 𝑅 and abstracts from the actual charging details. The latter will
only be considered in the subproblem.

min 𝑐uncov ∑︁
𝑟∈𝑅

𝐸res
𝑟 𝑦𝑟 + 𝜇 (8.1)

s.t.
∑︁
𝑣∈𝑉

𝑥𝑟,𝑣 + 𝑦𝑟 = 1 𝑟 ∈ 𝑅 (8.2)

𝑥𝑟,𝑣 = 0 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 | 𝑇 res
𝑟 * 𝑇 avail

𝑣 (8.3)∑︁
𝑟∈𝑅|𝑡∈𝑇 res

𝑟

𝑥𝑟,𝑣 ≤ 1 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (8.4)

Feasibility cuts (8.5)
Optimality cuts (8.6)
𝑥𝑟,𝑣 ∈ {0, 1} (8.7)
0 ≤ 𝑦𝑟 ≤ 1 (8.8)
𝜇 ≥

∑︁
𝑡∈𝑇 |𝑐𝑡<0

𝑐𝑡 𝑛 Δ𝑡 𝑃 max − 𝛼
∑︁
𝑡∈𝑇

𝐸surmax
𝑡 (8.9)

Variable 𝜇 represents additional costs that are to be contributed by the optimality cuts.

25



8. Benders Decomposition

Such cuts will be iteratively derived and added by solving the following subproblem SP(�̄�)
for specific reservation assignments �̄� = (�̄�𝑟,𝑣)𝑟∈𝑅,𝑣∈𝑉 in a current optimal solution to
the master problem.

We define

• for each vehicle 𝑣 ∈ 𝑉 the set of time steps when the vehicle is available and not
reserved

𝑇 home
𝑣 := 𝑇 avail

𝑣 ∖
⋃︁

𝑟∈𝑅|�̄�𝑟,𝑣=1
𝑇 res

𝑟 (8.10)

• and for each vehicle 𝑣 ∈ 𝑉 the energy difference up to time step 𝑡 ∈ 𝑇 caused by
assigned reservations. The energy of a reservation may be subtracted at the start
or the end of the reservation interval, leading to the two definitions

𝐸res,start
𝑣,𝑡 :=

∑︁
𝑟∈𝑅|𝑡≤𝑡start

𝑟 ∧�̄�𝑟,𝑣=1
𝐸res

𝑟 and 𝐸res,end
𝑣,𝑡 :=

∑︁
𝑟∈𝑅|𝑡≤𝑡end

𝑟 ∧�̄�𝑟,𝑣=1
𝐸res

𝑟 . (8.11)

The primal subproblem SP(�̄�) can now be formulated as follows.

(SP(�̄�)) min
∑︁
𝑡∈𝑇

𝑐𝑡𝐸
grid
𝑡 − 𝛼

∑︁
𝑡∈𝑇

𝐸sur
𝑡 (8.12)

s.t. 𝑝𝑣,𝑡 = 0 (𝜆p=0
𝑣,𝑡 ) 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ∖ 𝑇 home

𝑣

(8.13)

𝐸𝑣,0 + Δ𝑡
𝑡∑︁

𝑘=1
𝑝𝑣,𝑘 − 𝐸res,end

𝑣,𝑡−1 ≤ 𝐸cap (𝜆ub
𝑣,𝑡) 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ends ∪ {𝑡max}

(8.14)

𝐸𝑣,0 + Δ𝑡
𝑡−1∑︁
𝑘=1

𝑝𝑣,𝑘 − 𝐸res,start
𝑣,𝑡 ≥ 0 (𝜆lb

𝑣,𝑡) 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 starts

(8.15)

𝐸grid
𝑡 + 𝐸sur

𝑡 =
∑︁
𝑣∈𝑉

Δ𝑡 𝑝𝑣,𝑡 (𝜆E
𝑡 ) 𝑡 ∈ 𝑇

(8.16)

𝐸grid
𝑡 ≥ 0 𝑡 ∈ 𝑇

(8.17)
0 ≤ 𝐸sur

𝑡 ≤ 𝐸surmax
𝑡 (𝜆sur

𝑡 ) 𝑡 ∈ 𝑇
(8.18)

0 ≤ 𝑝𝑣,𝑡 ≤ 𝑃 max (𝜆p
𝑣,𝑡) 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇

(8.19)

To get feasibility and optimality cuts, we have to derive the dual of this subproblem. In
the above primal problem, the 𝜆-variables in parentheses denote the dual variables that

26



8.1. Basic Benders Decomposition

correspond to each constraint. The dual subproblem is then:

max
∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 ends∪{𝑡max}

(︁
𝐸cap + 𝐸res,end

𝑣,𝑡−1 − 𝐸𝑣,0
)︁

𝜆ub
𝑣,𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 starts

(︁
𝐸res,start

𝑣,𝑡 − 𝐸𝑣,0
)︁

𝜆lb
𝑣,𝑡 +

∑︁
𝑡∈𝑇

𝐸surmax
𝑡 𝜆sur

𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇

𝑃 max𝜆p
𝑣,𝑡 (8.20)

s.t. 𝜆E
𝑡 ≤ 𝑐𝑡 (𝐸grid

𝑡 ) 𝑡 ∈ 𝑇 (8.21)
𝜆E

𝑡 + 𝜆sur
𝑡 ≤ −𝛼 (𝐸sur

𝑡 ) 𝑡 ∈ 𝑇 (8.22)
𝜆p

𝑣,𝑡 −Δ𝑡𝜆E
𝑡 + Δ𝑡

∑︁
𝑘∈𝑇 ends∪{𝑡max}|𝑘≥𝑡

𝜆ub
𝑣,𝑘 + Δ𝑡

∑︁
𝑘∈𝑇 starts|𝑘≥𝑡+1

𝜆lb
𝑣,𝑘 ≤ 0

(𝑝𝑣,𝑡) 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 home
𝑣 (8.23)

𝜆p=0
𝑣,𝑡 + 𝜆p

𝑣,𝑡 −Δ𝑡𝜆E
𝑡 + Δ𝑡

∑︁
𝑘∈𝑇 ends∪{𝑡max}|𝑘≥𝑡

𝜆ub
𝑣,𝑘 + Δ𝑡

∑︁
𝑘∈𝑇 starts|𝑘≥𝑡+1

𝜆lb
𝑣,𝑘 ≤ 0

(𝑝𝑣,𝑡) 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ∖ 𝑇 home
𝑣 (8.24)

𝜆p=0
𝑣,𝑡 ∈ R 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (8.25)

𝜆E
𝑡 ∈ R 𝑡 ∈ 𝑇 (8.26)

𝜆sur
𝑡 ≤ 0 𝑡 ∈ 𝑇 (8.27)

𝜆p
𝑣,𝑡 ≤ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (8.28)

𝜆ub
𝑣,𝑡 ≤ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ends ∪ {𝑡max} (8.29)

𝜆lb
𝑣,𝑡 ≥ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 starts (8.30)

This dual subproblem can be simplified in multiple regards as follows.

• Variable 𝜆p=0
𝑣,𝑡 appears only once in Equation 8.24 and is unbounded. Therefore, it

can always be chosen in a way that the inequality is fulfilled. Thus, 𝜆p=0
𝑣,𝑡 as well as

Equation 8.24 can be removed.

• Variables 𝜆sur
𝑡 and 𝜆p

𝑣,𝑡 appear in the objective function with positive coefficients
and in two constraints that only give upper limits. The value of such a variable
will always be the smaller upper limit in an optimal solution.

27



8. Benders Decomposition

This leads to the following equivalent formulation.

(DSP(�̄�)) max
∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 ends∪{𝑡max}

(︁
𝐸cap + 𝐸res,end

𝑣,𝑡−1 − 𝐸𝑣,0
)︁

𝜆ub
𝑣,𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 starts

(︁
𝐸res,start

𝑣,𝑡 − 𝐸𝑣,0
)︁

𝜆lb
𝑣,𝑡 +

∑︁
𝑡∈𝑇

𝐸surmax
𝑡 min

(︁
0, −𝛼− 𝜆E

𝑡

)︁
+

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 home

𝑣

Δ𝑡𝑃 max min

⎛⎝0, 𝜆E
𝑡 −

∑︁
𝑘∈𝑇 ends∪{𝑡max}|𝑘≥𝑡

𝜆ub
𝑣,𝑘 −

∑︁
𝑘∈𝑇 starts|𝑘≥𝑡+1

𝜆lb
𝑣,𝑘

⎞⎠ (8.31)

s.t. 𝜆E
𝑡 ≤ 𝑐𝑡 𝑡 ∈ 𝑇 (8.32)

𝜆ub
𝑣,𝑡 ≤ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ends ∪ {𝑡max} (8.33)

𝜆lb
𝑣,𝑡 ≥ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 starts (8.34)

For reasons of clarity we define for a given solution to DSP(�̄�), denoted by �̄�E
𝑡 , �̄�lb

𝑣,𝑡 and
�̄�ub

𝑣,𝑡,

𝐶𝑣,𝑡 := min

⎛⎝0, �̄�E
𝑡 −

∑︁
𝑘∈𝑇 ends∪{𝑡max}|𝑘≥𝑡

�̄�ub
𝑣,𝑘 −

∑︁
𝑘∈𝑇 starts|𝑘≥𝑡+1

�̄�lb
𝑣,𝑘

⎞⎠ . (8.35)

8.1.2 Feasibility Cuts

Feasibility cuts are inferred from extreme rays of the dual subproblem in case this problem
is unbounded. Let �̄�lb

𝑣,𝑡, �̄�ub
𝑣,𝑡, and �̄�E

𝑡 represent such an extreme ray. We then have to have
�̄�E

𝑡 ≤ 0 and the objective function without constants (i.e., without 𝛼) has to be positive.
The third term of the objective function is zero in this case. Furthermore, �̄�E

𝑡 = 0 due to
a similar argument as before. The formulation can now be split into different parts for
the different vehicles, which are independent from each other. As the total objective value
is positive, some of these parts also have to provide positive contributions and therefore

28



8.2. Extension of the MP

also form rays. Using these rays, we get the following feasibility cuts for vehicles 𝑣 ∈ 𝑉 .∑︁
𝑡∈𝑇 ends∪{𝑡max}

(︁
𝐸cap + 𝐸res,end

𝑣,𝑡−1 − 𝐸𝑣,0
)︁

�̄�ub
𝑣,𝑡 +

∑︁
𝑡∈𝑇 starts

(︁
𝐸res,start

𝑣,𝑡 − 𝐸𝑣,0
)︁

�̄�lb
𝑣,𝑡 +

∑︁
𝑡∈𝑇 home

𝑣

Δ𝑡𝑃 max𝐶𝑣,𝑡 =

∑︁
𝑡∈𝑇 ends∪{𝑡max}

⎛⎝𝐸cap +
∑︁

𝑟∈𝑅|𝑡end
𝑟 ≤𝑡−1

𝐸res
𝑟 𝑥𝑟,𝑣 − 𝐸𝑣,0

⎞⎠ �̄�ub
𝑣,𝑡 +

∑︁
𝑡∈𝑇 starts

⎛⎝ ∑︁
𝑟∈𝑅|𝑡start

𝑟 ≤𝑡

𝐸res
𝑟 𝑥𝑟,𝑣 − 𝐸𝑣,0

⎞⎠ �̄�lb
𝑣,𝑡 +

∑︁
𝑡∈𝑇 avail

𝑣

Δ𝑡𝑃 max𝐶𝑣,𝑡

⎛⎝1−
∑︁

𝑟∈𝑅|𝑡∈𝑇 res
𝑟

𝑥𝑟,𝑣

⎞⎠ ≤ 0 (8.36)

