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Abstract

The Periodic Vehicle Routing Problem with Time Windows (PVRPTW) is an extended, complex
variant of the classical vehicle routing problem. On the one hand it differs from the latter by
visiting a subset of the customers several times during a planning horizon spanning several days,
where the selection of a visit day combination out of a set of viable ones for each such customer
is part of the problem. On the other hand the customers have associated a time window in which
the visit is allowed. The objective is to minimize the overall travel costs while respecting all
constraints.

In this thesis we investigate the application of variants of the Ant Colony Optimization
(ACO) metaheuristic to solve this highly constrained NP-hard problem in combination with
other techniques. For this purpose we apply ACO in two different ways: as heuristic solver for
the pricing subproblem arising in a column generation approach for the linear programming-
relaxed PVRPTW; and as an approximate problem solving method for the whole PVRPTW.

In the first approach we show that ACO can be used to speed up the column generation pro-
cess. To achieve this ACO is used to solve the Elementary Shortest Path Problem with Resource
Constraints (ESPPRC) that forms our pricing subproblem. The investigation results reflect that
the application of ACO improves performance and quality of columns compared to an exact
ESPPRC solver, although other applied metaheuristics produce the same effect. In fact we de-
duce that other components of the column generation algorithm, e.g. local search, have more
influence on the solving performance than the choice of the metaheuristic.

For the second approach we present a new ACO algorithm: the cascaded ACO. The
PVRPTW is decomposed in an upper level and a lower level problem which are both solved
with specific ACO variants. The ACO for the upper level problem has to optimize the visit
combinations, whereas the lower level ACO solves a Vehicle Routing Problem with Time Win-
dows (VRPTW). Both ACO algorithms are optimized by introducing and combining several
techniques from literature to improve performance. Additionally a method is shown that allows
us to find semi-optimal settings for the various parameters of the ACO algorithms.

An extensive comparison of our results to results from previously published PVRPTW so-
lution algorithms concludes the approach of using ACO as solver for the whole problem. Al-
though, recently developed hybrid algorithms to solve the PVRPTW show better performance
on large problem instances, our cascaded ACO outperforms the sole other ACO algorithm pub-
lished so far.
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Kurzfassung

Das Periodic Vehicle Routing Problem with Time Windows (PVRPTW) ist eine komplexe Er-
weiterung des klassischen Tourenplanungsproblems. Einerseits müssen hierbei die Kunden an
mehreren Tagen innerhalb einer definierten Planungsperiode besucht werden, wobei die Aus-
wahl der Kombination von Besuchstagen zum Problem gehört. Andererseits bestimmt jeder
Kunde einen Zeitbereich, in welchem der Besuch stattfinden muss. Das Ziel ist die Minimie-
rung der gesamten Tourenkosten bei Berücksichtigung aller Nebenbedingungen.

In dieser Diplomarbeit untersuchen wir die Anwendung verschiedener Varianten der Ant Co-
lony Optimization (ACO) Metaheuristik, um dieses NP-harte kombinatorische Optimierungs-
problem zu lösen. Zu diesem Zweck wenden wir ACO auf zwei verschiedene Arten an: als
heuristischen Lösungsalgorithmus für das Pricing Subproblem, welches bei einem Spaltenge-
nerierungs-Ansatz zum Lösen des linearen Programmierungs-relaxierten PVRPTW auftritt; und
als näherungsweisen Lösungsalgorithmus für das gesamte PVRPTW.

In der ersten Anwendung zeigen wir, wie durch Einsatz von ACO die Lösungszeit des Co-
lumn Generation Prozesses verkürzt wird. Dazu wird ACO als Lösungsalgorithmus des Pri-
cing Subproblems verwendet, welches wir als Elementary Shortest Path Problem with Resource
Constraints (ESPPRC) identifiziert haben. Die Untersuchungsergebnisse spiegeln wieder, dass
die Anwendung von ACO die Lösungsleistung bezüglich Laufzeit und Qualität der generier-
ten Spalten verglichen mit einem exakten Lösungsansatz steigert. Allerdings konnten wir kei-
nen Nachweis erbringen, dass ACO anderen Metaheuristiken hierbei vorzuziehen ist. Vielmehr
schließen wir, dass andere algorithmische Komponenten, wie z.B. die lokale Suche, größeren
Einfluss auf die Lösungsleistung besitzen, als die Wahl der Metaheuristik.

Für die zweite Anwendung stellen wir einen neuen ACO Algorithmus vor: cascaded ACO.
Das PVRPTW wird in ein übergeordnetes “upper level” und ein untergeordnetes “lower level”
Problem zerlegt, welche beide mit spezifischen ACO Varianten gelöst werden. ACO für das “up-
per level” Problem optimiert die Kombination von Besuchstagen, während ACO für das “lower
level” Problem die sich ergebenden Vehicle Routing Problems with Time Windows (VRPTW)
löst. Beide ACO Algorithmen wurden durch Einführung diverser Optimierungstechniken aus der
Literatur angepasst. Zusätzlich wird eine Methode gezeigt, die es uns erlaubt hat, semi-optimale
Einstellungen der zahlreichen Parameter der ACO Algorithmen zu finden.

Ein umfassender Vergleich unserer Resultate mit den Ergebnissen von bisher veröffentlich-
ten PVRPTW Lösungsalgorithmen beschließt die Diskussion der Anwendung von ACO als Lö-
sungsalgorithmus für das gesamte Problem. Obwohl kürzlich entwickelte hybride Algorithmen
zur Lösung des PVRPTW eine bessere Lösungsleistung bei großen Probleminstanzen zeigen,
konnte cascaded ACO den einzigen anderen bisher publizierten ACO Lösungsalgorithmus für
das PVRPTW übertreffen.
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CHAPTER 1
Introduction

1.1 Motivation

This thesis examines the application of a specific metaheuristic to solve a specialized form of
routing problems.

Routing problems occur as real life problems in various situations. Logistics departments
of carrier or other transport companies have to deal with the problem of minimizing costs when
shipping goods. Communal garbage collection companies can save costs and resources with
optimized routing for their garbage trucks. In a medical context, optimized blood or organ
transportation can even save lives.

The archetype of routing problems is the Travelling Salesman Problem (TSP), where a (fic-
tional) salesman has to visit a certain number of cities or customers in a round trip trying to
minimize the total travel distance. Although the origins of the problem are unclear, it appeared
in literature at the beginning of the 19th century. The first mathematical considerations were
made in 1930 by Karl Menger [59]; in the 1950s it became increasingly relevant for the scien-
tific community. Since then many optimization methods have been developed by researchers
developing solving strategies for the TSP. Figure 1.1 shows the result of an exemplary applica-
tion that solves the TSP using real road map information.

Many variations of the TSP jointly define the field of routing problems. When the visited
cities or customers are divided among more than one travelling salesmen the problem is called
the multiple Travelling Salesman Problem (mTSP) [81] [4]. If transportation capacity constraints
for the travelling salesmen have to be taken into consideration, the problem becomes a Vehicle
Routing Problem (VRP) [21] [92] that directly corresponds to the routing requirements of ship-
ping companies servicing their customers with a single depot and multiple trucks. Multi Depot
Vehicle Routing Problems (MDVRP) [58] consider more than one depot, and Vehicle Routing
Problems with Pickup and Delivery (VRPPD) [72] generalize the idea by defining pick-up loca-
tions instead of depots and drop-off locations instead of customers that must be visited by a fleet
of vehicles. If a planning period is introduced to the problem where the customers define specific
service periodicities, it is called Periodic Vehicle Routing Problem (PVRP) [5] [38]. By intro-
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Figure 1.1: Solution of the TSP for the nine regional capitals of Austria. Generated
with http://travellingsalesmanproblem.appspot.com/ using Google MapsTM

mapping service

ducing time constraints to the problem that consider service times and service time windows for
the customers as well as maximum travel durations for the vehicles it becomes a Vehicle Routing
Problem with Time Windows (VRPTW) [88]. Both of these last named temporal considerations,
planning period and time constraints, combine to make the Periodic Vehicle Routing Problem
with Time Windows (PVRPTW) [14].

Many solution strategies have been developed to solve these routing problems using exact
algorithms that compute optimal results as well as heuristic algorithms that generate sufficiently
good results. One quite successful solution strategy for large TSP instances is using Ant Colony
Optimization (ACO) [31]. This metaheuristic seems to be well suited for routing problems, since
it simulates the natural behavior of real ant colonies when searching for short paths between food
sources and their nests. In this thesis we apply ACO to the PVRPTW in two different ways:

• As method to solve the pricing problem of a column generation approach (see chapter 2.2)

• As overall method for the whole problem

1.2 Computational Complexity

The challenge with routing problems is that they belong to a class of problems with high com-
plexity. In fact, current exact algorithms can generate optimal solutions with reasonable effort
just for small problem instances.

Computational complexity theory [70] defines several complexity classes for computational
problems. A commonly used machine model characterizing these classes is the Turing ma-
chine [93]. For our purpose we distinguish between deterministic and non-deterministic Turing
machines. Whereas a deterministic Turing machine can perform just one step based on a given
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state, a non-deterministic Turing machine can span several steps in parallel for each given state
leading to a tree of succeeding states. Deterministic and non-deterministic Turing machines are
equivalent in terms of problem solution power, but they differ in time behavior [86].

The following complexity classes are relevant for the optimization problems considered
here:

• P: complexity class of problems that can be solved by a deterministic Turing machine
in polynomial time. Following Cobham-Edmonds thesis [11], problems belonging to this
class are in practice efficiently solvable. P contains many important nontrivial problems,
including the decision versions of linear programming, of the greatest common divisor
problem, and of finding a maximum matching in a graph, as well as deciding if an integer
is prime.

• NP: complexity class of problems that can be solved by a non-deterministic Turing ma-
chine in polynomial time. This class obviously includes P since the deterministic Turing
machine is a special case of the non-deterministic Turing machine.

• NP-hard: complexity class of problems to which every problem in NP can be reduced
in polynomial time. The resulting problems can also be inNP , but not necessarily. Infor-
mally these problems can be viewed as the hardest problems ofNP and problems that are
even harder. This class contains many problems, including TSP and other routing prob-
lems, finding a minimum vertex cover in a graph, or the graph coloring problem. There
are even NP-hard problems that are not decidable, for example the halting problem.

• NP-complete: complexity class of problems that are NP-hard and in NP . This class
is very important since every NP-complete problem represents the whole class in terms
of complexity characterization, i.e. general findings on a single NP-complete problem
can be applied to everyNP-complete problem. A number ofNP-complete problems are
known [54], including the boolean satisfiability problem, the knapsack problem, or the
decision version of TSP.

Figure 1.2 depicts the correlation of the described complexity classes under the assumption that
P and NP are not equivalent.

Since it has not yet been proven that the complexity class P is not equivalent to the com-
plexity class NP , it cannot be excluded that P = NP . The consequences would be enormous
for practical computer science, due to the fact that the equivalence of P and NP implies the
equivalence of the class of NP-complete problems and P! Therefore algorithms would exist
that solve every NP-complete problem in polynomial time. This would be of great value for
the solution of many optimization problems, and a tremendous threat for cryptography.

Nevertheless, strong evidence exists that P 6= NP , since nobody has found an algorithm
yet that solves any of the 3000 known NP-complete problems in polynomial time. Therefore
it is reasonable as well as practical to research the application of heuristics or metaheuristic
algorithms to NP-complete and NP-hard problems. Since routing problems belong to the
class of NP-hard problems with the decision version of the TSP belonging to NP-complete
problems [59], the use of metaheuristics is quite reasonable regarding complexity considerations.

3



NP

NP-hard

NP-complete

C
om

pl
ex

it
y

P

Figure 1.2: Euler diagram of problem complexity classes, under the assumption that P 6= NP

1.3 The Periodic Vehicle Routing Problem with Time Windows

The PVRPTW is primarily a generalized form of the TSP. Therefore it is defined similarly on
a complete directed graph G = (V,A), where V = {v0, v1, . . . , vn} is the set of vertexes, and
A = {ai,j = (vi, vj) : vi, vj ∈ V, i 6= j} is the set of arcs. The vertex v0 represents the depot
where each route has to start and end, the vertexes v1, . . . , vn represent the n customers that
have to be visited. For each arc ai,j a non negative travel cost ci,j is defined.

For the generalization to the VRP we introduce a fleet of vehicles H = {h1, . . . , hm} that is
based at the depot v0. For each vehicle hk a maximum carrying load Qk is defined. With each
customer vi, i ∈ {1, . . . , n} a load demand qi is associated. The m vehicles are not reused,
i.e. each vehicle hk has to start from the depot v0 loaded with a maximum load of Qk, then it
services the assigned customers, and finally it returns to the depot where it ends the service.

The PVRP is the result of the next step of generalization, where a planning horizon P =
{p1, . . . , pt} of t days is considered. Each customer vi specifies a service frequency fi ∈
{1, . . . , t}, where 1 means that the customer has to be serviced on just one single day in-
side the planning horizon, and t means that it has to be serviced every day. Additionally,
each customer vi specifies a set of ri visit combinations Ri = {Ci,1, . . . , Ci,ri} where the
visit combination Ci,x ⊆ P, |Ci,x| = fi ∀ x ∈ {1, . . . , ri}. A simple example illustrates
this: Customer v specifies a service frequency fv = 2 days for the planning horizon of P =
{Mon,Tue,Wed,Thu,Fri,Sat} with t = 6 days. He specifies rv = 3 different visit combina-
tionsCv = {{Mon,Thu}, {Tue,Fri}, {Wed,Sat}}. So the customer can be visited on days Mon
and Thu, or Tue and Fri, or on Wed and Sat.

The consideration of time windows finalizes the generalization to the PVRPTW. Each cus-
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tomer vi specifies a service begin time window [ei, li] and a service duration di where ei, li, di ≥
0. For each arc ai,j there is a non negative travel duration zi,j . The servicing vehicle has to time
the route in a way that it arrives at the customer vi by li at the latest. If the vehicle arrives before
ei it has to wait till the service begins. Additionally there is a maximum route duration Dk for
each vehicle hk. The time window [e0, l0] specifies the working time of the depot v0, that is, the
vehicles can leave at e0 at the earliest and have to return at l0 at the latest.

Table 1.1 provides an overview of the attributes that define the PVRPTW.

