
Heuristic Solution Approaches for
the Two Dimensional

Pre-Marshalling Problem
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Alan Tus
Matrikelnummer 1126941

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Dr. Andrea Rendl

Wien, June 9, 2014
(Unterschrift Alan Tus) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Heuristic Solution Approaches for
the Two Dimensional

Pre-Marshalling Problem
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Alan Tus
Registration Number 1126941

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Dr. Andrea Rendl

Vienna, June 9, 2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Alan Tus
Lascinski Borovec 22, 10000 Zagreb, Kroatien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Alan Tus)

i

Acknowledgements

This work is part of the project TRIUMPH, partially funded by the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT) within the strategic programme I2VSplus under
grant 831736. The author thankfully acknowledges the TRIUMPH project partners Logistikum
Steyr (FH OÖ Forschungs & Entwicklungs GmbH), Ennshafen OÖ GmbH, and via donau –
Osterreichische Wasserstrassen-GmbH.

iii

Abstract

Today’s shipping industry heavily relies on intermodal containers for quick and easy cargo ma-
nipulation. Container terminals are used as temporary storage for containers between two forms
of transportation where containers are stacked into container stacks and those stacks are then
ordered next to each other to form a container bay. To achieve high efficiency, all containers in
a container bay have to be preordered in such a way that at pickup time all containers belonging
to the current shipment are directly accessible by cranes.

A problem of reshuffling a container bay to achieve a layout where each container is accessi-
ble by a gantry crane at pickup time, using a minimal number of container relocations, is called
the Pre-Marshalling Problem (PMP). A gantry crane can reach any container that is located on
top of a stack. This work considers a new extension of the classical PMP in which we assume
that the containers will be picked up by a reach stacker. A container is accessible by a so-called
reach stacker if it is located on top of the left- or right-most stack of a container bay. This im-
plies additional constraints that are discussed in this master thesis. We call our extension the
Two Dimensional Pre-Marshalling Problem (2D-PMP).

We solve the 2D-PMP with two main approaches. First, we adapt a PMP strategic heuristic,
the Least Priority First Heuristic (LPFH). Since the pickup order is predefined, we assign prior-
ity values to all containers (the ones with lowest priority value are picked up first). LPFH selects
the container with the greatest priority value and positions it so that it can remain in its new po-
sition in the final container bay layout. For each container move, an origin and destination stack
are chosen according to predefined rules. After that, intermediate moves are made to free up
the selected container and destination slot allowing the selected container to be moved. Second,
we use a metaheuristic, the Max-Min Ant System (MMAS). MMAS requires the problem to be
represented as a path construction problem. Our initial container bay layout corresponds to the
initial node and each move is an edge and each subsequent layout is a new node. The path length
reflects the number of moves. Furthermore, we investigate simpler greedy and randomized con-
struction heuristics, a PILOT method, and a local search procedure.

All algorithms are experimentally evaluated on benchmark instances. MMAS and 2D-LPFH
are able to solve almost all instances. Among instances that both algorithms solved, results show
that MMAS clearly outperforms 2D-LPFH as MMAS’s solutions usually require less move-
ments.

Keywords pre-marshalling problem, reach stacker, PILOT method, ant colony optimization,
max-min ant system, least priority first heuristic, container terminal

v

Kurzfassung

Ein wesentliches Element der modernen Frachtindustrie ist der 20-Fuß-Container. Beim Wech-
sel des Transportmittels, beispielsweise von Bahn auf Schiff, werden diese in Container Termi-
nals in Stapeln zwischengelagert. Solche Stapel werden nebeneinander angeordnet und bilden
eine Container Bay. Um höchste Effizienz zu erreichen, müssen alle Container einer Bay so
angeordnet sein, dass der Kran jeweils alle Container, die zu einer Lieferung gehören, zum Ver-
ladezeitpunkt direkt erreichen kann. Das Problem der Neuanordnung einer Container Bay sodass
jeder Container für einen Brück-enkran zugänglich wird, wobei die Minimalanzahl an Contai-
nerbewegungen vorgenommen werden soll, ist als Pre-Marshalling Problem (PMP) bekannt. Ein
Brückenkran kann einen Container erreichen, wenn dieser oben auf seinem Stapel liegt. In der
vorliegenden Arbeit wird eine neue Erweiterung des PMP vorgestellt, für das die Benutzung ei-
nes Greifstaplers angenommen wird. Ein Greifstapler erreicht nur Container, die oben auf dem
Stapel am äußersten rechten oder linken Rand der Container Bay liegen. Daraus ergeben sich zu-
sätzliche Einschränkungen, die in dieser Arbeit erörtert werden. Wir nennen unsere Erweiterung
das Zweidimensionale Pre-Marshalling Problem (2D-PMP).

Zwei Ansätze werden zur Lösung des 2D-PMP herangezogen. Erstens wird eine strategische
PMP-Heuristik angepasst, die Least Priority First Heuristic (LPFH). Da die Abholreihenfolge
vordefiniert ist, können allen Containern Prioritätswerte zugewiesen werden (diejenigen mit der
geringsten Priorität werden zuerst abgeholt). LPFH wählt den Container mit dem höchsten Prio-
ritätswert und positioniert ihn so, dass er an dieser Position bleiben kann. Für jede Container-
bewegung wird ein Herkunfts- und ein Zielstapel nach vorher festgelegten Regeln ausgewählt.
Danach werden die nötigen Containerbewegungen durchgeführt, die den Container und dessen
Zielposition erreichbar machen, sodass der Container schließlich bewegt werden kann. Zweitens
verwenden wir eine Metaheuristik, das Max-Min Ant System (MMAS). Dieses erfordert, dass
das Problem als Pfadkonstruktionsproblem repräsentiert wird. Hier entspricht die ursprüngliche
Konfiguration der Container Bay dem Startknoten, jede Containerbewegung einer Kante und
jede weitere Konfiguration der Container Bay einem weiteren Knoten. Die Pfadlänge entspricht
der Anzahl der Containerbewegungen. Zusätzlich untersuchen wir einfachere greedy und rando-
misierte Konstruktionsheuristiken, eine PILOT-Methode und eine Prozedur zur lokalen Suche.

Um sinnvolle Kontrollparameter zu finden werden alle Algorithmen experimentell an einer
vordefinierten Menge von Testfällen evaluiert. MMAS und 2D-LPFH lösen fast alle Bench-
markfälle. An den Fällen, die von beiden Algorithmen gelöst werden können, zeigt sich, dass
MMAS deutlich besser ist als 2D-LPFH da MMAS meistens Lösungen mit weniger Container-
Verschiebungen findet.
Schlüsselworter: PMP, PILOT method, ACO, MMAS, LPFH

vii

Contents

1 Introduction 1
1.1 Objectives . 3

2 The Two Dimensional Pre-Marshalling Problem 5
2.1 Pre-Marshalling Problem . 6

Problem parameters . 6
2.2 Two Dimensional Pre-Marshalling Problem 7

Problem parameters extension . 8
2.3 Assumptions . 9
2.4 Problem representation . 10

Problem input . 10
Solution . 10

2.5 Note on complexity . 11

3 Related work 13

4 Heuristic algorithms 17
4.1 Evaluation functions . 17

Blocking count evaluation function . 17
Penalty evaluation function . 18

4.2 Random and Greedy construction algorithms 19
4.3 Two Dimensional Lowest Priority First Heuristic 21

Original LPFH . 21
Main changes . 22
2D-LPFH . 25

5 Metaheuristic algorithms 27
5.1 PILOT method . 27

Using a strategic sub-heuristic and compound moves 28
5.2 Ant Colony Optimization . 30

Double bridge experiment . 30
From colony to algorithm . 32

5.3 Max-Min Ant System . 33

ix

Pheromone models . 34
State based pheromone model . 35
Move based pheromone model . 35

Initializing, evaporating and updating pheromone values 35
Ant construction algorithm . 37
Using a strategic heuristic and compound moves 39
MMAS algorithm . 39

6 Local search algorithm 41
6.1 Shortcut heuristic . 41

7 Experimental evaluation 43
7.1 Instances . 43
7.2 Testing environment . 45
7.3 Experiments . 45

Result analysis . 46
7.4 Random and greedy construction heuristics experiment 46
7.5 2D-LPFH experiments . 47

Lambda values . 48
Extended run time . 50

7.6 PILOT experiments . 56
Random and Greedy sub-heuristics . 56
2D-LPFH sub-heuristic . 57

7.7 MMAS experiments . 59
Ant count . 59
Alpha and beta values . 60
Heuristic algorithms . 61

7.8 Comparative analysis of best configurations 65

8 Conclusion 69
8.1 Critical reflection . 69
8.2 Future work . 70
8.3 Solution Network Analysis Procedure . 71

A Instance samples 73

Bibliography 77

x

CHAPTER 1
Introduction

Containers are a core component of today’s shipping industry. Before the 1950’s there were no
containers and ship cargo was scattered above and below deck. Loading and unloading was done
manually and assisted by cranes. Working this way was inefficient because each piece of cargo
had to be handled separately and cargo was often damaged, lost or stolen.

During the 1950’s a concept of using containers to hold ship cargo was developed by Malcom
McLean and engineer Keith Tantlinger. The first ship carrying its cargo in containers sailed in
1956. It was the SS Ideal-X, loaded with 58 35-foot (11 m) containers and it sailed from New
Jersey to Houston, Texas. Using unified container sizes for packing cargo meant that all cargo
could be handled almost the same way, thereby reducing the price of shipping, reducing loading
times, increasing safety and significantly less cargo was damaged, lost or stolen than previously.
This created a continuous flow of goods from production sources to customers which played a
key role to enable consumers to enjoy goods from all around the world at affordable prices.

Since then, a series of ISO standards has been published by the ISO standards development
technical committee for freight containers (ISO/TC 104)1 to standardize the container and make
it as widely used as it is today. Most of the deployed containers comply with ISO 668. The two
most commonly used sizes are the 20-foot (6 m) and 40-foot (12 m) long containers. The 20-
foot container, referred to as a Twenty-foot Equivalent Unit (TEU) became the industry standard
reference so now cargo volume and vessel capacity are commonly measured in TEU. The 40-
foot container (2 TEU) became known as the Forty-foot Equivalent Unit (FEU) and is the most
frequently used container today.

In today’s market, according to the Container Census 20132, the world’s container fleet has
reached 32.9 million TEU (1.3 billion m3) and it is expected that another 1.6 million TEU have
been added during 2013. According to (Chang et al., 2008), the most important factors for a
shipping company when choosing a port of operations are: cargo volume, terminal handling

1http://www.iso.org/
2http://www.drewry.co.uk

1

http://www.iso.org/
http://www.drewry.co.uk

Table 1.1: World’s largest container terminals

Rank Port, Country Volume 2012 (mil. TEUs) Volume 2011 (mil. TEUs)

1 Shanghai, China 32.53 31.74
2 Singapore, Singapore 31.65 29.94
3 Hong Kong, China 23.10 24.38
4 Shenzhen, China 22.94 22.57
5 Busan, South Korea 17.04 16.18

charge, land connection, service reliability and port location. Table 1.1 shows the world’s five
largest container terminals3. Not surprisingly, three of the top five terminals are located in China.

Table 1.2 shows the world’s biggest container ships4.

Table 1.2: World’s largest container ships

Built Name Length (m) Width (m) Max TEU

2013 Maersk Mc-Kinney Moller 398 58 18 270
2013 Majestic Maersk 398 58 18 270
2013 Mary Maersk 398 58 18 270
2013 Marie Maersk 398 58 18 270
2012 CMA CGM Marco Polo 396 54 16 020

If we take into consideration the volumes mentioned in Table 1.1 and 1.2 one can surely
understand why the shipping industry has to rely on computers to efficiently manage containers
and container handling machinery.

Container terminals mostly have two container handling interfaces. On the sea-side they
handle container vessels that can carry up to 18 000 TEU and on the land-side they need to keep
up with the pickup and delivery schedule of trains and trucks. The container yard is used as
temporary storage and it is the most critical point in this process.

Containers are stacked in container stacks, usually four or five high. A row of container
stacks is called a container bay. Parallel container bays make a container block. Each block has
a predefined number of bays and stacks. Two blocks are separated by transport lanes that are
used by container handling vehicles like automated guided vehicles, straddle carriers and reach
stackers. Stacking and retrieval operations are mostly carried out by gantry cranes (rubber-tired
and rail-mounted gantry cranes). Ship to shore cranes are used for loading and unloading vessels.

Reach stackers (Figure 1.1) are extremely useful vehicles because they are very quick and
agile. In less than half a minute they can pick up a container and drive away with it. They
are usually the only vehicle found in smaller container terminals. Reach stackers are used for

3http://www.worldshipping.org/about-the-industry/global-trade/
top-50-world-container-ports

4http://en.wikipedia.org/wiki/List_of_largest_container_ships

2

http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports
http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports
http://en.wikipedia.org/wiki/List_of_largest_container_ships

Figure 1.1: Reach stacker

loading and unloading trains and trucks as well as relocating containers within different areas of
the container terminal.

Usually, each container in the container yard is already scheduled for pickup. This helps
plan the layout of a container bay because we can assign a priority to each container. Containers
with a lower priority value have a closer pickup time than the ones with a higher priority value.
Containers in a stack are accessible by a LIFO (last-in-first-out) principle so if a container with
a lower priority value is placed beneath a container with a higher priority value it would not be
directly accessible at pickup time. This requires the crane to do additional moves to retrieve the
needed container from within the container bay, thereby delaying the delivery process.

The problem of reshuffling a container bay to achieve a layout where each container is ac-
cessible at pickup time, using a minimal number of container relocations, is called the Pre-
Marshalling Problem (PMP). The same process can be applied to all container bays in a con-
tainer yard. This is done between delivery and pickup time.

1.1 Objectives

The problem we consider in this thesis is a new extension of the PMP. We extend the classical
PMP to a new problem version where the containers can only be removed by a reach stacker.
This means that at pick up time the containers can only be retrieved if they are on top of the
outermost tiers of the container bay. We call it the Two Dimensional Pre-Marshalling Problem
(2D-PMP). It is formally defined in section 2.

In this thesis we:

• describe and define the 2D-PMP,

• show that it is possible to adapt a PMP heuristic to the 2D-PMP, we adapt the Least Priority
First Heuristic (Expósito-Izquierdo et al., 2012)

3

• use a naive approach for solving the 2D-PMP

• use Ant Colony Optimization and PILOT method metaheuristics for solving the 2D-PMP

• implement a local search procedure

• run experiments to set a benchmark value for the 2D-PMP.

In chapter 2 we define all terms needed for understanding this thesis and formally define
the 2D-PMP. Afterwards, in chapter 3 we give an overview of related work for the PMP and all
algorithms used in this thesis.

Further, in chapter 4 we explain the Least Priority First Heuristic (LPFH) and present our
adapted version, the Two Dimensional Least Priority First Heuristic (2D-LPFH). Our adapted
version uses the same steps as the original LPFH, but we add additional constraints where
needed, to satisfy the 2D-PMP.

Chapter 5 discusses the application of the MAX−MIN Ant System (MMAS) (Dorigo
and Stützle, 2004) version of the Ant Colony Optimization (ACO) (Dorigo and Stützle, 2004) in
solving the 2D-PMP. To achieve this we represent the 2D-PMP as a path construction problem
and use a custom designed pheromone model to represent the collective knowledge of the ants.

Next, in chapter 6 we present a local search algorithm that is based on our representation of
the problem as a path. The algorithms looks for "shortcuts" in the constructed path (solution)
and by using them, finds a shorter, more optimal solution.

Finally, we run a series of experiments with the presented algorithms on a predefined set of
instances. For performance comparison we use a greedy and a random algorithm, along with the
PILOT method (Duin and Voß, 1999; Voß et al., 2005). The evaluation results are discussed in
chapter 7 and we give our conclusions in chapter 8.

4

CHAPTER 2
The Two Dimensional Pre-Marshalling

Problem

Pre-marshalling problems arise in container terminals that have a temporary storage for contain-
ers. This storage is used as a "buffer" between two forms of transportation. Containers are stored
by stacking them in container stacks (Figure 2.1a). When stacks are placed in a row, we call this
row of stacks a container bay (Figure 2.1b). A row of containers within a bay (or across several
bays) at the same height is referred to as a tier (Figure 2.1c). Each container within a container
bay is assigned a priority value that defines the order in which the containers will be picked up.
The state of a container bay is the current position of all containers within that container bay.
We always start from a initial state and apply moves. By applying a move we change the state.
Moves and priorities will be defined in more detail in the following section.

(a) Container stack (b) Container bay (c) Container tier

Figure 2.1: Container terminal

To minimize the amount of work needed at pickup time we want to have all containers in a
container bay prearranged in such a way that each container is directly accessible by the crane
and only needs to be moved to the vessel. This optimization is called Intrabay optimization

5

and it is concerned with optimizing the state of a single container bay, i.e. moving containers
within the bay such that emptying the bay of containers can proceed without further moves. The
objective is to find a minimal sequence of moves that produces such a state.

There are two variants of Intrabay Optimization: the Container Relocation Problem (CRP)
and the Pre-Marshalling Problem (PMP). In the CRP, the containers are shifted as well as re-
moved from the bay, resulting in an empty bay after the final move. In the PMP, the containers
are only shifted but not removed from the bay, i.e. all containers are still in the bay after the final
move.

In this chapter, we have already defined some of the general terminology needed for under-
standing the problems discussed in this thesis. In the following sections we define the remaining
terminology, present the PMP problem parameters, introduce the 2D-PMP and extend the prob-
lem parameters. Finally, we discuss the assumptions made in this thesis and provide a problem
representation.

2.1 Pre-Marshalling Problem

The classical PMP deals with finding a minimal sequence of container moves for a gantry crane
that results in a container bay state where all containers can be removed in a predefined order
without additional moves.

Problem parameters

In a container bay, we are given a set of containers C where each container c ∈ C is assigned a
priority value pc ∈ N that indicates the order in which the containers will be picked up fromPRIORITY VALUE

the bay: the container with the lowest pc is always the next one to be picked up. Therefore, we
define C = {1, . . . , C} as an ordered multiset of all container priorities where |C| corresponds
to the number of containers. To simplify the notation we write c instead of pc. The number of
containers with priority c (multiplicity of c) is given by m(c).