8.1.3 Optimality Cuts

Optimality cuts are inferred from extreme points of the dual subproblem. Let �̄�ΔE
𝑣,𝑡 and

�̄�E
𝑡 be such an extreme point. Unlike for extreme rays, we cannot discard constants so

the above simplifications do not work here. The resulting cuts are

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 ends∪{𝑡max}

⎛⎝𝐸cap +
∑︁

𝑟∈𝑅|𝑡end
𝑟 ≤𝑡−1

𝐸res
𝑟 𝑥𝑟,𝑣 − 𝐸𝑣,0

⎞⎠ �̄�ub
𝑣,𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 starts

⎛⎝ ∑︁
𝑟∈𝑅|𝑡start

𝑟 ≤𝑡

𝐸res
𝑟 𝑥𝑟,𝑣 − 𝐸𝑣,0

⎞⎠ �̄�lb
𝑣,𝑡 +

∑︁
𝑡∈𝑇

𝐸surmax
𝑡 ·min

(︁
0,−𝛼− �̄�E

𝑡

)︁
+

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 avail

𝑣

Δ𝑡𝑃 max𝐶𝑣,𝑡

⎛⎝1−
∑︁

𝑟∈𝑅|𝑡∈𝑇 res
𝑟

𝑥𝑟,𝑣

⎞⎠ ≤ 𝜇. (8.37)

8.2 Extension of the MP
By adding information about the SP to the MP from the beginning, we may expect to
reduce the number of iterations and thus the overall runtime. We do this in the following
two ways.

1. The strengthening inequalities from chapter 6 can be added. As there may be
exponentially many such constraints, we only add those constraints considering two
reservations.

29



8. Benders Decomposition

2. We can move the variables 𝐸res
𝑡 and 𝐸sur

𝑡 from the SP into the MP. The number of
these variables is low enough (𝑂(|𝑇 |)) to still keep the MP reasonably small, but
now it becomes possible to add further strengthening inequalities to the MP that
make use of 𝐸res

𝑡 and 𝐸sur
𝑡 .

For the rest of this subsection we will concentrate on this second kind of strengthening
inequalities.

The MP is updated as follows.

min
∑︁
𝑡∈𝑇

𝑐𝑡𝐸
grid
𝑡 + 𝑐uncov ∑︁

𝑟∈𝑅

𝐸res
𝑟 𝑦𝑟 − 𝛼

∑︁
𝑡∈𝑇

𝐸sur
𝑡 (8.38)

s.t.
∑︁
𝑣∈𝑉

𝑥𝑟,𝑣 + 𝑦𝑟 = 1 𝑟 ∈ 𝑅 (8.39)

𝑥𝑟,𝑣 = 0 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 | 𝑇 res
𝑟 * 𝑇 avail

𝑣 (8.40)∑︁
𝑟∈𝑅|𝑡∈𝑇 res

𝑟

𝑥𝑟,𝑣 ≤ 1 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (8.41)

Conflicting Reservations (8.42)

𝐸grid
𝑡 + 𝐸sur

𝑡 ≤
∑︁
𝑣∈𝑉

Δ𝑡𝑃 max

⎛⎝1−
∑︁

𝑟∈𝑅|𝑡∈𝑇 res
𝑟

𝑥𝑟,𝑣

⎞⎠ 𝑡 ∈ 𝑇 (8.43)

𝑡∑︁
𝑘=1

(︁
𝐸grid

𝑘 + 𝐸sur
𝑘

)︁
+

∑︁
𝑣∈𝑉

⎛⎝𝐸𝑣,0 −
∑︁

𝑟∈𝑅|𝑡end
𝑟 ≤𝑡−1

𝐸res
𝑟 𝑥𝑟,𝑣

⎞⎠ ≤ 𝑛𝐸cap

𝑡 ∈ 𝑇 ends ∪ {𝑡max} (8.44)
𝑡−1∑︁
𝑘=1

(︁
𝐸grid

𝑘 + 𝐸sur
𝑘

)︁
+

∑︁
𝑣∈𝑉

⎛⎝𝐸𝑣,0 −
∑︁

𝑟∈𝑅|𝑡start
𝑟 ≤𝑡

𝐸res
𝑟 𝑥𝑟,𝑣

⎞⎠ ≥ 0 𝑡 ∈ 𝑇 starts (8.45)

Feasibility cuts (8.46)

𝐸grid
𝑡 ≥ 0 𝑡 ∈ 𝑇 (8.47)

0 ≤ 𝐸sur
𝑡 ≤ 𝐸surmax

𝑡 𝑡 ∈ 𝑇 (8.48)
𝑥𝑟,𝑣 ∈ {0, 1} (8.49)
0 ≤ 𝑦𝑟 ≤ 1 (8.50)

(8.51)

• As already mentioned 𝐸grid
𝑡 and 𝐸sur

𝑡 are added.

• The parts of the overall objective function that contain 𝐸sur
𝑡 and 𝐸grid

𝑡 are added
to the objective function of the MP.

• Optimality cuts are therefore not necessary any more, as the objective function of
the MP already comprises all parts of the original objective.

30



8.2. Extension of the MP

• Strengthening inequalities (8.43) to (8.45) are added.

Also the dual subproblem changes in some regards.

• The term with 𝜆sur
𝑡 in the objective drops because 𝐸sur

𝑡 is no longer part of the
subproblem.

• 𝐸sur
𝑡 and 𝐸grid

𝑡 turn into constants, leading to a new term in the objective function.

• The constraints corresponding to 𝐸sur
𝑡 and 𝐸grid

𝑡 are dropped.

After simplification the dual of the updated subproblem can be stated as follows.

(DSP(�̄�, �̄�grid, �̄�sur))

max
∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 ends∪{𝑡max}

(︁
𝐸cap + 𝐸res,end

𝑣,𝑡−1 − 𝐸𝑣,0
)︁

𝜆ub
𝑣,𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 starts

(︁
𝐸res,start

𝑣,𝑡 − 𝐸𝑣,0
)︁

𝜆lb
𝑣,𝑡 +

∑︁
𝑡∈𝑇

(︁
�̄�grid

𝑡 + �̄�sur
𝑡

)︁
𝜆E

𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 home

𝑣

Δ𝑡𝑃 max min

⎛⎝0,−𝜆E
𝑡 −

∑︁
𝑘∈𝑇 ends∪{𝑡max}|𝑘≥𝑡

𝜆ub
𝑣,𝑘 −

∑︁
𝑘∈𝑇 starts|𝑘≥𝑡+1

𝜆lb
𝑣,𝑘

⎞⎠ (8.52)

s.t. 𝜆E
𝑡 ∈ R 𝑡 ∈ 𝑇

(8.53)
𝜆ub

𝑣,𝑡 ≤ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 ends ∪ {𝑡max}
(8.54)

𝜆lb
𝑣,𝑡 ≥ 0 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 starts

(8.55)

31



8. Benders Decomposition

8.2.1 Feasibility Cuts

Let �̄�p
𝑣,𝑡, �̄�ub

𝑣,𝑡 and �̄�lb
𝑣,𝑡 be a solution to the above dual subproblem that leads to a positive

objective value. The feasibility cuts then result in

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 ends∪{𝑡max}

⎛⎝𝐸cap +
∑︁

𝑟∈𝑅|𝑡end
𝑟 ≤𝑡−1

𝐸res
𝑟 𝑥𝑟,𝑣 − 𝐸𝑣,0

⎞⎠ �̄�ub
𝑣,𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 starts

⎛⎝ ∑︁
𝑟∈𝑅|𝑡start

𝑟 ≤𝑡

𝐸res
𝑟 𝑥𝑟,𝑣 − 𝐸𝑣,0

⎞⎠ �̄�lb
𝑣,𝑡 +

∑︁
𝑡∈𝑇

(︁
𝐸grid

𝑡 + 𝐸sur
𝑡

)︁
𝜆E

𝑡 +

∑︁
𝑣∈𝑉

∑︁
𝑡∈𝑇 avail

𝑣

Δ𝑡𝑃 max

⎛⎝1−
∑︁

𝑟∈𝑅|𝑡∈𝑇 res
𝑟

𝑥𝑟,𝑣

⎞⎠ ·
min

⎛⎝−�̄�E
𝑡 −

∑︁
𝑘∈𝑇 ends∪{𝑡max}|𝑘≥𝑡

�̄�ub
𝑣,𝑘 −

∑︁
𝑘∈𝑇 starts|𝑘≥𝑡+1

�̄�lb
𝑣,𝑘

⎞⎠ ≤ 0. (8.56)

Note that there are no optimality cuts as the variables from the SP do not occur in
the objective function. Also note that it is still possible to add the feasibility cuts from
subsection 8.1.2. We did that in our experiments.

8.3 Solving the MP

This section discusses the use of a MILP solver and a GVNS heuristic to solve the MP.

8.3.1 MILP

In the classical Benders decomposition the MP is solved with a MILP solver. The whole
Benders decomposition approach is then an exact solution approach. This means the
process of iteratively solving the MP, the dual SP, and adding derived Benders cuts to
the MP eventually stops with a proven optimal solution when no further cuts can be
derived, given sufficient time and memory. The dual bound derived from the solution
of the MP is only valid if the MP was solved to optimality. Solving the MP always to
proven optimality is in general time consuming and unnecessary, if afterwards a cut is
added, especially as a large portion of the time is required to prove the optimality of a
found solution. We therefore solve the MP only up to a gap of 2% in the beginning. As
soon as the added cuts neither invalidate nor worsen the solution to the MP, we solve
the MP in the remaining iterations to proven optimality. That way we hope to improve
performance while preserving exactness.

32



8.3. Solving the MP

8.3.2 GVNS Heuristic

Even solving to a gap of 2% with the MILP solver is time consuming for larger instances.
Therefore we also implemented a heuristic for the MP to be used in the first iterations
instead of the MILP solver with a gap of 2%. The heuristic is a GVNS and its parts
are described in the paragraphs below. Note that the heuristic is dedicated only to the
Benders decomposition whose MP contains the variables 𝑥 and 𝑦. That is because only
then it is possible to speed up searching the neighborhood by using delta evaluation.

An instance of the MP is represented by

• the instance of the FSP as well as

• a set of feasibility cuts and

• a set of optimality cuts.

For each optimality cut the factors 𝛽 of 𝑥 and a constant 𝛽′ are stored, s.t. the cut results
in ∑︁

𝑟∈𝑅

∑︁
𝑣∈𝑉

𝛽𝑟,𝑣𝑥𝑟,𝑣 + 𝛽′ ≤ 𝜇. (8.57)

The same is done for feasibility cuts, with the difference that each cut is restricted to a
single vehicle 𝑣 and therefore also the vehicle has to be stored. With the factors 𝛾 and
the constant 𝛾′ such a cut results in∑︁

𝑟∈𝑅

𝛾𝑟𝑥𝑟,𝑣 + 𝛾′ ≤ 0. (8.58)

Solutions are represented by the assignment from reservations to vehicles. To increase
performance additional data is stored. In particular

• the objective value that corresponds to the assignment as well as

• for each optimality and each feasibility cut the value to which the left hand side of
the inequality results in under the assignment and

• for each vehicle a bitset of time steps in which the vehicle is reserved

are stored.