General
n number of customers
m number of vehicles
P planning horizon
t number of days in P

Vertexes
V set of vertexes
v0 depot
vi customer i, i ≥ 1
qi load demand of customer i
fi service frequency of customer i
Ri set of visit combinations of customer i
ri number of different visit combinations of customer i
Ci,x the x-th visit combination of customer i
ei start of the service begin time window of customer i
li end of the service begin time window of customer i
di service duration at customer i

Vehicles
H fleet of vehicles
hk vehicle k
Qk maximum carrying load of vehicle k
Dk maximum route duration of vehicle k

Arcs
A set of arcs
ai,j arc from vertex vi to vertex vj
ci,j travel costs from vertex vi to vertex vj
zi,j travel duration from vertex vi to vertex vj

Table 1.1: PVRPTW problem defining attributes

To solve the PVRPTW, one visit combination Ci,x has to be selected from Ri for each
customer vi, and a maximum of m vehicle routes have to be found on the graph G for each day
of the planning horizon P , such that the following rules apply:

• Each route has to start and end at the depot v0.

• Each route has to start and end in the time window [e0, l0].
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• Each customer vi belongs to exactly fi routes.

• Each customer vi is serviced on all days of the planning horizon that are part of the selected
visit combination Ci,x.

• For each route the sum of the visited customers’ load demands qi does not exceed the
maximum carrying load Qk of the assigned vehicle hk.

• For each route the total duration (travel durations zi,j + service durations di + waiting
times at customers) does not exceed the maximum route duration Dk of the assigned
vehicle hk.

• The service for each customer vi begins in the time window [ei, li].

• The total sum of travel costs ci,j over all routes is minimized.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 explains combinatorial op-
timization and its challenges. It shows strategies for solving optimization problems exactly
and describes in this context integer linear programming and its method set that is linear pro-
gramming, branch-and bound, branch-and-cut, and branch-and-price. The technique of column
generation is described to solve liner programming problems with a huge amount of variables.
Furthermore, this chapter describes approximation strategies to solve optimization problems in
an inexact manner. In this context we give an overview and classification of metaheuristics,
examine their method set including neighborhood definition and local search, and describe the
most popular metaheuristics. Consequently, the chapter outlines the possibilities to combine
exact and approximate solution strategies.

Chapter 3 is devoted to previous research. An overview is given of history and state-of-
the-art of column generation as well as metaheuristics applied to combinatorial optimization
problems. Also recent work about hybridization of these two solution strategies is presented. Of
course the outline focuses on routing problems in general and the PVRPTW in particular and
emphases related work accordingly.

Chapter 4 describes in detail the application of ACO to the pricing subproblem of a column
generation approach. Based on the set-covering formulation of the PVRPTW, it shows how to
split the issue into a master problem and a pricing subproblem, whereas the restricted version of
the master problem is solved via Simplex and the pricing subproblem is formulated as an Ele-
mentary Shortest Path Problem with Resource Constraints (ESPPRC). Here ACO is compared
to other metaheuristics as well as to a pure exact solving strategy implemented with dynamic
programming. Additionally the process of calibrating the parameters of ACO is described.

In chapter 5 ACO is applied to the whole PVRPTW. A new algorithm is developed that tries
to focus on the exploratory strength of ACO. We call the algorithm cascaded ACO – it decom-
poses the problem into an optimization problem for visit combinations that is solved by an upper
level ACO and a VRPTW that is solved by a lower level ACO. The parameter calibration focuses
on the balance between exploitation of search history and problem knowledge and exploration
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of search space, and tries to find a near-optimal setting regarding solution quality and algorithm
runtime.

The computational results of the two application methods are presented in chapter 6. For
that purpose a set of well-known problem instances is used to test the algorithms.

Chapter 7 concludes the thesis with an interpretation of the results. Further prospects and
conceivable future work are discussed, including open issues that merit more detailed investiga-
tion.
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CHAPTER 2
Preliminaries

2.1 Combinatorial Optimization

Solving the PVRPTW and especially its base form the TSP is a typical combinatorial optimiza-
tion task. In practice combinatorial optimization is one of the more difficult forms of math-
ematical optimization. It is characterized by a finite but often huge set of elements, with the
goal being to find an optimal element regarding a cost function. Formally a combinatorial op-
timization problem [71] can be defined as COP = (F, c), where F is a finite set of elements,
and c is the cost function c : F −→ R, where an element f ∈ F has to be found for which
c(f) ≤ c(x) ∀ x ∈ F .

For the PVRPTW F is the set of all feasible solutions that result from the combination of

• the selected customer visit combinations,

• the days of the planning horizon, and

• the maximum of m routes supported by the graph G

complying with the feasibility rules presented in section 1.3. This set is obviously finite, al-
though it is huge since it follows in principle the growth of n!. The cost function c is defined by
the total travel costs calculated by using the cost matrix (ci,j).

A simple solution method, which is not practicable for real problem instances, is the total
enumeration of the elements. However, there are strategies to solve combinatorial optimization
problems more efficiently by not enumerating all but only the “relevant” elements. When a
combinatorial optimization problem can be formulated in such a way that the optimizing cost
function is expressed as a linear combination over an integer vector x ∈ Zn and the feasibility
restrictions are expressed as linear inequalities over x, we speak of an Integer Linear Program-
ming (ILP) problem [87].
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Definition 1 (Integer Linear Programming). Let A ∈ Rn×m, b ∈ Rm, c ∈ Rn, then {min cTx |
Ax ≤ b, x ∈ Zn}1 is called an integer linear programming or an integer programming problem.

In fact most of the practical relevant combinatorial optimization problems can be expressed
as ILP problems. Unfortunately there are proofs that the general ILP is NP-hard. However
for special ILP classes polynomial-time or semi-polynomial-time algorithms have been found
[87]. A special form of ILPs are binary integer programming (BIP) or 0/1 integer programming
problems, where the integrality constraint x ∈ Zn is replaced with x ∈ {0, 1}n. They are also
classified as NP-hard.

If it is possible to formulate a combinatorial optimization problem with a linear cost function
and linear inequalities, but without the integrality constraint of x, then the formulation represents
a linear programming (LP) problem [71].

Definition 2 (Linear Programming). Let A ∈ Rn×m, b ∈ Rm, c ∈ Rn, then {min cTx | Ax ≤
b, x ∈ Rn} is called a linear programming problem.

Most of the combinatorial optimization problems have been shown to have an ILP repre-
sentation, like TSP and other routing problems, in fact all of the NP-complete and most of the
NP-hard problems. Nevertheless, combinatorial optimization problems with an LP represen-
tation exist, such as finding a maximum matching in a graph, which makes them belong to the
complexity class P that can be solved efficiently in general.

A mixed form of linear and integer linear programming problem formulation also exists,
known as mixed integer linear programming (MILP). Here a part of the variables x have to be
integral, the other part not. Like the general ILP the general MILP is also NP-hard. Since the
solution strategies are very similar we do not further differentiate between ILP and MILP.

Definition 3 (Mixed Integer Linear Programming). Let AI ∈ RnI×m, AN ∈ RnN×m, b ∈ Rm,
cI ∈ RnI , cN ∈ RnN , n = nI + nN then {min cTI xI + cTNxN | AIxI + ANxN ≤ b, xI ∈
ZnI , xN ∈ RnN } is called a mixed integer linear programming problem.

Linear programming and integer linear programming are related, since an LP problem can
be formulated by relaxing the integrality constraint of an ILP2. Figure 2.1 displays a graphical
representation of the situation illustrated by example 1. The cost function minx − 4y is repre-
sented by the red dashed line, minimizing the cost function is indicated by the arrow that gives
the direction for this optimization. The four inequalities divide the problem space into two half-
spaces, indicated by the bounding line and an arrow. The resulting area of feasible values of the
LP is shaded in yellow. By adding the integrality constraints x, y ∈ Z the problem becomes an
ILP problem. The solution space of feasible values for the ILP consists of a finite set of points,
displayed as green dots.

1Note that minimizing the cost function represents both possibilities of optimization, since maximizing can be
transformed by changing the sign of c, i.e. max cTx ≡ −min(−c)Tx. The same transformation can be applied
for the inequalities to represent greater equal constraints: ATi x ≥ bi ≡ (−Ai)Tx ≤ −bi. In fact even equality
constraints can be transformed to inequalities by replacing a linear equation with two linear inequalities with opposite
sign: ATi x = bi ≡ ATi x ≤ bi, (−Ai)Tx ≤ −bi

2Note that the integrality constraint of a BIP problem includes upper and lower bounds for the variables that can
be covered by the relaxed problem: x ∈ {0, 1}n 7−→ 0 ≤ x ≤ 1, x ∈ Rn
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–y ≤ 0

–x – y ≤ –2

–2x + 4y ≤ 7

3x – y ≤ 9

min x – 4y

(0, 0)

Figure 2.1: Graphical representation of an ILP problem and the related LP problem by relaxing
the integrality constraints

Example 1. An example of a linear programming problem with two variables x and y and four
inequalities:

minx− 4y

3x− y ≤ 9

−2x+ 4y ≤ 7

−x− y ≤ −2

−y ≤ 0

With the integrality constraint of x and y the problem becomes an integer linear programming
problem:

x, y ∈ Z

In general an LP problem with n variables and m inequalities can be interpreted as an n-
dimensional space that is divided into m halfspaces by (n − 1)-dimensional hyperplanes. The
intersection of these halfspaces forms a convex polyhedron that builds the space of feasible
values. If the intersection is empty then the problem is not solvable. If the polyhedron is bounded
then it is called a polytope3 and there exists a solution for the LP problem. If the polyhedron is
unbounded there may be a solution to the problem or the solution is not finite. Minimizing or
maximizing a linear function over the convex polyhedron of feasible values corresponds to the
search for an extreme point of the polyhedron that is always a vertex [87].

By adding the integrality constraints the solution space of the ILP is made discontinuous.
The feasible points are located inside the convex hull spanned by the polyhedron. Therefore

3The terms polyhedron and polytope are not used consistently in the literature, especially regarding dimensional-
ity, bound and unbound, or convex and not convex characteristics there exist different notions. The notion used here
is taken from Schrijver [87]
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the solution of the LP problem is a lower bound in the case of a minimizing optimization and
an upper bound in the case of a maximizing optimization for the solution of the related ILP
problem. But a simple rounding operation on the variables of the LP solution does not work,
as can be easily seen in figure 2.1: The optimal solution for the LP problem of example 1 is
x = 4.3, y = 3.9. Rounding to the nearest integer results in x = 4, y = 4, which is not a
feasible solution; rounding down results in x = 4, y = 3, which is not an optimal solution.
Even worse, there is no guarantee that an ILP problem is solvable when the integrality-relaxed
LP problem has a solution. However, if the optimal solution of the LP-relaxed4 problem is
integral, then it is also the optimum for the ILP.

An important characteristic of an LP problem is that it is possible to formulate a symmetrical
LP problem with the same optimal solution as long as a finite optimal solution exists. This prob-
lem is called the dual LP problem, the original problem is called the primal LP problem. To get
the dual problem the variables of the primal problem are associated with constraint inequalities
or equalities, the constraint inequalities or equalities are associated with dual variables, and the
optimizing operator of the cost function changes from max to min or vice versa. The duality
theorem for linear programming expresses this fact.

Theorem 1 (Duality Theorem for Linear Programming [41]). Let A ∈ Rn×m, b ∈ Rm, c ∈ Rn,
then min{cTx | Ax ≤ b, x ≥ 0, x ∈ Rn} = max{bT y | AT y ≤ c, y ≤ 0, y ∈ Rn}, as long as a
solution exists and the optimum is finite.

This is just one form of several equivalent forms of the duality theorem, all of them dealing
with different constraint operators or variable restrictions. Table 2.1 displays the rules for for-
mulating the dual problem of a general primal problem. Example 2 shows the dual LP problem
of the primal LP problem from example 1.

minimize � maximize
constraint inequality ≤ � variable ≤ 0
constraint inequality ≥ � variable ≥ 0
constraint equality = � unrestricted variable

variable ≤ 0 � constraint inequality ≥
variable ≥ 0 � constraint inequality ≤

unrestricted variable � constraint equality =

Table 2.1: Ruleset for formulating dual LP problems from primal LP problems

Example 2. The dual form of the linear programming problem of example 1. The two variables
x and y of the primal problem are associated with two equality constraints, the four inequalities

4Subsequently we call the LP problem that results from an ILP by removing the integrality constraints the LP-
relaxed problem of the ILP

12



are associated with the four variables r, s, t, and u:

max 9r + 7s− 2t

3r − 2s− t = 1

−r + 4s− t− u = −4

r, s, t, u ≤ 0

The duality theorem implies an important fact for solving practice: Each feasible solution
of a dual LP maximization problem is a lower bound for the optimal solution of the primal LP
minimization and vice versa, as long as a finite optimum exists.

2.2 Exact Solution

Several algorithms have been developed to solve combinatorial optimization problems exactly,
that is, to obtain an optimal solution. Since LP problems belong to the complexity class P they
can be solved efficiently, but (unless P = NP) general ILP problems lack this advantage.

LP Solution Algorithms

Simplex

One of the most famous algorithms to solve LP problems was developed by George Dantzig: the
simplex algorithm [19]. This algorithm works on an LP representation of the form min{cTx |
Ax = b, x ≥ 0}5. It uses the fact that a system of linear equalities can be transformed to
the canonical form IxB + ÃxN = b̃, where I is the identity matrix, when given a feasible
solution. By doing so the set of variables x is divided into basic variables xB and non-basic
variables xN . The algorithm iteratively swaps non-basic variables with basic variables and tries
to reduce the cost function with each swap operation. The base structure for the algorithm

is the simplex tableau
[

1 cTB cTN 0

0 I Ã b̃

]
or
[

1 0 c̃T z

0 I Ã b̃

]
after applying some Gaussian

elimination transformations for the first row that contains the cost function. Note that cTB and cTN
are the coefficients of the cost function for basic and non-basic variables respectively. z contains
the value of the cost function for the given feasible solution. Algorithm 2.1 shows this basic
form of the general simplex algorithm.

Using the graphical representation of an LP problem the simplex algorithm can be inter-
preted as the traversal of the convex feasibility polytope from one vertex to the next by improv-
ing the value of the cost function. The basic feasible solution corresponds to an arbitrary vertex,
the selection of a simplex tableau column and row corresponds to the selection of an edge of
the polytope to the next vertex. The algorithm terminates at the optimum when no edge can be
found that leads to a cost function improving vertex.