The container bay consists ofw stacks s ∈ S that have a maximum height of h. We represent
a stack s by an h-tuple s = (u1, . . . , uh) where each slot ui ∈ C ∪ {0} is either occupied by aSLOT

container or is empty (in which case ui = 0).
Given two containers, container A with priority cA and container B with priority cB , posi-

tioned in the same stack, sA = sB , where container A is in a slot below container B, uA < uB ,VERTICAL BLOCKING

container A will be vertically blocked if the priority value of B is higher than of A, cB > cA.
Container A is called the blocked container and container B is called the blocking container.
Figure 2.2 shows a sample container bay with blocked and blocking containers.

A stack is valid iff:VALID STACK

ms(c) ≤ m(c), ∀c ∈ C, (2.1)

ui = 0→ ui+1 = 0, for 1 ≤ i < h− 1 (2.2)

Meaning that a stack is valid if it does not contain more containers of priority i than are available
(Equation 2.1) and if a slot at position i is empty, all subsequent slots must also be empty
(Equation 2.2).

6

1 2 3 4

1

2

3

4

8

6

1

3

7 2

4

5

Figure 2.2: An example of a container bay with 4 slots of maximal height 4. Blocked
containers are hatched, blocking containers are grey.

A stack is called perfect, if it is valid and PERFECT STACK

ui ≥ ui+1, for 1 ≤ i < h− 1 (2.3)

holds, i.e. no container in the stack lies underneath a container with a higher priority value (there
are no blocked containers).

Furthermore, we define a container bay b as a set of stacks B = {s1, . . . , sw}wherew = |S|.
Container bay b is valid, iff: VALID BAY

s is valid, ∀s ∈ B (2.4)∑
s∈B

ms(c) = m(c), ∀c ∈ C (2.5)

This means that if each stack in bay b is valid (Equation 2.4) and if for every priority c, the bay
contains exactly m(c) containers (Equation 2.5) then bay b is valid. A bay is called perfect if it PERFECT BAY

is valid and all stacks are perfect.
Throughout this thesis, the word state refers to the layout of a container bay b. This is STATE

the combination of current positions of container priorities c with position bi,j (slot) in the bay,
where 1 ≤ i ≤ w represents the stack and 1 ≤ j ≤ h the tier. States can be seen as two
dimensional matrices of priorities where rows are tiers and columns are stacks. An example can
be seen in Figure 2.2, empty slots are not shown.

We define a container move r = (i, j) as the movement of the topmost container on stack si MOVE

to the top of stack sj . A move is called valid iff ui1 6= 0 and ujh = 0, i.e., at least one container is
stored in stack i and the number of containers stored in stack j is less than the maximum height.

A solution σ = (r1, . . . , rm) to the PMP is anm-tuple of valid moves that renders the initial SOLUTION

bay perfect. In an optimal solution σ∗ = (r1, . . . , rm∗), m∗ is minimal, thus m∗ ≤ m holds for
all m in other possible solutions σ.

2.2 Two Dimensional Pre-Marshalling Problem

In smaller container terminals, reach stackers (Figure 1.1) are used for delivering containers
from the bay to trains and trucks. Most conventional reach stackers can only reach the outermost

7

container stack. If we want to minimize the delivery time, the container with the lowest priority
value always has to be positioned on top of one of the outermost non-empty stacks so that the
reach stacker can retrieve it without the help of a gantry crane. This is not necessarily satisfied
in a solution of the classical PMP. Figure 2.3 shows the bay from Figure 2.2 after it has been
pre-marshalled (the classical way) and highlights those containers which are not accessible by
the reach stacker when they are due for removal.

1 2 3 4

1

2

3

4

8

6

5

4

1 7

3

2

Figure 2.3: Perfect PMP solution. Hatched containers are not reachable by reach stackers at
pickup time.

Therefore, we consider an extension of the basic PMP, that we call the Two Dimensional
Pre-Marshalling Problem (2D-PMP), where we want to find a sequence of container relocations
such that in the final bay layout, all containers are positioned on top of either the leftmost or
rightmost non-empty stack when they are due for removal.

Problem parameters extension

In addition to the previously defined vertical blocking, container A can also be horizontally
blocked if it has to be removed by a reach stacker. A container c, positioned in stack i isHORIZONTAL BLOCKING

horizontally blocked if at least one container on each side of stack i has a higher priority value
than c. More specifically, container c at Bi,j is horizontally blocked, if:

• at least one container on c’s left-hand side c′l positioned at Bl,k with 1 ≤ l < i and
1 ≤ k ≤ H has a higher priority value than c, thus ∃c′l : p(c′l) > p(c) and

• at least one container on c’s right-hand side c′r positioned at Br,k with i < r ≤ S and
1 ≤ k ≤ H has a higher priority value than c, thus ∃c′r : p(c′r) > p(c).

Figure 2.4 shows an example of horizontal blocking. This kind of blocking typically occurs
if we try to pre-marshal a bay the classical way. To unblock horizontally blocked containers
there are two possibilities. First, we can move the blocked container or second, we can move
the blocking containers from one side of the blocked container to make it accessible at the right
moment from that side.

We can specify the property of the final bay in the 2D-PMP by extending the notion of a
perfect stack and defining an r-perfectly placed container (where ’r’ stands for reach stacker). A

8

1 2 3 4

1

2

3

4

7

3

2

1

6 8 5

4

Figure 2.4: An example of horizontal blocking. The horizontally blocked container is hatched
and the horizontally blocking containers are grey.

container c is an r-perfectly placed container if it is neither vertically nor horizontally blocked. R-PERFECT

A stack s is an r-perfect stack if it contains only r-perfectly placed containers. We call a con-
tainer bay r-perfect, if it contains only r-perfect stacks.

2.3 Assumptions

To avoid confusion and reduce the set of problem parameters we make the following assumptions
in this thesis:

• All containers have the same size. In container terminals, container bays usually contain
only one container size for security reasons and to enable easier and quicker operation.
Additionally, containers of different sizes usually cannot be stacked on top of each other.

• The container weight does not matter. Again, in most container terminals, containers
are stacked to a maximum height of four or five containers high which is allowed by the
ISO 668 standard even when they are fully loaded.

• All containers can be handled by the reach stacker. There might exist some special
types of containers which are too heavy or the reach stacker is unable to grip. Since we
assume that all containers within a bay are of the same type, we can thereby assume that
these bays are not considered in this thesis.

• The crane only performs crane movements within one bay when reshuffling a bay.
This is the usual way cranes operate in small container terminals because the inter-bay
movements are too slow with respect to the intra-bay movements. To move between bays
the whole crane has to reposition itself over a new bay.

• All container priorities are unique, i.e. m(ci) = 1,∀i ∈ C. This assumption can be
made without loss of generality since problems with non-unique container priorities can
be mapped to a unique-priority problem. This implies a higher complexity since a non-
existent ordering between same-priority containers is introduced and has to be respected

9

in the solution, but solving a higher complexity problem means that the lower complexity
problem can be solved at least equally well or better.

• We consider all perfect states equally good. Some perfect states are better than oth-
ers, but to allow a ranking of perfect states we would have to introduce additional "soft"
constraints that would enable a comparison of different solutions. An example where
a perfect state B1 could be better than another perfect state B2 is if the terminal owner
preferred bays where the number of containers was evened out across stacks. Another
example is if the terminal operator wants to group containers belonging to one shipment
on one side of the bay for quicker access. This is not covered by this thesis.

2.4 Problem representation

In the following sections we provide the problem representation of the 2D-PMP.

Problem input

We are given an initial state B that consists of w stacks of maximal height h. If a container c is
located at stack 1 ≤ s ≤ S in slot (tier) 1 ≤ u ≤ H then Bs,u = p(c). In case the slot is empty,
then Bs,u = 0.

1 2 3 4

1

2

3

4

8

7

0

0

4

2

0

0

3

6

5

0

1

0

0

0

Figure 2.5: Sample initial state with 4 stacks of maximal height 4 (the empty slots denote those
slots that are set to 0)

Solution

A solution σ = {r1, . . . , rm} to the 2D-PMP is a list of m moves that render the initial state into
an r-perfect bay and thus in which reach stackers can empty the bay without further relocations
of containers. We specify that a move r = (i, j) denotes moving the topmost container from
stack i to the top of stack j. In an optimal solution σ∗ = (r1, . . . , rm∗), m∗ is minimal, thus
m∗ ≤ m holds for all m in other possible solutions σ. A sample solution σ for the initial state
from Figure 2.5 would be:

σ = {(1, 2), (1, 2), (3, 4), (3, 4), (3, 1), (2, 3), (2, 3), (2, 1), (4, 3), (4, 3)} (2.6)

10

where each move (i, j) denotes moving the topmost container from stack i to stack j. The final
r-perfect state is shown in Figure 2.6.

1 2 3 4

1

2

3

4

3

2

4 8

7

6

5

1

Figure 2.6: r-perfect state after applying σ from Equation 2.6 to initial state from Figure 2.5

2.5 Note on complexity

The Re-Marshalling Problem (RMP) is NP-hard (Caserta et al., 2011a) and it is closely related to
the classical PMP. In the RMP, the same optimization process from the classical PMP is applied
to multiple container bays at once, allowing containers to be moved within bays, as well as
between bays using one or more cranes. Using multiple cranes introduces a new problem of
crane interference that also needs to be taken into account.

In their paper, Caserta et al. (2011a) also discuss the differences between RMP and the
classical PMP. They state that the classical PMP can be seen as a special case of the RMP with
the following assumptions: there is only one source bay and only one destination bay, the source
and destination bays are the same and only one gantry crane is used so crane interference does
not have to be taken into account. Thereby, since RMP is NP-hard we conjecture PMP to be
NP-hard.

If we extend the list of assumptions by declaring that containers can only be retrieved using
a reach stacker (instead of a gantry crane) the 2D-PMP can be seen as a special case of the RMP.
Thereby, since RMP is NP-hard we conjecture 2D-PMP to be NP-hard.

11

CHAPTER 3
Related work

Upon researching the available literature, a similar problem to 2D-PMP was not found. There-
fore we present related work for the classical PMP.

Caserta and Voß (2009) present an approach to solving the classical PMP using the paradigm
of the corridor method (Sniedovich and Viß, 2006). They limit the search space by defining
constraints on the moves to be further examined. This is called corridor definition/selection and
is done by first, selecting the target container and then creating a corridor of regulated width to
be explored. The width of the corridor is limited by the size of the subset of admissible stacks
to be explored. Further, they define a neighbourhood search, move evaluation and local search
improvement.

Caserta et al. (2009) offers a binary encoding of the Blocks Relocation Problem (BRP),
also known as the container relocation problem (CRP). The BRP is a similar problem to the
PMP. Blocks are stored in bays similarly to containers and each block has a unique priority,
thereby creating a total ordering. Blocks are retrieved according to priority and can only be
retrieved from the top of a stack. Whenever the highest priority (lowest priority value) block is
accessible, it is retrieved. This process is repeated until there are no more blocks. The authors
offer a new binary encoding where they encode the current state into a binary (N +W)× (N +
W)-matrix, where N is the number of blocks and W is the number of stacks. Furthermore,
this binary encoding is used to create a simple heuristic approach. In their heuristic approach
they only move blocks located directly above the next block to be retrieved and apply heuristic
rules for choosing the new stack. Their approach is implemented in C++. Tests results are
compared to a heuristic based on expected value of future relocations (Kim and Hong, 2006)
and a metaheuristic corridor method (Caserta et al., 2011b). It performs slightly better with
respect to the number of moves, but demonstrates a significant improvement with respect to
time, compared to the corridor method. The reason for this is the binary encoding method that
offers quick access to information.

Lee and Chao (2009) introduce a neighbourhood search routine consisting of: a neighbour-
hood search process, an integer programming model and three minor subroutines. The neigh-
bourhood search routine reduces the number of blocked containers with a neighbourhood search

13

technique and the binary integer programming model reduces the number of moves produced
in the first step. Interestingly, the authors state that blocking containers might be acceptable if
reaching a perfect layout causes significantly more moves to be added to the solution.

Bortfeldt and Forster (2012) offer a heuristic tree search procedure for the classical PMP.
In their paper, the authors classify all moves as Bad-Good, Bad-Bad, Good-Good or Good-Bad
moves. A Bad-Good (BG) move is a type of move where the moved item was badly placed
before the move and is well-placed after the move. Other move types are defined analogously.
Further, the authors define a lower bound for the number of moves and offer a proof for the
calculation steps. The lower bound is calculated based on the initial number of non-well-placed
containers and newly defined types of containers. Finally, the authors present their heuristic
tree search procedure where the initial node corresponds to the initial layout and all leaf nodes
correspond to a final layout. Each successor L′ of L is reached by a compound move, a per-
mitted sequence of moves with respect to the predecessor L. The search algorithm works by
calling a recursive procedure that generates a limited number of possible compound moves that
are applied to the current state to reach the successor. This procedure is repeated until a solu-
tion has been found or the time limit exceeded. Compound moves are generated by selecting
a dirty stack s containing non-well-located containers and attempting to perform the maximum
number of BG moves from stack s followed by a minimum number of non-BG moves. Each BG
move reduces the number of non-well-located containers and reduces the distance to a solution.
Generated compound moves are filtered and sorted according to predefined rules to reduce the
search space and direct the search. Their tree search procedure is implemented in C and com-
pared to three different approaches: a corridor method based algorithm (Caserta and Voß, 2009),
a neighbourhood search heuristic (Lee and Chao, 2009) and a mathematical model based on a
multi-commodity flow network representation (Lee and Hsu, 2007). The tree search procedure
outperforms all three approaches with respect to the average number of moves, as well as run
time.

Forster and Bortfeldt (2012) offer the same heuristic tree search procedure described in Bort-
feldt and Forster (2012), adapted for the CRP. The heuristic tree search procedure is implemented
in Java and compared to four different approaches: a branch-and-bound algorithm (Kim and
Hong, 2006), a corridor-based dynamic programming algorithm (Caserta et al., 2011b), the pre-
viously described heuristic approach using a binary representation (Caserta et al., 2009) and a
refined corridor-based method (Caserta and Voß, 2009). Based on the results, it outperforms all
four approaches with respect to the average number of moves and run time.

Expósito-Izquierdo et al. (2012) presents the Lowest Priority First Heuristic (LPFH) that
will be discussed in detail in Section 4.3 and adapted for the 2D-PMP. The main idea of LPFH
is to iteratively push the lower priority (higher priority value) containers toward the bottom tiers,
while allowing the higher priority containers to reach the top tiers where they are available for
pickup. This is done in reverse order of priorities, i.e. starting with the least priority container.
Further, the authors define a PMP instance generator based on two concepts: priority groups
and levels in the bay. Priority groups are sets of container priorities, while levels in the bay are
sets of consecutive tiers of a bay that can be paired with a priority group. The lower the level
occupied by high-priority containers, the harder the instance. The described instance generator
is used in this thesis without using the two mentioned concepts, since they are not suitable for

14

the 2D-PMP (discussed in section 7.1). Finally, the authors evaluate their work on a predefined
set of instances from Caserta and Voß (2009) and compare their evaluation results with the same
paper.

Huang and Lin (2012) present labelling algorithms that require containers to be sorted into
predefined cells or regions. They are guided by the idea that perfect stacks need to be organized
in such a way to provide space needed for re-marshalling non-perfect stacks.

Prandtstetter (2013) proposes a novel dynamic programming (DP) approach for the classical
PMP embedded in a branch-and-bound (B&B) framework. To reduce the search space, the
author introduces equivalence of DP states, stating that "whenever a state is reached for a second
time, further search can be terminated in that branch of the DP tree". Further, B&B is a divide
and conquer technique based on the idea that for each node in the search tree, an upper and lower
bound can be defined. These bounds are used to make a decision if the node should be explored
further.

15

CHAPTER 4
Heuristic algorithms

In this chapter we present constructive heuristics for 2D-PMP and evaluation functions used
for evaluating container bay states. First, we describe the calculation steps of two evaluation
functions and then we present our extension of the LPFH, and a greedy and random construction
heuristic. All of the mentioned evaluation functions and heuristics are used in this thesis.

4.1 Evaluation functions

We use evaluation functions to approximately evaluate the badness of container bay states with
respect to blocking containers. The lower the evaluation value, the better the state. Thus, we
have a minimization problem where a solution with an evaluation value zero represents a final
solution.

Blocking count evaluation function

The blocking count evaluation function, ebc counts all vertically and horizontally blocked con-
tainers in a state B. In case the container is both vertically and horizontally blocked, it is counted
only once. This is achieved using a logical or operator. The evaluation function is shown below:

evb(B) =
∑
c∈C

max (fvb(c), fhb(c)) ,∀c ∈ B (4.1)

fvb(c) =

{
1 if c is a vertically blocked container
0 otherwise

(4.2)

fhb(c) =

{
1 if c is a horizontally blocked container
0 otherwise

(4.3)

For all containers c in the given state B, we select the maximum between the functions fvb(c)
and fhb(c). We want to include only one penalty for one container in the final sum. fvb(c)

17

returns 1 in case c is a vertically blocked container, 0 otherwise. fhb(c) returns 1 in case c is a
horizontally blocked container, 0 otherwise. Finally, if the container is vertically or horizontally
blocked we increase the sum by 1. The output value of ebc(B) is the number of (vertically and
horizontally) blocked containers.

Penalty evaluation function

The penalty evaluation function extends the blocking count evaluation function. The main dif-
ference is that the penalty evaluation function recognizes different types of "problematic" con-
tainers and assigns each type its own penalty factor:

pvb vertically blocked containers

pvb′′ interfering containers, all containers positioned above the vertically blocked container that
are not blocked containers themselves. This includes blocking and non-blocking contain-
ers.

phb horizontally blocked containers

1 2 3 4

1

2

3

4

3

2

7

6

9

8

4

5

1

(a) Sample state B1

1 2 3 4

1

2

3

4

3

2

7 9

8

4

6

5

1

(b) Sample state B2

Figure 4.1: Sample states. Blocked containers are hatched, blocking containers are grey. State
B2 requires more moves to resolve the blocking than state B1.