Storing the left hand side of the inequalities enables to perform delta evaluation when
searching a neighborhood for a better solution. To see that, assume the reservation 𝑟,
which is first assigned to vehicle 𝑣1, gets assigned to vehicle 𝑣2. Furthermore, assume
a feasibility cut for vehicle 𝑣 with the factors 𝛾 whose former left hand side value is 𝑏.
If 𝑣 = 𝑣1 the new left hand side value calculates to 𝑏 − 𝛾𝑟 and if 𝑣 = 𝑣2 the new left

33



8. Benders Decomposition

hand side value calculates to 𝑏 + 𝛾𝑟. Otherwise it does not change. If this increases the
value above zero, the feasibility cut is violated and the new solution is not valid. The
same can be done with optimality cuts. Again assume that reservation 𝑟 is moved from
vehicle 𝑣1 to vehicle 𝑣2 and furthermore assume the optimality cut with the factors 𝛽 and
former left hand side value of 𝑏 is given. Then the new left hand side value calculates to
𝑏− 𝛽𝑟,𝑣1 + 𝛽𝑟,𝑣2 . The new objective value can be calculated from the old objective value
by subtracting the former maximum over all left hand side values of optimality cuts and
adding the new maximum.

Besides the validity of feasibility cuts there is another condition that has to be satisfied
for the new solution to be valid. The reassigned reservation may not overlap with any
reservations of the vehicle it is assigned to. That can be checked efficiently by intersecting
the reservation interval with the bitset of time steps in which the vehicle is reserved. If
the resulting bitset is not empty there is an overlap and the new solution is not valid.
Bitset is a datastructure in Julia that represents sets of integers. In a bitset an integer
has a corresponding bit, which determines whether the integer is contained in the set.
By using bitwise operations it is possible to efficiently implement set operations like
intersection, union or the set difference.

Neighborhood structures. We implemented three neighborhood structures, based
on the following moves.

1. Assign an unassinged reservation or delete the assignment of an assigned reservation.

2. Rotate the reservations 𝑟1, . . . , 𝑟𝑘 for 𝑘 ≥ 2. I.e. 𝑟1 gets assigned to the vehicle
𝑟2 is currently assigned to, 𝑟2 gets assigned to the vehicle 𝑟3 is assigned to and
so on. Finally 𝑟𝑘 gets assigned to the vehicle 𝑟1 was assigned to. To make the
neighborhood smaller, all reservations have to be assigned to different vehicles and
the reservation intervals of two consecutive reservations have to overlap. It is also
allowed for one reservation to be unassigned.

3. Swap the vehicles of two reservations. Note that this is the special case of rotation
with 𝑘 = 2. However optimizations can be done when being restricted to 𝑘 = 2
and therefore a dedicated implementation for this case is reasonable and was
implemented.

For all of these moves delta evaluation can be done as described above.

For shaking the assignments of some reservations are deleted, allowing the following
VNS to converge to a different solution. Which assignments are deleted is determined
in two different ways. For the first shaking method a fixed number of reservations are
selected randomly and for the second shaking method a fixed number of vehicles are
selected randomly and all assignments to these vehicles are deleted.

34



CHAPTER 9
Experiments and Results

We first describe how we created artificial benchmark instances as real world instances
were not available to us. Then, the results of the MILP as well as the different Benders
decomposition approaches are presented.

9.1 Benchmark instances
The benchmark instances were created randomly. We consider the following combinations
of 𝑡max and 𝑛:

• 𝑡max = 32 and 𝑛 ∈ {1, 2, 5}

• 𝑡max = 192 and 𝑛 ∈ {5, 10, 20}

• 𝑡max = 768 and 𝑛 ∈ {20, 50, 100}

For each of these combinations we consider 𝑟max = 4𝑛, 𝑟max = 8𝑛 and 𝑟max = 16𝑛. The
other input values are set as follows.

• Δ𝑡 = 15min, i.e., 𝑇 corresponds to 8 hours, 2 days or 8 days

• 𝑃 max = 3.3kW, 𝐸cap = 20kWh

• For each vehicle 𝑣 ∈ 𝑉

– 𝑇 avail
𝑣 = 𝑇

– 𝐸𝑣,0 is selected uniformly at random from [0, 𝐸cap]

• For each reservation 𝑟 ∈ 𝑅

35



9. Experiments and Results

– Δ𝑡𝑟 is selected uniformly at random from [0, 𝑡max
4 − 1]

– 𝑡start
𝑟 is selected uniformly at random from [1, 𝑡max −Δ𝑡𝑟]

– 𝑡end
𝑟 = 𝑡start

𝑟 + Δ𝑡𝑟

– 𝐸res
𝑟 is selected uniformly at random from [0, 𝐸cap] uniformly random

• Energy prices and surplus energies come from real world data, using a randomly
selected time span. Surplus is are scaled according to the number of vehicles.

• 𝑐uncov = 75, 𝛼 = 75

Thirty instances were created for each combination of 𝑡max, 𝑛, and 𝑟max. Some of the
more specific tests were performed only on a subset of these instances to reduce the
requirements of used computing power. To this end we selected ten instances of each
instances size; we will refer to this subset as the reduced testset. Moreover we created
two further testsets by altering the instances of the reduced testset in two ways. For
one of these testsets we multiplied the surplus energies by 0.5. The other testset was
obtained by multiplying the reservation energies by 0.15.

Figure 9.1 shows the optimal solution to such a randomly generated instance. It can
for example be observed that almost all reservations have been assigned. The only two
remaining reservations cannot be assigned to any of the vehicles since they would overlap
with other reservations.

9.2 Implementation and Computing Environment
We used the MILP solvers Gurobi 9.11 [Gur21], which is a leading commercial product,
and the open source solver SCIP 7.0.22 [GAB+20]. The models as well as the Benders
decomposition approach were implemented in Julia 1.63 [BEKS17]. JuMP was used as
interface to the solvers [DHL17]. Each experiment was performed on a single core of an
Intel Xeon E5-2640 v4 with a time limit of one hour provided to the MILP solvers. We
furthermore imposed a memory limit of 36 gigabytes.

We solved the test instances with the presented approaches in different configurations.
These configurations and the results are presented in the following.

9.3 Comparison of the MILP and the Benders
Decomposition

We evaluated the whole benchmark instance set with the MILP formulation and the
Benders decomposition, both with Gurobi and SCIP as solver. For the Benders decom-
position, the variant with the extended MP that allows a gap for the MP for the first

1https://www.gurobi.com
2https://scip.zib.de
3https://julialang.org

36

https://www.gurobi.com
https://scip.zib.de
https://julialang.org


9.3. Comparison of the MILP and the Benders Decomposition

(a) Charging plans and assigned reservations for the different vehicles.

(b) Uncovered reservations

Figure 9.1: A solution of a randomly generated instance with 𝑡max = 192, 𝑛 = 5 and
𝑟max = 20.

37



9. Experiments and Results

𝑡max 𝑛 𝑟max Solved Runtime [s] Gap [%] 𝜎Gap [%] BnB nodes

32 1 4 30 / 30 0.5 0.0 0.0 0.6
32 1 8 30 / 30 0.5 0.0 0.0 1.4
32 1 16 30 / 30 0.6 0.0 0.0 1.1
32 2 8 30 / 30 0.5 0.0 0.0 1.4
32 2 16 30 / 30 0.6 0.0 0.0 3.4
32 2 32 30 / 30 0.8 0.0 0.0 32.7
32 5 20 30 / 30 1.3 0.0 0.0 148.1
32 5 40 30 / 30 4.2 0.0 0.0 3152.7
32 5 80 30 / 30 15.6 0.0 0.0 5870.0

192 5 20 30 / 30 15.0 0.0 0.0 4136.5
192 5 40 30 / 30 146.7 0.0 0.0 25277.8
192 5 80 30 / 16 3090.9 3.5 4.7 89129.0
192 10 40 30 / 4 3611.0 0.4 0.7 40013.5
192 10 80 30 / 0 3611.3 9.8 4.0 11141.9
192 10 160 30 / 0 3612.1 31.4 26.5 10667.8
192 20 80 30 / 1 3612.5 1.0 1.4 5624.9
192 20 160 30 / 0 3613.6 44.4 61.1 689.0
192 20 320 30 / 0 3611.4 69.1 16.1 289.7
768 20 80 30 / 15 3428.0 0.1 0.2 3464.7
768 20 160 30 / 0 3618.9 467.3 591.6 30.7
768 20 320 30 / 0 3625.7 381.9 48.4 0.0
768 50 200 30 / 0 3641.3 33.0 108.0 143.9
768 50 400 30 / 0 3664.2 682.3 18.6 0.0
768 50 800 30 / 0 3715.1 385.4 6.5 0.0
768 100 400 30 / 0 3724.8 421.6 424.5 0.0
768 100 800 30 / 0 3827.9 675.1 12.9 0.0
768 100 1600 29 / 0 4051.5 389.6 4.9 0.0

Table 9.1: Results of the MILP solved with Gurobi.

iterations, was used. Furthermore we evaluated the benchmark instance set with the
Benders decomposition that uses the heuristic for the MP with Gurobi as underlying
solver. The results are shown in Table 9.1 to Table 9.5. For the largest instances with
100 vehicles SCIP exceeded our memory limit. We therefore decided to exclude those
instances from the evaluation with SCIP. The tables for the MILP show the following
columns.

• “𝑡max”, “𝑛”, “𝑟max”: The size of the instances.

• “Solved”: Number of instances for which feasible solutions were found and the
number of instances solved to proven optimality.

38



9.3. Comparison of the MILP and the Benders Decomposition

𝑡max 𝑛 𝑟max Solved Runtime [s] Gap [%] 𝜎Gap [%] BnB nodes

32 1 4 30 / 30 0.3 0.0 0.0 1.0
32 1 8 30 / 30 0.3 0.0 0.0 1.0
32 1 16 30 / 30 0.4 0.0 0.0 1.0
32 2 8 30 / 30 0.3 0.0 0.0 1.0
32 2 16 30 / 30 0.6 0.0 0.0 1.3
32 2 32 30 / 30 1.1 0.0 0.0 18.1
32 5 20 30 / 30 3.8 0.0 0.0 95.5
32 5 40 30 / 30 13.3 0.0 0.0 5426.3
32 5 80 30 / 30 21.5 0.0 0.0 27921.2

192 5 20 29 / 29 91.0 0.0 0.0 6902.2
192 5 40 30 / 23 1196.3 2.2 5.6 76609.2
192 5 80 30 / 0 3600.5 17.8 11.9 121867.2
192 10 40 30 / 1 3600.5 2.0 1.9 9221.2
192 10 80 30 / 0 3600.6 30.6 12.0 2697.3
192 10 160 30 / 0 3601.1 62.9 67.6 1306.2
192 20 80 30 / 0 3601.7 13.9 40.4 292.1
192 20 160 30 / 0 3602.7 209.1 605.8 7.9
192 20 320 30 / 0 3605.5 55.3 15.5 8.1
768 20 80 30 / 0 3608.7 37.9 71.2 91.8
768 20 160 30 / 0 3612.0 4618.7 607.8 1.0
768 20 320 30 / 0 3619.2 2744.6 531.1 1.0
768 50 200 29 / 0 3634.9 24516.6 12781.3 1.0
768 50 400 30 / 0 3659.4 8319.9 2746.2 1.0
768 50 800 30 / 0 3713.7 5563.5 40.4 1.0

Table 9.2: Results of the MILP solved with SCIP.