5Inequality constraints can be formulated as equalities by introducing slack variables, e.g. ATi x ≤ bi ≡ ATi x−
si = bi, si ≥ 0; Unrestricted variables can be eliminated by replacing them with two restricted variables: xi =
x+
i − x−i , x

+
i ≥ 0, x−i ≥ 0
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Input: linear program LP = min{cTx | Ax = b, x ≥ 0}
Output: optimal solution of LP

Phase I:1

find a basic feasible solution S of LP2

// if no basic feasible solution can be found LP has no
solution

generate simplex tableau3

Phase II:4

while S not optimal do5

// S is optimal if no cost function value reducing
non-basic variable exists

select a simplex tableaux column from non-basic variables to reduce value of cost6

function
// if no row exists with a positive coefficient in the

selected column, the problem is unbounded and there is
no finite optimum

select a simplex tableaux row to remove from basic variables7

transform selected column to unit vector by Gaussian elimination, generating new8

solution S
rewrite simplex tableau9

end10
Algorithm 2.1: General Simplex Algorithm

In Phase I of the simplex algorithm a basic feasible solution has to be found to start with.
This can be accomplished by formulating a new LP problem that is related to the original LP
problem. For each equation an artificial variable yj is added and the cost function is rewritten
so that the optimal solution ensures that each artificial variable is 0: min{

∑
j yj | Ax + y =

b, x ≥ 0, y ≥ 0}. Finding a basic feasible solution for this problem is trivial: x = 0, y = b. By
applying the simplex algorithm to this problem an initial solution for the original problem can
be found, unless the optimal value of min

∑
j yj 6= 0 in which case no feasible solution exists.

There are variations of the simplex algorithm that try to improve the behavior of the algo-
rithm for specific types of LP problems. The dual simplex algorithm solves the dual formulation
of the LP problem. This can have advantages in runtime when the number of constraints is large
compared to the number of variables. Also for some LP problems it is trivial to determine a basic
feasible solution for the dual LP problem which allows the omission of phase I of the simplex
algorithm. For this it is important that the simplex tableau also generates the optimal solution
of the dual problem in additional to the primal optimal solution which can be accomplished by
using the Tucker tableau [45].

Another variant deals with LP problems that can be represented in quite sparse simplex
tableaux: the revised simplex algorithm does not store the whole simplex tableau; instead it
stores the necessary elements for the next simplex step and calculates the missing elements
accordingly, by using LU decomposition of the simplex tableau and similar methods.
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Other variations deal with special strategies for selection of non-basic variables and basic
variables in the essential simplex step. For selection of a simplex tableau column of non-basic
variables there exists the classic method proposed by Dantzig that uses the variable with the
largest reducing cost coefficient. Other selection methods include steepest-edge pricing [37],
devex pricing [50], partial pricing [68], or combinations of these. The selection of a simplex
tableau row for elimination of a basic variable influences also the behavior of the simplex algo-
rithm according algorithmic cycles that can occur in degenerated LP problems, which contain
constraints that do not affect the feasible solution space. Lexicographic pivoting and Bland’s
rule [7] prevent cycling, whether a random row selection strategy makes cycling improbable but
not impossible.

The simplex algorithm shows polynomial time behavior for “random” LP problems, which
makes it quite efficient in practice [71]. Nevertheless, it is possible to construct LP problems
where the simplex algorithm degenerates to exponential time behavior [56].

Finite Criss-Cross

The same principal time behavior is also shown by the finite criss-cross algorithm, another
example of an exact LP problem solving algorithm. This algorithm, proposed by Chang, Terlaky
[91] and Wang, is similar to the simplex algorithm since it uses also basis exchange operators
to traverse the solution space to the optimal value. But unlike the simplex algorithm the criss-
cross algorithm allows bases that do not correspond to vertexes of the feasibility polyhedron.
Furthermore, the algorithm even allows infeasible bases to be traversed. To achieve this it uses
the primal as well as the dual LP formulation and tries to find a feasible optimum by jumping
from primal infeasible and/or dual infeasible bases to feasible bases. Thus, the algorithm has no
need to perform a first phase as does the simplex algorithm, since it is not required to start with
a feasible solution [39].

Ellipsoid

Another exact solution method for LP problems is the ellipsoid algorithm introduced by Khachi-
jan [48], who applied previous work about non-linear optimization to linear programming and
showed the polynomial time behavior of the ellipsoid algorithm for LP. The algorithm is based on
a binary search over the optimizing cost function and a feasibility check of a set of inequalities.
The feasibility check is performed on the polyhedron determined by the set {cTx ≥ zk, Ax ≤
b, x ≥ 0}, where zk is the cost function value for the k-th iteration of the binary search. The
initial step is the construction of an ellipsoid whose volume contains the polyhedron. Then a
hyperplane is generated to separate the polyhedron and the central point of the ellipsoid. The
smallest possible ellipsoid is thereby constructed whose volume contains the intersection of the
original ellipsoid and the halfspace containing the polyhedron. If after a precalculated number
of iterations the central point is not inside the polyhedron, the polyhedron is empty and the set
of inequalities is infeasible. Algorithm 2.2 describes the feasibility check by the ellipsoid algo-
rithm. Since the binary search and feasibility check by the ellipsoid algorithm are polynomial in
time behavior (for details see [48]), the solution algorithm for the LP problem is also polynomial.
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Input: set of inequalities S = {cTx ≥ zk, Ax ≤ b, x ≥ 0}
Output: “yes” if S is feasible, “no” if not and polyhedron of S is empty

set initial ellipsoid E0 that contains polyhedron of S if not empty1

calculate maximum number of iterations Lmax2

l← 03

repeat4

if central point of El inside polyhedron of S then return “yes”5

H ← hyperplane separating polyhedron of S from central point of El6

El+1 ← minimum volume ellipsoid containing El ∩H+7

// H+ is the halfspace separated by H that contains
polyhedron of S if not empty

l← l + 18

until l = Lmax9

return “no”10
Algorithm 2.2: Ellipsoid Algorithm performing a feasibility check on a polyhedron

Although the ellipsoid algorithm is polynomial in time, it has hardly any practical relevance
for LP problem-solving because the simplex algorithm performs better for real world problems.
Nevertheless, it is significant for theoretical considerations since it proves that the LP problems
belong to the complexity class P .

Karmarkar

Other exact LP problem solving algorithms have been developed that solve each LP problem in
polynomial time doing this more efficiently than the ellipsoid algorithm. One is Karmarkar’s
algorithm [53] which belongs to the class of interior point methods. It uses fast Fourier trans-
forms to traverse the feasible solution space inside the polyhedron instead of traversing it on
the surface walking from vertex to vertex. Since Karmarkar’s algorithm competes with the sim-
plex algorithm, other interior point methods such as primal-dual path-following interior point
methods have been developed to enrich the class of exact LP problem solving algorithms.

ILP Solution Algorithms

Although the general ILP problem is NP-hard and therefore cannot be solved efficiently (as
long as P 6= NP), strategies have been developed to solve these problems exactly.

Cutting Plane

One of the first methods dealing with ILP problems was the cutting plane algorithm. Initially
formulated for the TSP [20] it was generalized by Gomory for all ILPs [46]. The idea of the
cutting plane algorithm is based on the LP problem solution: First the LP-relaxed problem
has to be solved (e.g. with simplex algorithm) – the result is a lower bound (in the case of
a minimizing problem) for the ILP solution. If the optimal solution is not integral then an
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additional constraint has to be added that excludes this solution by making it infeasible, but
leaves all other integral solutions inside the feasible space of the problem. This constraint equals
a hyperplane (a cutting plane) that builds a new facet for the resulting polyhedron. The new LP-
relaxed problem including the newly generated inequality is solved which continues the iterative
process with a new optimal solution that is necessarily a tighter (higher in case of a minimizing
problem) lower bound for the ILP solution. Algorithm 2.3 shows the general form of the cutting
plane algorithm.

Input: ILP min{cTx | Ax = b, x ≥ 0, x ∈ Z}
Output: optimal solution of ILP

xLP ← solve LP min{cTx | Ax = b, x ≥ 0}1

l← 12

while xLP not integral do3

dTl x ≤ el ← inequality separating xLP from feasible integral solutions of ILP4

xLP ← solve LP min{cTx | Ax = b, dT1 x ≤ e1, . . . , d
T
l x ≤ el, x ≥ 0}5

l← l + 16

end7

return xLP8
Algorithm 2.3: General form of the Cutting Plane Algorithm

Finding a hyperplane that separates the LP-relaxed optimum from the rest of the feasible
integral solutions is called the separation problem. Gomory presented a method based on the
simplex tableau used when solving the LP-relaxed problem: after solving procedure the simplex
tableau consists of rows in the form of xi+

∑
j ãijxj = b̃i, where xi is a basic variable and xj are

non-basic variables. Separating integral and fractional parts leads to xi +
∑

jbãijcxj − bb̃ic =

(b̃i − bb̃ic) −
∑

j(ãij − bãijc)xj < 1. For any feasible integral x the left-hand side of the
equation is integral implicating that the right-hand side has to be ≤ 0. On the other hand, for the
non-integral optimal solution the right-hand side becomes b̃i − bb̃ic that is > 0. Therefore an
inequality can be formulated that separates all feasible integral x from the non-integral optimal
solution: (b̃i − bb̃ic)−

∑
j(ãij − bãijc)xj ≤ 0. This method can be applied to any kind of ILP

problem, though in practice it leads to many iterations and numerical problems.
A geometrical interpretation of the cutting plane algorithm with a Gomory cut is displayed in

figure 2.2 using example 1. The result of the LP-relaxed problemLP1 is calculated. By using the
simplex tableau generated while solving this problem, the Gomory cut is determined as y ≤ 3.
This inequality builds a hyperplane that separates LP1 from the feasible integral solutions of the
ILP, cutting off a part of the original polyhedron. In the figure it is shown as a blue dotted line
defining a halfspace that cuts off the blue hatched area. For the next iteration the new constraint
is added to the ILP problem, and again the LP-relaxed problem is solved. This leads to LP2

that is a tighter lower bound for the ILP problem than LP1. The procedure is repeated until an
integral solution is found.

The method presented by Gomory to solve the separation problem is the most generic form
for ILP problem solution, but it only uses weak cutting planes. In contrast strong cutting planes
generate a facet of the polyhedron of the integral LP problem that is the tightest convex hull of all
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y ≤ 3

min x – 4y

LP1 = –11.3 

(4.3, 3.9)LP2 = –9.5 

(2.5, 3)

(0, 0)

Figure 2.2: Geometrical interpretation of the cutting plane algorithm

feasible integer solutions. By researching the feasibility polyhedrons for specific ILP problems,
more and better cutting planes have been found to enhance solving performance. These include
for example the family of generalizing comb inequalities for the TSP [66], or lift-and-project
or disjunctive inequalities [1], which made cutting planes for the last decades an important tool
for successful ILP solving. Especially in combination with branch and bound (see below) these
cutting planes showed considerable solving power.

There is an adjacent application for the cutting plane method: if a problem is formulated
as LP with a huge set of constraints the solving algorithm can start with just a part of this set.
Here the separation problem is to check if a constraint is violated that was not part of the starting
set of constraints. By adding this constraint and solving the problem again a new solution is
generated that can be checked against the remaining constraints. With this method it is possible
to solve LP problems with an exponential number of constraints without enumerating them, as
long as the separation problem can be solved efficiently! Typically, problem formulations with
huge sets of constraints exist for hard combinatorial optimization problems that can be solved
with the cutting plane method.

Because this method adds constraints to the LP problem that become visible in the simplex
tableau as rows, the cutting plane is also called row generation.

Branch and Bound

A different approach for solving the ILP was used by Land and Doig when they formulated
the branch and bound algorithm for integer programming [57]. Although it is also based on
the solution of the LP-relaxed problem, it uses a divide and conquer principle to deal with the
integrality constraints: after solving the LP-relaxed problem the LP with non-integral solution
variables is split into two subproblems that are solved separately. The best solution for these two
subproblems is the best solution of the whole problem. To solve a subproblem the same method
is applied, leading to a recursive algorithm that traverses a decision tree. A leaf of the tree is
found when the solution of the LP-relaxed subproblem is integral.

The process of splitting problems into subproblems is called branching and can be accom-
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plished quite easily with ILP problems, by simply adding a constraint to each of the subprob-
lems which differentiates for a non-integral solution variable between the lower and the upper
integer: for the first subproblem add the constraint xi ≤ bxLPi c, for the second the constraint
xi ≥ dxLPi e, where xLPi is the optimal non-integral solution value of xi calculated by solving
the LP-relaxed problem.

For the bounding part of the algorithm a lower and upper bound for the problem have to be
calculated. In the case of a minimizing problem, if a subproblem’s lower bound is ≥ than the
problem’s upper bound the branching of the subproblem can be omitted because the subproblem
cannot have a better solution. To obtain a lower bound the value of the cost function for the LP-
relaxed problem solution is used. To obtain an upper bound each feasible i.e. integral solution
can be used. The branch and bound algorithm for ILP solving is shown in Algorithm 2.4.

Data: global value: upper ←∞ (upper bound)
Data: global vector: xILP (optimal solution of ILP)
Input: ILP min{cTx | Ax = b, x ≥ 0, x ∈ Z}
Output: optimal solution of ILP

xLP ← solve LP min{cTx | Ax = b, x ≥ 0}1

if LP is not feasible then2

// ILP is also not feasible
else if xLP integral then3

// feasible ILP solution
if cTxLP < upper then4

upper ← cTxLP5

xILP ← xLP6

end7

else if cTxLP ≥ upper then8

// omit because of bounds
else9

// branch into two subproblems
select xi with not integral value xLPi10

recursive Branch and Bound with ILP ∪ {xi ≤ bxLPi c}11

recursive Branch and Bound with ILP ∪ {xi ≥ dxLPi e}12

end13
Algorithm 2.4: Branch and Bound Algorithm for ILP

The branch and bound decision tree used to solve example 1 is displayed in figure 2.3. ZLP

is the value of the cost function for the optimal solution of the LP-relaxed problem in each branch
and bound node. The tree is traversed with a left-to-right depth-first search strategy. Therefore,
the integral solution xLP = 3, yLP = 3 defines an upper bound of −9 for the rest of the tree
traversal. This bound enables the algorithm to omit a further branch for the LP subproblem
with an optimal cost function value of −9 which is the lower bound of this subproblem, so no
better solution can be found in this branch. Other decision tree traversal strategies (e.g. best-first
search, or other) can lead to a different behavior regarding number of branches and progression
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of the upper bound.

y ≥ 4y ≤ 3

xLP = 4.3, yLP = 3.9

infeasiblexLP = 2.5, yLP = 3

ZLP = –11.3

ZLP = –9.5

x ≥ 3 x ≤ 2

xLP = 3, yLP = 3

ZLP = –9

xLP = 2, yLP = 2.75

ZLP = –9

omit, because –9 ≮ –9

Figure 2.3: A Decision Tree of the Branch and Bound algorithm

A geometrical interpretation of a branch operation is shown in figure 2.4. The optimal
solution for the actual LP-relaxed problem is marked with a red circle xLP = 2.5, yLP = 3.
The branch is performed using the variable x, the resulting two LP problems have each added
an inequality specifying that x ≤ 2 for LPI, or x ≥ 3 for LPII.

min x – 4y

(0, 0) x ≥ 3x ≤ 2

LPI LPII

Figure 2.4: Geometrical interpretation of a Branch operation of the Branch and Bound algorithm

Branch and Cut

Branch and cut is a hybrid of branch and bound and cutting plane algorithms. Early combina-
tions of these two algorithms proposed to solve the LP-relaxed problem then find strong cutting
planes and finally perform a branch and bound including these additional planes; this type of
algorithm was called cut and branch [17]. For this approach all original constraints have to be
part of the problem when entering the branch and bound phase.
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With the development of branch and cut [69] this disadvantage could be avoided. Here
the cutting plane algorithm is applied at each branch of the branch and bound decision tree.
Algorithm 2.5 shows the general branch-and-cut procedure. Variants of the algorithm distinguish
between local cuts and global cuts that can be applied on the whole decision tree and therefore
speed up the cutting plane step of distinct subtrees.