The calculation steps for the penalty evaluation function epe are shown below:

epe(B) =
∑
c∈C

max (pvb ∗ fvb(c), pvb′′ ∗ fvb′′(c), phb ∗ fhb(c)) , ∀c ∈ B (4.4)

fvb′′(c) =

{
1 if c is positioned above a blocked container
0 otherwise

(4.5)

The function epe evaluates all containers in a given state B and assigns each of them a penalty
value depending on the type of container. We use the two functions fvb and fhb from Equations
4.2 and 4.3, and introduces a third function fvb′′ . The function fvb′′(c) returns 1 in case c is an

18

interfering container, 0 otherwise. As in function ebc (Equation 4.1), we do not want to count a
container more than once so we apply the maximum penalty value we calculated for the current
container.

This function provides a more accurate evaluation of states. The blocking count evaluation
function would return the same value for both states shown in Figure 4.1. However, using
the penalty evaluation function the state B2 shown in Figure 4.1b will have a slightly higher
evaluation value than the state B1 shown in Figure 4.1a because there is a blocking container on
top of the blocked container. Any of the penalty factors can be set to 0 and thereby exclude that
type of container from the calculation.

4.2 Random and Greedy construction algorithms

We implemented a random and greedy construction algorithm to compare the other approaches
with two completely naive approaches.

The random algorithm chooses a random move from the set of available moves and applies
it. These steps are repeated until a solution is reached or there are no more possible moves. To
avoid cycles, the same state cannot be visited more than once.

The random construction algorithm is given in Algorithm 4.1. It takes an initial state B and
an evaluation function f as input. As long as the solution is not reached and there are possible
moves, we chooses a random move m from the set of possible movesM in the current state B
and apply it. Finally, we return a list of moves.

Algorithm 4.1 Random algorithm
Input: B : initial state; f : evaluation function

1: σ ⇐ empty list
2: while f(B) > 0 do
3: M⇐ set of all possible moves in state B
4: ifM == ∅ then
5: return σ
6: end if
7: m⇐ random move fromM
8: append m to σ
9: apply move m to B by yielding new state B

10: end while
11: return σ
Output: list of moves

The average runtime of one iteration of the Random construction heuristic is O(1) since we
only choose a random move from a set of moves and apply it.

The greedy construction algorithm uses an evaluation function to evaluate all reachable states
and always chooses the move that leads to the state with the best (lowest) evaluation value. This
process is repeated until a solution is reached or there are no more possible moves. To avoid
infinite cycles, in a given state a move can only be chosen once. This does not avoid cycles, but

19

allows an algorithm to perform more exploration without infinitely looping. Cycles are removed
in the local search phase. We also implemented a version of this algorithm where the same state
could not be visited more than once. Since the greedy algorithm is deterministic this results in
many blocked partial solutions. Using the relaxation, more solutions are constructed.

Our greedy algorithm takes an initial state B and an evaluation function f as input. The steps
are shown in Algorithm 4.2. We repeat the following steps as long as the solution is not reached,
or there are no more possible moves: we choose the best move fromM and apply it. Finally,
we return a list of moves.

Algorithm 4.2 Greedy algorithm
Input: B : initial state; f : evaluation function

1: σ ⇐ empty list
2: while f(B) > 0 do
3: M⇐ set of all possible moves in state B
4: ifM == ∅ then
5: return σ
6: end if
7: B′′ ⇐ ∅
8: m′′ ⇐ empty move
9: for all m′ ∈M do

10: apply move m′ to B by yielding new state B′
11: if f(B′) < f(B′′) ∨ B′′ == ∅ then
12: B′′ ⇐ B′
13: m′′ ⇐ m′

14: end if
15: end for
16: append m′′ to σ
17: apply move m′′ to B by yielding new state B
18: end while
19: return σ
Output: list of moves

The average runtime of one iteration of the Greedy construction heuristic is O(|M|). The
number of possible moves is directly influenced by the number of stacks w. The maximum
number of possible moves is equal to:

|M| = w · (w − 1). (4.6)

Equation 4.6 is valid in case all stacks have at least one free slot. Thereby we can move the top
container of each stack to any other stack. In case there are stacks with no free slots on top, the
number of possible moves is reduced and the can be calculated as follows:

|M | = (w − ẘ) · (w − 1− ẘ) + ẘ · (w − ẘ) (4.7)

= (w − ẘ) · (w − 1) (4.8)

20

In Equation 4.8 we divide stacks in two sets: the set of full stacks (no free tiers) and the set
of non-full stacks where ẘ and w denote the cardinality of these sets, respectively. We start
by calculating the number of possible moves for non-full stacks and then add the number of
possible moves for full stacks. This equation is then reduced to a shorter form by factorization.
The given formula is valid for all states.

Using Equation 4.6 we can put the time complexity in relation to the number of stacks.
One iteration of the Greedy construction heuristic has an expected run time O(w2). The overall
number of moves has no limit. The algorithm will halt if it starts to loop or if some other
condition is satisfied (reached move or runtime limit).

4.3 Two Dimensional Lowest Priority First Heuristic

The Two Dimensional Lowest Priority First Heuristic (2D-LPFH) is the 2D-PMP version of
the Lowest Priority First Heuristic (LPFH) for the PMP introduced by Expósito-Izquierdo et al.
(2012). In this section we first present the original LPFH, then discuss the main changes that are
applied to it and finally present the 2D-LPFH. Our goal is to show that a classical PMP heuristic
can be easily adapted to the 2D-PMP.

Original LPFH

The LPFH introduces the notion of well-located and non-located containers. Non-located con-
tainers are equivalent to our blocking containers, they all have to be repositioned to obtain a per-
fect state. Well-located containers are non-blocking containers and can remain in their current
position in the final solution. The main idea of the LPFH is to choose a non-located container
with the lowest priority (highest priority value, the one that will be picked up last) and apply one
or more moves so that it becomes a well-located container. This process is repeated until there
are no more non-located containers.

We present the basic steps of LPFH, taken from Expósito-Izquierdo et al. (2012) and shown
in Algorithm 4.3. In this description we aim to familiarize the reader with the LPFH and explain
the main ideas behind it so that we can discuss the changes that are needed and present our
version, the 2D-LPFH. The details of each step are presented in the last part of this section in
the 2D-LPFH description.

The original LPFH given in Algorithm 4.3 takes an initial state B as input and starts with an
empty list of moves σ and a set of non-located containers N . In each iteration we find a non-
empty set of containers with the highest priority value Npmax (line 4) and repeat the following
steps until the set Npmax is empty: (1) we select a target container c from Npmax (line 6), (2)
we select a destination stack s′ where the container c will be placed (line 7), (3) we calculate
and apply all necessary moves needed to well-position the container c in stack s′ and append
the moves to σ (line 8), and (4) we remove the container c from Npmax (line 9). After each
iteration we refresh the set of non-located containers (line 11) and start a new iteration if the set
of non-located containers N is not empty (line 3). Finally, the algorithm returns a list of moves
that renders a perfect state.

The target container c is a random container among the top λ1 containers from the set λ1

21

Algorithm 4.3 Lowest Priority First Heuristic – Basic steps

Input: B : initial state;
1: σ ⇐ empty list
2: N ⇐ set of non-located containers
3: while N 6= ∅ do
4: Npmax ⇐ set of non-located containers with highest priority value pmax
5: while Npmax 6= ∅ do
6: select a container c ∈ Npmax

7: select a destination stack s′

8: move container c to s′ and append moves to σ
9: remove c from Npmax

10: end while
11: N ⇐ set of non-located containers
12: end while
13: return σ
Output: list of moves

of non-located containers with the highest priority value Npmax sorted according to the lowest
number of containers placed above it. If we use unique priorities, this parameter is not used
since there is always only one container with the highest priority value pmax.

The destination stack s′ for the target container c is a randomly chosen stack among the top
λ2 stacks sorted according to the smallest number of containers that need to be removed soλ2

that container c can be well-located in that stack. To enable the move of container c to stack
s′ we need to remove the containers positioned on top of container c in its origin stack s and
the container positioned in and above the destination slot in c’s destination stack s′. We call
these containers interfering containers and they are moved to temporary stacks. TemporaryINTERFERING CONT.

TEMPORARY STACKS stacks are all stacks that have at least one free slot and are not the origin or destination stack
of c. When removing containers from the destination stack and placing them on a temporary
stack, the temporary stack is chosen among the λ3 stacks with the lowest priority non-locatedλ3

container in that stack.

Main changes

We introduce three main changes: (1) the λ1 parameter is not used, (2) a new way of choosing
potential destination stacks and (3) the stack filling procedure is not used.

Since we assume unique priorities in the 2D-PMP, the parameter λ1 has no more use as it
could be at most one. In case we were to assume non-unique priorities the behaviour would not
be in any way different than in the original LPFH previously described.

In the classical PMP it is enough for the LPFH to push the containers with higher priority
values towards the bottom of the bay because we only have to deal with vertical blocking. In the
2D-PMP we have to take horizontal blocking into consideration and therefore a new strategy is
developed. This is the key change that is made in comparison to the original LPFH.

22

In LPFH it is enough to choose a destination stack s′ and find a slot where our target con-
tainer c is well-located. This implicitly resolves vertical blocking. For 2D-LPFH we need a
strategy that resolves horizontal blocking as well. We apply the same principle of pushing con-
tainers with higher priority values down, but now we need to push them down and to a side, or
the middle. This is needed to resolve horizontal blocking and make the container well-located.
We establish a concept of adequate stacks. Adequate stacks are a set of stacks Rc that are as-
signed to a container c based on its priority pc. We present four different models of adequate
stack assignment with increasing complexity and flexibility.

The first model defines adequate stacks by assigning an equal number of containers to each
stack. We calculate the average number of containers per stack q (Equation 4.9) and divide the
container’s priority value pc with q to obtain the adequate stack s′ (Equation 4.10). Decimal
values are rounded to the higher value.

q =
|C|
|S| (4.9)

s′ = ceil

(
pc
q

)
(4.10)

The use of the first model forces the algorithm to always render the same solution which yields
unnecessary moves and thereby produces worse solutions. Requiring a container to be posi-
tioned in an exact stack and well-positioned implicitly preallocates one slot for each priority. An
example of a container bay solution acquired using this method is given in Figure 4.2a.

We extend this approach into a second model by adding one more stack into Rc for all
containers except the ones located in the stack with the highest priority values (the last stack).
The alternate stack s′′ is the first stack after s′ that holds containers with higher priority values.
The formula given in Equation 4.11 defines the second model as the union of s′ from the first
model (Equation 4.10) and an additional stack which is the next stack unless s′ was the last
stack.

Rc ⇐ {s′} ∪ {s′ + 1},∀s′ ∈ S : s′ < |S| (4.11)

In container bay configurations where the number of containers is bigger than half of the max-
imum capacity of the container bay, we encounter a situation where the number of containers
assigned to a stack could be bigger than the capacity (height) of the stack. SinceRc is computed
in each iteration of the LPFH we introduce a rule that if a stack ŝ does not have at least one free
slot, stack ŝ cannot be added toRc.

The alternate stack allows more flexibility when constructing a solution yielding less unnec-
essary moves and rendering a set of solutions instead of only one solution. In Figure 4.2b we
give an example using the same container bay configuration as previously, but acquired using
the second model.

When retrieving containers, reach stackers can access the container bay from two sides. Both
presented models yield solutions where the containers can be retrieved from only one side of the
container bay. Let us call this type of solution one-sided solution. Accessing the container bay
from only one side is a preferable scenario for some container terminals (e.g., where the reach
stacker does not have the possibility to quickly reach the opposite side of the container bay). An

23

1 2 3 4

1

2

3

4

2

1

4

3

6

5

8

7

(a) Each priority value is assigned only one
adequate stack using the first model.

1 2 3 4

1

2

3

4

4

3

2

1

6

5

8

7

6

(b) Each priority value is assigned at most two
adequate stacks using the second model.

Figure 4.2: Examples of solutions with 4 stacks, a maximum height of 4 tiers and 8 containers.
Each solution was acquired using a different stack assignment model.

alternate scenario allows two-sided solutions where containers are retrieved from both sides of
the container bay. The next model yields such solutions.

The third model pushes the high priority value containers towards the middle of the container
bay. Let us start by arranging the containers from the first model in such a way that the higher
priority value containers are positioned in the middle and as we move towards the sides, we
encounter containers with lower priority values. In case we have a container bay configuration
with an odd number of stacks, we start from the middle stack by positioning q containers in it.
In the next step we have two options since there are two neighbouring stacks and we want to
move in equal steps towards both ends of the container bay. Instead of choosing the left or right
stack, we will add both stacks to Rc for twice as many containers than previously, 2 × q. The
second step is also the first step for container bay configurations with an even number of stacks
and we repeat it until we reach the outermost stacks. Figure 4.2b shows an example of a solution
acquired using the third model. The two stacks in Rc can be viewed as mirrored stacks since
they are equidistantly positioned with respect to the middle of the container bay. The exception
is the middle stack in container bay configurations with an odd number of stacks.

In the fourth model we extend the third model by adding additional adequate stacks to Rc.
First, we assign adequate stacks as described in the third model. Second, we add the farther
mirrored pair neighbouring with the pair currently in Rc, except for the outermost stacks. In
case there is an odd number of stacks, we add the two neighbouring stacks to Rc. Another
version of this model is acquired by adding the closer mirrored pair, in which case the middle
stack(s) do not get any additional adequate stacks. Figure 4.3b shows a sample solution rendered
using the fourth model.

As we can see, choosing the destination stack is a crucial step in the LPFH and changing its
implementation directly effects the heuristic’s behaviour, performance and usage scenario.

We introduce one more change. The stack filling sub procedure is not used in 2D-LPFH
because we were not able to find an equivalent procedure that would improve the solution. In
its original form it added unnecessary moves so it was removed. The heuristics performs well

24

1 2 3 4 5

1

2

3

4

1 7

6

5

10

9

8 4

3

2

(a) Each priority value is assigned at most two
adequate stacks using the third model.

1 2 3 4 5

1

2

3

4

4

1

10 9

8

7

6

5

3

2

(b) Each priority value is assigned at most four
adequate stacks using the fourth model.

Figure 4.3: Examples of solutions with 4 stacks, a maximum height of 4 tiers and 8 containers.
Each solution was acquired using a different stack assignment model.

without this sub procedure so we decided to leave it out in this iteration.

2D-LPFH

We now provide a full description of the 2D-LPFH with all steps given in Algorithm 4.4. This
version includes all changes previously discussed.

The 2D-LPFH takes three parameters, an initial state B, λ2 and λ3. We first get the set
of non-located containers N and an empty list of moves σ. As long as the set of non-located
containers N is not empty, we perform the following steps: (1) We locate the container c with
highest priority value inN (line 4). (2) Calculate a set of adequate stacksRc for c (line 5), sort it
ascending by the lowest number of interfering containers in each stack and select a random stack
s′ as the destination stack from the top λ2 elements in Rc. (3) We add all interfering containers
from the origin s and destination s′ stacks into G (line 8) where we sort them ascending according
to their priority values. (4) We move each interfering container g in order from G to temporary
stacks (line 10 - 16): First, we find the set of all available temporary stacks for g, Vg (all non-full
stacks excluding s and s′) (line 11). Second, we sort Vg ascending according to the highest
priority valued non-located container in each stack. Third, we choose a random stack s′′ from
the top λ3 stacks. Fourth, we move container g from stack sg to stack s′g in B (line 14) and
append the move (sg, s

′
g) to the list of moves σ. (5) After all interfering containers have been

moved to temporary stacks, we move container c form stack s to stack s′ in B (line 17) and
append the move (s, s′) to the list of moves σ. (6) We update the set of non-located containers
N and reiterate (line 19). Finally, when N is empty, we return the list of moves σ that render
the initial state a valid final state.

We can find the container with highest priority value in N (line 4) in O(w) where w is the
number of stacks, since we have to iterate over all stacks. We assume finding the maximum
container priority value within a stack can be done in constant time since the maximum stack
size is limited to a constant value of four containers. The set of adequate stacks can be calculated
in
(
1) using Equations 4.9, 4.9 and 4.9 and models explained in the previous section. All sorting

25

Algorithm 4.4 Two Dimensional Lowest Priority First Heuristic

Input: B : initial state; λ2, λ3: heuristic parameters
1: σ ⇐ empty list
2: N ⇐ non-located containers in B
3: while N 6= ∅ do
4: c⇐ container with highest priority value in N located at stack s
5: Rc ⇐ set of adequate stacks for c
6: sortRc ascending by the lowest number of interfering containers in each stack
7: s′ ⇐ select random stack fromRc among the top λ2 stacks
8: G ⇐ set of all interfering containers in s and s′

9: sort G ascending according to priority values
10: for each g ∈ G that is positioned at stack sg do
11: Vg ⇐ set of available temporary stacks for g
12: sort Vg ascending by the highest priority valued non-located container in each stack
13: s′g ⇐ select random stack from Vg among the top λ3 stacks
14: apply move (sg, s

′
g) to B by yielding new state B

15: append move (sg, s
′
g) to σ

16: end for
17: apply move (s, s′) to B by yielding new state B
18: append move (s, s′) to σ
19: N ⇐ non-located containers in B
20: end while
21: return σ
Output: sequence of moves

procedures can be carried out in O(w logw) using e.g. Quicksort. The maximum number of
interfering containers has a maximum value of seven containers in case the origin container is
placed on the bottom of a full stack and its destination is at the bottom of another full stack.
Thereby, the operation of repositioning interfering containers can be carried out in O(w logw)
due to the sorting of Vg. Applying moves m to a state B is executed in O(1). The most time
consuming operation within the algorithm are all sort procedures. Thereby, the time complexity
of one iteration of 2D-LPFH is O(w logw) where w is the number of stacks. The total number
of compound moves is smaller or equal to the number of containers N since we well-position
a container with each compound move. However the length of individual compound moves can
not be predicted. Therefore, considering compound moves, the overall complexity of 2D-LPFH
is O(|N |w logw).

26

CHAPTER 5
Metaheuristic algorithms

In this chapter we present two metaheuristic algorithms used for solving the 2D-PMP. First,
we present the PILOT method, a heuristic repetition algorithm. Second, we outline the basic
idea of Ant Colony Optimisation (ACO). Further, we present the chosen version of ACO and
how we adapted it to the 2D-PMP. This is followed by two sections where we discuss different
pheromone models and provide a detailed description of the ant construction algorithm. Finally,
we present our implementation of ACO with a full algorithm description.

5.1 PILOT method

The PILOT method is a metaheuristic algorithm that uses a sub-heuristic to construct a partial
solution in all possible directions. Finally, the direction of the best partial solution is chosen and
the process is repeated until a complete solution is constructed. It was introduced by Duin and
Voß (1999).