• “Runtime”: Median solving time in seconds.

• “Gap”: Mean optimality gaps over the instances where feasible solutions were found.
For a primal bound 𝑐P and a dual bound 𝑐D the gap is calculated as⃒⃒⃒⃒

𝑐P − 𝑐D
𝑐P

⃒⃒⃒⃒
. (9.1)

• “𝜎Gap”: The standard deviation of the gap.

• “BnB nodes”: Number of branch-and-bound nodes of the solver.

The tables for the Benders decomposition have additionally the following columns.

• “Runtime”: The runtime is split up into the time spent in (re-)solving the MP and
in solving the subproblem instances. All stated times are median values.

39



9. Experiments and Results

Runtime [s]
𝑡max 𝑛 𝑟max Solved Total Master Sub Gap [%] 𝜎Gap [%] Iterations Cuts

32 1 4 30 / 30 2.3 0.1 1.8 0.0 0.0 1.2 0.0
32 1 8 30 / 30 2.3 0.1 1.8 0.0 0.0 1.5 0.0
32 1 16 30 / 30 4.2 2.0 1.8 0.0 0.0 2.8 0.0
32 2 8 30 / 30 4.9 2.5 1.9 0.0 0.0 8.0 11.5
32 2 16 30 / 30 5.2 2.9 2.0 0.0 0.0 9.2 14.2
32 2 32 30 / 30 6.3 3.9 2.1 0.0 0.0 11.7 19.8
32 5 20 30 / 30 11.5 8.5 2.7 0.0 0.0 19.8 50.9
32 5 40 30 / 30 36.7 33.0 3.5 0.0 0.0 26.9 74.7
32 5 80 30 / 30 52.7 48.2 3.6 0.0 0.0 28.6 86.0

192 5 20 30 / 0 3605.4 3479.6 61.8 2.3 2.5 417.7 445.1
192 5 40 30 / 1 3605.7 3517.9 47.8 6.1 4.0 227.9 311.7
192 5 80 21 / 0 3607.1 3586.2 19.7 18.1 13.9 56.3 201.0
192 10 40 30 / 0 3609.7 3419.2 106.5 3.8 2.4 265.1 435.5
192 10 80 8 / 0 3610.9 3589.5 18.8 10.6 2.2 43.2 285.2
192 10 160 0 / 0 3623.6 3592.5 31.1 – – 31.1 308.4
192 20 80 29 / 0 3626.6 3456.2 146.7 4.7 2.0 136.5 656.4
192 20 160 0 / 0 3635.3 3595.9 38.0 – – 26.1 443.6
192 20 320 0 / 0 3679.3 3617.5 67.7 – – 28.4 538.5
768 20 80 30 / 0 3641.6 3074.1 340.7 1.1 0.7 82.4 256.6
768 20 160 4 / 0 3677.4 3501.1 164.9 186.0 6.2 36.5 472.2
768 20 320 0 / 0 3691.8 3624.8 66.0 – – 10.5 215.4
768 50 200 3 / 0 3687.7 3150.6 543.2 248.2 3.8 26.2 295.7
768 50 400 13 / 0 3832.8 3674.8 144.9 190.7 2.9 6.0 243.5
768 50 800 20 / 0 4305.1 3809.7 176.5 128.7 1.9 3.4 139.5
768 100 400 9 / 0 3678.2 3062.9 648.8 249.8 5.6 8.7 173.9
768 100 800 29 / 0 4965.5 3935.0 297.5 191.3 2.2 1.8 71.9
768 100 1600 28 / 0 5855.4 4149.8 310.1 140.4 49.1 1.1 14.0

Table 9.3: Results of the Benders decomposition with Gurobi.

• “Iterations”: Mean number of iterations.

• “Cuts”: Mean number of added cuts.

Table 9.6 brings together the columns “Solved”, “Runtime” and “Gap” for an easy direct
comparison of the MILP formulation with the Benders decomposition that does not use
the heuristic. Table 9.7 compares the Benders decomposition with heuristic with the
MILP formulation and the Benders decomposition without heuristic. Since the Benders
decomposition with heuristic was not able to find dual bounds for many of the larger
instances, the mean objective value and dual bound are shown instead of the gap.

40



9.3. Comparison of the MILP and the Benders Decomposition

Runtime [s]
𝑡max 𝑛 𝑟max Solved Total Master Sub Gap [%] 𝜎Gap [%] Iterations Cuts

32 1 4 30 / 30 0.7 0.2 0.1 0.0 0.0 1.4 0.0
32 1 8 30 / 30 0.8 0.3 0.1 0.0 0.0 1.9 0.0
32 1 16 30 / 30 2.9 2.2 0.2 0.0 0.0 2.9 0.0
32 2 8 30 / 29 4.4 3.2 0.6 0.1 0.7 126.5 129.7
32 2 16 30 / 30 6.1 4.9 0.6 0.0 0.0 9.3 13.9
32 2 32 29 / 28 8.7 7.6 0.7 0.1 0.4 9.9 15.7
32 5 20 29 / 29 41.1 37.9 2.5 0.0 0.0 18.6 46.0
32 5 40 30 / 30 158.6 153.7 4.2 0.0 0.0 24.3 63.9
32 5 80 30 / 29 163.2 158.2 3.9 0.0 0.2 22.4 67.9

192 5 20 11 / 0 3601.5 3590.6 6.1 110.7 225.1 17.6 31.8
192 5 40 8 / 0 3601.4 3595.5 5.2 161.4 215.5 9.4 43.7
192 5 80 0 / 0 3602.4 3593.6 8.5 – – 10.8 61.0
192 10 40 7 / 0 3601.4 3587.0 6.2 47.0 48.2 13.2 63.4
192 10 80 0 / 0 3603.8 3593.2 11.0 – – 9.3 90.3
192 10 160 0 / 0 3608.1 3587.4 20.2 – – 9.6 101.5
192 20 80 6 / 0 3607.5 3563.9 45.6 86.2 75.2 24.5 202.7
192 20 160 0 / 0 3612.7 3588.4 25.6 – – 7.1 135.2
192 20 320 1 / 0 3631.9 3559.7 64.8 92.0 0.0 8.6 170.9
768 20 80 2 / 0 3625.5 3585.7 41.4 115.2 114.4 2.2 9.9
768 20 160 3 / 0 3628.1 3588.8 45.4 128.3 125.2 3.0 45.5
768 20 320 0 / 0 3647.6 3589.6 65.5 – – 2.1 43.1
768 50 200 1 / 0 3748.3 3523.3 215.0 589.4 0.0 2.2 26.4
768 50 400 1 / 0 3845.1 3560.4 290.7 223.2 0.0 2.0 65.6
768 50 800 2 / 0 4032.6 3705.6 322.5 134.8 0.3 1.2 54.1

Table 9.4: Results of the Benders decomposition with SCIP.

Additionally to the tables, Figure 9.2 to Figure 9.5 present the distributions of runtimes
and gaps as boxplots over the different instance sizes. Note that the axes are scaled
logarithmically. As a logarithmic axis does not include the value zero, all gaps less than
10−4 are represented by the value 10−4.

For the larger instances the time limit of one hour is sometimes exceeded. The reason for
the MILP formulation is the overhead for setting up the model in Julia. For the Benders
decomposition the last iteration of the main loop including the solving of the subproblem
is always completed even when the time limit has been reached.

The MILP approach is mostly superior to the Benders decomposition without heuristic
in terms of solved instances, needed times, and optimality gap. The exception is the
gap on large instances. For these the solver has difficulties in finding any non-trivial
primal solution with the MILP. The Benders decomposition approach finds here slightly

41



9. Experiments and Results

Runtime [s]
𝑡max 𝑛 𝑟max Solved Total Master Sub Gap [%] 𝜎Gap [%] Iterations Cuts

32 1 4 30 / 30 2.0 1.5 0.1 0.0 0.0 4.0 1.5
32 1 8 30 / 30 4.5 3.8 0.1 0.0 0.0 6.3 2.9
32 1 16 30 / 30 6.9 6.4 0.2 0.0 0.0 9.0 5.5
32 2 8 30 / 30 6.4 5.8 0.2 0.0 0.0 8.2 6.3
32 2 16 30 / 30 8.1 7.3 0.3 0.0 0.0 10.8 10.7
32 2 32 30 / 30 11.8 11.1 0.4 0.0 0.0 14.3 16.7
32 5 20 30 / 30 14.8 13.5 0.8 0.0 0.0 20.3 33.9
32 5 40 30 / 30 35.3 33.0 1.6 0.0 0.0 27.5 56.5
32 5 80 30 / 29 53.7 51.5 2.1 0.2 0.9 27.7 70.3

192 5 20 30 / 1 3593.1 3532.0 57.2 0.8 0.6 321.6 31.8
192 5 40 30 / 1 3601.5 3563.6 36.6 5.2 4.4 149.9 90.9
192 5 80 30 / 0 3602.5 3585.5 15.2 41.8 31.9 66.6 165.0
192 10 40 30 / 0 3602.7 3581.3 22.3 13.9 5.9 83.1 146.8
192 10 80 30 / 0 3607.9 3594.3 13.4 – – 39.7 198.7
192 10 160 30 / 0 3634.8 3606.7 24.3 – – 39.7 230.9
192 20 80 30 / 0 3610.4 3592.3 16.2 44.6 14.9 29.0 177.5
192 20 160 30 / 0 3637.2 3600.3 32.7 – – 30.9 307.4
192 20 320 30 / 0 3638.4 3557.6 74.7 – – 33.9 391.2
768 20 80 30 / 0 3612.0 3449.1 154.2 14.8 5.7 69.4 192.4
768 20 160 30 / 0 3636.1 3560.2 61.2 – – 25.2 150.5
768 20 320 30 / 0 3636.3 3463.8 152.0 – – 31.3 272.1
768 50 200 30 / 0 3654.9 3433.0 178.3 30.6 8.6 18.4 183.5
768 50 400 30 / 0 3687.6 3270.2 340.9 – – 26.1 373.0
768 50 800 30 / 0 3758.8 2557.2 1050.3 – – 30.0 830.1
768 100 400 29 / 0 3767.5 2850.5 758.5 45.5 15.8 25.0 376.0
768 100 800 19 / 0 3922.5 2023.7 1586.0 – – 29.6 1028.4
768 100 1600 0 / 0 3655.7 2017.1 1620.6 – – 9.0 809.0

Table 9.5: Results of the Benders decomposition with heuristic and Gurobi.

better primal solutions and much better dual bounds. Hence the Benders decomposition
achieves better gaps in these cases.