Data: global value: upper ←∞ (upper bound)
Data: global vector: xILP (optimal solution of ILP)
Input: ILP min{cTx | Ax = b, x ≥ 0, x ∈ Z}
Output: optimal solution of ILP

ĹP← min{cTx | Áx = b́, x ≥ 0} LP with reduced constraints1

xĹP ← solve ĹP min{cTx | Áx = b́, x ≥ 0}2

if ĹP is not feasible then3

// ILP is also not feasible
else4

CP ← {}5

repeat6

CP ← CP ∪ inequality separating xĹP from feasible integral solutions of ILP7

xĹP ← solve ĹP min{cTx | Áx = b́, x ≥ 0} ∪ CP8

until xĹP is feasible in non-reduced LP {Ax = b, x ≥ 0} (or later)9

if xĹP integral then10

// feasible ILP solution

if cTxĹP < upper then11

upper ← cTxĹP12

xILP ← xĹP13

end14

else if cTxĹP ≥ upper then15

// omit because of bounds
else16

// branch into two subproblems

select xi with not integral value xĹPi17

recursive Branch and Cut with ILP ∪ CP ∪ {xi ≤ bxĹPi c}18

recursive Branch and Cut with ILP ∪ CP ∪ {xi ≥ dxĹPi e}19

end20

end21
Algorithm 2.5: Branch and Cut Algorithm for ILP
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Column Generation

There are problem formulations with a huge set of variables. Dantzig and Wolfe even proposed a
method to generate such formulations for LP problems, known as Dantzig-Wolfe decomposition
[22]. The column generation algorithm was developed to solve such problems by applying
the same principles as the simplex algorithm does: since the non-basic variables of a feasible
solution are 0 and only the basic variables build the solution, the non-basic variables do not need
to be enumerated. Therefore it is just necessary for a simplex step to find a non-basic variable
that improves the value of the cost function, that is, a variable with negative reduced costs for
a minimizing problem or positive reduced costs for a maximizing problem. This is called the
pricing problem [26].

Let us consider the LP problem {min cTx | Ax ≤ b, x ≥ 0} with its dual LP problem
{max bT y | AT y ≤ c, y ≤ 0}. We call the LP with a reduced set of variables in the context
of column generation the restricted master problem (RMP) L̀P {min c̀T x̀ | Àx̀ ≤ b, x̀ ≥ 0}
with its dual RMP {max bT y | ÀT y ≤ c̀, y ≤ 0}. For a given optimal solution x̀∗ of the
RMP the optimal solution of the dual RMP is y∗. If y∗ is feasible in the dual non-restricted
LP then it is also optimal in the dual non-restricted LP problem, because the cost functions
of the dual LP and the dual RMP are equal and the set of constraints is merely a subset. But
if y∗ is optimal for the dual non-restricted LP, then x̀∗ is optimal for the non-restricted LP!
Therefore the pricing problem to find a variable with negative reduced costs is equivalent to the
problem of finding a violated constraint in the dual LP problem. If no such violated constraint
can be found, the solution is optimal. Such a constraint can be found by determining a column
j where a.jT y∗ � cj , whereas a.j is the j-th column of A. This pricing problem for the general
column generation method can also be expressed as the requirement to find a j |

∑
i aijy

∗
i > cj .

Algorithm 2.6 shows the general column generation method.

Input: LP min{cTx | Ax = b, x ≥ 0, x ∈ R}
Output: optimal solution of LP

L̀P← min{c̀Tx | Àx = b, x ≥ 0} LP with reduced variables1

J+ ← {}; c+ ← {}; A+ ← {}2

y∗ ← solve dual L̀P max{bT y | ÀT y ≤ c̀}3

while cost reducing column j exists so that
∑

i aijy
∗
i > cj do4

J+ ← J+ ∪ j; c+ ← c+ ∪ cj ; A+ ← A+ ∪ a.j5

y∗ ← solve dual L̀P max{bT y | ÀT y ≤ c̀} ∪ {aT.jy ≤ cj}, j ∈ J+6

end7

return solve L̀P min{c̀Tx+
∑

j∈J cjx | Àx+
∑

j∈J a.jx = b, x ≥ 0}8
Algorithm 2.6: General Column Generation Algorithm for LP

Variations of this algorithm add not just one but several variables with negative reduced
costs in each iteration. Also non-basic variables could be removed from the actual solution.
Nevertheless, the key to an efficient column generation application is a well-chosen formulation
of the problem. By doing so the pricing subproblem can become a well-known combinatorial
optimization problem which can be solved by efficient problem specific techniques instead of
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applying general LP or ILP algorithms.
The column generation approach is symmetrical to the row generation approach of the cut-

ting plane algorithm for the dual problem. Therefore column and row generation can be inter-
preted as dual solution strategies to solve an LP problem.

Although, column generation is a method to solve LP problems (similar to the row gener-
ation approach of cutting plane), it becomes an important part of the next exact ILP solution
technique.

Branch and Price

Branch and price is a hybrid of branch and bound and column generation algorithms. The algo-
rithm uses the LP-relaxed problem, but in contrast to branch and cut that starts with a reduced set
of constraints, branch and price starts with a reduced set of variables. Here column generation
is applied at each node of the branch and bound decision tree.

For branch and price it is very important to choose an appropriate branching strategy. The
problem for classic branch and bound formulations with a huge set of variables is that fixing
a single variable to its lower and upper integer often leads to very imbalanced decision trees.
Therefore problem-specific branching schemas have been developed, often based on the initial
set of variables that allow efficient branch and price application [3].

Branch and Cut and Price6

For the last two decades principles have been investigated to combine branch and cut with branch
and price. Problem specific applications were developed that use cutting planes as well as col-
umn generation at each node of the branch and bound decision tree, e.g. [2], [84] or [60]. Nev-
ertheless, combining row and column generation techniques raises various challenges due to the
dynamic nature of the relaxations, and the fact that adding constraints or variables can destroy
the structure of the pricing or separation problem respectively [80].

2.3 Metaheuristics

In addition to the exact solving algorithms just reviewed there are many strategies to solve
combinatorial optimization problems approximately. These strategies include problem-specific
heuristic approaches as well as generic approximate solution schemas that are called metaheuris-
tics [43]. The challenge in using metaheuristics is not to develop a fitting solution strategy from
scratch, but to apply the metaheuristic principles to the combinatorial optimization problem.

Metaheuristics are therefore high level strategies for efficient exploration of search spaces.
They can be characterized by the fact that they are approximate and usually non-deterministic,
and they are not problem-specific. The search process is guided in such a way that, on the one
hand, the whole search space is explored and, on the other, the accumulated search experience
is exploited. Therefore, a metaheuristic has to find a balance between diversification and inten-
sification of its search strategy [8], to identify efficiently regions with high quality solutions.

6The name for the branch and cut and price method varies in the literature. Alternatives include: branch, cut and
price and branch, price and cut [27]
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The guided search procedure of a metaheuristic usually uses some kind of neighborhood
structure to explore the search space in a local search. Formally a neighborhood structure can be
defined as [8]:

Definition 4 (Neighborhood Structure). A neighborhood structure is a function N : S −→ 2S

that assigns to every s ∈ S a set of neighbors N(s) ⊆ S, where N(s) is called the neigh-
borhood of s, and S is the search space which corresponds to the finite set of elements of the
combinatorial optimization problem.

Based on that definition a local minimum with respect to a neighborhood structure N can
be defined as a solution s∗ ∈ S, whereas for all s ∈ N(s∗) : f(s∗) ≤ f(s). The function
f : S −→ R corresponds to the cost function of the combinatorial optimization problem.

The basis for most metaheuristics is a local search step which finds a new local minimum
from a given solution. Algorithm 2.7 shows a general local search algorithm7.

Input: Solution s
Output: local minimum solution of s

repeat1

ś←− select one element from N(s), where f(ś) < f(s)2

if no such element exists then return s // local minimum3

s←− ś4

until termination criterion5

return s // local minimum for all visited solutions6
Algorithm 2.7: General Local Search Algorithm

Aspects of the following criteria can be used to characterize the different metaheuristics:

• Nature inspired vs. not nature inspired: a fairly intuitive but not very relevant characteriza-
tion criteria is the original source of inspiration. Simulated annealing, genetic algorithms,
and ant colony optimization try to take advantage of natural phenomena for efficient solv-
ing of combinatorial optimization problems.

• Population based search vs. single point search: If just a single solution is manipulated
at each iteration the metaheuristic follows a single point search strategy. On the other
hand, if multiple solutions are used concurrently then the search is based on a population
of “individuals”. In genetic algorithms the population is manipulated using the genetic
operations, and in ant colony optimization a colony of ants uses pheromone trails to guide
their search procedure.

• Trajectory method vs. discontinuous method: metaheuristics can be distinguished by
whether their search procedure follows a single search trajectory, or whether large jumps
are allowed that result in a discontinuous search pattern. Therefore, trajectory methods

7Actually, even local search itself is referred as one of the oldest and simplest metaheuristics, also known as hill
climbing, iterative improvement, etc.
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evolve by traversing the search space using the neighborhood of the current solution.
Guided local search performs a local search and dynamically modifies the objective func-
tion to gradually move away from local minima. Tabu search remembers previously gen-
erated solutions to avoid them during the local search, and simulated annealing uses a
random sampling of the current solution’s neighborhood to come to a new solution. In
iterated local search, variable neighborhood search, greedy randomized adaptive search
procedure, genetic algorithms, or ant colony optimization starting points for a subsequent
local search are generated corresponding to jumps in the search space.

• Dynamic vs. static objective function: metaheuristics can be classified according to
whether they modify the evaluation of the points in the solution space dynamically by
changing the objective function, or by using a static objective function. Guided local
search modifies the objective function dynamically to avoid local minima. Also the tabu
list of previous solutions in a tabu search can be interpreted as applying terms dynamically
to the objective function with infinitely high values.

• Multiple vs. single neighborhood structures: the number of different neighborhood struc-
tures used in the metaheuristic can be used for classification. A typical representative of
a multiple neighborhood strategy is the variable neighborhood search. In addition, the
perturbation operation of the iterated local search to leave local optima can be interpreted
as an operation in a second neighborhood structure. In genetic algorithms the mutation
operation is also interpreted as movement in a second neighborhood structure.

• Memory usage method vs. memoryless method: an important criterion for classifying
metaheuristics is the use of the search history by storing the search experience in memory.
Tabu search and ant colony optimization explicitly use memory to store previously visited
points in the search space or a pheromone structure representing the search paths of pre-
decessor ants. Also the population of genetic algorithms can be interpreted as memory for
the search experience.

Table 2.2 summarizes the classification of the selected relevant metaheuristics in its standard
form [6], where  means that this aspect is present, G# that this aspect is partially present, and #
that this aspect does not characterize the metaheuristic. The metaheuristics are described in the
remainder of this chapter closely following Talbi [90].

ILS GLS TS VNS GRASP SA GA ACO
Nature inspired # # # # #    
Population based # # # # # #   
Trajectory method #   # #  # #
Dynamic objective function #  G# # # # # #
Multiple neighborhood structures  # #  # # G# #
Memory usage # #  # # #   

Table 2.2: Classification of Metaheuristics
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Iterated Local Search

The iterated local search (ILS) metaheuristic calculates from an initial solution a local minimum
by applying a local search. Since the quality of the local minimum depends mainly on the
initial solution, the current local minimum is used to generate a new initial solution that can be
optimized to a new local minimum. Therefore, the local search is iterated to explore a larger part
of the search space [62].

Algorithm 2.8 shows the general ILS procedure. During each iteration a perturbation opera-
tion is applied to the current local minimum solution. This operation has to jump far enough in
the search space to reach another local minimum from the subsequent local search. The palette
of perturbation operations ranges from a simple randomized generation of new start solutions,
to search history aware techniques that find new regions of attraction. After the local minimum
has been found for the perturbed solution, it is compared to the current local minimum and con-
sequently adopted or rejected for the next iteration. Also here different acceptance criteria are
used: it is possible to accept any new solution, to accept solutions based on the comparison of
the cost function values, or even to include the search history for the acceptance decision.

Input: Solution s
Output: local optimal solution of s by ILS

s∗ ←− local search of s1

repeat2

sp ←− perturbation of s∗3

s∗p ←− local search of sp4

s∗ ←− accept or reject s∗p5

until termination criterion6

return s∗7
Algorithm 2.8: General Iterated Local Search Algorithm

A graphical interpretation of the basic operations of the ILS algorithm is shown in figure 2.5.

Guided Local Search

The guided local search (GLS) metaheuristic uses a different strategy to overcome local min-
ima. It dynamically changes the evaluation of the cost function according to the current local
minimum [96].