The authors of PILOT method refer to it as "a tempered-greedy method, based on the repe-
tition of another heuristic, the so-called pilot heuristic (or sub-heuristic)".

The sub-heuristic can be any algorithm that is used for solving the 2D-PMP. Figure 5.1 shows
how the PILOT heuristic starts from a state B and expands it in all directions until it reaches the
move limit of r moves (i.e. 2 moves) or creates a solution. As we can see, a solution was found
in branch 4 after 2 moves, in all other branches no solution was found after r moves or there
were no more possible moves. In case no solution was found in any of the branches, the branch
that had the best evaluation value after 3 or less moves would be chosen.

The PILOT method is given in Algorithm 5.1. The PILOT method takes in four arguments:
the initial state B, a sub-heuristic h, the number of moves to look ahead r and an evaluation
function f . We start out with an empty list of moves σ and run the algorithm until the evaluation
function evaluates the current state B with 0 (line 2) or there are no possible moves (line 4).
In each iteration we find the set of possible movesM in state B (line 3) and iterate over these
moves (lines 9 to 16). For each move m′ we apply it to B by yielding a new state B′ and apply

27

B

B11 B21

B22

B23

B31

B32

B41

B42

B51

B52

B53

Figure 5.1: Pilot heuristic expansion of state B. Each branch represent an available move in
state B that is then expanded for at most two moves using a sub-heuristic. Blocked states (with

no possible moves) are hatched, the solution has a bold outline.

the sub-heuristic h for r moves to B′ (line 11). After the sub-heuristic has finished we check if
B′ is the best partial solution so far (line 12) and if true, we store the best move as m′′ and the
best partial solution as B′′. After we iterated through all possible movesM we append the best
move m′′ to the list of moves σ and apply it to the current state B (line 10).

The PILOT method behaves like the Greedy construction heuristic with an additional heuris-
tic calculation at each step. Therefore, the average runtime of the PILOT method isO(w2 ·r ·os)
where w is the number of stacks, r is the number of steps for the sub-heuristic and os is the av-
erage run time of the sub-heuristic. There is no upper limit for the number of moves so we can
not predict the overall runtime of the PILOT method.

Using a strategic sub-heuristic and compound moves

During our preliminary tests for PILOT method using 2D-LPFH as a sub-heuristic, we notice
significantly poorer performance compared to 2D-LPFH without PILOT method. The reason
for this is that 2D-LPFH is a strategic heuristic that chooses a container c to be moved, creates
a sequence of moves m to enable the container c to be moved and finally moves it to its final
position. PILOT method does not respect the described strategy, instead it applies the first move
m(1) from the sequence and proceeds to the next iteration. Once m(1) is applied, there is no
guarantee that 2D-LPFH will pursue the same strategy in the next iteration for two reasons:
First, because of its stochastic nature and second, 2D-LPFH no longer decides which strategy
to pursue, instead PILOT method makes a greedy decision based on heuristic values returned
by the sub-heuristic. Thereby the sub-heuristic is reduced to a function that merely evaluates
possible directions and PILOT method greedily chooses and applies moves, one at a time. This
behaviour of PILOT method creates unnecessary moves and yields worse results.

To enable usage of strategic sub-heuristics, we add a deeper integration of the sub-heuristic
into PILOT method by introducing two main changes: First, we introduce compound moves as
described by Bortfeldt and Forster (2012). A compound move m is a sequence of moves, with

28

Algorithm 5.1 PILOT method
Input: B : initial state; h : sub-heuristic; r : number of moves to look ahead; f : evaluation

function
1: σ ⇐ empty list
2: while f(B) > 0 do
3: M⇐ set of all possible moves in state B
4: ifM == ∅ then
5: return σ
6: end if
7: B′′ ⇐ ∅
8: m′′ ⇐ empty move
9: for all m′ ∈M do

10: apply move m′ to B by yielding new state B′
11: apply sub-heuristic h to B′ for r − 1 moves
12: if f(B′) < f(B′′) ∨ B′′ == ∅ then
13: B′′ ⇐ B′
14: m′′ ⇐ m′

15: end if
16: end for
17: append m′′ to σ
18: apply move m′′ to B by yielding new state B
19: end while
20: return σ
Output: list of moves

at least one move:

m = (m1,m2, . . . ,mp) , (p ≥ 1) . (5.1)

Second, the set of possible movesM is a set of compound movesM returned by the algorithm
with respect to the given layout B.

A movem is now a compound move m and the set of movesM is a set of compound moves
M. For the random and greedy construction heuristic, the set of all moves is equivalent to the
set of compound moves returned by the algorithm, where all compound moves have a length
of one. Since the introduced changes do not change the behaviour of the previously described
Algorithm 5.1, but only impact the way it is implemented, we do not reflect these changes in the
pseudocode.

This fix has shown to improve performance, but it confines the search space to the moves
that can be performed by the sub-heuristic, thereby disabling exploration. This eliminates the
possibility of finding a better solution that the sub-heuristic is not able to construct itself, but this
is not a problem for PILOT method as it is intended to serve as a "guide" for the sub-heuristic.

29

5.2 Ant Colony Optimization

A metaheuristic is a computational method that iteratively tries to improve an initial solution
with respect to an evaluation function. Metaheuristics can cover a wide search space, but they
do not guarantee to yield an optimal solution. They make little or no assumptions about the
problem being solved so they can be applied to a given optimization problem with little or no
modifications. Metaheuristics can be seen as a universal heuristic that guides a problem-specific
heuristic towards areas of the search space containing better results. Examples of metaheuristics
are tabu search (Glover, 1989, 1990), simulated annealing (Kirkpatrick et al., 1983) and ACO
(Dorigo and Stützle, 2004).

ACO is a population-based metaheuristic inspired by nature that tries to reproduce features
of collective intelligence shown by real ants. In a population-based algorithm, instances locally
create changes and thereby influence the creation of global features that can be used to improve
an initial solution. This allows us to solve complex distributed problems using simple local
interactions without the need to create a global centralized system. The basic idea of self-
organizing principles that allow highly coordinated behaviour of real ants can serve as inspiration
for creating new algorithms whose parts cooperate in solving a problem.

ACO was inspired by the way ants cooperate within a colony. Most ant species have a poorly
developed visual perceptive or are completely blind. Their communication is based on leaving
ant produced chemical trails on the ground. These chemicals are called pheromones. Each ant
leaves a trail of pheromones behind him and he can sense pheromone trails left by other ants.
Pheromones fade over time by evaporating. If an ant uses a path that another ant used before
him, the pheromones trail on this path will be reinforced with new pheromones each time it is
used. With time, the most used path will have a dominant trail of pheromones on it and this will
cause (almost) all ants to follow the dominant trail.

Double bridge experiment

An example of the described behaviour is demonstrated in a double bridge experiment performed
by Deneubourg et al. (1990) and Goss et al. (1989) using a colony of the Argentine ant (I.
humilis). In this experiment, a double bridge is placed between a nest of ants and a food source,
as shown in Figure 5.2. Ants are allowed to freely move between the nest and food source
and the number of ants that chose one of the branches is observed over time. Before starting the
experiment there are no pheromones on the paths and as ants walk they deposit small amounts of
pheromones behind them. The experiment is repeated with different lengths of the two branches
of the double bridge, where ll is the length of the longer and ls is the length of the shorter branch.

In the first case (Figure 5.2a) the bridge has two branches of equal lengths, ll/ls = 1. Since
there are no pheromones, the ants do not have a preferred path so they randomly choose a branch.
With time, the majority of ants choose only one of the two branches even though both branches
are of equal length. This can be explained if we observe the pheromone trails. Due to random
fluctuations, one branch is chosen by a few more ants than the other branch which causes more
pheromones to be deposited on that branch. A stronger pheromone trail will attract more ants
and result in an even stronger pheromone trail which will in the end cause all ants to converge
to one branch. This process is an example of self-organizing behaviour we discussed earlier.

30

15 cm

Nest Food

(a) Double bridge with branches of equal length.

15 cm

Nest Food

(b) Double bridge with branches of different
lengths.

15 cm

Nest Food

(c) Double bridge with branches of different
lengths where only the longer branch is accessible.

Figure 5.2: Double bridges experiment with Argentine ant colony. The figures show a double
bridge placed between a nest of ants and a food source.

In the second case, the bridge has two branches where the longer one is twice the length of
the shorter branch, ll/ls = 2 (Figure 5.2b). When the experiment is started the ants have no
pheromone trail to follow so both branches appear equally "good" to them and both branches
are chosen equally often as in the first case. The ants that choose the shorter branch are quicker
to get to the food source and start their return to the nest. On their way back they have to make
another decision and the higher pheromone values on the shorter branch will bias them towards
the shorter branch. With time, more pheromones accumulate on the shorter branch and most of
the ants choose it over the longer branch. Some ants still choose the longer branch and this can
be seen as a form of path exploration.

In the third case, the ants are only presented with the longer branch (Figure 5.2c). After 30
minutes the shorter branch is offered but the ants were trapped in using the longer branch. The
shorter branch is only sporadically chosen by very few ants. This can be explained by observing
the pheromone trails. Over the first 30 minutes of the experiment the ants deposit a large amount
of pheromones on the longer branch. After the shorter branch is offered, all ants will choose
the dominant pheromone trail and the shorter branch is chosen only sporadically. Even though

31

with time, more ants will start to choose the shorter branch, the majority of ants will still use
the longer and keep reinforcing the pheromone trails. This autocatalytic behaviour cannot be
avoided because the pheromone trails do not evaporate fast enough.

From colony to algorithm

Figure 5.3 shows two double bridges connected in a sequence between the nest and food source
through three stages of ant behaviour. Each bridge has two branches where the longer one is
twice the length of the shorter branch, ll/ls = 2 (Figure 5.2b). In the first stage (Figure 5.3a),
there are no pheromone trails yet and the ants randomly select branches until they construct an
initial solution. In the second stage (Figure 5.3b) the pheromone trails are existent but there is
still no dominant trail that the majority of ants will follow so a lot of exploration can be seen. In
the third stage (Figure 5.3c) there is a dominant pheromone trail that is chosen by the majority
of ants and follows both shorter branches.

(a) Stage 1: initial path
construction (b) Stage 2: exploration (c) Stage 3: converging

Figure 5.3: Three stages of the double bridge experiment with unequal lengths of brides. The
ants move from their nest (blue) to the food source (yellow) and leave a pheromone trail behind
them that is depicted with an orange or red line. The stronger the pheromone trail, the thicker

the line.

ACO uses the ant’s behaviour to model a self-organizing distributed system for finding the
shortest path. Real ants are replaced with ant construction algorithms and pheromone trails are
replaced with a pheromone model that stores numeric values instead of ant produced chemicals.
The ant construction algorithm uses pheromone values form the pheromone model and heuristic
values from a heuristic function to make an informed decision in each step.

32

The three previously described stages can also be observed in ACO. Before the metaheuris-
tic is started, an initial solution has to be constructed and the pheromone values have to be
initialized. When the algorithm is started we repeat three basic steps: construct ant solutions,
update pheromones and perform daemon actions (optional). After some time we might observe
stagnation in the algorithm because it will converge towards a dominant solution that is strongly
reinforced by pheromone values. These three steps are repeated (in parallel or sequence) and the
specifics of the implementation are left to its author.

In Algorithm 5.2 we provide these steps in a pseudo-code for ACO exactly as it was de-
scribed in Dorigo and Stützle (2004) in Figure 2.1, page 38.

Algorithm 5.2 ACO metahueristic – Basic steps

1: while schedule activities do
2: construct ant solutions
3: update pheromones
4: daemon actions % optional
5: end while

Daemon actions are problem specific actions that are applied after the ant construction phase
and in some cases after the pheromone update. They include centralized actions that cannot be
performed by single ants, such as local search improvement or gathering of global information
for future decisions.

5.3 Max-Min Ant System

ACO has multiple available versions and we need to choose a version that will be suitable for 2D-
PMP and have good performance. We decided to use theMAX−MIN Ant System (MMAS)
(Stützle and Hoos, 2000) version of the ACO because it is the most researched and best per-
forming version of ACO. We also consider it to have the best trade-off between simplicity and
performance. Some guidelines and best practices are given in Dorigo and Stützle (2004) and we
mostly use them when designing our MMAS algorithm for the 2D-PMP.

MMAS is a well-known extension of ACO that strongly favours the best constructed so-
lutions. It is characterized by four features: First, only the best ant may update pheromone
trails. Second, pheromone values have strict upper and lower bounds τmin and τmax, respec-
tively. Third, all pheromone values are initiated with τmax and the evaporation rate ρ is kept low.
Fourth, the algorithm performs restarts after finding no improvement for a certain number of it-
erations. The first feature of favouring the best solution could cause stagnation so the remaining
three features were introduced. Keeping pheromone values within limits does not allow the best
path to be "too good" and the less visited paths to be "too bad". The initial maximum value of all
pheromones encourages exploration in the beginning and the occasional resetting of pheromone
values prevents stagnation.

For solving the 2D-PMP with MMAS, we consider the problem a path-construction problem,
where nodes represent container bay states, and edges represent container movements. Thereby,
we search for a (shortest) path from the initial node to a node that is a valid final state.

33

Binitial

B3

B2

B1

B5

B4

B8

B7

B6

B11

B10

B9

(0,1)

(3,4)

(5,2)

...

...

...

(2,2)

(0,4)

(4,5) (2,0)

(1,2)

(2,4)

(4,2)

Figure 5.4: An example of an ACO solution network. Nodes are states and edges are moves.
Squared nodes are valid final states and hatched nodes are blocked states (no more possible

moves). Moves are denoted on edges as (s, s′).

Since there are multiple solutions, there are equally many final nodes. This could prove to be
a problem for ACO because the pheromone values for reaching the final solution are dispersed
over multiple solutions and thus weakened. We did not notice an impact on performance but
nevertheless, we partially solve this potential problem by automatically directing the ants toward
a final solution if it is reachable in one move from the current state. Other possibilities for solving
this problem are representing all final nodes the same way or adding a virtual ultimate final node
that is reachable from all other final nodes.

The described problem representation can be seen in Figure 5.4. Nodes are numbered states
Bi and edges are assigned moves (s, s′). Squared nodes are valid solutions, hatched nodes are
blocked states with no possible moves and all other nodes are intermediate states in the solution
construction.

In the following sections we describe individual algorithm components before we finally
present our implementation of MMAS in Section 5.3.

Pheromone models

Pheromone values can be tracked using different features of the problem being solved. Since
we represent the 2D-PMP as a path construction problem we want to use the states (nodes) and
moves (edges) of our solution. Since we only evaluate states, we can say that each move is as
good as the state it leads to. To add more information to the pheromone model we can also
track a combination of our current state and the move we make from this state. In this sections
we build up these ideas into pheromone models and explain the initialization, evaporation and
update procedures.

We start with the simplest pheromone model that only observes the current state and extend
it to a pheromone model that includes pheromone values for all possible moves out of each
visited state.

34

State based pheromone model

Each pheromone value in the state based pheromone model reflects a move that leads to a par-
ticular state. This means that if some state Bj is reachable from more states Bi, the pheromone
value for Bj will be the same in all Bi states. The advantage of this pheromone model is that
it aggregates pheromone values (in comparison to the move based p.m.) instead of dispersing
them. Thus, we get less but more meaningful pheromone values. The obvious disadvantage of
this model is that it fails to store valuable information about the current state. One could say that
this is a greedy pheromone model because it only stores the quality of the next state.

Binitial B1

B2

B3

B4 B5

τB1

τB2

τB
3

τB
4

τB4

τB5

Figure 5.5: State based pheromone model example. States are nodes, squared nodes are valid
final states and pheromone values are denoted on edges. Pheromone values depend only on the

next state.

An example of how the state based pheromone model works can be seen in Figure 5.5. This
model is specific because in any given state Bi, if state Bj is reachable via a move mBi,(s,s′), this
movem will always have the same pheromone value τBj . The model can be stored as a mapping
between states and pheromone values.

Move based pheromone model

The move based pheromone model extends the state based model by pairing the information
about the current state with each move. In a way, this model stores a state based model for each
state thus making it a two dimensional pheromone model.

Each state B has a set of possible moves M and each of these moves m is assigned a
pheromone value τB,m. Each state will have its own unique set of pheromone values. A state
B can be reached via multiple different moves and for each of these moves, B has a different
pheromone value.

An example for this model is shown in Figure 5.6. As we can see, all pheromone values
depend on the current state Bi and the move ms,s′ ∈ M that is being made. The pheromone
value can be denoted as τBi,ms,s′ .

Initializing, evaporating and updating pheromone values

Before we run the MMAS algorithm, pheromone values need to be initialized. Then, when
it is running, pheromone values need to be evaporated as time passes and updated each time

35

Binitial B1

B2

B3

B4 B5

τB0,m(1,0)

τB1,m
(2,

3)

τB
1 ,m

(4,3)

τB
2 ,m

(2,4)

τB3,m
(3,

1)

τB4,m(6,2)

Figure 5.6: Move based pheromone model example. States are nodes, squared nodes are valid
final states and pheromone values are denoted on edges. Pheromone values depend on the

current state and selected move.

an ant uses a path, just like in the real world example of ants shown in section 5.2. In the
following text, we describe how pheromone values are initialized, evaporated and updated in
our implementation of MMAS.

MMAS introduces a notion of minimal τmin and maximal τmax pheromone values to limit
the influence of the best solution and encourage exploration of less visited paths. Exploration
is also encouraged in the first iterations by setting the initial pheromone values to τmax and
gradually evaporating them, allowing the algorithm to explore other solutions before a dominant
solution appears. Pheromone limits are calculated using formulae given in Dorigo and Stützle
(2004), Box 3.3 "Parameter Settings for ACO Algorithms with Local Search" (page 96) and
shown below.

τmax =
1

ρ ∗ Cbs (5.2)

τmin =
1

2 · n (5.3)

In Equation 5.2, τmax is equal to the reciprocal value of the multiplication of evaporation rate
factor ρ and global best solution value Cbs. We use the number of moves |σ∗| as the values of
the best solution. τmax is initialized using a heuristic algorithm to construct the first global best
solution and recalculated each time a new global best solution is found. In Equation 5.3, τmin is
equal to the reciprocal value of twice the number of ants n.