Naturally the difficulty of the instances increases with 𝑛 and 𝑟max. But also 𝑡max increases
the difficulty, although 𝑡max does not influence the MP directly. However, increasing 𝑡max
leads to a higher number of iterations. This is especially pronounced for 𝑛 = 5 and the
transition from 𝑡max = 32 to 𝑡max = 192. We also want to point out that the fraction
between 𝑟max and 𝑛, which indicates whether the carsharing system is overbooked, has a
high influence on the runtime and gap. This can be seen particularly well for the Benders
decomposition with Gurobi for the instance sizes with 𝑛 = 10 and 𝑛 = 20. Here solutions
to almost all instances with 𝑟max = 4𝑛 could be found, but not many solutions with

42



9.3. Comparison of the MILP and the Benders Decomposition
So

lv
ed

R
un

tim
e

[s]
G

ap
[%

]
M

IL
P

B
en

de
rs

M
IL

P
B

en
de

rs
M

IL
P

B
en

de
rs

𝑡 m
ax

𝑛
𝑟 m

ax
G

ur
ob

i
SC

IP
G

ur
ob

i
SC

IP
G

ur
ob

i
SC

IP
G

ur
ob

i
SC

IP
G

ur
ob

i
SC

IP
G

ur
ob

i
SC

IP

32
1

4
30

/
30

30
/

30
30

/
30

30
/

30
0.

5
0.

3
2.

3
0.

7
0.

0
0.

0
0.

0
0.

0
32

1
8

30
/

30
30

/
30

30
/

30
30

/
30

0.
5

0.
3

2.
3

0.
8

0.
0

0.
0

0.
0

0.
0

32
1

16
30

/
30

30
/

30
30

/
30

30
/

30
0.

6
0.

4
4.

2
2.

9
0.

0
0.

0
0.

0
0.

0
32

2
8

30
/

30
30

/
30

30
/

30
30

/
29

0.
5

0.
3

4.
9

4.
4

0.
0

0.
0

0.
0

0.
1

32
2

16
30

/
30

30
/

30
30

/
30

30
/

30
0.

6
0.

6
5.

2
6.

1
0.

0
0.

0
0.

0
0.

0
32

2
32

30
/

30
30

/
30

30
/

30
29

/
28

0.
8

1.
1

6.
3

8.
7

0.
0

0.
0

0.
0

0.
1

32
5

20
30

/
30

30
/

30
30

/
30

29
/

29
1.

3
3.

8
11

.5
41

.1
0.

0
0.

0
0.

0
0.

0
32

5
40

30
/

30
30

/
30

30
/

30
30

/
30

4.
2

13
.3

36
.7

15
8.

6
0.

0
0.

0
0.

0
0.

0
32

5
80

30
/

30
30

/
30

30
/

30
30

/
29

15
.6

21
.5

52
.7

16
3.

2
0.

0
0.

0
0.

0
0.

0
19

2
5

20
30

/
30

29
/

29
30

/
0

11
/

0
15

.0
91

.0
36

05
.4

36
01

.5
0.

0
0.

0
2.

3
11

0.
7

19
2

5
40

30
/

30
30

/
23

30
/

1
8

/
0

14
6.

7
11

96
.3

36
05

.7
36

01
.4

0.
0

2.
2

6.
1

16
1.

4
19

2
5

80
30

/
16

30
/

0
21

/
0

0
/

0
30

90
.9

36
00

.5
36

07
.1

36
02

.4
3.

5
17

.8
18

.1
–

19
2

10
40

30
/

4
30

/
1

30
/

0
7

/
0

36
11

.0
36

00
.5

36
09

.7
36

01
.4

0.
4

2.
0

3.
8

47
.0

19
2

10
80

30
/

0
30

/
0

8
/

0
0

/
0

36
11

.3
36

00
.6

36
10

.9
36

03
.8

9.
8

30
.6

10
.6

–
19

2
10

16
0

30
/

0
30

/
0

0
/

0
0

/
0

36
12

.1
36

01
.1

36
23

.6
36

08
.1

31
.4

62
.9

–
–

19
2

20
80

30
/

1
30

/
0

29
/

0
6

/
0

36
12

.5
36

01
.7

36
26

.6
36

07
.5

1.
0

13
.9

4.
7

86
.2

19
2

20
16

0
30

/
0

30
/

0
0

/
0

0
/

0
36

13
.6

36
02

.7
36

35
.3

36
12

.7
44

.4
20

9.
1

–
–

19
2

20
32

0
30

/
0

30
/

0
0

/
0

1
/

0
36

11
.4

36
05

.5
36

79
.3

36
31

.9
69

.1
55

.3
–

92
.0

76
8

20
80

30
/

15
30

/
0

30
/

0
2

/
0

34
28

.0
36

08
.7

36
41

.6
36

25
.5

0.
1

37
.9

1.
1

11
5.

2
76

8
20

16
0

30
/

0
30

/
0

4
/

0
3

/
0

36
18

.9
36

12
.0

36
77

.4
36

28
.1

46
7.

3
46

18
.7

18
6.

0
12

8.
3

76
8

20
32

0
30

/
0

30
/

0
0

/
0

0
/

0
36

25
.7

36
19

.2
36

91
.8

36
47

.6
38

1.
9

27
44

.6
–

–
76

8
50

20
0

30
/

0
29

/
0

3
/

0
1

/
0

36
41

.3
36

34
.9

36
87

.7
37

48
.3

33
.0

24
51

6.
6

24
8.

2
58

9.
4

76
8

50
40

0
30

/
0

30
/

0
13

/
0

1
/

0
36

64
.2

36
59

.4
38

32
.8

38
45

.1
68

2.
3

83
19

.9
19

0.
7

22
3.

2
76

8
50

80
0

30
/

0
30

/
0

20
/

0
2

/
0

37
15

.1
37

13
.7

43
05

.1
40

32
.6

38
5.

4
55

63
.5

12
8.

7
13

4.
8

76
8

10
0

40
0

30
/

0
0

/
0

9
/

0
0

/
0

37
24

.8
–

36
78

.2
–

42
1.

6
–

24
9.

8
–

76
8

10
0

80
0

30
/

0
0

/
0

29
/

0
0

/
0

38
27

.9
–

49
65

.5
–

67
5.

1
–

19
1.

3
–

76
8

10
0

16
00

29
/

0
0

/
0

28
/

0
0

/
0

40
51

.5
–

58
55

.4
–

38
9.

6
–

14
0.

4
–

Ta
bl

e
9.

6:
C

om
pa

ris
on

of
th

e
M

IL
P

an
d

B
en

de
rs

ap
pr

oa
ch

w
ith

G
ur

ob
ia

nd
SC

IP
as

un
de

rly
in

g
M

IL
P

so
lv

er
.

43



9. Experiments and Results
Solved

O
bjective

D
ualB

ound

M
ILP

B
enders

M
ILP

B
enders

M
ILP

B
enders

𝑡m
ax

𝑛
𝑟m

ax
N

orm
al

H
eur

N
orm

al
H

eur
N

orm
al

H
eur

32
1

4
30

/
30

30
/

30
30

/
30

902.9
902.9

902.9
902.9

902.9
902.9

32
1

8
30

/
30

30
/

30
30

/
30

3155.1
3155.1

3155.1
3155.1

3155.1
3155.1

32
1

16
30

/
30

30
/

30
30

/
30

8672.5
8672.5

8672.5
8672.5

8672.5
8672.5

32
2

8
30

/
30

30
/

30
30

/
30

993.5
993.5

993.5
993.5

993.5
993.5

32
2

16
30

/
30

30
/

30
30

/
30

6339.4
6339.4

6339.4
6339.4

6339.4
6339.4

32
2

32
30

/
30

30
/

30
30

/
30

18672.1
18672.1

18672.1
18672.0

18672.0
18672.1

32
5

20
30

/
30

30
/

30
30

/
30

129.5
129.5

129.5
129.5

129.5
129.5

32
5

40
30

/
30

30
/

30
30

/
30

13700.1
13700.1

13700.1
13699.6

13699.8
13699.8

32
5

80
30

/
30

30
/

30
30

/
29

42601.0
42601.0

42634.7
42597.8

42598.8
42555.8

192
5

20
30

/
30

30
/

0
30

/
1

-11992.4
-11991.6

-11990.7
-11993.3

-12258.3
-12090.9

192
5

40
30

/
30

30
/

1
30

/
1

-9146.7
-9092.6

-9128.6
-9147.3

-9596.6
-9572.3

192
5

80
30

/
16

21
/

0
30

/
0

6939.1
7854.2

7810.7
6753.7

6645.9
5087.1

192
10

40
30

/
4

30
/

0
30

/
0

-26219.5
-26084.9

-25843.7
-26325.6

-27076.3
-29442.0

192
10

80
30

/
0

8
/

0
30

/
0

-22372.0
-21122.4

-19046.0
-24465.2

-23287.1
-34630.2

192
10

160
30

/
0

0
/

0
30

/
0

14687.5
–

25627.1
11000.9

–
1402.9

192
20

80
30

/
1

29
/

0
30

/
0

-54185.2
-53745.9

-52201.0
-54726.8

-56245.2
-75246.6

192
20

160
30

/
0

0
/

0
30

/
0

-36967.7
–

-40475.3
-53829.0

–
–

192
20

320
30

/
0

0
/

0
30

/
0

72716.0
–

47410.0
17334.9

–
–

768
20

80
30

/
15

30
/

0
30

/
0

-65048.9
-64900.2

-64559.9
-65116.8

-65596.4
-74111.7

768
20

160
30

/
0

4
/

0
30

/
0

23516.1
109664.3

-83376.5
-92294.4

-94076.9
-116818.6

768
20

320
30

/
0

0
/

0
30

/
0

240765.6
–

-35795.4
-678548.8

–
–

768
50

200
30

/
0

3
/

0
30

/
0

-148418.9
104985.3

-158456.3
-161688.8

-155522.1
-206772.6

768
50

400
30

/
0

13
/

0
30

/
0

298170.1
258738.0

-214365.2
-1734478.1

-234573.9
–

768
50

800
30

/
0

20
/

0
30

/
0

607800.0
570137.8

-90132.9
-1734026.8

-163596.4
–

768
100

400
30

/
0

9
/

0
29

/
0

298917.9
218878.4

-318291.1
-955325.0

-327358.2
-462961.6

768
100

800
30

/
0

29
/

0
19

/
0

603159.2
529445.7

-444636.5
-3467469.7

-483324.0
–

768
100

1600
29

/
0

28
/

0
0

/
0

1199898.3
1124455.1

–
-3474518.3

-457390.1
–

Table
9.7:C

om
parison

ofthe
B

endersdecom
position

w
ith

heuristic
w

ith
the

M
ILP

form
ulation

and
the

B
endersdecom

position
w

ith
extended

M
P

and
allow

ed
gap

for
the

M
P

in
the

first
iterations.

44



9.3. Comparison of the MILP and the Benders Decomposition

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
20

0
r m

ax
=
40

0
r m

ax
=
80

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
50

r m
ax
=
40

0
r m

ax
=
80

0
r m

ax
=
16

00
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

0

(a
)

R
un

tim
es

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
1

10
3

10
5

Gap [%]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
1

10
3

10
5

Gap [%]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16
0

10
−110
1

10
3

10
5

Gap [%]

n=
10

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
20
0

r m
ax
=
40
0

r m
ax
=
80
0

10
−110
1

10
3

10
5

Gap [%]

n=
50

r m
ax
=
40
0

r m
ax
=
80
0

r m
ax
=
16
00

10
−110
1

10
3

10
5

Gap [%]

n=
10
0

(b
)

G
ap

s

Fi
gu

re
9.