To achieve this a set of solution features FT is defined. Each feature is associated with a
cost and a penalty. The cost should reflect the influence of the presence of this feature to the cost
function; the penalty represents the importance of the feature and is determined during the algo-
rithm. For routing problems the feature can be associated with the presence of an arc, the costs
correspond to the arc-costs. For a given local optimum solution s∗ a utility is calculated for each
feature ft ∈ s∗: uft(s∗) =

cft
1+pft

, where cft is the associated cost and pft the associated penalty.
The feature with the highest utility is then penalized by increasing the associated penalty. The
cost function of the problem is modified for s∗, so that f̂(s∗) = f(s∗) + λ

∑
ft∈s∗ pft, where λ

represents a weight factor. Algorithm 2.9 shows the general GLS procedure.
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Figure 2.5: Graphical Interpretation of the basic operations of ILS

Input: Solution s, weight λ
Output: best solution found by GLS

pft ←− 0 ∀ ft ∈ FT1

repeat2

s∗ ←− local search of s using cost function f̂(s) = f(s) + λ
∑

ft∈s pft3

umax ←− 04

foreach ft ∈ s∗ do5

if cft
1+pft

> umax then ftmax ←− ft; umax ←−
cft

1+pft6

end7

pftmax ←− pftmax + 18

s←− s∗9

until termination criterion10

return s∗11
Algorithm 2.9: General Guided Local Search Algorithm

Figure 2.6 shows the graphical interpretation of the GLS algorithm. The penalization oper-
ator “raises” the cost function around the solution s∗. Therefore subsequent local search opera-
tions can find a new local optimum not influenced by the penalty.

Tabu Search

The next metaheuristic uses memory to escape from the valley surrounding a local minimum.
It was developed concurrently as tabu search [44] (TS) and as steepest ascent mildest descent
heuristic [49]. The idea is to allow the local search algorithm to decrease the cost function

27



local
search

local
search

cost function

search space

s

s*

penalization

s*

Figure 2.6: Graphical Interpretation of the basic operations of GLS

value if no improvement is possible. To avoid circularity a memory structure that is known is
the tabu list stores solutions that have been visited previously. Instead of storing solutions it is
also possible to store moves that cannot be undone, for example for a routing problem an added
vertex could be marked as non-removable by adding it to the tabu list. An aspiration criterion
has to decide if the tabu move is really forbidden because it could lead to a new best solution in
a later state of the algorithm.

The tabu list itself can be interpreted as short term memory because it is limited and “for-
gets” tabu elements over time. Also other memories can be introduced into the algorithm like a
medium term memory that stores best solutions to intensify searching, or a long term memory
that stores information of unexplored regions in the search space to diversify searching. Algo-
rithm 2.10 shows the basic tabu search algorithm without additional memories.

Input: Solution s
Output: best solution found by TS

TL←− {} // tabu list1

repeat2

ś←− select one element from N(s)\(aspirated TL), where f(ś) < f(s)3

if no such element exists then ś←− select one element from N(s)4

update TL with s or the move s 7→ ś5

s←− ś6

until termination criterion7

return s8
Algorithm 2.10: Basic Tabu Search Algorithm
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A graphical interpretation of the basic TS procedure is shown in figure 2.7. The tabu list
enables the algorithm to climb up the slope of the valley surrounding the local minimum without
falling back.
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s

s*

regular

Figure 2.7: Graphical Interpretation of the basic TS

Variable Neighborhood Search

The basic idea of the variable neighborhood search (VNS) metaheuristic is to use multiple
neighborhood structures to avoid being caught in a local minimum of a single neighborhood
structure [64]. The core of the VNS is the variable neighborhood descent, a deterministic search
algorithm that changes the neighborhood structure when a local minimum is reached.

First the neighborhood structures have to be defined; then the algorithm starts with the first
neighborhood structure and descends to a local minimum. Now the second neighborhood struc-
ture is activated and a local minimum is sought for both the second and the first neighborhood
structure, before the algorithm switches to the third neighborhood structure. Algorithm 2.11
shows the variable neighborhood descent.

Figure 2.8 shows a graphical interpretation of the basic variable neighborhood decent op-
erations. The figure contains three neighborhood structures. Starting from solution s1 a local
search with respect to neighborhood structure 1 is performed leading to solution s∗1. Then the
algorithm switches to neighborhood structure 2, which means that the following local search is
now performed in the new neighborhood structure, and so on. Note that s∗1 = s2 and s∗2 = s3,
because the algorithm is just adjusted to a new neighborhood structure, and this operation does
not modify the solution.

The general VNS algorithm is a non-deterministic variant of the variable neighborhood de-
scent. It consists of three steps in each iteration. The first step is the shaking operation which
randomly generates a new solution ś using the current neighborhood structure. The next step
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Input: Solution s
Output: best solution found by variable neighborhood descent

l = 1 // first neighborhood structure1

while l ≤ lmax do // search using all neighborhood structures2

ś←− select one element from Nl(s), where fNl(ś) < fNl(s)3

if no such element exists then4

l←− l + 1 // switching to next neighborhood structure5

else6

s←− ś7

l←− 18

end9

end10

return s11
Algorithm 2.11: Variable Neighborhood Descent Algorithm

performs a local search starting from ś that generates ś∗ replacing the current solution s, if
f(ś∗) < f(s). The last step is the move operation, which proceeds to the next neighborhood
structure if no better solution was found, or which starts again with the first neighborhood struc-
ture if the solution was improved.
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search space

s1s*

neighborhood
structure 1

neighborhood
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neighborhood
structure 3

change neighborhood

local search

local search
s1

s2s*
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Figure 2.8: Graphical Interpretation of the basic variable neighborhood descent operations
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Greedy Randomized Adaptive Search Procedure

The greedy randomized adaptive search procedure (GRASP) is an iterative greedy heuristic
consisting of two basic steps [36]: a randomized greedy algorithm that generates a feasible
solution, and a subsequent local search. The algorithm contains no memory, even the solution
of the previous iteration is not remembered, so only the best solution detected after a certain
number of independent iterations is returned.

To generate a feasible solution the randomized greedy algorithm has to construct the solution
in keeping with a greedy heuristic. For each construction step only solution elements come into
consideration that promise the best improvement for the current solution state. For example,
these solution elements could be the arcs with the lowest costs in a routing problem; they are
stored in a restricted candidate list. One element is selected randomly from this list and added
to the current solution state as long as the resulting solution is feasible. Algorithm 2.12 shows
the GRASP containing a randomized greedy algorithm and the local search.

Input:
Output: best solution found by greedy randomized adaptive search procedure

sbest ←− null1

repeat2

// randomized greedy algorithm
s←− {}3

repeat4

RCL←− restricted candidate list of solution elements5

e←− random solution element of RCL6

if s ∪ e is feasible then s←− s ∪ e7

until s is a complete solution8

// local search
s∗ ←− local search of s9

if sbest is null or f(sbest) > f(s∗) then sbest ←− s∗10

until termination criterion11

return sbest12
Algorithm 2.12: Greedy Randomized Adaptive Search Procedure

Simulated Annealing

Simulated annealing (SA) is a metaheuristic inspired by nature which simulates the effect of
heating and slowly cooling crystalline structures like metal to reach a state of minimal molecular
energy. The principle was applied to combinatorial optimization in the early 1980s [55]. The
idea of this stochastic algorithm is to accept degradation of the current solution based on a
probabilistic function where the probability of acceptance decreases over time.

The probability function P depends on a parameter T , the actual “temperature”, where
P (f(s), f(ś), T ) = e−

f(ś)−f(s)
T , and s and ś are the current and new solution. T is decreased

over time to decrease the probability of accepting worse solutions. Improving solutions are

31



always accepted. Algorithm 2.13 shows the general simulated annealing algorithm for combi-
natorial optimization. The algorithm allows the design of an acceptance function for degraded
solutions, as well as a cooling schedule consisting of a starting temperature Tmax and a temper-
ature decreasing operation. Additionally, the equilibrium condition has to be designed to allow
the algorithm to iterate using a constant temperature.

Input: Solution s
Output: best solution found by simulated annealing

T ←− Tmax // starting temperature1

repeat2

repeat3

ś←− select randomly one element from N(s)4

P ←− e−
f(ś)−f(s)

T5

if f(ś) < f(s) or accepting ś with probability P then6

s←− ś7

end8

until equilibrium condition9

T ←− decreased temperature10

until termination criterion11

return s12
Algorithm 2.13: General Simulated Annealing Algorithm

Genetic Algorithms

Another nature-inspired metaheuristic is represented by genetic algorithms (GA). Originally
developed to understand natural processes [51] they have been adapted to solve combinatorial
optimization problems [23]. GAs are population based metaheuristics. They are based upon a
set of chromosomes, where a chromosome is an encoding of a feasible solution in the problem’s
search space. A chromosome consists of a string of codes also called genes that represent the
coded solution elements.

GAs consist of three operations as shown in algorithm 2.14: the selection of parent chro-
mosomes, the reproductive crossover operator to generate offspring, and a mutation operator
to diversify the population. Selection depends on the fitness values of the chromosomes. An
increase in the fitness of a chromosome favors its selection for reproduction. Typical selection
methods are roulette wheel selection or tournament selection. Usually the fitness of a chromo-
some corresponds to the cost function value of its encoded solution. The crossover operator is
a simple swap operation on parts of the chromosome’s strings of genes. The role of crossover
is to pass on characteristics of the parents to the offspring. Depending on the encoding schema
the offspring sometimes has to be “repaired” to represent a valid solution. The mutation opera-
tor applies small random changes on the gene string of arbitrarily selected chromosomes. This
serves to keep the gene pool of the population diverse enough to escape local minima.
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Input:
Output: best solution found by genetic algorithm

P ←− set of random chromosomes // initial population1

sbest ←− best solution of decoded P2

repeat3

p1, p2 ←− select two individuals from P probabilistically based on their fitness f(p)4

ṕ1, ṕ2 ←− crossover chromosomes of p1 and p25

P ←− P\{p1, p2} ∪ {ṕ1, ṕ2} // replace parents with offspring6

P ←− mutate randomly chromosomes in P7

sbest ←− best solution of decoded P ∪ sbest8

until termination criterion9

return sbest10
Algorithm 2.14: Basic genetic algorithms procedure

Ant Colony Optimization

Nature inspired algorithms that try to imitate collective behavior of species living in colonies
are called swarm intelligence algorithms. The ant colony optimization (ACO) metaheuristic is
modeled on the cooperative behavior of real ants.

The inspiration was taken from the mechanisms which allow ant colonies to find the shortest
paths to food sources. Ants do not directly communicate to each other for this process; they
modify the environment by releasing pheromones to the ground. Ants searching for food pref-
erentially follow paths with higher pheromone concentration than paths with lower pheromone
concentration. Observable is that speed and rate of pheromone release is almost constant over
all individuals. Shorter paths are simply “rewarded” by the fact that ants following those paths
return earlier to the nest, which increases the concentration of those paths more quickly. There-
fore a simple ruleset for the individuals is necessary to generate a successful cooperative solution
strategy – a phenomenon that is characteristic for swarm intelligence.

In experiments with Argentine ants these mechanisms where demonstrated on an experi-
mental setup called the double bridge experiment [24] [47]. Figure 2.9 shows a schematic of
a variant of those experimental setups. It was demonstrated that although the ants choose their
path in the beginning randomly over the shorter or the longer bridge after some time the shorter
bridge becomes the favorite alternative. This is because the pheromone concentration rises faster
for the shorter path. In fact, the longer bridge was abandoned completely during the experiment.

There are additional effects that are mimicked by ACO algorithms: pheromones vaporize
over time, and the pheromone amount released during the return to the nest depends on the
quality of the food source.

The ACO metaheuristic was first proposed by Marco Dorigo 1992 in his PhD thesis [28].
The basis of his work is the ant system which simulates most of the principles described. The
idea was developed further leading to the ant colony system introduced by Dorigo and Gam-
bardella 1997 [30]. Another improvement was theMAX–MIN ant system proposed by Stüt-
zle and Hoos 2000 [89]. However, all these developments make use of the basic principles
inspired by real ant behavior. ACO metaheuristics were applied successfully to a huge range of
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Figure 2.9: Double Bridge Experiment

problems, such as routing, scheduling, or assignment problems [32]. Nevertheless the princi-
ples of ACO can be illustrated best with problem formulations that require the solution for the
shortest path in a graph.

The basic ACO framework is shown in algorithm 2.15. It has to be noted that an artificial
ant is just an agent, constructing solutions and modifying as well as being influenced by the
environment. T is the memory of the ACO algorithm: it stores the pheromone trails and is
changed by evaporation and reinforcement processes.

Input:
Output: best solution found by ant colony optimization

sbest ←− null1

T ←− initialize pheromone trails2

repeat3

A←− {} // solutions of ant colony4

for each ant do5

s←− construct solution using T6

s∗ ←− local search of s // optional7

if sbest is null or f(sbest) > f(s∗) then sbest ←− s∗8

A←− A ∪ s9

end10

// pheromone update
T ←− evaporate pheromones11

T ←− reinforce pheromone trails using A and sbest12

until termination criterion13

return sbest14
Algorithm 2.15: Basic ant colony optimization framework

The construction process of an ant can be considered as a greedy heuristic procedure in a
probabilistic manner. It is influenced by two factors: the problem dependent heuristic informa-
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tion, and the pheromone trails that memorize the behavior of previous ants. The construction
starts with an empty partial solution. At each step the solution is extended by adding a solution
component from the set of candidates, where only elements are considered that generate feasible
solutions. The choice of a solution component is probabilistic, and is biased by the pheromone
trails. The probability of choosing a solution component is calculated differently for the various
ACO algorithms, but they follow in principle the following formula:

Pe =
τe
α × ηeβ∑

c∈CL
τcα × ηcβ

, ∀e ∈ CL

where τe is the pheromone value associated with the solution element e and ηe is a value that
represents the attractiveness of this element based on the problem dependent heuristic. This
could be, for example, the reciprocal of the distance of a city for the TSP. α ∈ [0,∞[ and
β ∈ [0,∞[ are parameters which determine the influence of the pheromone values and problem
dependent heuristic respectively. If α = 0 then the construction process becomes a stochastic
greedy algorithm, if β = 0 only the pheromone trails guide the construction. Algorithm 2.16
shows the construction process.

Input: pheromone trails T
Output: solution constructed by an artificial ant

s←− {}1

repeat2

CL←− candidate list of allowed solution elements3

PCL ←− evaluate probabilities of candidates Pe = τeα×ηeβ∑
c∈CL τc

α×ηcβ , ∀e ∈ CL4

e←− stochastic choice of solution element ∈ CL based on PCL5

until s is a complete solution6

return s7
Algorithm 2.16: Construction of a solution by an artificial ant

After constructing a feasible solution it can be enhanced with a local search. Although this
step is optional, it is usually included in state-of-the-art ACO implementations [29].