When starting the MMAS algorithm, all pheromone values need to be set to an initial value,
which is in our case, the maximum value τmax. The same process is repeated if the algorithms
detects stagnation. Stagnation is detected by counting the number of consecutive iterations i
without improvement of the global best solution σ∗ as shown in Algorithm 5.4. After each iter-
ation, we check if the number of consecutive runs without improvement i has reached the limit
imax (line 10) and if true, we reset all pheromone values to their initial state, τmax. Otherwise,
we proceed with evaporating pheromone values. The global best solution is always kept.

To simulate pheromone evaporation, we decrease all pheromone values for a given factor ρ to
ensure that unvisited paths have a lower influence on future solutions. Evaporation is performed

36

using the following formula on all pheromone values:

τ ′B,m = max (τmin, τB,m · (1− ρ)) (5.4)

The formula given in Equation 5.4 decreases the pheromone value by multiplying it with (1−ρ),
but also ensures that the pheromone value τB,m cannot be set to a lower value than τmin.

Pheromone values are updated after each iteration to simulate depositing pheromone trails
on a path. This is done by increasing all pheromone values that correspond to a state or combi-
nation of state and move (depending on the used pheromone model) found in the given solution
σ. As previously mentioned, MMAS strongly favours the best ant, so we update pheromone
values only for the best solution in the current iteration. To kick-start the pheromone values
after a reinitialization, or simply reinforce the global best solution’s path, MMAS will update
pheromone values using the global best solution σ∗ instead of the iteration best solution with
probability pσ∗ . All pheromone values that correspond to the given solution’s path are updated
using the following formula:

τ ′B,m = min

(
τmax, τB,m +

1

|σ|

)
(5.5)

In Equation 5.5 we increase the pheromone value τB,m by the reciprocal value of the number of
moves in the given solution σ. In case the new pheromone value is greater than τmax, the new
pheromone value will be equal to τmax.

Ant construction algorithm

The ant construction algorithm is modelled according to guidelines Dorigo and Stützle (2004),
Chapter 3. All ants start from an initial state B and construct a path σ that renders the initial
state a valid final state. In each step the ants calculate probabilities for all possible moves M
as a combination of the heuristic η and pheromone τ values. The heuristic values are calculated
using one of the previously described heuristic algorithms (2D-LPFH, random and greedy con-
struction heuristic and PILOT method). We call the heuristic to find a valid solution starting
from the current state B. If the heuristic finds a valid solution, the number of moves between
the current state B and final solution is used as the heuristic value. A move is then chosen using
a probabilistic action choice rule called the random proportional rule. These steps are repeated
until a solution is reached. If a valid solution cannot be found, the ant returns a partial solution.

The ant construction algorithm is given in Algorithm 5.3. It takes two arguments: an initial
state B and an evaluation algorithm f . In each iteration, we first determine all possible moves
M for the current state B. IfM contains a move m̂ that leads to a valid final state, we append
m̂ to our list of moves σ and return σ (line 5 to 8).

For each move m inM, we calculate a probability pB,m using the random proportional rule
(line 9):

pB,m =
[τB,m]α[ηB,m]β∑
l∈MB [τB,l]α[ηB,l]β

, if m ∈MB (5.6)

37

Algorithm 5.3 Ant construction algorithm

Input: B: initial state, f : evaluation function
1: σ ⇐ empty list
2: fe ⇐ f(B)
3: while fe > 0 ∨ other stopping criteria do
4: M⇐ set of all possible moves in state B
5: ifM contains a move m̂ leading to a final state then
6: append m̂ to σ
7: return σ
8: end if
9: P ⇐ calculate probabilities for all m ∈M

10: psum ⇐ 0
11: r ⇐ random number between 0 and 1
12: for each m ∈M do
13: psum ⇐ psum + Pm
14: m′ ⇐ m
15: if psum ≥ r then
16: break
17: end if
18: end for
19: append m′ to σ
20: apply move m′ to B yielding new state B
21: fe ⇐ f(B)
22: end while
23: return σ
Output: list of moves

where τB,m refers to the pheromone value of movem from stateB and ηB,m refers to the heuristic
value of move m from state B. α and β define the relative influence of pheromone and heuristic
values in the probability calculation.

In the next step we select the next move. A random value r between 0 and 1 is chosen (line
11). We select the next move m′ by summing up the probability values Pm until the sum psum
reaches or passes the chosen random value r (lines 12 to 18). The last movemwhose probability
Pm was added to the sum psum is chosen as the next move m′ (line 14). We add m′ to our list
of moves σ and apply m′ to B (line 20). This procedure is repeated until a valid final solution,
time limit or maximum number of moves has been reached. Finally, we return a list of moves.

The an construction algorithm has an average runtime ofO(|M|) because we have to iterate
over all moves to check if any move leads to a final state as well as calculate the pheromone
and heuristic value of each move. The average runtime can also be express in relation with the
number of stacks w using Equation 4.6, thereby making the average runtime equal to O(w2).
Unfortunately, we also have to take into account the runtime of the heuristic algorithm. The
worst performing heuristic algorithm is the Greedy construction heuristic O(w2), thereby mak-

38

ing the worst case runtime of the ant construction heuristic O(w4).
Each ant runs this algorithm and all ants are run in parallel. Given that the underlying

hardware can support it, we can run an arbitrary number of ants without a major impact on the
running time. This is allowed by the design of the algorithm, since the only shared resource is
the read-only pheromone model.

Using a strategic heuristic and compound moves

It is important to note that if a strategic heuristic is used for calculating the heuristic values,
we apply the same changes as described in Section 5.1. A move m is replaced by a compound
move m, and the set of possible movesM (line 4) is replaced by the set of possible compound
movesM that are returned by the heuristic algorithm. Further, this change is propagated to the
pheromone model, where a move m is replaced by a compound move m, so now a state is B is
paired with a compound move m. Thereby, pheromone values would be denoted as τB,m.

Once more, these changes do not change the behaviour of Algorithm 5.4, but rather the
implementation, so we do not reflect these changes in the pseudocode.

MMAS algorithm

The detailed steps of the MMAS are given in Algorithm 5.4. The algorithm takes four param-
eters: the initial state B, the number of ants n, the number of maximum consecutive iterations
without improvement imax and pσ∗ . Before the algorithm starts iterating we need to initialize
the pheromone values (line 2). In each iteration the algorithm constructs n ant solutions (line 4)
that are subsequently improved using a local search procedure (line 5). The best constructed
solution σ is selected from the set of constructed solutions {σi} (line 6). In case σ provides an
improvement, the global best solution σ∗ is updated and the no improvement counter i is reset
to 0 (line 8), otherwise we increase i by 1. In case the number of consecutive iterations with-
out improvement i exceeds the threshold imax (line 10), the pheromone values are reinitialized
(line 11) and i is reset to 0. Finally the pheromone values are updated in lines 16 to 21. The
decision whether to use the iteration best or global best solution is based on the probability pσ∗ .
These steps are repeated until either the number of iterations or time limit has been reached. The
algorithm returns the best found solution σ∗.

39

Algorithm 5.4MAX−MIN Ant System for 2D-PMP

Input: B: initial state; n: ant count; imax: maximum number of consecutive iterations without
improvement; pσ∗: probability for using the global best solution for pheromone update

1: i⇐ 0
2: initialize pheromone values
3: while stopping criteria not satisfied do
4: {σi} ⇐ construct set of n ant solutions from B
5: {σi} ⇐ apply local search to all solutions in {σi}
6: σ ⇐ find best solution in {σi}
7: if σ < σ∗ then
8: σ∗ ⇐ set σ as new global best solution
9: i⇐ 0

10: else if i > imax then
11: reinitialize pheromone values
12: i⇐ 0
13: else
14: i⇐ i+ 1
15: end if
16: r ⇐ choose random number in [0, 1]
17: if r < pσ∗ then
18: update pheromones with global best solution
19: else
20: update pheromones with iteration best solution
21: end if
22: end while
23: return σ∗

Output: list of moves

40

CHAPTER 6
Local search algorithm

In this chapter we present a local search procedure that uses our path representation of the
solution from the ACO to find shortcuts in the path.

6.1 Shortcut heuristic

This local search algorithm explores all possible connections between two states of a solution. If
a connection between two states is discovered, this means that the other moves in between those
two states can be "cut out", thereby making the solution shorter.

Given a solution σ, the heuristic tries to find ’shortcuts’ in the solution. More specifi-
cally, the algorithm tries to detect cases where two states B1 and B2 that are connected with
moves {mj , ...,mk} ∈ σ can be connected with a single move m̂. In this case, the sequence
{mj , ...,mk} can be replaced by m̂ in the solution and thereby shorten the solution σ for
k − j − 1 moves. Fig. 6.1 illustrates such a shortcut between states B2 and B5, eliminating
moves m2,m3,m4, shortening the solution by two moves.

B1

B2

B3 B4

B5

B6

m
1

m2

m3
m
4

m
5

m̂

Figure 6.1: Shortcut heuristic depiction.

We define the neighbourhood of a state as the set of all states that are reachable with one
move. The local search procedure starts by pairwise comparison of neighbourhoods of all states

41

in a solution. If there is an intersection between two neighbourhoods this means that there is a
move that connects the two states and that we found a shortcut. We want the shortcut to start as
close as possible to the initial state and end as close as possible to the final state to "cut out" as
many states as possible.

Algorithm 6.1 Shortcut heuristic - Local search improvement heuristic

Input: B ⇐ initial state; σ ⇐ solution
1: for all m ∈ σ ascending do
2: SB ⇐ set of all reachable states from state B
3: Sσ ⇐ set of all states in σ after B
4: if SB ∩ Sσ 6= ∅ then
5: m̂⇐ move between B and the B′ ∈ SB ∩ Sσ with maximal distance to B
6: replace moves between B and B′ in σ with m̂
7: apply move m̂ to B yielding new state B
8: else
9: apply move m to B yielding new state B

10: end if
11: end for
12: return B
Output: improved or equal solution

The shortcut heuristic is outlined in Algorithm 6.1, where we iterate over the set of moves
in the given solution k in lines 1 to 11. In each of those iterations we check for intersections
between the set of all reachable states SB in the current state B and the set of all states Sσ of the
current solution σ occurring after the current state B. In case the intersection SB ∩ Sσ is not an
empty set (line 4), then the state(s) in SB ∩ Sσ can be reached by one move from B. Therefore,
we choose the state B′ in SB ∩ Sσ that has the biggest distance from B (i.e. the state B′ that is
closest to the final state), and replace the moves between B and B′ in the solution with the move
m that connects B to B′ (line 6). The final result is an improved or equal solution.

When not implemented well this algorithm will run too long to be a useful local search
procedure that can be used between iterations of another algorithm. Since we have pairwise
comparison with neighbourhood intersection at each pair, the average runtime is O(n3) where
n is the number of moves within the solution σ. The pairwise comparisons need to be efficient
and we need to enable an early return from the local search procedure. This is done by start-
ing from the first state and comparing it with all states from the last one to the state after the
current one. Thereby we can stop as soon as we find a shortcut because it will be the longest
possible shortcut. For further performance improvement we also encoded all states as strings
and performe moves by shuffling characters within a string to reduce the number of operations
in heavily used functions like state comparison and applying moves to states. Unfortunately all
mentioned optimizations will not reduce the time complexity of our local search algorithm, but
they will reduce the number of preformed operations and thereby take less time to execute the
algorithm.

42

CHAPTER 7
Experimental evaluation

In this chapter we present the experimental evaluation of the developed algorithms. We start by
presenting the set of instances used for testing and our testing environment. This is followed by
multiple sections in which we explain the experiment and present the results one after the other.

The first sections describing experiments and their results cover the random, greedy and
2D-LPFH heuristics, followed by the PILOT method and MMAS. In the last section, we offer a
comparative analysis of MMAS and 2D-LPFH.

7.1 Instances

Our experiments are conducted on a predefined set of instances. We divide the instances into
categories based on the number of stacks and their occupancy rate. Each category contains 50
instances.

Our set of instances consists of container bays with h = 4 tiers, w ∈ {4, 6, 8, 10} stacks and
q ∈ {50%, 75%} occupancy rate. An occupancy rate of, e.g. q = 75% means that a container
bay configuration with h = 4 tiers and w = 8 stacks will have |C| = h · w · q = 24 containers.
Different combinations of the number of stacks and occupancy rate allow for 8 categories of
instances. Within each category there are no further levels of difficulty. All containers within an
instance have unique priorities and are randomly positioned. This set of instances is referred to
as the regular set and it contains 400 instances.

For running preliminary tests we use a sample set that consists of 50% of instances of each
category in the regular set. Since all instances are randomly generated and do not have a partic-
ular ordering, we select the first 25 instances of each category from the regular set as the subset
of instances for the sample set. This set contains 200 instances.

After preliminary testing result, we discovered that a category of instances with more stacks,
could provide more insight into the performance of MMAS and 2D-LPFH. Therefore we define
four further categories with h = 4 tiers, w+ ∈ {12, 14} stacks and the previously defined
occupancy rates q ∈ {50%, 75%}. This set is referred to as the BIG set and it contains 200
instances.

43

h w |C| q Category name Sample Regular Big

4 4 8 50% q50w04 25 50 –
6 12 q50w06 25 50 –
8 16 q50w08 25 50 –

10 20 q50w10 25 50 –
12 24 q50w12 – – 50
14 28 q50w14 – – 50

4 4 12 75% q75w04 25 50 –
6 18 q75w06 25 50 –
8 24 q75w08 25 50 –

10 30 q75w10 25 50 –
12 36 q75w12 – – 50
14 42 q75w14 – – 50

Table 7.1: An overview of instance categories, their short names and number of category
instances in the three sets of instances.

All instance categories are listed in Table 7.1. For easier reference, we define a short name
for each category. The short name is an abbreviation specifying the number of stacks and occu-
pancy rate. E.g., q75w10 stands for a container bay configuration with q = 75% occupancy rate
and w = 10 stacks. The table also states the number of instance from each category included in
different test sets.

For generating instances we use the PMP instance generator provided by Expósito-Izquierdo
et al. (2012). In the instance generator we only set the number of bays, tiers, stacks and contain-
ers to generate one of the previously described categories. The number of groups and levels is
set to one since we use unique priorities and we cannot use the difficulty levels predefined for
PMP due to different constraints of the problems. All instances are generated randomly and they
are valid and unique.

We do not use virtual tiers in our experiments. A virtual tier is an additional tier that is added
on top of the existing container bay. The algorithm is allowed to use a virtual tier as a regular
tier and the solution can contain containers in a virtual tier. All our instances are h = 4 tiers tall
and the algorithm is not allowed to place containers above the top tier as it is done by Caserta
and Voß (2009); Expósito-Izquierdo et al. (2012); Prandtstetter (2013) and other authors. The
reason for this is that adding two virtual tiers on top of a q = 75% occupancy bay creates a
q′ = 50% occupancy bay with h′ = 6 tiers. Not using these tiers allows us to stress-test our
algorithms by leaving only one free tier for container manipulations. E.g., in a container bay
configuration with h = 4 tiers, w = 6 stacks and an occupancy rate of q = 75% this leaves six
slots for manipulating 18 containers.

Figures from A.1 to A.10 show examples of different sizes of container bays. The largest
category of instances q75w14 (Figure A.10) is more than five times bigger than the smallest
category q50w04 (Figure A.1).

44

7.2 Testing environment

All experiments are carried out on a machine with four Intel Xeon (E5645) processors, each
with six cores at 2.40 GHz, along with 200 GB of RAM. The underlying system is Ubuntu
13.04. with Java 1.7. Please note that our experiments do not require this much computational
power and memory to achieve good results. Our goal is to provide a testing environment where
we do not have to deal with hardware limitations and can evaluate our algorithms full potential.

Our implementation of MMAS runs all ant construction algorithms of one iteration in par-
allel, each in its own thread. This way we utilize multiple cores and significantly decrease the
computation time.

At the time of running our experiments there are no other processes running on our testing
machine, except for the necessary operating system processes that cannot be disabled. Therefore
all 24 cores were fully available for our tests. Due to long run times of most of our experiments,
we run them in parallel, but always ensuring that at least two thirds of the computational re-
sources were free to avoid slowing down any of the experiments.

7.3 Experiments

We perform experiments with Greedy and Random construction heuristics, 2D-LPFH, PILOT
method and MMAS. All mentioned algorithms, except for the greedy construction heuristic, are
of stochastic nature. Therefore we run all test cases ψ times for each instance.

An overview of all experiments is provided in Table 7.2 where we specify the algorithm
and aspect of that algorithm that is explored in this experiment, along with the set of instances
the experiments were conducted on. The last column specifies ψ. In each experiment there are
multiple test cases, 34 test cases in total.

Experiment Instance set

Algorithm Aspect Sample Regular Big ψ

Greedy – X X 1
Random – X X 150

2D-LPFH lambda values X X 150
2D-LPFH extended runtime X 1

PILOT greedy X X 1
PILOT random X X 150
PILOT 2D-LPFH X X 150

MMAS ant count X 5
MMAS pheromone values X 5
MMAS heuristic X 5

Table 7.2: Overview of conducted experiments and the used sets of instances

45

To ensure all experiments terminate within a reasonable amount of time, they are terminated
in case no solution is found after a time limit of five minutes (wall clock time) or 500 moves of
a single run, whichever is reached first. In case a solution is found the experiments terminate
themselves. The same termination rules are used for MMAS, i.e. it terminates after 500 itera-
tions or five minutes. The only difference is that the ant construction algorithm has a lower move
limit of 250 moves since we do not want extremely bad solutions appearing in the pheromone
trails. As you will notice in the results, 250 and 500 moves is a generous move limit since
we expect solutions with less than 100 moves for the biggest categories of instances (h = 14,
q = 0.75).

All experiments use the same evaluation function, Penalty evaluation function (Equation
4.4) with parameters α1 = 1.0, α2 = 0.5 and α3 = 1.0. After each algorithm is finished, the
local search procedure Shortcut heuristic (Section 6.1) is applied.

Result analysis

Results of all experiments are stored in CSV files and analysed using the statistical computing
language R1. We store the following information for the best runs: instance details (name, stacks,
tiers, containers...), algorithm name, time and date of test start, evaluation value and duration (in
milliseconds), move count and list of moves.