2:
R

un
tim

es
an

d
ga

ps
fo

r
th

e
M

IL
P

so
lv

ed
by

G
ur

ob
i.

45



9. Experiments and Results

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=50

0.0
0.2

0.4
0.6

0.8
1.0

10
−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=100

(a)
R

untim
es

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16

10
−1

10
1

10
3

10
5

Gap [%]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32

10
−1

10
1

10
3

10
5

Gap [%]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160

10
−1

10
1

10
3

10
5

Gap [%]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800

10
−1

10
1

10
3

10
5

Gap [%]

n=50

0.0
0.2

0.4
0.6

0.8
1.0

10
−1

10
1

10
3

10
5

Gap [%]

n=100

(b)
G

aps

Figure
9.3:

R
untim

es
and

gaps
for

the
M

ILP
solved

by
SC

IP.

46



9.3. Comparison of the MILP and the Benders Decomposition

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
20

0
r m

ax
=
40

0
r m

ax
=
80

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
50

r m
ax
=
40

0
r m

ax
=
80

0
r m

ax
=
16

00
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

0

(a
)

R
un

tim
es

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
1

10
3

10
5

Gap [%]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
1

10
3

10
5

Gap [%]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16
0

10
−110
1

10
3

10
5

Gap [%]

n=
10

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
20
0

r m
ax
=
40
0

r m
ax
=
80
0

10
−110
1

10
3

10
5

Gap [%]

n=
50

r m
ax
=
40
0

r m
ax
=
80
0

r m
ax
=
16
00

10
−110
1

10
3

10
5

Gap [%]

n=
10
0

(b
)

G
ap

s

Fi
gu

re
9.

4:
R

un
tim

es
an

d
ga

ps
fo

r
th

e
B

en
de

rs
de

co
m

po
sit

io
n

us
in

g
G

ur
ob

i.

47



9. Experiments and Results

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=50

0.0
0.2

0.4
0.6

0.8
1.0

10
−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=100

(a)
R

untim
es

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16

10
−1

10
1

10
3

10
5

Gap [%]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32

10
−1

10
1

10
3

10
5

Gap [%]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160

10
−1

10
1

10
3

10
5

Gap [%]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800

10
−1

10
1

10
3

10
5

Gap [%]

n=50

0.0
0.2

0.4
0.6

0.8
1.0

10
−1

10
1

10
3

10
5

Gap [%]

n=100

(b)
G

aps

Figure
9.5:

R
untim

es
and

gaps
for

the
B

enders
decom

position
using

SC
IP.

48



9.4. Impacts of Individual Improvements

𝑟max = 8𝑛 or 𝑟max = 16𝑛 have been found.

Most of the time of the Benders decomposition approach is spent in solving the MP even
tough a remaining gap of 2% is allowed for the first iterations. What is more, for large
instances the MP is not even solved a single time within the allowed gap. Here, the variant
that uses the heuristic for the MP for the first iterations gives significantly better results.
For all instance sizes with 𝑛 = 20, 𝑛 = 50 and 𝑛 = 100 except (𝑡max, 𝑛, 𝑟max) = (192, 20, 80)
and (𝑡max, 𝑛, 𝑟max) = (768, 100, 1600) the Benders decomposition with heuristic gives
the best solutions. For many of these instance sizes it even is the only approach giving
reasonable solutions.

Results of SCIP are usually worse than the respective ones obtained with Gurobi, in
particular in respect to running times and the number of solutions solved to optimality.
In terms of running time Gurobi is up to 10 times faster than SCIP. For most instance
sizes Gurobi has significantly smaller gaps. That in particular holds for the Benders
decomposition on medium sized instances. In general the Benders decomposition with
SCIP struggled with finding solutions for instances with 𝑡max = 192 and 𝑡max = 768.

9.4 Impacts of Individual Improvements
Figure 9.6, Figure 9.7, Figure 9.8, Figure 9.9, and Figure 9.10 show runtimes and gaps
when either

1. adding inequalities from chapter 6 for pairs of vehicles already statically from the
beginning to the MP,

2. solving the MP to optimality in all iterations,

3. having 𝐸grid and 𝐸sur in the SP instead of the MP,

4. using Branch-and-Check instead of the more classical benders approach, or

5. using the heuristic for the MP in the beginning

respectively. The variants of item 1 to item 4 have been evaluated with the reduced
testset, variant 5 has been evaluated with the normal testset. In case 1 there is almost
no difference in the runtimes or gaps. We assume that the powerful pre-solving and the
generic cuts implemented in Gurobi and SCIP already substitute our problem-specific
inequalities well. Solving the MP to optimality in all iterations increases the runtimes
and final gaps slightly for some instance sizes and makes no difference in other cases.
We conclude that a more fine-grained termination condition than our 2% gap threshold
might yield higher runtime improvements. Concerning the third case, having 𝐸grid and
𝐸sur in the MP is again beneficial in some cases and makes no significant difference in
the others. We especially point out that the gap is smaller for the large instances when
𝐸grid and 𝐸sur are in the MP. The reason is that for these instances only one iteration

49



9. Experiments and Results

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=100

(a)
R

untim
es

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16

10
−1

10
1

10
3

10
5

Gap [%]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32

10
−1

10
1

10
3

10
5

Gap [%]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160

10
−1

10
1

10
3

10
5

Gap [%]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800

10
−1

10
1

10
3

10
5

Gap [%]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600

10
−1

10
1

10
3

10
5

Gap [%]

n=100

(b)
G

aps

Figure
9.6:

R
untim

es
and

gaps
ifstatic

cuts
as

discussed
in

chapter
6

are
added

to
the

M
P.

50



9.4. Impacts of Individual Improvements

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
20

0
r m

ax
=
40

0
r m

ax
=
80

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
50

r m
ax
=
40

0
r m

ax
=
80

0
r m

ax
=
16

00
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

0

(a
)

R
un

tim
es

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
1

10
3

10
5

Gap [%]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
1

10
3

10
5

Gap [%]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16
0

10
−110
1

10
3

10
5

Gap [%]

n=
10

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
20
0

r m
ax
=
40
0

r m
ax
=
80
0

10
−110
1

10
3

10
5

Gap [%]

n=
50

r m
ax
=
40
0

r m
ax
=
80
0

r m
ax
=
16
00

10
−110
1

10
3

10
5

Gap [%]

n=
10
0

(b
)

G
ap

s

Fi
gu

re
9.

7:
R

un
tim

es
an

d
ga

ps
if

th
e

M
P

is
so

lv
ed

to
op

tim
al

ity
fr

om
th

e
be

gi
nn

in
g.

51



9. Experiments and Results

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=100

(a)
R

untim
es

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16

10
−1

10
1

10
3

10
5

Gap [%]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32

10
−1

10
1

10
3

10
5

Gap [%]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160

10
−1

10
1

10
3

10
5

Gap [%]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800

10
−1

10
1

10
3

10
5

Gap [%]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600

10
−1

10
1

10
3

10
5

Gap [%]

n=100

(b)
G

aps

Figure
9.8:

R
untim

es
and

gaps
for

the
B

enders
decom

position
w

ith
𝐸

grid
and

𝐸
surin

the
SP.

52



9.4. Impacts of Individual Improvements

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
20

0
r m

ax
=
40

0
r m

ax
=
80

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
50

r m
ax
=
40

0
r m

ax
=
80

0
r m

ax
=
16

00
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

0

(a
)

R
un

tim
es

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
1

10
3

10
5

Gap [%]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
1

10
3

10
5

Gap [%]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16
0

10
−110
1

10
3

10
5

Gap [%]

n=
10

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
20
0

r m
ax
=
40
0

r m
ax
=
80
0

10
−110
1

10
3

10
5

Gap [%]

n=
50

r m
ax
=
40
0

r m
ax
=
80
0

r m
ax
=
16
00

10
−110
1

10
3

10
5

Gap [%]

n=
10
0

(b
)

G
ap

s

Fi
gu

re
9.

9:
R

un
tim

es
an

d
ga

ps
fo

r
B

ra
nc

h-
an

d-
C

he
ck

.

53



9. Experiments and Results

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=100

(a)
R

untim
es

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16

10
−1

10
1

10
3

10
5

Gap [%]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32

10
−1

10
1

10
3

10
5

Gap [%]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160

10
−1

10
1

10
3

10
5

Gap [%]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800

10
−1

10
1

10
3

10
5

Gap [%]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600

10
−1

10
1

10
3

10
5

Gap [%]

n=100

(b)
G

aps

Figure
9.10:

R
untim

es
and

gaps
w

hen
using

a
heuristic

in
the

beginning.

54



9.5. Impact of Scaling 𝐸sur

is performed and by moving 𝐸grid and 𝐸sur into the MP the MP gets strengthened by
the respective inequalities. However note that having 𝐸grid and 𝐸sur in the MP makes it
harder to solve the MP with a heuristic. Using Branch-and-Check instead of the more
classical benders approach increases the runtime or final gap for most of the instance
sizes. That is because Gurobi calls the callback function very frequently and often with
inferior solutions. Therefore a lot of time is wasted in the subproblem to defer cuts
that do not advance the solution process. Using a heuristic for the MP in the beginning
worsens the gap for middle-sized instances. However this benders approach is able to
find a solution to all of the middle-sized instances while the traditional benders approach
does not find a solution to many of those instances. Furthermore, the solutions for large
and very large instances are consistently better because the MILP solvers do not find
reasonable solutions there. For very large instances the time limit is exceeded before
switching to a MILP solver for the MP and therefore no dual bounds are available.

Figure 9.11 shows a comparison between the MILP formulation and the different variants
of the Benders decomposition for some particular instance sizes. These plots illustrate
that the Benders decomposition in general performs worse for medium sized instances,
but performs better for large instances in terms of the objective value of the given solution.
This can be observed in particular for the Benders decomposition with the heuristic.
Both, objective value and dual bound, are here worse than those of the MILP solver for
(𝑡max, 𝑛, 𝑟max) = (192, 10, 40). For (𝑡max, 𝑛, 𝑟max) = (192, 20, 160) this variant does not
find a dual bound. However for the instance sizes (𝑡max, 𝑛, 𝑟max) = (768, 100, 400) and
(𝑡max, 𝑛, 𝑟max) = (768, 100, 800) it is the only approach that is able to find solutions whose
objective values are near the best found dual bounds. Nevertheless, the dual bound is
worse for 𝑟max = 400 and no dual bounds were found for 𝑟max = 800.

9.5 Impact of Scaling 𝐸sur

To learn the impact of a lower surplus energy we further consider now test runs on
the reduced benchmark instance set in which 𝐸sur was scaled with a factor of 0.5. We
evaluate the MILP and the Benders decomposition using Gurobi as solver. Figure 9.12
and Figure 9.13 show the resulting plots.

Runtimes and gaps are in both cases similar to those with for the original benchmark
instance set. Only for the instance sizes (𝑡max, 𝑛, 𝑟max) = (192, 5, 20) and (𝑡max, 𝑛, 𝑟max) =
(768, 50, 200) the adapted instances were harder to solve.

Moreover, Figure 9.14 shows the runtimes needed to solve instances of size (𝑡max, 𝑛, 𝑟max) =
(192, 5, 20) for different scaling factors 𝑓 of 𝐸sur. It is apparent that for this instance size
the scaling factor hardly affects the difficulty of the instance.