The last step of an ACO algorithm is the updating of the pheromone values. Its primary
function is to increase those values that promise high quality solutions by exploiting the search
history. A secondary function is the global reduction of pheromone values, on the one hand to
“forget” solution elements no longer in use, and on the other hand to avoid a too rapid conver-
gence toward suboptimal regions. This evaporation procedure is performed as follows:

τc = (1− ρ)τc, ∀τc ∈ T

where ρ ∈ [0, 1] is the evaporation rate. The reinforcement procedure to increase pheromone
values is simply

τc = τc + ∆τc, ∀τc ∈ T
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where the characteristic of the ACO algorithm is manifested in the term ∆τc. For the original
algorithm using the ant system the reinforcement is just influenced by the artificial ants of the
current iteration, therefore ∆τc =

∑
sa∈A ∆τc,a, where ∆τc,a = 1/La if solution element c is

part of solution s constructed by ant a, 0 otherwise. La corresponds to the total costs of solution
sa, it could be for example the tour length of this solution for the TSP. This schema ensures that
those pheromone values are increased more rapidly that represent solution elements which are
part of better solutions. An ant colony system modifies the reinforcement rule by introducing
a local update schema. Here each artificial ant modifies immediately the pheromone trails by
τc = (1−ϕ)τc+ϕτ

0 if solution element c is part of the ants solution. τ0 is the initial pheromone
value and ϕ ∈ [0, 1] is the pheromone decay coefficient. This leads to a diversification of the
search, since pheromone values are decreased for solution elements that are used by the actual
artificial ant, which lowers the attractiveness of these elements for subsequent ants. To balance
the algorithm additionally an intensification operation is performed in the global reinforcement
procedure. Here ∆τc = 1/Lbest if solution element c is part of the solution sbest. TheMAX–
MIN ant system uses the same global reinforcement procedure, but it additionally limits the
values of the pheromones to [τmin, τmax]. No local pheromone update is made, and the initial
pheromone values are all set to τmax. With this rule the pheromone values are only decreased
by evaporation; if a solution element is part of the best solution it eludes this process. There are
more variants of pheromone update rules, for example not only the best solution, but also the n
best solutions – the so called elitist ants – can bias the pheromone values. Or instead of using
the best-so-far solution sbest the iteration-best solution or even a combination of both is used.

One critical factor for successfully applying ACO is the careful initialization of the nu-
merous parameters of the algorithm. Table 2.3 shows the main parameters of the basic ACO
algorithm. To find an efficient set of parameter values, elaborate research on the optimization
problem is necessary. Fortunately lot of previous work gives guidance and presents experience
on successful application.

Parameter Role Practical range
α Influence of pheromone values ]0, 20]
β Influence of problem dependent heuristic ]0, 20]
ρ Evaporation rate of pheromones ]0, 0.2]
ϕ Pheromone decay coefficient [0, 1[
n Number of artificial ants [1, 100]

Table 2.3: Main parameters of the basic ACO algorithm

2.4 Hybridization

The previous chapters indicate that there are many algorithms that provide exact as well as ap-
proximate solutions for combinatorial optimization problems. Especially over the last decade
new strategies have been developed that combine those methods and algorithms. These new
strategies can be named hybrid metaheuristics, since they combine mainly specific metaheuris-
tics with other or even the same metaheuristic algorithms, or with exact solution algorithms.

36



To categorize these hybrids the following aspects can be used that characterize hybrid meta-
heuristics [79]:

• What is hybridized: Metaheuristics with metaheuristics, with exact methods, or with other
algorithms (problem specific and/or heuristic)

• Level of hybridization: high-level with weak coupling vs. low-level with strong coupling

• Control strategy: integrative or collaborative hybridization

• Order of execution: sequential vs. parallel or intertwined execution

To give an overview of the relevant classes of hybrid metaheuristics we use the classification
schema proposed by Puchinger and Raidl [78]. The schema was originally presented for com-
binations of metaheuristics with exact algorithms only (figure 2.11), for this overview we have
adopted it to also classify combinations of metaheuristics with metaheuristics (figure 2.10).

Combining metaheuristics with metaheuristics

Combining metaheuristics with metaheuristicsCombining metaheuristics with metaheuristics

IntegrativeIntegrativeCollaborativeCollaborative

Sequential
execution

Sequential
execution

Parallel or
intertwined
execution

Parallel or
intertwined
execution

(1) (2)

(3)

Figure 2.10: Classification of metaheuristics with metaheuristics combinations

Strategies that combine metaheuristics with metaheuristics can be sub-divided into three
classes: (1) collaborative combinations with sequential execution, (2) collaborative combina-
tions with parallel or intertwined execution, and (3) integrative combinations.

Hybrids that belong to the first class (1) typically collaborate on a high level. The subse-
quent metaheuristic algorithms have to wait for the results of preceding algorithms. For exam-
ple the initial solution of a single point search metaheuristic can be generated by a preceding
metaheuristic algorithm. Similarly the initial population for a population based metaheuristic
can also be constructed by other metaheuristic algorithms. For some problems with complex
search spaces it is reasonable to use a population based metaheuristic to quickly find a high-
performance region, and then switch to a more specialized search metaheuristic to “fine tune”
the solution.
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For the second class (2) the metaheuristic algorithms work in parallel or at least partly par-
allel. Many strategies in this class apply a homogeneous approach to run multiple instances
of the same metaheuristic in parallel to increase performance and exploration force. This re-
quires some kind of communication framework to exchange information among the algorithms.
A quite prominent example is the island model for GA. Here several GAs run in parallel, and
individuals can move under certain circumstances from one GA to another. This hybridization
model was also applied to various other metaheuristics [90].

The last class (3) addresses integrative combinations of metaheuristics. These approaches
distinguish themselves by embedding a metaheuristic in another metaheuristic algorithm that
becomes the master algorithm for this incorporation. This can be done by replacing an operation
of the master algorithm with the embedded metaheuristic, or by simply adding the functionality
of the embedded metaheuristic to the master algorithm. For example, the local search operation
of most metaheuristics can be replaced by a more explorative search algorithm. Moreover, it is
possible to modify single operations of population based metaheuristics by adding a metaheuris-
tic algorithm. For instance the mutation operation of a GA could be changed to additionally
perform a metaheuristic search operation. The problem with this approach is a premature con-
vergence of the population, that is why it should be used with care.

Combining metaheuristics with exact algorithms8

Combining metaheuristics with exact algorithmsCombining metaheuristics with exact algorithms

IntegrativeIntegrativeCollaborativeCollaborative

Sequential
execution

Sequential
execution

Parallel or
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Figure 2.11: Classification of metaheuristics with exact algorithms combinations

There are two main motivations for hybridizing metaheuristics and exact algorithms. On the
one hand exact algorithms may improve their performance by combining them with metaheuris-
tics. On the other hand metaheuristics may find solutions of better quality by combining them
with exact algorithms.

To classify these combinations we distinguish (1) collaborative combinations with sequen-
tial execution, (2) collaborative combinations with parallel or intertwined execution, (3) integra-

8The hybridization of metaheuristics and exact algorithms is also referred as matheuristics, based on the con-
junction of the terms mathematical programming and metaheuristics
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tive combinations where exact algorithms are incorporated in metaheuristics, and (4) integrative
combinations where metaheuristics are incorporated in exact algorithms.

The first class (1) of cooperation comprehends hybrids, where metaheuristics and exact al-
gorithms are used in sequence to provide some kind of information to the other. Information that
can be provided to metaheuristics by exact algorithms are partial solutions that can be completed
by the metaheuristic, a lower bound for the problem, optimal solutions for relaxed problems that
can be exploited by the metaheuristic, and reduced problems in the form of simplified objective
functions. Information that can be provided to exact algorithms by metaheuristics provides a
good upper bound for a subsequent bounding algorithm, and an initial feasible solution to omit
phase I of a subsequent LP-relaxed simplex algorithm. Also multiple metaheuristic calls can be
used as a column generator for a set of diverse solutions.

Combinations of the second class (2) are characterized by a parallel cooperative execution
of metaheuristics and exact algorithms. Only a few strategies belong to this class. A parallel
cooperation between a branch and bound algorithm and a metaheuristic is possible where the
metaheuristic delivers regularly upper bounds to increase the pruning performance of the branch
and bound. Also other forms of cooperation are proposed where asynchronous teams work on
the target problem, on subproblems, or on reduced and relaxed problems. The agents use a
shared memory to exchange information and especially discovered solutions.

Strategies of the third class (3) comprise cooperation techniques where a metaheuristic works
as a master algorithm for an embedded exact algorithm. For example, this exact algorithm
can solve the relaxed problem and its dual to guide operations in the metaheuristic such as
neighborhood search, recombination, mutation or repair actions. It is also possible to perform
a neighborhood search exactly when choosing the neighborhood structures appropriately. This
method is also known as very large scale neighborhood search. Exact algorithms can also be
used in merging solutions and finding best combinations, for example to be intercorporated into
the crossover operator of a GA. Finally, exact algorithms can be used during the decoding of
incomplete solution representations. Therefore, problems can be coded in a way that leaves a
part of the problem for the decoding of the result, and solves the rest of the problem in the
metaheuristic.

The last class (4) consists of hybrids which use exact algorithms as master algorithm and
embed metaheuristics into it. Here the metaheuristic can be used to generate solutions and upper
bounds, especially for embedding in a branch and bound environment. Also metaheuristics can
be used to speed up branch and cut and branch and price algorithms by working as a generator for
cutting planes or as a column generator. Especially the column generation approach is reported
as promising for speeding up the whole optimization process [83].

A survey on existing approaches for combining metaheuristics and exact algorithms is given
in [78].
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CHAPTER 3
Related Work

The PVRPTW was introduced by Cordeau et al. in 2001 [14] as an important generalization
of the VRPTW. The highly constrained routing problems were solved in this paper with a tabu
search algorithm that allowed intermediate infeasible solutions. This method was improved
by the authors in 2004 [15] by presenting an enhanced version of their tabu search algorithm
that uses slack times to delay the start of a vehicle which makes more routes feasible. The
concept of forward slack times to minimize route durations for the VRPTW was introduced by
Savelsberg [85].

About Solving the PVRPTW

Beside the aforementioned tabu search method by the originators of the PVRPTW only a few
works deal with solving this variant of vehicle routing problems. Only in the last year has the
scientific community devoted more attention this problem.

In 2008 Pirkwieser and Raidl [73] introduced a variable neighborhood search algorithm for
the PVRPTW. This method was improved in 2009 by the authors with two enhancements: in the
first enhancement [75] the VNS was hybridized with an exact method that solved one part of the
problem with branch and bound. The exact solver was fed with routes of feasible solutions from
the VNS and returned optimal visit combinations using a collaborative intertwined hybridization
schema. The second enhancement [76] introduced a multiple VNS technique where several
VNS instances run concurrently and exchange at defined points in time information of the best
solution found so far. These multiple VNS instances are similarly hybridized with a branch and
bound algorithm as explained above.

A column generation approach was proposed by Pirkwieser and Raidl in 2009 [74] to obtain
strong lower bounds. Therefore, a set-covering formulation was introduced for the PVRPTW,
and the LP-relaxed problem was solved using an exact LP solver. The pricing subproblem was
determined by the formulation as an elementary shortest path problem with resource constraints.
For its solution a dynamic programming approach was described as one method, and a GRASP
metaheuristic was implemented as a complementary method to increase performance.
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A different hybridization technique for the PVRPTW was proposed by Pirkwieser and Raidl
in 2010 [77]. To the method already mentioned in [75] and [76] an algorithm is described where
the solutions derived by column generation for the LP-relaxed problem of the set-covering for-
mulation of the PVRPTW are used to initialize the chromosomes of an evolutionary algorithm.
This type of hybridization can be considered as a collaborative sequential combination of an
exact algorithm with a metaheuristic.

Yu and Yang [97] published in 2011 the application of an improved ant colony optimization
algorithm to the PVRPTW. The authors use a pheromone structure that stores pheromones for
each day and arc of the problem. They present two crossover operations to implement a local
search improvement for solutions generated by single ants. Each ant updates the pheromone
structure, where the pheromone increment depends on the relative solution quality and a punish-
ment coefficient that penalizes infeasible solutions violating the fleet constraint.

A recent paper of Nguyen et al. [67] reports on the successful implementation of a hybrid ge-
netic algorithm for solving the PVRPTW which uses the tabu search metaheuristic proposed by
Cordeau et al. [14] and the variable neighborhood search metaheuristic proposed by Pirkwieser
and Raidl [73] to improve offspring chromosomes in the GA population. With this hybridization
approach two metaheuristics are embedded into a GA in an integrative manner.

Cordeau and Maischberger also recently [16] proposed a hybrid of iterated local search
and tabu search for solving various VRP variants. The hybrid adds a perturbation operation to
a tabu search metaheuristic and is implemented as a parallel algorithm that uses a multi-start
environment and shares knowledge of the solutions at predefined times. The algorithm was
tested on the PVRPTW and a wide range of other VRP variants.

The most recent work on the PVRPTW comes from Vidal et al. [95]. The authors propose
a hybrid genetic algorithm similar to the algorithm introduced by Nguyen et al. but improving
it by adding adaptive diversity management. The whole algorithm works with two populations,
one for feasible and one for infeasible solutions that are allowed to violate capacity, duration,
or time window constraints. Diversity management consists of dynamic penalty adaption for
infeasible solutions, a survivor selection strategy, and an explicit quantification of individual
diversity contribution. The algorithm presented is designed to solve variants of routing problems
with time windows, including the PVRPTW.

About Column Generation Approaches

In 1992 Desrochers et al. [25] wrote an article that can be regarded as a breakthrough for exact
solving vehicle routing problems by applying a column generation approach. In fact, the authors
used column generation for the VRPTW to solve the LP-relaxed problem that was formulated
as a set-covering model. They showed that this technique provided excellent lower bounds for
embedding it into a branch and bound algorithm. The master problem was solved with the
simplex algorithm, and the column generating subproblem was formulated as the shortest path
problem with resource constraints solved by dynamic programming.

Demonstrating the application of column generation to the VRPTW was also the aim of the
work of Danna and Le Pape published in 2005 [18]. They embedded their column generation
algorithm in a modified variant of branch and bound which utilizes additional local search oper-
ations before branching. In contrast to Desrochers they solved the subproblem as an elementary
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shortest path problem with resource constraints. For that a modified dynamic programming
approach was introduced.

In 2007 Mourgaya and Vanderbeck [65] applied column generation to the PVRP. They used
a tactical planning model with two optimization criteria: workload balancing and regionaliza-
tion. The model was reformulated with Dantzig-Wolfe decomposition to be efficiently solved
with column generation. The pricing subproblem was formulated as the linearized form of the
quadratic knapsack problem that was solved using a greedy heuristic. The whole problem was
solved iteratively by solving the LP-relaxed restricted problem with column generation, then
applying a rounding heuristic that produces a feasible solution for the original problem which is
returned to the solving procedure of the LP-relaxed restricted problem.