We always report only the best solution out of all runs. Results of instances with partial
solutions are excluded from the results and we ONLY evaluate valid solutions (i.e. the evaluation
value is zero). All reported average values and standard deviations include all valid solutions for
the observed group. For comparison between two approaches we use the Wilcoxon paired rank
sum test (WPRST) (Wilcoxon, 1945) with a significance level of α = 0.05.

Below, we define the meaning of each abbreviation appearing in the coming sections. This
meaning is preserved throughout the remainder of this work, unless stated otherwise.

N number of solved instances for given category and algorithm

Average average number of moves for given category and algorithm

St.dev standard deviation from the average number of moves for given category and algorithm

7.4 Random and greedy construction heuristics experiment

The random and greedy construction heuristics were used to observe how two completely naive
construction heuristics would perform for the 2D-PMP. Tests were run on the whole set of in-
stances. Unfortunately, they were barely able to solve any instances. The greedy construction
heuristic solved two q50w04 instances with 73 and 68 moves. The random construction heuris-
tic solved all 50 q50w04 instances with an average of 34.34 moves and a standard deviation of
±23.37 as well as one q50w06 instance with 164 moves. Results are also provided in Table 7.3.

These naive construction heuristics failed at solving 2D-PMP instances because the solution
requires an exact ordering of moves (a path) to be a valid final solution. The random construction

1http://www.r-project.org/

46

http://www.r-project.org/

Algorithm Category N Average St.dev. Duration Dur.st.dev.

greedy q50w04 2 70.50 3.54 1.00 0.00
random q50w04 50 34.34 23.37 21.08 2.92
random q50w06 1 164.00 – 38.00

Table 7.3: Results for naive approaches over whole test set.

heuristic performed better because it was restarted multiple times, as opposed to the greedy
construction heuristic that always takes the same path and does not need to be restarted. The
evaluation function used in the greedy construction heuristic can easily lead the algorithm to run
in loops (e.g. around a local minimum), which are not allowed, and thereby cause the algorithm
to halt. If we give the random construction heuristic unlimited time and moves and allow infinite
loops, the random algorithm would solve all instances. However, under the same conditions as
all algorithms in this work, it was unable to do so. Another problem for these construction
heuristics is a large search space.

7.5 2D-LPFH experiments

2D-LPFH has only two parameters, λ2 and λ3. We test these parameters, choose the two best
parameter configurations and allow them to run equally long as MMAS to see if a longer run
time yields a better result and to have a benchmark for comparison with MMAS.

Table 7.4 lists all 2D-LPFH experiments. All test cases are numbered and have a specific
aspect of the algorithm that is being evaluated. We then specify the parameter values of λ2−3 as
well as the number of iterations and the time-out where applicable.

Nr. Experiment aspect λ2 λ3 ψ tmax(s)

1 lambda values 1 1 150 –
2 lambda values 2 2 150 –
3 lambda values 2 3 150 –
4 lambda values 3 3 150 –
5 lambda values 5 5 150 –
6 lambda values 10 10 150 –

7 time-out 2 2 – 300
8 time-out 10 10 – 300

Table 7.4: List of 2D-LPFH experiments. The table shows the parameters used in individual
experiments.

47

Lambda values

The lambda parameters, λ2 and λ3 of 2D-LPFH regulate its "greediness". A short reminder, λ2
regulates the number of possible destination stacks for the current container and λ3 regulates the
number of possible temporary stacks for interfering containers. If we restrict these parameters
to the lowest value, i.e. one, we observe a greedy and consistent behaviour. This is because
the algorithm is reduced to a greedy version of 2D-LPFH and it always makes the same choice.
Using higher values for these parameters allows the algorithm to make a random choice among
the top λ2 or λ3 options and thereby explore the solution space. Multiple runs yield multiple
solutions.

Although 2D-LPFH is an adapted version of the LPFH, the parameters retain the same mean-
ing and recommended values as in the original algorithm because only necessary changes were
made to satisfy the new constraints imposed by 2D-PMP. Therefore, we are able to use a similar
testing strategy as in Expósito-Izquierdo et al. (2012). We tested 2D-LPFH by taking the best
run of 150 runs. Since we wanted to find an overall best configuration we decided to run each
test case on the whole set of instances.

We define six test cases for the lambda values where we gradually increase the values of both
parameters. Experiments in Table 7.4 marked with 1 through 6 refer to the lambda test cases.
The first case is the greedy parameter value one, followed by the three slightly "relaxed" cases.
The last two cases are the "loose" parameter values of five and ten.

●
●

● ●
●0

5

10

15

20

25

30

35

4 6 8 10 12 14
Stacks

S
ol

ve
d

in
st

an
ce

s

Lambda values

● (1,1)

(2,2)

(2,3)

(5,5)

(10,10)

Figure 7.1: Number of solved instances per category for 2D-LPFH lambda test cases. Only
values for q = 0.75 are shown.

All 2D-LPFH lambda test cases have successfully solved all instances from the q = 50%
categories. The number of solved instances for q = 75% categories is shown in Figure 7.1.
Only 3 instances have been solved for the q75w04 category by all test cases except the greedy
test case, λ2,3 = 1 that solved none.

As we will see in further results, this is a common occurrence with all algorithms due to lack
of space. If we look at a sample instance of category q75w04 in Figure A.2, we can see that
there is only four empty slots available for manipulation of twelve containers. E.g., if 2D-LPFH
wants to move a container from second tier of stack s to the second tier of stack s′ in an instance

48

0.5 0.75

●
●

●
●

●
●

●

●

●

●

●

10

20

30

40

50

60

70

80

90

100

4 6 8 10 12 14 4 6 8 10 12 14
Stacks

A
ve

ra
ge

 m
ov

es

Lambda values

● (1,1)

(2,2)

(2,3)

(5,5)

(10,10)

Figure 7.2: Average number of moves per category for 2D-LPFH lambda test cases split by
occupancy rate. Values for q = 0.50 are shown on the left and q = 0.75 on the right.

of category q75w04, it will run out of temporary stacks for interfering containers. Virtual tiers
could resolve this problem, but of our goals was to stress-test our algorithm.

Further, the number of solved instances slowly grows for most test cases with the number of
stacks, until it reaches instances with more than ten stacks where it slowly declines. The reason
for this decline is a very large search space where the algorithm starts making single loops until
it exhausts all possible moves and blocks. Tests have shown that the test case for λ2,3 = 2 was
able to solve the most instances, 94% of the whole set of instances.

Figure 7.2 shows the average number of moves for all test cases, split by the occupancy rate
value. For the q = 50% categories, we can see two groups slowly splitting towards the higher
number of stacks. In the q = 75% categories we can see that most test cases perform equally
well, except for λ2,3 = 1 and λ2,3 = 2 that have a lower move average. The λ2,3 = 1 test case
result can be disregarded because of the very low number of solved instances, thereby making
the λ2,3 = 2 the best performing test case. Full test results are given in Table 7.7 where we
provide the number of solved instances and average number of moves per category with the
standard deviation. The standard deviation values are more than 10% of the average number of
moves, thereby overlapping with results of other categories. This occurs because the instances
within a category are randomly generated and thereby the number of non-well-located containers
is also random. To prevent such results we would have to create a specialized instance generator
that can fine tune the difficulty level within categories.

Table 7.5 shows the results of the WPRS test over all test cases. The table can be read
row by row where a checkmark in each row means that the test case of the current row has
a significantly lower number of moves than the test case in the given column. The test case
with most checkmarks in a row is the best performing test case, while the test case with most
checkmarks in a column is the worst performing test case. Thereby, the previous conclusion that
λ2,3 = 2 is the best performing test case is confirmed.

Further, in Table 7.6 and Figure 7.3 we present the average run time in milliseconds. The
average run times are between 5 and 50 milliseconds per instance, depending on the category.

49

a < b (1,1) (2,2) (2,3) (5,5) (10,10)

(1,1) – X X X
(2,2) X X X X
(2,3) – – – X
(5,5) – – – X

(10,10) – – – –

Table 7.5: Results of WPRS test over all test cases for the number of moves. A checkmark
means that the results for the test case of this row are significantly smaller than the result for the

test case of the corresponding column.

The original LPFH has run times within the same interval. The standard deviation reveals the
same fact as previously mentioned, since the instances within categories are randomly generated,
the number of non-well-placed containers is also random. Thereby the large standard deviation
present in the average number of moves is reflected in the run time standard deviation.

In conclusion, the λ2,3 = 2 test case performed best, followed by the λ2,3 = 5 and λ2 =
2, λ3 = 3 test cases. These results confirm the same behaviour described in Expósito-Izquierdo
et al. (2012). The λ2,3 = 1 test case has once again shown that a greedy approach is not good
for the 2D-PMP since it is unable to solve most of the q = 75% instances.

Extended run time

To provide 2D-LPFH the same conditions as MMAS we run it consecutively for five minutes
on each instance and take the best solution. To clarify, this means that instead of running each
instance 150 times and taking the best result, we repeatedly solved the same instance for five
minutes. While running this experiment, there were no other processes running on the testing
machine that could interfere with the run times. This experiment will be executed on the sample
set of instances.

We choose the two best performing lambda configurations of 2D-LPFH, λ2,3 = 2 and λ2,3 =
5 for this experiment. One more reason for choosing the λ2−3 = 5 configuration was to see if
a bigger search space would perform better with a longer running time. If we take the average
of the two average run times for the chosen test cases, we get an average run time of (44.32 +
52.15)/2 = 48.23 milliseconds. Further, if we divide five minutes with the average run time,
we can calculate that each instance will be run an average of 5 ∗ 60 ∗ 1000/48.23 = 6219 times.
Results are provided in Figures 7.4 and 7.5.

As in the previous experiment, 2D-LPFH solved all q = 50% instances. Figure 7.4 shows
the number of solved instances for the q = 75% categories compared with the regular time test
cases with the same configuration. We can see a noticeable improvement for both test cases. The
λ2−3 = 2 test case solved on average five more instances, which is a 20% improvement. The
λ2−3 = 5 test case solved almost twice as much instances for q = 75% and w > 6 categories.

Figure 7.5 shows the average number of moves for the two extended run time test cases
compared with the same configurations presented in the previous chapter, split by occupancy

50

●

●

●

●

●

●

● ●

● ●

●

0

20

40

60

0

100

200

300

400

0.5
0.75

4 6 8 10 12 14
Stacks

A
ve

ra
ge

 d
ur

at
io

n
(m

s)

Lambda values

● (1,1)

(2,2)

(2,3)

(5,5)

(10,10)

Figure 7.3: Average duration in milliseconds (ms) per category for 2D-LPFH lambda test cases
split by occupancy rate. Standard deviation is represented with black bars. Values for q = 50%

are shown above and q = 75% below.

factor. The extended run time test cases have a significant reduction in the average number of
moves with respect to the regular run time test cases. For larger q = 50% instances there is a five
move reduction in average, whereas for the q = 75% instances there is a five to twelve moves
reduction in average. Thereby we may conclude that given a longer run time (more repetitions)
the 2D-LPFH can find a better solution.

If we compare only the two extended run time test cases we will see that the λ2−3 = 2 test
case performs slightly better and the WPRS test with an alternative hypothesis (λ2−3 = 2) <
(λ2−3 = 5) confirms this with a p-value lower than α = 0.05.

Full results are available in Table 7.8 where we provide the number of solved instances and
the average number of moves with the standard deviation.

51

Category Lambda values

(1,1) (2,2) (2,3) (5,5) (10,10)

Average q50w04 5.14 6.12 5.76 5.52 5.90
q50w06 10.59 10.80 10.48 10.90 11.06
q50w08 15.83 16.30 16.56 16.76 16.90
q50w10 21.94 25.00 25.24 27.40 27.92
q50w12 31.42 33.90 38.10 34.28 33.10
q50w14 41.32 45.72 51.70 45.56 48.20

q75w04 – 28.00 25.00 27.33 26.00
q75w06 18.73 49.25 42.10 39.85 41.41
q75w08 27.11 71.31 76.55 75.90 80.10
q75w10 54.50 86.84 93.27 118.00 97.08
q75w12 46.33 93.82 246.50 248.60 280.00
q75w14 190.00 111.70 178.60 239.40 228.00

Total 22.16 44.32 51.95 52.15 54.63

St.dev. q50w04 1.84 2.99 2.22 1.90 2.44
q50w06 12.09 3.42 4.67 3.86 4.60
q50w08 7.99 4.35 5.70 5.62 6.57
q50w10 5.31 8.02 11.11 9.09 11.16
q50w12 11.83 14.11 10.55 14.55 12.75
q50w14 12.14 16.98 20.45 22.71 22.68

q75w04 – 5.20 4.58 4.04 4.58
q75w06 16.24 16.81 16.40 18.66 17.68
q75w08 4.94 27.20 31.59 35.09 33.50
q75w10 20.51 34.44 48.02 55.41 49.86
q75w12 0.58 40.59 121.10 96.54 143.30
q75w14 – 50.35 88.34 89.81 114.30

Total 18.24 39.95 68.99 71.58 81.86

Table 7.6: Average run time in milliseconds with standard deviation of 2D-LPFH lambda test
cases.

52

Category Lambda values

(1,1) (2,2) (2,3) (5,5) (10,10)

N q50w04 50 50 50 50 50
q50w06 49 50 50 50 50
q50w08 48 50 50 50 50
q50w10 49 50 50 50 50
q50w12 50 50 50 50 50
q50w14 50 50 50 50 50

q75w04 0 3 3 3 3
q75w06 11 28 29 27 29
q75w08 9 36 31 30 30
q75w10 2 37 33 27 26
q75w12 3 34 22 19 24
q75w14 1 31 17 15 14

Total 322 469 435 421 426

Average q50w04 7.60 5.92 5.84 5.80 5.76
q50w06 13.47 11.20 12.16 12.56 12.36
q50w08 19.73 16.88 20.04 20.06 20.10
q50w10 24.57 23.30 27.68 27.62 27.96
q50w12 30.78 29.46 34.70 35.00 35.32
q50w14 36.94 36.24 43.68 43.46 45.12

q75w04 – 11.67 11.67 12.00 12.00
q75w06 27.18 29.18 29.55 29.78 29.07
q75w08 43.78 43.19 45.65 44.53 45.40
q75w10 55.50 59.81 61.70 62.78 65.31
q75w12 64.33 72.18 78.23 74.95 78.62
q75w14 80.00 85.10 94.12 92.73 95.79

Total 23.77 33.82 34.18 33.04 34.03

St.dev. q50w04 2.900 1.861 1.777 1.738 1.744
q50w06 4.184 2.955 3.310 3.315 3.391
q50w08 3.541 2.512 2.927 3.047 3.442
q50w10 3.385 3.046 3.706 3.669 3.870
q50w12 3.688 3.309 4.062 3.681 3.888
q50w14 4.017 2.911 4.028 3.840 3.526

q75w04 – 1.528 1.528 2.000 2.000
q75w06 6.431 4.839 6.294 6.116 5.732
q75w08 3.898 5.497 6.509 6.196 5.963
q75w10 7.778 5.849 6.410 6.053 6.565
q75w12 1.155 8.314 11.380 6.294 7.058
q75w14 – 8.837 10.100 7.146 10.610

Total 12.29 23.45 22.89 21.69 22.90

Table 7.7: Number of solved instances and average number of moves with standard deviation
for 2D-LPFH lambda test cases.

53

●

●

●
●

●
●

5

10

15

20

25

4 6 8 10 12 14
Stacks

S
ol

ve
d

in
st

an
ce

s

Lambda values

● (2,2) normal

(5,5) normal

(2,2) extended

(5,5) extended

Figure 7.4: Number of solved instances per category for 2D-LPFH extended run time
experiment. only values for q = 0.75 are shown.

0.5 0.75

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

90

4 6 8 10 12 14 4 6 8 10 12 14
Stacks

A
ve

ra
ge

 m
ov

es

Lambda values

● (2,2) normal

(5,5) normal

(2,2) extended

(5,5) extended

Figure 7.5: Average number of moves per category for 2D-LPFH extended run time experiment
split by occupancy rate. Values for q = 0.50 are shown on the left and q = 0.75 on the right.

54

Categories N Average St.dev.

(λ2, λ3) (2,2) (5,5) (2,2) (5,5) (2,2) (5,5)

q50w04 25 25 5.68 5.400 1.773 1.472
q50w06 25 25 10.68 9.680 2.462 1.994
q50w08 25 25 15.52 14.76 2.023 2.278
q50w10 25 25 20.76 21.96 2.067 2.937
q50w12 25 25 25.20 27.64 1.658 2.706
q50w14 25 25 31.44 36.36 2.329 2.691

q75w04 2 2 11.00 11.00 1.414 1.414
q75w06 18 18 25.44 25.33 5.147 5.179
q75w08 21 21 34.33 34.86 3.307 3.705
q75w10 24 24 47.42 49.29 6.775 5.607
q75w12 24 23 58.88 63.70 5.590 5.182
q75w14 19 20 72.26 80.30 4.280 4.791

Total 258 258 30.45 32.40 19.55 21.89

Table 7.8: Number of solved instances and average number of moves with standard deviation
for 2D-LPFH extended run time test cases.

55

7.6 PILOT experiments

The PILOT method has two important parameters we can manipulate: the used sub-heuristic
and the number of lookahead steps. We run the PILOT method experiments with LPFH, greedy
and random construction heuristics as sub-heuristics and k ∈ {2, 4, 5, 6} construction steps for
each heuristic. The 2D-LPFH sub-heuristic test cases were extended to include more lookahead
steps k+ ∈ {1, 2, 3, 4, 5, 6, 7}.

Nr. Heuristic k ψ

1-4 Greedy {2, 4, 5, 6} 150
5-8 Random {2, 4, 5, 6} 150
9-15 2D-LPFH {1, 2, 3, 4, 5, 6, 7} 150

Table 7.9: List of PILOT experiments. The table shows the parameters used in individual
experiments.

Table 7.9 lists all 15 PILOT test cases. The second column specifies the used sub-heuristic
and the third column specifies the lookahead steps. These test cases were executed on the whole
set of instances.

Random and Greedy sub-heuristics

Using random and greedy construction heuristics as sub-heuristic of PILOT method yielded
similar results to the previous random and greedy construction heuristic results (Section 7.4).

Algorithm k Category N Average St.dev. Duration Dur.st.dev.