55



9. Experiments and Results

M
ILP

Be
nd

er
s

Be
nd

er
s -

 R
ed

uc
ed

 M
P

Be
nd

er
s -

 E
xa

ct
 M
P

Be
nd

er
s -

 W
ith

 C
ut
s

Be
nd

er
s -

 B
ra
nc

h-
an

d-
Cu

t
Be

nd
er
s -

 H
eu

ris
tic

−32000

−30000

−28000

−26000

−24000

−22000
tmax = 192, n= 10, rmax = 40

Ob ective Value
Dual Bound

(a) For 𝑡max = 192, 𝑛 = 10 and 𝑟max = 40
M
ILP

Be
nd

er
s

Be
nd

er
s -

 R
ed

uc
ed

 M
P

Be
nd

er
s -

 E
xa

ct
 M
P

Be
nd

er
s -

 W
ith

 C
ut
s

Be
nd

er
s -

 B
ra
nc

h-
an

d-
Cu

t
Be

nd
er
s -

 H
eu

ris
tic

−50000

−25000

0

25000

50000

75000

100000

tmax = 192, n= 20, rmax = 160
Objective Va ue
Dua  Bound

(b) For 𝑡max = 192, 𝑛 = 20 and 𝑟max = 160

M
ILP

Be
nd
er
s

Be
nd
er
s -
 R
ed
uc
ed
 M
P

Be
nd
er
s -
 E
xa
ct
 M
P

Be
nd
er
s -
 W
ith

 C
ut
s

Be
nd
er
s -
 B
ra
nc
h-
an
d-
Cu

t
Be

nd
er
s -
 H
eu
ris
tic

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5 1e6 tmax=768, n=100, rmax=400

Objective Value
Dual Bound

(c) For 𝑡max = 192, 𝑛 = 10 and 𝑟max = 40

M
ILP

Be
nd

er
s

Be
nd

er
s -

 R
ed

uc
ed

 M
P

Be
nd

er
s -

 E
xa

ct
 M
P

Be
nd

er
s -

 W
ith

 C
ut
s

Be
nd

er
s -

 B
ra
nc

h-
an

d-
Cu

t
Be

nd
er
s -

 H
eu

ris
tic

−3

−2

−1

0

1e6 tmax = 768, n= 100, rmax = 800
Objective Va ue
Dua  Bound

(d) For 𝑡max = 192, 𝑛 = 20 and 𝑟max = 160

Figure 9.11: Comparison of objective values and dual bounds of the different methods
for particular instance sizes.

56



9.5. Impact of Scaling 𝐸sur

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
20

0
r m

ax
=
40

0
r m

ax
=
80

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
50

r m
ax
=
40

0
r m

ax
=
80

0
r m

ax
=
16

00
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

0

(a
)

R
un

tim
es

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
1

10
3

10
5

Gap [%]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
1

10
3

10
5

Gap [%]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16
0

10
−110
1

10
3

10
5

Gap [%]

n=
10

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
20
0

r m
ax
=
40
0

r m
ax
=
80
0

10
−110
1

10
3

10
5

Gap [%]

n=
50

r m
ax
=
40
0

r m
ax
=
80
0

r m
ax
=
16
00

10
−110
1

10
3

10
5

Gap [%]

n=
10
0

(b
)

G
ap

s

Fi
gu

re
9.

12
:

R
un

tim
es

an
d

ga
ps

fo
r

th
e

M
IL

P
w

he
n

sc
al

in
g

𝐸
su

rm
ax

by
a

fa
ct

or
of

0.
5.

57



9. Experiments and Results

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=100

(a)
R

untim
es

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16

10
−1

10
1

10
3

10
5

Gap [%]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32

10
−1

10
1

10
3

10
5

Gap [%]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160

10
−1

10
1

10
3

10
5

Gap [%]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800

10
−1

10
1

10
3

10
5

Gap [%]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600

10
−1

10
1

10
3

10
5

Gap [%]

n=100

(b)
G

aps

Figure
9.13:

R
untim

es
and

gaps
for

the
B

enders
decom

position
w

hen
scaling

𝐸
surm

ax
by

a
factor

of0.5.

58



9.6. Impact of Reducing 𝐸res

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
f

101

102

103
Ru

nt
im

e 
[s
]

Figure 9.14: Runtimes of the MILP formulation solved with Gurobi for instances of size
𝑡max = 192, 𝑛 = 5 and 𝑟max = 40 if the available surplus energy is scaled by a factor of 𝑓 .

9.6 Impact of Reducing 𝐸res

Last but not least, we investigate the impact of requiring smaller energies in the reser-
vations. For this purpose we use the reduced testset in which 𝐸res was scaled by 0.15
in comparison to the original benchmark instances. Again, we consider the MILP and
the Benders decomposition using Gurobi as solver. Figure 9.15 and Figure 9.16 show
the resulting plots. For almost all instance sizes the instances get significantly easier
to solve, no matter if using the MILP or the Benders decomposition. The reason seems
to be that before scaling some combinations of reservations cannot be assigned to some
vehicles, implying additional constraints for the assignment from reservations to vehicles.
These additional constraints seem to be substantially less complex in case of the smaller
energy requirements in the reservations. The increased freedom seems to make it easier
to solve the instance.

59



9. Experiments and Results

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime [s]

n=100

(a)
R

untim
es

tm
ax=32

tm
ax=192

tm
ax=768

rm
ax =

4
rm

ax =
8

rm
ax =

16

10
−1

10
1

10
3

10
5

Gap [%]

n=1

rm
ax =

8
rm

ax =
16

rm
ax =

32

10
−1

10
1

10
3

10
5

Gap [%]

n=2

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

20
rm

ax =
40

rm
ax =

80

10
−1

10
1

10
3

10
5

Gap [%]

n=5

rm
ax =

40
rm

ax =
80

rm
ax =

160

10
−1

10
1

10
3

10
5

Gap [%]

n=10

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

80
rm

ax =
160

rm
ax =

320

10
−1

10
1

10
3

10
5

Gap [%]

n=20

rm
ax =

200
rm

ax =
400

rm
ax =

800

10
−1

10
1

10
3

10
5

Gap [%]

n=50

rm
ax =

400
rm

ax =
800

rm
ax =

1600

10
−1

10
1

10
3

10
5

Gap [%]

n=100

(b)
G

aps

Figure
9.15:

R
untim

es
and

gaps
for

the
M

ILP
w

hen
scaling

𝐸
resby

a
factor

of0
.15.

60



9.6. Impact of Reducing 𝐸res

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
80

r m
ax
=
16

0
r m

ax
=
32

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
20

r m
ax
=
20

0
r m

ax
=
40

0
r m

ax
=
80

0
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
50

r m
ax
=
40

0
r m

ax
=
80

0
r m

ax
=
16

00
10

−110
0

10
1

10
2

10
3

10
4

Runtime [s]

n=
10

0

(a
)

R
un

tim
es

tm
ax
=3

2

tm
ax
=1

92

tm
ax
=7

68

r m
ax
=
4

r m
ax
=
8

r m
ax
=
16

10
−110
1

10
3

10
5

Gap [%]

n=
1

r m
ax
=
8

r m
ax
=
16

r m
ax
=
32

10
−110
1

10
3

10
5

Gap [%]

n=
2

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
20

r m
ax
=
40

r m
ax
=
80

10
−110
1

10
3

10
5

Gap [%]

n=
5

r m
ax
=
40

r m
ax
=
80

r m
ax
=
16
0

10
−110
1

10
3

10
5

Gap [%]

n=
10

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
80

r m
ax
=
16
0

r m
ax
=
32
0

10
−110
1

10
3

10
5

Gap [%]

n=
20

r m
ax
=
20
0

r m
ax
=
40
0

r m
ax
=
80
0

10
−110
1

10
3

10
5

Gap [%]

n=
50

r m
ax
=
40
0

r m
ax
=
80
0

r m
ax
=
16
00

10
−110
1

10
3

10
5

Gap [%]

n=
10
0

(b
)

G
ap

s

Fi
gu

re
9.

16
:

R
un

tim
es

an
d

ga
ps

fo
r

th
e

B
en

de
rs

de
co

m
po

sit
io

n
w

he
n

sc
al

in
g

𝐸
re

s
by

a
fa

ct
or

of
0.

15
.

61





CHAPTER 10
Conclusion

We considered a new variant of the fleet scheduling problem that was not addressed
in the scientific literature so far. After the formal definition we proved the problem
to be NP-hard. We formulated the problem as a MILP, taking care in the details to
achieve a strong linear programming relaxation. Moreover, we suggest an additional class
of strengthening inequalities, which prohibit the assignment of subsets of reservations
to a vehicle, if that set cannot be assigned to that vehicle without violating charging
constraints. Furthermore we proposed a network flow model that can be used to solve
the subproblem of the more classical Benders decomposition. However the network flow
model together with the network simplex method did not prove to be faster than the
linear program formulation when considering a state-of-the-art LP solver like Gurobi.

As an alternative to directly solving this MILP, we proposed a Benders decomposition
for the problem. The basic variant of this Benders decomposition was enhanced by five
measures:

1. Variables relating to the energy consumption at each timeslot were moved from the
SP to the MP, allowing to also move related inequalities from the SP to the MP.
This strengthened the linear programming relaxation of the MP.

2. Strengthening inequalities concerning pairs of reservations that cannot be assigned
together to vehicles have been statically added to the MP.

3. Instead of iteratively solving MP and SP, the Branch-and-Check paradigm that
adds benders cuts as lazy constraints has been applied. This prohibits that the MP
is solved from scratch in each iteration.

4. The MP is in the first iterations only solved up to a small remaining gap of 2%. In
this way these iterations could be sped up a little without finally losing optimality.

63



10. Conclusion

5. The MP is in the first iterations solved by a heuristic. This heuristic is able to find
reasonable solutions for the large instances of the MP much faster. By doing this
the overall algorithm is able to find good solutions also for the large instances in
reasonable time and if switching to a MILP solver for later iterations the algorithm
still is exact.

We experimentally compared the Benders decomposition to the MILP formulation on a
set of randomly generated test instances and evaluated the effect of the different measures
to improve the performance of the Benders decomposition. Finally we investigated if and
how the difficulty of instances change when adapting the surplus energy or reducing the
energy requirements of the reservations.

For the MILP and one variant of the Benders decomposition the MILP solvers Gurobi and
SCIP have been used. In comparison to SCIP the commercial solver Gurobi required in
general significantly smaller runtimes and could solve more instances to proven optimality.
In terms of runtime for the MILP formulation, Gurobi was up to 10 times faster. Therefore
Gurobi has been used to compare the different variants of the Benders decomposition.

As it turns out the MILP formulation performs better than the Benders decomposition on
small to medium sized instances. On large instances the solver with the MILP formulation
fails to find good feasible solutions while for the Benders decomposition the solver finds
better feasible solutions leading to lower gaps, especially when using the heuristic for
the MP in the first iterations. For 𝑟max = 4𝑛 the Benders decomposition with heuristic
finds better solutions than the MILP solver with the MILP formulation, if 𝑛 is greater
or equal 50. For 𝑟max = 8𝑛 and 𝑟max = 16𝑛 the boundary lies at 𝑛 = 20. Furthermore,
moving variables to the MP and not solving the MP to optimality for the first iterations
cause an improvement of the performance for some instances. Adding the strengthening
inequalities to the MILP/MP did not affect the performance significantly; we assume
that the pre-solving and the generic cuts of the considered solvers cover the aspects
addressed by these inequalities already well. We advise to use a MILP solver with the
MILP formulation for small to medium sized instances and the Benders decomposition
with heuristic for large instances.