A VRP variation with a combination of pickup and delivery and time windows was the focus
of an article by Ropke and Cordeau in 2009 [84]. They introduced a branch and cut and price
algorithm for the pickup and delivery problem with time windows. For the calculation of the
lower bound column generation was applied with a set partitioning formulation of the problem.
Two different subproblem variants were compared: an elementary shortest path problem with
resource constraints, pickup and delivery; and a shortest path problem with resource constraints,
pickup and delivery. Finally the authors recommend using the first variant – at least for the
considered problem instances – since it allows stronger lower bounds and it seems equally hard
to solve.

In 2009 Pirkwieser and Raidl [74] proposed the aforementioned column generation approach
for the PVRPTW.

About Ant Colony Optimization Approaches

Starting with the application of ACO to the TSP at its first introduction by Dorigo et al. [31], a
lot of publications have been written that use this metaheuristic to solve a wide range of combi-
natorial optimization problems, including many variations of routing problems.

In 1999 Gambardella et al. [42] introduced MACS-VRPTW, a multiple ant colony system
for the VRPTW. Two concurrently running ant colony systems perform two different optimiza-
tion tasks: one system is responsible for the minimization of the total costs, whereas the other
system reduces the number of vehicles used. The two systems communicate by updating the
pheromones of the other system when a new best solution is found.

In 2002 Dörner et al. [33] presented a new construction technique for ACO solving the VRP.
The authors applied the savings algorithm proposed by Clarke and Wright [10] to the construc-
tion step of their ant system based VRP solver. For this purpose the routes are not constructed by
adding customers to an incomplete route using a probabilistic nearest neighborhood heuristic;
instead routes are merged based on the savings of the mergers in a probabilistic manner.

An application of ACO to the PVRP was published by Matos and Oliveira in 2004 [63].
The authors propose a two phased approach. In the first phase a savings based ant system
algorithm creates routes for a modified problem where the customers are duplicated by their
service frequency. In this way they generate a large scale VRP solved by ACO. In the second
phase the routes generated by the first phase are analyzed to determine if they can be serviced on
the same day regarding multiple customer visits. A graph coloring problem is constructed and
an exchange mechanism is implemented to assign the routes to the days in the planning horizon
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according to the visit combinations of the customers. Finally a VRP is solved for each single
day using the ant system based ACO of the first phase.

A decomposition approach for large VRPs was proposed by Reimann et al. in 2004 [82].
Here the VRP is decomposed into several TSPs that are solved separately. The iterative algo-
rithm uses a savings based ant system as the core component and consists of the following steps
during one iteration: the whole VRP is solved with ACO to find a good set of routes. These
routes create separation clusters for the problem and each customer is assigned to a cluster after
this step. Then for each cluster a TSP is solved with ACO. Finally, the resulting routes are joined
to create a total feasible solution that modifies the pheromones of the ACO for the whole VRP
problem.

In 2006 Zhang et al. [98] applied ant colony system based ACO to the vehicle routing prob-
lem with time windows and re-used vehicles. The authors combine pheromone update strategies
of the ant colony system, MAX–MIN ant system and a rank based version of the ant sys-
tem for their approach. Additionally they propose a construction heuristic for the single ants
which prefer to visit customers first, that have earlier starts of service begin time, shorter service
durations, and earlier ends of service begin time.

Füllerer et. al presented in 2009 [40] a hybrid ACO algorithm to solve the two-dimensional
loading vehicle routing problem, a problem that combines the loading of freight into the vehicles,
and the routing of the vehicles to satisfy the customers’ demands. A savings based ant system
is used to optimize the routes. The construction step is modified to be additionally biased by
an indicator that is proportional to the vehicles area consumed by the goods for the routes to
be merged. To calculate these areas as well as to check the feasibility of packing multiple
algorithms such as packing heuristics or branch and bound are combined and performed for
each iteration. Intermediate infeasible solutions with respect to capacity and area utilization are
allowed and penalized with an accordingly modified cost function.

A recently developed hybrid ACO algorithm was applied to the TSP with time windows by
López-Ibáñez et al. in 2009 [61]. This hybrid combines ACO with beam search and is therefore
called Beam-ACO. Here a beam search algorithm replaces the standard construction step of
ACO. The algorithm is restarted each time it reaches convergence which is determined by the
pheromone values distances to the upper and lower limits. The pheromone update schema is
biased by the actual ant’s solution, the best solution since restart, and the best solution found
so far. The beam search is a probabilistic tree search algorithm that relies on accurate bounding
information that can be calculated computationally inexpensively. This is presented as a reason
why Beam-ACO outperforms previous methods for the TSP with time windows.
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CHAPTER 4
ACO for Pricing Problem

This chapter shows the application of ACO as a solution to the pricing subproblem for a column
generation approach which solves the linear relaxation of the PVRPTW. The aim is to demon-
strate that with ACO strong lower bounds can be found with competitive performance.

4.1 Formulation of the PVRPTW

Here we present a common formulation of the PVRPTW as MILP [34]. Consider the attributes
introduced in chapter 1.3 for the problem. Let xp,k,i,j be variables that indicate if the arc ai,j ∈ A
is part of the route of vehicle hk ∈ H of the fleet of vehicles on day p ∈ P of the planning
horizon. Therefore, if xp,k,i,j = 1 then vehicle hk travels on day p from vertex vi to vertex vj ,
if xp,k,i,j = 0 then not. Further let the variables yi,r indicate, whether for customer vi the visit
combination r ∈ Ri is selected (yi,r = 1), or not (yi,r = 0). Finally, let the variables sp,k,i be
the service start time of vehicle hk at customer vi on day p, and wp,k the wait time of vehicle hk
on day p before it leaves the depot v0.

Let further VC = V \{v0} be the set of customer vertexes without the depot, and πi,r,p a
constant that indicates whether visit combination r ∈ Ri of customer vi contains day p ∈ P
(πi,r,p = 1), or not (πi,r,p = 0). Lastly, let M � 0 be a sufficiently high constant value. Using
these variables we can formulate the PVRPTW as:

min
∑
p∈P

∑
hk∈H

∑
vi∈V

∑
vj∈V

ci,jxp,k,i,j (4.1)
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subject to ∑
r∈Ri

yi,r = 1 ∀vi ∈ VC (4.2)

∑
r∈Ri

πi,r,pyi,r −
∑
hk∈H

∑
vj∈V

xp,k,i,j = 0 ∀p ∈ P,∀vi ∈ VC (4.3)

∑
hk∈H

∑
vj∈VC

xp,k,0,j ≤ m ∀p ∈ P (4.4)

∑
hk∈H

∑
vi∈VC

xp,k,i,0 −
∑
hk∈H

∑
vj∈VC

xp,k,0,j = 0 ∀p ∈ P (4.5)

∑
vj∈V

xp,k,j,i −
∑
vj∈V

xp,k,i,j = 0 ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC (4.6)

∑
vj∈V

xp,k,j,i +
∑
vj∈V

xp,k,i,j ≤ 2 ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC (4.7)

∑
vi∈VC

∑
vj∈V

qixp,k,i,j ≤ Qk ∀P ∈ P,∀hk ∈ H (4.8)

e0 + wp,k + z0,j − sp,k,j +Mxp,k,0,j ≤M ∀p ∈ P,∀hk ∈ H,∀vj ∈ VC (4.9)

sp,k,i + di + zi,j − sp,k,j +Mxp,k,i,j ≤M ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC ,
∀vj ∈ VC

(4.10)

sp,k,i + di + zi,0 +Mxp,k,i,0 ≤ l0 +M ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC (4.11)

sp,k,i + di + zi,0 − e0 − wp,k +Mxp,k,i,0 ≤ Dk +M ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC (4.12)

sp,k,i − ei
∑
vj∈V

xp,k,i,j ≥ 0 ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC (4.13)

sp,k,i − li
∑
vj∈V

xp,k,i,j ≤ 0 ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC (4.14)

xp,k,i,j ∈ {0, 1} ∀p ∈ P,∀hk ∈ H,∀vi ∈ V,
∀vj ∈ V

(4.15)

yi,r ∈ {0, 1} ∀vi ∈ VC ,∀r ∈ Ri (4.16)

sp,k,i ≥ 0 ∀p ∈ P,∀hk ∈ H,∀vi ∈ VC (4.17)

wp,k ≥ 0 ∀p ∈ P, hk ∈ H (4.18)

In this vehicle flow formulation of the PVRPTW the objective function 4.1 minimizes the to-
tal travel costs over all days, all vehicles and all arcs. The equations 4.2 are the cover constraints
which guarantee that for each customer one visit combination is selected. The visit combinations
are linked with the vehicle routes by the visit constraints of equations 4.3 which make sure that
the customers are visited on the days of the selected visit combination. Inequalities 4.4 restrict
the number of vehicles used per day to the fleet size. We reference them as fleet constraints.
Equations 4.5 ensure that each vehicle that leaves the depot has to return to the depot on the
same day. They compose the flow constraints together with equations 4.6 and inequalities 4.7
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which guarantee for each customer the incidence of no arcs if the customer is not on the vehicle
route, or exactly two arcs if the customer is on the vehicle route. It is to be noted that the elim-
ination of sub-routes of a vehicle route is fulfilled with the time constraints below. Inequalities
4.8 are the capacity constraints that limit the load for each vehicle. Inequalities 4.9 – 4.11 are
the time constraints. For each vehicle route the service start times per customer as well as the
depot wait time are brought into relation with the working start time of the depot 4.9, with the
subsequent following service start times 4.10, and with the working end time of the depot 4.11
using the travel and service durations. The high constant value M is used in these inequalities
to apply the time constraints only for relevant arcs, that is, if xp,k,i,j = 1. For xp,k,i,j = 0 the
inequalities are always true irrespective of the other variables values. The travel time of a vehicle
is limited by the duration constraints 4.12. Inequalities 4.13 and 4.14 comprise the time window
constraints.

To solve this MILP with column generation the LP-relaxed problem has to be solved. But
this quite natural formulation of the problem has the disadvantage of having a weak LP-relax-
ation. That is, the optimal solution of the LP-relaxed problem is a weak and therefore a bad
lower bound for the MILP [92] [34].

By applying a generalized Dantzig-Wolfe decomposition – as similarly demonstrated by
Cordeau et al. for the VRPTW [12] – the PVRPTW can be reformulated, so that its LP-relaxation
delivers a much stronger lower bound for the MILP. Let Ωk be the set of all feasible routes based
on the complete directed graph G = (V,A) beginning and ending in depot v0 with respect to
flow, capacity, time, duration, and time window constraints 4.5 – 4.14 for the vehicle hk1. To
indicate that customer vi is part of route ω ∈ Ωk, let φi,ω = 1, else φi,ω = 0. Further, let xp,k,ω,
be the number of times that route ω ∈ Ωk is selected on day p ∈ P for vehicle hk ∈ H , and
γω the costs of route ω: γω =

∑
ai,j∈ω ci,j . Therefore the set partitioning formulation of the

PVRPTW is:

min
∑
p∈P

∑
hk∈H

∑
ω∈Ωk

γωxp,k,ω (4.19)

subject to

∑
r∈Ri

yi,r = 1 ∀vi ∈ VC (4.20)

∑
hk∈H

∑
ω∈Ωk

φi,ωxp,k,ω −
∑
r∈Ri

πi,r,pyi,r = 0 ∀p ∈ P,∀vi ∈ VC (4.21)

∑
hk∈H

∑
ω∈Ωk

xp,k,ω ≤ m ∀p ∈ P (4.22)

xp,k,ω ∈ {0, 1} ∀p ∈ P,∀hk ∈ H,∀ω ∈ Ω (4.23)

yi,r ∈ {0, 1} ∀vi ∈ VC , ∀r ∈ Ri (4.24)

1Since capacity and duration constraints depend on the vehicle’s attributes, the set of feasible routes may be
different for different vehicles
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The objective function 4.19 of this formulation minimizes the total route costs over all days,
all vehicles and all feasible routes. Equations 4.20 are the unmodified cover constraints. For the
visit constraints 4.21 φi,ω had to be substituted. Inequalities 4.22 cover the fleet constraints.

Assumptions

We assume a homogeneous set of vehicles, i.e. the maximum carrying load Qk is equal for all
vehicles and the maximum route duration Dk is equal for all vehicles: Q = Qk ∀ hk ∈ H and
D = Dk ∀ hk ∈ H .

We further assume that the travel costs satisfy the triangle inequality: ci,j ≤ ci,k + ck,j
∀ vi, vj , vk ∈ V .

Formulating the Restricted Master Problem

To get a RMP feasible for column generation, we apply some transformation steps to the set
partitioning formulation of the PVRPTW.

Since we want to compute a lower bound for the ILP we have to LP-relax the problem to get
a linear program that can be solved by e.g. simplex. Therefore the binary integrality constraints
4.23 and 4.24 are relaxed.

Further it is reasonable to relax the set partitioning formulation to a set covering formula-
tion2. Bramel and Simchi-Levis [9] showed the effectiveness of the set covering formulation
for the VRPTW regarding column generation. Therefore, we also apply the relaxation for the
column generation approach for the PVRPTW [74]. The cover constraints 4.20 can be easily
relaxed to a ≥ 1 inequality, since it is obvious that for each solution containing a customer with
two or more selected visit combinations there is a better or equally good solution with only
one select visit combination. Due to the satisfied triangle inequality the visit constraints 4.21
can also be relaxed [92]. The advantage of the set covering model is that the solution space
of the dual problem is reduced, due to the fact that equality constraints in the primal problem
become unrestricted variables in the dual problem, and inequality constraints become restricted
variables.

Because of the assumption of a homogeneous vehicle fleet, we can simplify the formulation
and eliminate the vehicles from the objective as well as the constraints. Therefore, we introduce
the variable xp,ω that is the number of times the route ω ∈ Ω is selected at day p ∈ P . Ω is the
set of all feasible routes starting and ending in the depot v0; because of the homogeneity of the
vehicle fleet, Ω = Ωk ∀ hk ∈ H .