Greedy 2 q50w04 2 3.50 0.71 3.00 0.02
4 q50w04 1 3.00 3.02 –
5 q50w04 1 3.00 3.70 –
6 q50w04 1 3.00 5.20 –

Random 2 q50w04 15 13.47 11.69 2.12 0.40

4 q50w04 21 12.48 7.53 3.00 0.72
q50w06 1 4.00 1.70 –
q75w04 1 21.00 12.00 –

5 q50w04 16 12.88 14.08 3.08 0.92
q50w06 1 3.00 3.62 –

6 q50w04 21 14.62 14.46 4.21 0.50

q50w06 1 3.00 4.17 –

Table 7.10: Results for PILOT method using random and greedy construction heuristics as
sub-heuristics. Duration is expressed in milliseconds.

56

PILOT method was able to solve two q50w04 instances using two lookahead moves and one
instance using k ∈ {4, 5, 6} lookahead moves. The random construction heuristic performed
slightly better, solving an average of 19 instances per test case, out of 600. Once again, the
random and greedy construction heuristics have shown to be unusable for solving the 2D-PMP.
Table 7.10 offers the results.

2D-LPFH sub-heuristic

For this experiment we choose the best performing 2D-LPFH configuration, λ2,3 = 2 as PILOT
method’s sub-heuristic for k ∈ {1, 2, 3, 4, 5, 6, 7}. As described in Section 5.1, 2D-LPFH can
perform a different set of moves than the greedy and random construction heuristic and it per-
forms compound moves. Therefore PILOT method explores only the set of compound moves
M provided by the algorithm.

In Table 7.12 we provide the number of solved instances and average number of moves per
category with the standard deviation. PILOT method was able to solve all q = 50% instances
using 2D-LPFH as sub-heuristic. For the q = 75% categories, the PILOT method was unable to
solve all instances, but all test cases perform similarly. The average number of moves reveals a
slightly difference between all approaches, but does not provide substantial evidence to make a
decision on the best test case. Therefore we use the WPRS test and the results are provided in
Table 7.11. The results tell us that the k = {5, 6, 7} test cases perform better than the remaining
test cases, but equally well compared to each other.

a < b 1 2 3 4 5 6 7

1 – – – – – –
2 – – – – – –
3 – – – – – –
4 – – – – – –
5 X X X X – –
6 X X X X – –
7 X X X X – –

Table 7.11: Results for WPRS test with alternative hypothesis a < b over PILOT 2D-LPFH test
cases results. The checkmark marks pairs where the alternative hypothesis holds.

To make a final decision on the best test case, we compare the average number of moves for
k = {5, 6, 7} on a per category basis. Based on this observation, the k = 7 can be selected as
the best performing test case with an insignificant difference towards k = {5, 6}.

57

Category Lookahead moves

1 2 3 4 5 6 7

N q50w04 50 50 50 50 50 50 50
q50w06 50 50 50 50 50 50 50
q50w08 50 50 50 50 50 50 50
q50w10 50 50 50 50 50 50 50
q50w12 50 50 50 50 50 50 50
q50w14 50 50 50 50 50 50 50

q75w04 2 3 3 3 3 3 3
q75w06 31 32 32 32 30 30 32
q75w08 39 40 40 41 41 38 38
q75w10 41 41 39 41 40 42 43
q75w12 37 40 35 39 41 40 43
q75w14 31 34 36 38 36 38 38

Total 481 490 485 494 491 491 497

Average q50w04 5.86 5.74 5.74 5.84 5.96 6.26 6.44
q50w06 11.48 11.18 11.20 10.94 10.88 11.02 11.04
q50w08 17.26 17.14 17.18 17.32 17.06 17.10 16.94
q50w10 23.56 23.70 23.40 23.62 23.20 23.30 22.94
q50w12 29.82 29.88 29.46 29.54 29.74 29.20 29.20
q50w14 36.90 37.30 37.26 37.08 37.18 37.14 37.26

q75w04 11.00 11.67 11.67 11.67 11.67 11.67 11.67
q75w06 26.94 26.91 27.81 26.84 26.23 26.87 27.28
q75w08 39.69 39.33 40.05 40.29 39.98 39.13 39.21
q75w10 55.07 54.54 55.08 54.83 53.95 54.21 53.79
q75w12 67.92 69.00 68.46 69.21 67.98 67.78 68.23
q75w14 84.10 82.03 82.53 83.18 80.75 81.97 79.16

Total 33.32 33.68 33.51 34.15 33.63 33.87 33.89

St.dev. q50w04 1.830 1.688 1.601 1.683 1.761 1.925 2.168
q50w06 2.915 3.015 2.928 2.729 2.700 2.615 2.523
q50w08 3.036 3.097 2.869 3.054 2.637 2.697 2.645
q50w10 3.494 3.644 3.435 3.162 3.356 3.157 3.040
q50w12 3.778 4.163 4.001 3.913 3.590 3.557 3.676
q50w14 3.352 3.138 3.250 3.002 2.731 2.935 3.573

q75w04 1.414 1.528 1.528 1.528 1.528 1.528 1.528
q75w06 5.144 4.914 5.361 5.106 4.523 5.111 5.163
q75w08 5.105 4.509 5.657 6.266 5.812 5.041 5.292
q75w10 6.101 5.608 4.568 5.049 4.830 4.922 5.910
q75w12 6.508 6.349 7.663 8.430 6.944 8.141 8.026
q75w14 7.960 7.412 9.188 7.326 7.897 6.934 6.109

Total 22.24 22.38 22.53 22.99 22.30 22.60 22.24

Table 7.12: Number of solved instances and average number of moves with standard deviation
for PILOT method with 2D-LPFH sub-heuristic test cases.

58

7.7 MMAS experiments

ACO metaheuristic has multiple important parameters: n, α, β and ρ (all except n are pheromone
model related parameters). Additionally we can select an implementation of the pheromone
model and heuristic function. MMAS introduces τmin, τmax, pσ∗ and imax. As a starting point,
we used recommended values from Dorigo and Stützle (2004) (Box 3.1 on page 71 and Box 3.3
on page 96) and decided to use the move based pheromone model. During preliminary testing
we found the offered values to produce good results.

We test the following aspects of MMAS: n, α, β and the choice of heuristic function. All
other parameters are set to the following values, which are taken from Dorigo and Stützle (2004):
ρ = 0.02, imax = 75 and pσ∗ = 0.05. Table 7.13 lists all test cases for MMAS. The test cases
are divided into three aspects: ant count, pheromone and heuristic values and heuristic function.

Nr. Experiment aspect n α β Heuristic function

1 ant count 2 1 2 2D-LPFH
2 ant count 4 1 2 2D-LPFH
3 ant count 6 1 2 2D-LPFH
4 ant count 8 1 2 2D-LPFH

4 α and β values 8 1 2 2D-LPFH
5 α and β values 8 1 6 2D-LPFH
6 α and β values 8 2 1 2D-LPFH
7 α and β values 8 0 1 2D-LPFH

8 heuristic function 8 1 2 2D-LPFH
9 heuristic function 8 1 2 PILOT 2D-LPFH

Table 7.13: List of MMAS test cases and their parameters.

These test cases were executed on the sample set of instances. We use the set of parameters
that performed best during preliminary tests in place of variables whose values will be explored
in future tests. For (α, β) we use values (1, 2) and for the heuristic function we use 2D-LPFH.
The best test case is later run again on the whole set of instances to create a benchmark for
comparison with other test cases.

Ant count

The number of ants can strongly influence the result quality. One reason is that more ants allow
more exploration and quicker discovery of better results. We have shown in previous test cases
that more runs of 2D-LPFH significantly boost performance, therefore we assume more ants will
yield better results. For other versions of ACO, the number of ants influences the pheromone
values as well because more than one ant can deposit pheromone values. In our case only the
best ant deposits pheromone values.

We define 4 test cases with n ∈ {2, 4, 6, 8}. Detailed results are provided in Table 7.16.
For the q = 50% instances, all test cases solved all instances, and for q = 75% all instances

59

performed almost equally well, solving 62 out of 100 instances. Only test case n = 6 solved
63 instances. If we analyse the average number of moves we will face a similar situation with
minimal difference between the average number of moves per category over all test cases. How-
ever, we notice that the average numbers of moves is slowly declining with increasing number
of ants. To prove this trend we perform a series of statistical tests. Results of the WPRS test are
provided in Table 7.14 and tell us that test cases n′ = {6, 8} performed significantly better than
n′′ = {2, 4}, but there is no significant difference between test cases for six and eight ants.

a < b 2 4 6 8

2 – – –
4 – – –
6 X X –
8 X X –

Table 7.14: Results for WPRS test with alternative hypothesis a < b over MMAS ant count test
cases results. The checkmark marks pairs where the alternative hypothesis holds.

To make a final decision on the best performing test case, we once again analyse the average
number of moves for n′ test cases. We can see that the test case with eight ants in comparison
with six ants has almost consistently a smaller or equal average number of moves in all instance
categories and over all instances. Thereby we choose n∗ = 8 as the best performing test case.

The reason for all test cases to perform so similarly can be found in the behaviour of 2D-
LPFH and the fact that MMAS only considers compound moves the heuristic function returns
as possible which reduces the search space in each step significantly. Each possible compound
move returned by 2D-LPFH at any given step reduces the number of non-well-located containers
by one. Thereby, even random selection of moves at every step will lead to a valid final solution.
For this reason we can only notice minimal differences between different configurations. On
an exceptional basis, the algorithm might encounter a step that is not a valid final solution and
has no possible moves. This kind of behaviour requires us to find the best possible algorithm
parameters and take even small insignificant improvements into account.

Alpha and beta values

α and β values are used in the ant construction algorithm to decide how much influence do the
pheromone and heuristic values have in choosing the next step, respectively. The recommended
value for (α, β) in Dorigo and Stützle (2004) is (1, 2). We test further values to see if and
how much influence the pheromone model has on the result quality and whether more heuristic
influence will yield a better result. We test the MMAS for the following set of values of (α, β) ∈
{(1, 2), (1, 6), (0, 1), (2, 1)}.

Results are provided in Table 7.17. As in the previous experiment, all q = 50% instances are
solved in all test cases, while all test cases solved almost the same amount of q = 75% instances,
approximately 63 instances. We move move further to the average number of moves. Again, we

60

can notice only minimal difference in the average number of moves per category for the same
reason as described in the previous experiment.

To narrow the decision for the best performing test case, we use statistical tests. Results
of a series of WPRS tests are provided in Table 7.15. The results indicate that the test cases
with α = 1 and β ∈ {2, 6} yield s significantly smaller number of moves than the remain-
ing test cases. Again, to make a final decision we again analyse the average number of moves
and notice that the average number of moves over all instances is lower for test case (1, 2),
thereby making it the best performing test case. Additionally, we choose a lower β value to
preserve a higher, yet moderate influence of pheromone values. Tests have shown that config-
urations where pheromones have a moderate influence perform significantly better than those
where pheromones have none or too much influence in choosing the next move.

a < b (1,2) (1,6) (2,1) (0,1)

(1,2) – X X
(1,6) – X X
(2,1) – – –
(0,1) – – –

Table 7.15: Results for WPRS test with alternative hypothesis a < b over MMAS pheromone
and heuristic values test cases results. The checkmark marks pairs where the alternative

hypothesis holds.

Heuristic algorithms

Given that only 2D-LPFH was able to solve a reasonable number of instances, we have a limited
choice of heuristic algorithms. We choose the best performing test cases from 2D-LPFH, λ2,3 =
2 and PILOT method with 2D-LPFH as sub-heuristic and k = 7 lookahead moves.

After running the both test cases on a sample set of instances, we were not able to distinguish
almost any difference between the results of the two approaches. Therefore we run the test on
the whole set of instances. Test results are provided in Table 7.18. Both test cases solved 511
instances and have an average number of 29.4 moves. Unfortunately, even after running tests
on the whole set of instances both approaches performed so closely, that we are not able to
distinguish a big enough difference to make a decision on the better test case. Therefore we
decide to choose the simpler approach, without PILOT method as the better approach.

61

Category Ant count

2 4 6 8

N q50w04 25 25 25 25
q50w06 25 25 25 25
q50w08 25 25 25 25
q50w10 25 25 25 25

q75w04 2 2 2 2
q75w06 18 18 18 18
q75w08 19 19 20 19
q75w10 23 23 23 23

Total 162 162 163 162

Average q50w04 5.40 5.40 5.40 5.40
q50w06 10.44 10.44 10.44 10.44
q50w08 15.28 15.20 15.16 15.24
q50w10 20.68 20.80 20.64 20.48

q75w04 11.00 11.00 11.00 11.00
q75w06 25.33 25.28 25.28 25.28
q75w08 33.16 32.63 33.35 32.37
q75w10 44.35 44.43 44.09 43.91

Total 21.13 21.08 21.16 20.93

St.dev. q50w04 1.472 1.472 1.472 1.472
q50w06 2.382 2.382 2.382 2.382
q50w08 2.189 2.160 2.154 2.185
q50w10 2.340 2.500 2.307 2.257

q75w04 1.414 1.414 1.414 1.414
q75w06 5.145 5.120 5.120 5.120
q75w08 3.184 2.650 5.163 2.852
q75w10 4.355 4.409 4.111 4.220

Total 12.96 12.93 12.99 12.75

Table 7.16: Number of solved instances and average number of moves with standard deviation
for MMAS ant count test cases.

62

Category (α, β)

(1,6) (1,2) (2,1) (0,1)

N q50w04 25 25 25 25
q50w06 25 25 25 25
q50w08 25 25 25 25
q50w10 25 25 25 25

q75w04 2 2 2 2
q75w06 18 18 18 18
q75w08 20 19 20 19
q75w10 23 23 23 23

Total 163 162 163 162

Average q50w04 5.40 5.40 5.40 5.40
q50w06 10.40 10.44 10.44 10.40
q50w08 15.16 15.24 15.16 15.32
q50w10 20.48 20.48 20.92 20.80

q75w04 11.00 11.00 11.00 11.00
q75w06 25.22 25.28 25.33 25.28
q75w08 33.60 32.37 34.10 32.58
q75w10 44.04 43.91 44.74 44.43

Total 21.15 20.93 21.39 21.09

St.dev. q50w04 1.472 1.472 1.472 1.472
q50w06 2.380 2.382 2.382 2.380
q50w08 2.154 2.185 2.154 2.340
q50w10 2.365 2.257 2.532 2.466

q75w04 1.414 1.414 1.414 1.414
q75w06 5.151 5.120 5.145 5.120
q75w08 5.807 2.852 7.305 2.912
q75w10 4.073 4.220 4.126 3.918

Total 13.04 12.75 13.36 12.90

Table 7.17: Number of solved instances and average number of moves with standard deviation
for MMAS pheromone and heuristic values test cases.

63

Category MMAS heuristic function

2D-LPFH PILOT 2D-LPFH

N q50w04 50 50
q50w06 50 50
q50w08 50 50
q50w10 50 50
q50w12 50 50
q50w14 50 50

q75w04 3 3
q75w06 34 33
q75w08 42 43
q75w10 44 44
q75w12 46 46
q75w14 42 42

Total 511 511

Average q50w04 5.68 5.68
q50w06 10.36 10.34
q50w08 14.86 14.82
q50w10 20.08 20.12
q50w12 25.54 25.44
q50w14 31.74 32.50

q75w04 11.67 11.67
q75w06 24.65 24.24
q75w08 32.36 32.19
q75w10 44.57 44.36
q75w12 55.93 55.41
q75w14 68.57 68.17

Total 29.47 29.41

St.dev. q50w04 1.634 1.634
q50w06 2.371 2.370
q50w08 2.232 2.210
q50w10 2.311 2.327
q50w12 2.667 2.589
q50w14 2.732 2.866

q75w04 1.528 1.528
q75w06 4.478 4.154
q75w08 3.275 3.923
q75w10 4.217 3.912
q75w12 4.763 4.750
q75w14 5.735 4.504

Total 18.63 18.48

Table 7.18: Number of solved instances and average number of moves with standard deviation
for MMAS heuristic function test cases.

64

7.8 Comparative analysis of best configurations

In this section we compare the four best approaches from previous experiments showing a pro-
gressive improvement in results. From the 2D-LPFH experiments we choose the best perform-
ing lambda test case, λ2,3 = 2 and the same configuration in the extended run time experiment.
From the PILOT experiments we choose the 2D-LPFH sub-heuristic with k = 7 lookahead
moves. Finally from the MMAS experiments we choose the n = 8, α = 1, β = 2 parameters
with 2D-LPFH as the heuristic function. All chosen test cases are executed over the whole set
of instances.

All chosen test cases solved all q = 50% instances. Figure 7.6 shows the number of solved
instances per test case for q = 75% categories. We notice that the MMAS and extended run time
2D-LPFH solved almost the same number of instances with the extended run time 2D-LPFH in
a slight lead. They are followed by the PILOT method test case and 2D-LPFH respectively.

●

●

●
●

●

●

5

10

15

20

25

30

35

40

45

4 6 8 10 12 14
Stacks

S
ol

ve
d

in
st

an
ce

s

Algorithm

● MMAS 2D−LPFH

2D−LPFH (2,2)

2D−LPFH (2,2) 5min

PILOT 2D−LPFH k=7

Figure 7.6: Number of solved instances per category for chosen best test cases. Only values for
q = 0.75 categories are shown.

Figure 7.7 shows the average number of moves. For the q = 50% categories there is an
overlapping for the MMAS and extended run time 2D-LPFH test case that perform better than
the 2D-LPFH and PILOT method test case that also overlap. The average number of moves for
the q = 75% categories reveals a similar ordering between test cases as in the number of solved
instances with an exception of the MMAS test case performing better than the extended run time
2D-LPFH test case.