For the Benders decomposition the times for solving the MP turned out to be the
bottleneck as this problem is NP-hard already without any Benders cuts from the
subproblem. Therefore we investigated variants that concentrate on solving the MP
faster. The easier measure of allowing a gap of 2% for the first iterations of the MP brings
slight improvements for the gap. Another measure was to use a heuristic for the MP
for the first iterations. Care was taken when choosing the Benders decomposition this
variant is based on in order to enable the use of delta evaluation. The resulting variant
had worse results for small and medium sized instances. However for large instances
it was able to find the best solutions of all compared approaches. Another approach
to make the MP faster was Branch-and-Check. Branch-and-Check aimed for avoiding
recalculations in the MP by adding benders cuts as lazy constraints. The disadvantage

64



of this approach is that the callback function is called very regularly and therefore the
SP calculates a lot of unnecessary cuts. Therefore this measure worsened the results.

We further investigated the impact on the solving time respectively the gap if scaling
the surplus energy or if reducing the reservation energy. As it turns out, scaling the
surplus energy hardly affects the difficulty of an instance. On the other side reducing the
reservation energies make the instances significantly easier.

Future work may investigate a more finegrained approach for the amount of effort
that is used to solve the MP. It seems reasonable to start with little effort, raising it
whenever the derived cut does not cut off the found MP solution. Finally the algorithm
will solve the MP with the MILP solver to optimality to guarantee the exactness of the
approach. When using the MILP solver for the MP, one may adapt the allowed gap from
higher to lower values. For the heuristic the allowed runtime may be adapted. It may
even be reasonable to first start with the heuristic and switching to the MILP solver with
allowed gap upon a condition before finally using the MILP solver to solve the MP to
optimality.

Another interesting possibility for future work is to investigate other neighborhood
structures for the heuristic search. In particular a larger neighborhood that is searched
efficiently seems promising. A reduction to a problem that searches for a circle in a graph
could be helpful here. Such a graph can be constructed as follows. Vertices correspond to
reservations. There is an edge from reservation 𝑟1 to reservation 𝑟2 if 𝑟2 can be replaced
by 𝑟1 without causing an overlap. The edge is labelled with vectors that denote the
change that is caused to the left hand side values of the cuts if replacing 𝑟2 with 𝑟1.
Cycles then correspond to moves. The feasibility and change in the objective value of a
move can be derived from the edge labels. Altough we did not investigate further, we
think that it is possible to search the generated neighborhood efficiently in practice either
exactly or with a simple heuristic.

Furthermore it may be reasonable to add the cuts corresponding to multiple solutions in
each iteration. That would also make it necessary to manage the already added cuts to
keep the solver for the MP efficient. A possibility would be to partition the cuts into a set
of active and a set of non-active cuts. Active cuts are passed to the heuristic, non-active
are not. If a found solution violates a non-active cut, the cut is moved to the active cuts
and if an active cut did not make a difference for the solver of the MP for some iterations,
it is moved to the non-active cuts.

We formulated the SP as MCFP but found that the Network Simplex algorithm does
not perform better than the LP formulation solved with Gurobi. It may be interesting
to investigate, whether another MCFP dedicated algorithm performs better. A faster
solution to the SP may also be obtained by designing an algorithm that is dedicated to
the SP.

65





List of Figures

1.1 Example for the charging plan of a single EV together with the reservations
that have been assigned to that vehicle. . . . . . . . . . . . . . . . . . . . 2

1.2 Example for the energy price over time. . . . . . . . . . . . . . . . . . . . 2
1.3 Example of the available surplus energy of an instance and the used charging

energy for an optimized solution. . . . . . . . . . . . . . . . . . . . . . . . 3

7.1 Minimum cost flow network for determining a charging plan for given assign-
ments 𝑥. Edge capacities are given in green, edge costs in red. No given
edge capacity means a capacity of ∞, no given edge cost means a cost of 0.
𝐸max := Δ𝑡𝑃 max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.1 A solution of a randomly generated instance with 𝑡max = 192, 𝑛 = 5 and
𝑟max = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.2 Runtimes and gaps for the MILP solved by Gurobi. . . . . . . . . . . . . 45
9.3 Runtimes and gaps for the MILP solved by SCIP. . . . . . . . . . . . . . . 46
9.4 Runtimes and gaps for the Benders decomposition using Gurobi. . . . . . 47
9.5 Runtimes and gaps for the Benders decomposition using SCIP. . . . . . . 48
9.6 Runtimes and gaps if static cuts as discussed in chapter 6 are added to the

MP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.7 Runtimes and gaps if the MP is solved to optimality from the beginning. . 51
9.8 Runtimes and gaps for the Benders decomposition with 𝐸grid and 𝐸sur in the

SP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.9 Runtimes and gaps for Branch-and-Check. . . . . . . . . . . . . . . . . . . 53
9.10 Runtimes and gaps when using a heuristic in the beginning. . . . . . . . . 54
9.11 Comparison of objective values and dual bounds of the different methods for

particular instance sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.12 Runtimes and gaps for the MILP when scaling 𝐸surmax by a factor of 0.5. 57
9.13 Runtimes and gaps for the Benders decomposition when scaling 𝐸surmax by a

factor of 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.14 Runtimes of the MILP formulation solved with Gurobi for instances of size

𝑡max = 192, 𝑛 = 5 and 𝑟max = 40 if the available surplus energy is scaled by a
factor of 𝑓 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.15 Runtimes and gaps for the MILP when scaling 𝐸res by a factor of 0.15. . 60

67



9.16 Runtimes and gaps for the Benders decomposition when scaling 𝐸res by a
factor of 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

68



List of Tables

9.1 Results of the MILP solved with Gurobi. . . . . . . . . . . . . . . . . . . 38
9.2 Results of the MILP solved with SCIP. . . . . . . . . . . . . . . . . . . . . 39
9.3 Results of the Benders decomposition with Gurobi. . . . . . . . . . . . . . 40
9.4 Results of the Benders decomposition with SCIP. . . . . . . . . . . . . . . . 41
9.5 Results of the Benders decomposition with heuristic and Gurobi. . . . . . 42
9.6 Comparison of the MILP and Benders approach with Gurobi and SCIP as

underlying MILP solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.7 Comparison of the Benders decomposition with heuristic with the MILP

formulation and the Benders decomposition with extended MP and allowed
gap for the MP in the first iterations. . . . . . . . . . . . . . . . . . . . . 44

69





List of Algorithms

2.1 VND with the neighborhoods 𝑁1, . . . , 𝑁𝑘 . . . . . . . . . . . . . . . . . 8

2.2 GVNS with the neighborhoods 𝑁1, . . . , 𝑁𝑘 for VND and �̃�1, . . . , �̃�𝑚 for
shaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

71





Bibliography

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A
fresh approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

[Ben62] Jacques F. Benders. Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, 4(1):238–252, 1962.

[BGL+16] Georg Brandstätter, Claudio Gambella, Markus Leitner, Enrico Malaguti, Fil-
ippo Masini, Jakob Puchinger, Mario Ruthmair, and Daniele Vigo. Overview
of optimization problems in electric car-sharing system design and manage-
ment. In Herbert Dawid, Karl F. Doerner, Gustav Feichtinger, Peter M.
Kort, and Andrea Seidl, editors, Dynamic perspectives on managerial decision
making, pages 441–471. Springer, 2016.

[BK09] Stefan Bunte and Natalia Kliewer. An overview on vehicle scheduling models.
Public Transport, 1(4):299–317, 2009.

[BWL16] Johannes Betz, Dominick Werner, and Markus Lienkamp. Fleet disposition
modeling to maximize utilization of battery electric vehicles in companies
with on-site energy generation. Transportation Research Procedia, 19:241–257,
2016.

[DHL17] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language
for mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[EC19] Tomislav Erdelić and Tonči Carić. A Survey on the Electric Vehicle Routing
Problem: Variants and Solution Approaches. Journal of Advanced Trans-
portation, 2019:5075671, 2019.

[GAB+20] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon
Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald,
and Katrin Halbig. The SCIP Optimization Suite 7.0. Optimization Online,
ZIB Report, (10), 2020.

[Gon12] Jacek Gondzio. Interior point methods 25 years later. European Journal of
Operational Research, 218(3):587–601, 2012.

73



[Gur21] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, pages 85–103. Springer, 1972.

[KP12] Suresh Nanda Kumar and Ramasamy Panneerselvam. A survey on the
vehicle routing problem and its variants. Intelligent Information Management,
4(3):66–74, 2012.

[MO19] Bilal Messaoudi and Ammar Oulamara. Electric bus scheduling and optimal
charging. In International Conference on Computational Logistics, pages
233–247. Springer, 2019.

[RCGR17] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter
Rei. The Benders decomposition algorithm: A literature review. European
Journal of Operational Research, 259(3):801–817, 2017.

[RPDV20] Marco Rinaldi, Erika Picarelli, Andrea D’Ariano, and Francesco Viti. Mixed-
fleet single-terminal bus scheduling problem: Modelling, solution scheme and
potential applications. Omega, 96:102070, 2020.

[SO17] Ons Sassi and Ammar Oulamara. Electric vehicle scheduling and optimal
charging problem: complexity, exact and heuristic approaches. International
Journal of Production Research, 55(2):519–535, 2017.

[VSW69] Richard M Van Slyke and Roger Wets. L-shaped linear programs with
applications to optimal control and stochastic programming. SIAM journal
on applied mathematics, 17(4):638–663, 1969.

[Web19] Jeremy Webb. The future of transport: Literature review and overview.
Economic analysis and policy, 61:1–6, 2019.

[WLDK16] Qinglong Wang, Xue Liu, Jian Du, and Fanxin Kong. Smart charging
for electric vehicles: A survey from the algorithmic perspective. IEEE
Communications Surveys & Tutorials, 18(2):1500–1517, 2016.

[Wol98] Laurence A. Wolsey. Integer Programming. Wiley, 1998.

[YLTA15] Duotong Yang, Haniph Latchman, Dave Tingling, and Anim Adrian Amars-
ingh. Design and return on investment analysis of residential solar photo-
voltaic systems. IEEE Potentials, 34(4):11–17, 2015.

74


	Abstract
	Kurzfassung
	Contents
	Introduction
	Overview
	Outline

	Methodological Approaches
	Mixed Integer Linear Programming
	Benders Decomposition
	Generalized Variable Neighborhood Search

	Problem Specification
	Related Work
	NP-Hardness of the FSP
	Strengthening Constraints for Conflicting Reserverations
	Network flow formulation
	Benders Decomposition
	Basic Benders Decomposition
	Extension of the MP
	Solving the MP

	Experiments and Results
	Benchmark instances
	Implementation and Computing Environment
	Comparison of the MILP and the Benders Decomposition
	Impacts of Individual Improvements
	Impact of Scaling Esur
	Impact of Reducing Eres

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