Since the chosen test cases have very different run times (milliseconds vs minutes vs fixed
run time), we are unable to perform comparisons with respect to run time. Table 7.20 offers a
full overview of the number of solved instances and average number of moves with the standard
deviation. Table 7.21 offers an overview of the runtimes expressed in milliseconds. Using only
the average number of moves and number of solved instances we can clearly separate MMAS
and extended run time 2D-LPFH as the overall best performing test cases. Using WPRS test
we provide further evidence for this conclusion. Table 7.19 shows the result of a series of
statistical tests. The results clearly point out MMAS as significantly better than any other test

65

0.5 0.75

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

70

80

4 6 8 10 12 14 4 6 8 10 12 14
Stacks

A
ve

ra
ge

 m
ov

es

Algorithm

● MMAS 2D−LPFH

2D−LPFH (2,2)

2D−LPFH (2,2) 5min

PILOT 2D−LPFH k=7

Figure 7.7: Average number of moves per category for best algorithm configurations split by
occupancy rate. Values for q = 0.50 are shown on the left and q = 0.75 on the right.

case. Following MMAS is the extended run time 2D-LPFH that performs better than PILOT
method using 2D-LPFH as sub-heuristic and 2D-LPFH, respectively.

a < b
MMAS

2D-LPFH
2D-LPFH

5min
PILOT

2D-LPFH
2D-LPFH

MMAS 2D-LPFH X X X
2D-LPFH 5min – X X

PILOT 2D-LPFH – – X
2D-LPFH – – –

Table 7.19: Results for Wilcoxon paired rank sum test with alternative hypothesis a < b over
four best test cases results. The checkmark marks pairs where the alternative hypothesis holds.

66

Category
MMAS

2D-LPFH
2D-LPFH

5min
PILOT

2D-LPFH
2D-LPFH

N q50w04 50 50 50 50
q50w06 50 50 50 50
q50w08 50 50 50 50
q50w10 50 50 50 50
q50w12 50 50 50 50
q50w14 50 50 50 50

q75w04 3 3 3 3
q75w06 34 34 32 28
q75w08 42 46 38 36
q75w10 44 45 43 37
q75w12 46 47 43 34
q75w14 42 42 38 31

Total 511 517 497 469

Average q50w04 5.68 5.86 6.440 5.92
q50w06 10.36 10.54 11.04 11.20
q50w08 14.86 15.18 16.94 16.88
q50w10 20.08 20.38 22.94 23.30
q50w12 25.54 25.36 29.20 29.46
q50w14 31.74 31.74 37.26 36.24

q75w04 11.67 11.67 11.67 11.67
q75w06 24.65 24.76 27.28 29.18
q75w08 32.36 34.17 39.21 43.19
q75w10 44.57 47.47 53.79 59.81
q75w12 55.93 58.77 68.23 72.18
q75w14 68.57 71.07 79.16 85.10

Total 29.47 30.53 33.89 33.82

St.dev. q50w04 1.634 1.784 2.168 1.861
q50w06 2.371 2.367 2.523 2.955
q50w08 2.232 2.067 2.645 2.512
q50w10 2.311 2.221 3.040 3.046
q50w12 2.667 2.562 3.676 3.309
q50w14 2.732 2.465 3.573 2.911

q75w04 1.528 1.528 1.528 1.528
q75w06 4.478 4.513 5.163 4.839
q75w08 3.275 3.946 5.292 5.497
q75w10 4.217 5.358 5.910 5.849
q75w12 4.763 5.704 8.026 8.314
q75w14 5.735 4.729 6.109 8.837

Total 18.63 19.57 22.24 23.45

Table 7.20: Number of solved instances and average number of moves with standard deviation
for selected best test cases.

67

Category
MMAS

2D-LPFH
2D-LPFH

5min
PILOT

2D-LPFH
2D-LPFH

Average q50w04 14.9×103 6 300.0×103 16
q50w06 65.0×103 11 299.9×103 63
q50w08 97.9×103 16 298.4×103 142
q50w10 219.9×103 25 281.6×103 267
q50w12 360.9×103 34 254.7×103 413
q50w14 624.7×103 46 231.9×103 652

q75w04 50.0×103 28 300.0×103 25
q75w06 643.8×103 49 265.6×103 110
q75w08 796.0×103 71 212.4×103 202
q75w10 1147.0×103 87 166.7×103 315
q75w12 1210.2×103 94 163.7×103 451
q75w14 1211.9×103 112 166.0×103 546

Total 551.2×103 44 242.1×103 287

St.dev. q50w04 4.5×103 3 0.0×103 7
q50w06 25.0×103 3 0.5×103 19
q50w08 24.7×103 4 3.5×103 31
q50w10 46.0×103 8 37.6×103 38
q50w12 59.0×103 14 70.7×103 78
q50w14 109.9×103 17 78.2×103 86

q75w04 17.0×103 5 0.0×103 9
q75w06 585.1×103 17 53.1×103 31
q75w08 347.1×103 27 64.5×103 41
q75w10 123.7×103 34 88.8×103 79
q75w12 9.3×103 41 87.0×103 197
q75w14 7.9×103 50 89.2×103 201

Total 483.8×103 40 80.7×103 221

Table 7.21: Average runtime in milliseconds of solved instances with standard deviation for
selected best test cases.

68

CHAPTER 8
Conclusion

This chapters provides a short overview of achieved goals, after which we sum up our con-
clusions from the previous chapters and make suggestions for future work. Finally, in the last
section we describe a proposed local search method that attempts to create a network of solutions
for one instance and perform local search by finding the shortest path within the built network.

8.1 Critical reflection

In this work, we define a new extension of the classical PMP, discuss its computational com-
plexity and then we approximately solve it by successfully adapting LPFH, a PMP strategic
heuristic, whose results are further improved by embedding it with PILOT method and MMAS.
We also show that naive algorithms are able to solve only the simplest category of instances
within a reasonable amount of time and moves. All this is supported by a series of experiments,
iteratively improving algorithm performance.

The main challenge of this work was to implement a working heuristic for 2D-PMP that
would then be improved using the PILOT method and MMAS. Implementing 2D-LPFH was not
the hardest task. After finding the main differences between the classical PMP and 2D-PMP and
establishing models of adequate stack assignment, the remaining work on 2D-LPFH was easy.
The next big challenge was representing 2D-PMP as a path construction problem in order to
apply MMAS to it, along with finding a working pheromone model. These problems were all
successfully solved.

The final and biggest challenge was using 2D-LPFH as a sub-heuristic for PILOT method
and heuristic for MMAS. In the first version we ignore 2D-LPFH’s strategy and choose only
the first move from a series of planned moves made by 2D-LPFH, thereby yielding a series of
unnecessary moves and unexpectedly bad results. After careful reconsideration we reimplement
the PILOT method and MMAS to respect 2D-LPFH’s strategy and accept compound moves.
This has proven to be a working fix for the described problem. However, it introduces a new
problem: a too limited search space that allows to only perform moves that the 2D-LPFH strat-
egy allows. We do not know for certain that this subset of the search space includes the optimal

69

solution and thereby we could be facing a local optimum we cannot escape without changing
the underlying heuristic.

Finally, we achieved a significant performance improvement with respect to the initial 2D-
LPFH results, showing that 2D-LPFH still has room for improvement. Unfortunately, the opti-
mum solutions are unknown for our set of instances and problem.

2D-LPFH lambda test cases prove a greedy 2D-LPFH configuration narrows the heuristic’s
search space too much and does not allow it to find a valid final solution. The PILOT method
shows it can successfully navigate through a bigger search space with a "tempered-greedy" ap-
proach. MMAS introduces a new element, joint knowledge of multiple construction heuristics
that has shown most successful in "guiding" 2D-LPFH to construct better results. These same
results are available in 2D-LPFH’s search space, but could not be reached, even after 5 minutes
of consecutive re-reruns on each instance.

In conclusion, the pure 2D-LPFH should be used for q = 50% with a run time that is in
relation to the size of the instance. The exact relation is a topic for future work. However, for
the q = 75% instances, even though the extended runtime 2D-LPFH solved more instances
than MMAS, MMAS always had a lower number of moves and should therefore be used for
q = 75% instances. From the runtime perspective, 2D-LPFH will most probably reach a better
solution before MMAS and improve it faster, but MMAS will find a better solution given a
longer runtime. In our experiments we limited both run times to five minutes and discovered
that this time limit was enough for the MMAS to outperform 2D-LPFH. For lower time limits,
we could observe the 2D-LPFH performing better than MMAS.

Unfortunately, the PILOT method could not measure up to MMAS and extended runtime
2D-LPFH. The PILOT method is only good enough if we are looking for a slight performance
improvement compared to the 2D-LPFH without a significant runtime increase. As the two naive
approaches were not able to solve most of the instances, we can not recommend them for any
size of instance.

8.2 Future work

The first task should be implementing a 2D-PMP instance generator that allows fine tuning of
categories. One way is to use the same category fine tuning methods described in Expósito-
Izquierdo et al. (2012), applied to 2D-PMP, or to define new methods, e.g. number of non-well-
placed containers.

The implemented heuristic, 2D-LPFH performs well. Following only its compound moves,
allows us to find a small subset of available solutions. A heuristic that finds lower quality solu-
tions and does not limit the search space as much, leaves room for improvement by, e.g. using
a sophisticated local search algorithm or metaheuristic. On the other hand, an exact algorithm
like A∗ would be a interesting tool for benchmarking current and future implementations, but it
requires an exact heuristic, which could be hard to prove, given the additional horizontal con-
straints introduced in 2D-PMP.

MMAS should be compared against another metaheuristic, e.g. simulated annealing or the
corridor method (Caserta and Voß, 2009).

70

The binary encoding described in Caserta et al. (2009) could be used to make quick calcula-
tions on a matrix and perhaps easily reveal implicit information about states that could be used
as heuristic information or a local search.

8.3 Solution Network Analysis Procedure

The Solution Network Analysis Procedure (SNAP) combines all discovered solutions for a sin-
gle instance into a network. Since a solution can be represented as a path, as described in section
5.3, we can overlay all known solutions into a network. All equivalent states are represented with
a unique node and edges between those nodes represent moves performed in all of the overlayed
solutions.

START

a b c d

e

f h

i j k l

m

n

p
2

p2 p2

p2

p3
p3

p3

p
3

p1

p1 p1

p
1

p4

p
4

p
4

p
4

p
4

Figure 8.1: A network of solutions.

This network has only one origin and destination. The shortest path between these two
points is the best solution with the given knowledge. Each time we want to perform a local
search within our network, we run a shortest path algorithm like Dijkstra. Each edge is assigned
a cost of one, and all final nodes are connected into one ultimate final node with a cost of zero. If
the new path is unknown and shorter than any known path, that means we found a better solution
than any of the known solutions.

Figure 8.1 shows a depiction of a solution network. All solutions’ paths are marked with si
and the shortest path is marked with thick lines.

Due to time limitations, we were not able to implement this algorithm, but we propose it as
a good addition to a metaheuristic like ACO that produces many solutions and works well with
local search procedures.

71

APPENDIX A
Instance samples

1 2 3 4

1

2

3

4

5

1

6

8

3

2

4

7

Figure A.1: Example of instance with 4 tiers, 4 stacks and 50% occupancy rate.

1 2 3 4

1

2

3

4

5

2

8

12

1

6

7

10

4

11

3

9

Figure A.2: Example of instance with 4 tiers, 4 stacks and 75% occupancy rate.

73

1 2 3 4 5 6

1

2

3

4

9

8

2

12

6

11

10

1

5

7 3

4

Figure A.3: Example of instance with 4 tiers, 6 stacks and 50% occupancy rate.

1 2 3 4 5 6

1

2

3

4

2

3

17

7

1

13

18

6

9

8

16

10

11

12

15

5

4

14

Figure A.4: Example of instance with 4 tiers, 6 stacks and 75% occupancy rate.

1 2 3 4 5 6 7 8

1

2

3

4

11

2

5

16

10

1

8

7

15

6

13

9

12 14

3

4

Figure A.5: Example of instance with 4 tiers, 8 stacks and 50% occupancy rate.

74

1 2 3 4 5 6 7 8

1

2

3

4

2

20

24

19

5

10

1

11

18

8

16

17

22

6

9

7

21

3

23

12

4

13

15

14

Figure A.6: Example of instance with 4 tiers, 8 stacks and 75% occupancy rate.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

14 1

7

15

17

9

19

13

6

2

20 18 16

4

10

3

8

11

5

12

Figure A.7: Example of instance with 4 tiers, 10 stacks and 50% occupancy rate.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

30

3

2

27

8

7

19

20

4

17

18

25

26

5 13

1

14

11

24

12

29

15

22

16

28

21

9

6

10

23

Figure A.8: Example of instance with 4 tiers, 10 stacks and 75% occupancy rate.

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

20 10

7

26 19

28

27

8

15

4

25 12

6

14

17

13

3

24

23

18

2

22

5

21

9

16

11

1

Figure A.9: Example of instance with 4 tiers, 14 stacks and 50% occupancy rate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

41

7

21

27

19

24

1

22

28

8

10

9

2

5

20

23

6

30

18

38

32

11

15

31

33

12

29

40

39

13

17

14

37

36

35

3

4

34

16

42

25

26

Figure A.10: Example of instance with 4 tiers, 14 stacks and 75% occupancy rate.

76

Bibliography

Andreas Bortfeldt and Florian Forster. A tree search procedure for the container pre-marshalling
problem. European Journal of Operational Research, 217(3):531–540, 2012.

Marco Caserta and Stefan Voß. A corridor method-based algorithm for the pre-marshalling prob-
lem. In Proceedings of the EvoWorkshops 2009 on Applications of Evolutionary Computing,
volume 5484 of Lecture Notes in Computer Science, pages 788–797. Springer-Verlag, 2009.

Marco Caserta, Silvia Schwarze, and Stefan Voß. A new binary description of the blocks re-
location problem and benefits in a look ahead heuristic. In Evolutionary Computation in
Combinatorial Optimization, pages 37–48. Springer, 2009.

Marco Caserta, Silvia Schwarze, and Stefan Voß. Container rehandling at maritime container
terminals. In Handbook of Terminal Planning, volume 49 of Operations Research/Computer
Science Interfaces Series, pages 247–269. Springer New York, 2011a.

Marco Caserta, Stefan Voß, and Moshe Sniedovich. Applying the corridor method to a blocks
relocation problem. OR spectrum, 33(4):915–929, 2011b.

Marco Caserta, Silvia Schwarze, and Stefan Voß. A mathematical formulation and complexity
considerations for the blocks relocation problem. European Journal of Operational Research,
219(1):96–104, 2012.

Young-Tae Chang, Sang-Yoon Lee, and Jose L Tongzon. Port selection factors by shipping lines:
Different perspectives between trunk liners and feeder service providers. Marine Policy, 32
(6):877–885, 2008.

J-L Deneubourg, Serge Aron, Simon Goss, and Jacques Marie Pasteels. The self-organizing
exploratory pattern of the argentine ant. Journal of insect behavior, 3(2):159–168, 1990.

Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Company, Scituate,
MA, USA, 2004.

Cees Duin and Stefan Voß. The pilot method: A strategy for heuristic repetition with application
to the steiner problem in graphs. Networks, 34(3):181–191, 1999.

Christopher Expósito-Izquierdo, Belén Melián-Batista, and Marcos Moreno-Vega. Pre-
marshalling problem: Heuristic solution method and instances generator. Expert Systems
with Applications, 39(9):8337–8349, 2012.

77

Florian Forster and Andreas Bortfeldt. A tree search procedure for the container relocation
problem. Computers & Operations Research, 39(2):299–309, 2012.

Fred Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–206, 1989.

Fred Glover. Tabu search-part ii. ORSA Journal on computing, 2(1):4–32, 1990.

Simon Goss, Serge Aron, Jean-Louis Deneubourg, and Jacques Marie Pasteels. Self-organized
shortcuts in the argentine ant. Naturwissenschaften, 76(12):579–581, 1989.

Shan-Huen Huang and Tsan-Hwan Lin. Heuristic algorithms for container pre-marshalling prob-
lems. Computers & Industrial Engineering, 62(1):13–20, 2012.

Kap Hwan Kim and Gyu-Pyo Hong. A heuristic rule for relocating blocks. Computers &
Operations Research, 33(4):940–954, 2006.

Scott Kirkpatrick, MP Vecchi, et al. Optimization by simmulated annealing. Science, 220(4598):
671–680, 1983.

Yusin Lee and Shih-Liang Chao. A neighborhood search heuristic for pre-marshalling export
containers. European Journal of Operational Research, 196(2):468–475, 2009.

Yusin Lee and Nai-Yun Hsu. An optimization model for the container pre-marshalling problem.
Computers & Operations Research, 34(11):3295–3313, 2007.

Matthias Prandtstetter. A dynamic programming based branch-and-bound algorithm for the
container pre-marshalling problem. Technical report, AIT Austrian Institute of Technology,
submitted to European Journal of Operational Research, 2013.

Moshe Sniedovich and S Viß. The corridor method: a dynamic programming inspired meta-
heuristic. Control and Cybernetics, 35:551–578, 2006.

Thomas Stützle and Holger H. Hoos. Max-min ant system. Future Generation Computer Sys-
tems, 16(9):889–914, June 2000.

Stefan Voß, Andreas Fink, and Cees Duin. Looking ahead with the pilot method. Annals of
Operations Research, 136(1):285–302, 2005.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1(6):80–83, 1945.

78

	Introduction
	Objectives

	The Two Dimensional Pre-Marshalling Problem
	Pre-Marshalling Problem
	Problem parameters

	Two Dimensional Pre-Marshalling Problem
	Problem parameters extension

	Assumptions
	Problem representation
	Problem input
	Solution

	Note on complexity

	Related work
	Heuristic algorithms
	Evaluation functions
	Blocking count evaluation function
	Penalty evaluation function

	Random and Greedy construction algorithms
	Two Dimensional Lowest Priority First Heuristic
	Original LPFH
	Main changes
	2D-LPFH

	Metaheuristic algorithms
	PILOT method
	Using a strategic sub-heuristic and compound moves

	Ant Colony Optimization
	Double bridge experiment
	From colony to algorithm

	Max-Min Ant System
	Pheromone models
	State based pheromone model
	Move based pheromone model

	Initializing, evaporating and updating pheromone values
	Ant construction algorithm
	Using a strategic heuristic and compound moves
	MMAS algorithm

	Local search algorithm
	Shortcut heuristic

	Experimental evaluation
	Instances
	Testing environment
	Experiments
	Result analysis

	Random and greedy construction heuristics experiment
	2D-LPFH experiments
	Lambda values
	Extended run time

	PILOT experiments
	Random and Greedy sub-heuristics
	2D-LPFH sub-heuristic

	MMAS experiments
	Ant count
	Alpha and beta values
	Heuristic algorithms

	Comparative analysis of best configurations

	Conclusion
	Critical reflection
	Future work
	Solution Network Analysis Procedure

	Instance samples
	Bibliography