The set of variables xp,ω is huge, that is the reason why we restrict the master problem to
a small set of variables which is enlarged iteratively until all relevant variables are contained.
Therefore we start with t initial small subsets of feasible routes Ὼp ⊂ Ω ∀ p ∈ P , one for each
day of the planning horizon. This enables us to distinguish the further generated columns by the

2The general form of a set partitioning problem is expressed as min cTx subject to Ax = 1, x ∈ {0, 1}n, and
for the set covering problem it is min cTx subject to Ax ≥ 1, x ∈ {0, 1}n
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day of the planning period. We formulate the RMP for the column generation approach as:

min
∑
p∈P

∑
ω∈Ὼp

γωxp,ω (4.25)

subject to ∑
r∈Ri

yi,r ≥ 1 ∀vi ∈ VC (4.26)

∑
ω∈Ὼp

φi,ωxp,ω −
∑
r∈Ri

πi,r,pyi,r ≥ 0 ∀p ∈ P,∀vi ∈ VC (4.27)

∑
ω∈Ὼp

xp,ω ≤ m ∀p ∈ P (4.28)

xp,ω ≥ 0 ∀p ∈ P,∀ω ∈ Ὼp (4.29)

yi,r ≥ 0 ∀vi ∈ VC ,∀r ∈ Ri (4.30)

In this formulation of the RMP the objective function 4.25 minimizes the total route costs
over all days and feasible routes. Inequalities 4.26 comprise the cover constraints guaranteeing
that at least one visit combination is selected per customer. The visit constraints 4.27 ensure that
the customers are visited at least once during the days of the selected visit combination. The
inequalities 4.28 referred to as fleet constraints restrict the vehicles used per day to the fleet size.

The RMP in this form has a manageable number of constraints tn + n + t by using t|Ὼ| +∑
vi∈VC ri variables.

Formulating the Pricing Subproblem

To obtain additional variables for the RMP that have the potential to improve the cost function,
a pricing subproblem has to be solved that generates these variables. Therefore, the problem is
to find feasible vehicle routes ω ∈ Ω with negative reduced costs when injecting them into the
RMP. This problem is referred to as the shortest path problem with resource constraints (SPPRC)
[52], namely with capacity constraints, duration constraints, and time window constraints.

Consider the dual problem of the RMP and let χp,i be the dual variables for the visit con-
straints 4.27 and ψp the dual variables for the fleet constraints 4.28. Based on the preliminaries
from chapter 2.2 the task of the subproblem is to find columns – that is vehicle routes ω ∈ Ω
–, whereas

∑
p∈P

∑
vi∈VC φi,ωχ

∗
p,i +

∑
p∈P ψ

∗
p >

∑
p∈P γω. χ∗p,i and ψ∗p are the dual vari-

ables’ values for the optimal solution of the RMP. By reformulation and substitution (see the
similar method by Cordeau et al. for the VRPTW [12]) we obtain

∑
p∈P

∑
vi∈VC

∑
vj∈V (ci,j −

χ∗p,i)xω,i,j +
∑

p∈P
∑

vj∈V (c0,j − ψ∗p)xω,0,j < 0, where xω,i,j indicates whether the arc ai,j is
part of ω or not. Based on that we can solve a subproblem for each day p ∈ P by using the
reduced costs

c̄p,i,j =

{
ci,j − χ∗p,i if vi ∈ VC
ci,j − ψ∗p if vi = v0
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After applying the reduction, the costs of an arc can certainly become negative and, in ad-
dition, the triangle inequality is no longer ensured to be satisfied. Therefore solving the SPPRC
enforces shortest paths with cycles, especially if the resource constraints are not very tight.
Since the optimal vehicle routes of the PVRPTW will not contain cycles, the SPPRC used as
the subproblem may generate columns that will never be used in the optimal solution. That
is the reason why we restrict ourselves to the elementary shortest path problem with resource
constraints (ESPPRC) [18]. By using the ESPPRC as the subproblem better lower bounds are
expected. Unfortunately, this renders the subproblem NP-hard. Nevertheless there are algo-
rithms and techniques to solve the ESPPRC as the pricing subproblem of a column generation
approach with good performance [74].

To demonstrate the task of the pricing subproblem figure 4.1 shows a small example of a
graph with one depot vertex v0 and three customer vertexes v1, v2 and v3. The numbers at the
arcs represent the reduced costs c̄p,i,j of a certain day p ∈ P . The intervals in square brackets
denote the time windows [ei, li] for each vertex. For simplicity let us assume that the travel
times between vertexes is 1: zi,j = 1 ∀ ai,j ∈ A, and the service duration at each customer is
also 1: di = 1 ∀ vi ∈ VC . Let it further be assumed that the maximum route duration D = 5
and the maximum carrying load does not matter. Due to duration and time window constraints
seven feasible vehicle routes exist (without proof). Three of them result in total to a negative
reduced cost: v0 → v1 → v2 → v0 with negative reduced costs of −23; v0 → v1 → v3 → v0

with negative reduced costs of −10; and v0 → v2 → v0 with negative reduced costs −13. The
“shortest” path is therefore to be calculated as the vehicle route with the highest negative reduced
costs. In this example it is −23 and the route is marked with green dashed arrows.
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Figure 4.1: Demonstration of the ESPPRC as pricing subproblem

An ESPPRC pricing subproblem for the RMP presented above has to be solved for each day
p ∈ P . Let xi,j indicate whether arc ai,j is part of the elementary path, let si be the service start
time at customer vi ∈ VC , and let w be the wait time before the path traversing vehicle leaves
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the depot. Then the pricing subproblem can be formulated as:

min
∑
vi∈V

∑
vj∈V

c̄p,i,jxi,j (4.31)

subject to ∑
vi∈VC

xi,0 −
∑
vj∈VC

x0,j = 0 (4.32)

∑
vj∈V

xj,i −
∑
vj∈V

xi,j = 0 ∀vi ∈ VC (4.33)

∑
vj∈V

xj,i +
∑
vj∈V

xi,j ≤ 2 ∀vi ∈ VC (4.34)

∑
vi∈VC

∑
vj∈V

qixi,j ≤ Q (4.35)

e0 + w + z0,j − sj +Mx0,j ≤M ∀vj ∈ VC (4.36)

si + di + zi,j − sj +Mxi,j ≤M ∀vi ∈ VC ,∀vj ∈ VC (4.37)

si + di + zi,0 +Mxi,0 ≤ l0 +M ∀vi ∈ VC (4.38)

si + di + zi,0 − e0 − w +Mxi,0 ≤ D +M ∀vi ∈ VC (4.39)

si − ei
∑
vj∈V

xi,j ≥ 0 ∀vi ∈ VC (4.40)

si − li
∑
vj∈V

xi,j ≤ 0 ∀vi ∈ VC (4.41)

xi,j ∈ {0, 1} ∀vi ∈ V,∀vj ∈ V (4.42)

si ≥ 0 ∀vi ∈ VC (4.43)

w ≥ 0 (4.44)

The objective function 4.31 of the ESPPRC as the pricing subproblem of the PVRPTW
minimizes the total reduced path costs over the arcs along the paths from depot v0 to depot v0

with at least one customer in between. The equations 4.32 – 4.34 define the flow constraints of
the ESPPRC: the path that leaves the depot has to return to the depot (4.32), and each customer
has to be visited exactly once by a path or it is not part of the path (4.33 and 4.34). Inequality 4.35
denotes the capacity constraint. The time constraints 4.36 – 4.38 ensure that, on the one hand,
the path contains no subpaths. On the other hand, they define relations between the service start
times at the customer, the working time interval of the depot, and the wait time. The duration
constraint is covered in inequalities 4.39, and the time window constraints in inequalities 4.40
and 4.41.

To solve the pricing subproblem in an iterative column generation context it is neither nec-
essary to solve the ESPPRC to optimality for all iterations, nor has the result of the pricing
problem to be a single path with negative reduced costs. Of course several paths or even all
paths with negative reduced costs can be injected into the RMP. With columns of appropriate
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quality this will speed up the convergence of the column generation algorithm with the price of
a faster growing RMP regarding variables.

Furthermore, the optimal solutions for each day p ∈ P only have to be determined in the
“last” iteration of the column generation algorithm . If for all days the optimal elementary
shortest path has no negative reduced costs, the column generation is finished and therefore
the LP-relaxed problem of the PVRPTW is optimally solved providing a lower bound for the
problem. Since the ESPPRC isNP-hard it even seems feasible to solve the pricing subproblem
for several iterations approximately as long as the algorithm provides paths with high quality for
the RMP. This was demonstrated by Pirkwieser and Raidl [74] for the GRASP metaheuristic; we
want to show that ACO is also able to improve the pricing subproblem solution for such highly
constrained problems as the PVRPTW.

4.2 Design Decisions

In this section the main algorithm for the column generation approach and its components are
presented. Algorithmic design issues are illustrated and design decisions explained.

Column Generation Algorithm for the PVRPTW

Algorithm 4.1 shows the overall column generation algorithm for the PVRPTW used by our
approach. First the problem instance is loaded into memory. Then there it is possible to provide
an initial feasible solution for this problem instance (e.g. calculated by any heuristic). This
solution defines the initial sets of variables Ὼp for the RMP. If no initial solution is provided
then the algorithm introduces highly penalized slack variables to the RMP which is constructed
with cover, visit and fleet constraints based on the PVRPTW problem instance. The number of
negative reduced cost columns generated by the exact ESPPRC solver is initialized for each day
to undefined, and the first day is set to active. The initial state of the algorithm is to start with
the approximate ESPPRC solver.

Then the loop for the column generation iterations starts until for each day of the planning
period the number of negative reduced cost columns returned by the exact ESPPRC solver is 0.
The first step of an iteration is to solve the RMP with an exact simplex based LP problem solver.
By using the optimal solution of the RMP the values of the dual variables for the visit and fleet
constraints can be obtained. These are used to define the ESPPRC pricing subproblem for the
actual day by calculating the reduced costs c̄p,i,j for each arc ai,j . Next the algorithm decides,
based on its state, whether it should use the approximate ESPPRC solver or the exact ESPPRC
solver. The result is in each case a set of negative reduced cost columns. If this set is not empty
the columns found are injected into the RMP. The next day is selected and a new state of the
algorithm is determined before the next iteration starts.

Initial Solution vs. Slack Variables

The general column generation algorithm needs a set of columns Ὼ to start with. For exam-
ple, this set can be obtained by taking any feasible solution from a heuristic or metaheuristic
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PV RPTW ←− load PVRPTW problem instance1

∀p ∈ P : Ὼp ←− load initial feasible solution, if provided2

RMP ←− construct RMP with cover, visit and fleet constraints using PV RPTW and3

Ὼp // if no initial solution provided add slack variables
NRCexactp ←− undefined ∀ p ∈ P4

p←− first day ∈ P5

state←− approx6

repeat7

RMP ∗ ←− SolveLinear(RMP)8

χp ←− dual variables for visit constraints of RMP ∗9

ψp ←− dual variable for fleet constraint of RMP ∗10

ESPPRC ←− GenerateESPPRC(PV RPTW , χp, ψp) // here the11

// reduced costs are calculated
if state 6= exact then12

ESPPRC∗ ←− SolveApprox(ESPPRC)13

Ω+ ←− set of negative reduced costs columns of ESPPRC∗14

else15

ESPPRC∗ ←− SolveExact(ESPPRC)16

Ω+ ←− set of negative reduced costs columns of ESPPRC∗17

NRCexactp ←− |Ω+|18

end19

if |Ω+| > 0 then20

RMP ←− InjectColumns(RMP , Ω+)21

if state 6= exact then NRCexactp ←− undefined ∀ p ∈ P22

end23

p←− choose next day24

state←− DetermineNextState(state, NRCexact, |Ω+|)25

until NRCexactp = 0 ∀p ∈ P26

return RMP ∗27
Algorithm 4.1: Column generation algorithm for PVRPTW

algorithm that solves the PVRPTW. This solution may be interpreted as the initial solution upon
which the column generation algorithm improves until reaching the final solution.

Instead of providing an initial solution it is also possible to introduce slack variables to
the RMP. These slack variables work as an initial set of “pseudo-routes”. Since they do not
represent any real route of the solution they have to be eliminated during the iterations of the
algorithm. This is achieved by penalizing these variables in the objective function. Therefore,
adding “real” routes as result columns of the ESPPRC solver will supersede the slack variables
over time. If slack variables stay active until the column generation algorithm has finished, then
the LP-relaxed problem is not feasible also implying that the PVRPTW is not solvable. The
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initial formulation of the RMP with slack variables is shown here:

min
∑
p∈P

∑
vi∈VC

xslackp,i K (4.45)

subject to

∑
r∈Ri

yi,r ≥ 1 ∀vi ∈ VC (4.46)

xslackp,i −
∑
r∈Ri

πi,r,pyi,r ≥ 0 ∀p ∈ P,∀vi ∈ VC (4.47)

0 ≤ m ∀p ∈ P (4.48)

yi,r ≥ 0 ∀vi ∈ VC , ∀r ∈ Ri (4.49)

xslackp,i ≥ 0 ∀p ∈ P,∀vi ∈ VC (4.50)

The initial RMP with slack variables contains no regular route variables. This can be in-
terpreted as Ὼ = {}. Therefore, slack variables xslackp,i for each day p ∈ P and each customer
vi ∈ VC are introduced which enable solving the RMP. The objective function 4.45 contains
initially only slack variables which are penalized by the penalty value K. The cover constraints
4.46 stay unmodified; in the visit constraints 4.47 the regular route variables are replaced by
slack variables. The fleet constraints 4.48 are degraded to a simple tautology.

Figure 4.2 shows a graph that displays a typical example of the behavior of the column
generation algorithm with slack variables. It shows the development of the objective function
value over the iterations. Additionally the number of active slack variables is displayed as blue
round marks. The algorithm starts with all 235 slack variables active. They are rapidly replaced
by columns of real routes, explaining the steep decrease of the objective value. From iteration
20 onwards all slack variables are inactive. After 64 iterations no more negative reduced costs
columns could be found and the algorithm returns the lower bound for this problem as 2682.76.

For comparison figure 4.3 shows the behavior of the column generation algorithm without
slack variables. Instead an initial solution was provided for the same problem letting the algo-
rithm start with an objective value of 3694.9. A typical behavior can be identified by the progress
of the objective value: it takes some iterations if started with an initial solution until the added
columns improve the objective function. It can be observed that the better the initial solution,
the more effective the initial effort in enhancing the column pool of the RMP.

Solving the RMP

Since the RMP is an ordinary LP problem it can be solved by any exact LP solver which is able
to provide the optimal dual variables. We used the CPLEX R© Optimizer by IBM ILOG R©, an
optimization software for mathematical programming. The CPLEX Optimizer includes among
other modules a high performance LP solver based on the simplex algorithm.
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Figure 4.2: Example of the behavior of the column generation algorithm with slack variables
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Figure 4.3: Example of the behavior of the column generation algorithm with initial solution

Solving the ESPPRC Approximately

We implemented several methods to solve the ESPPRC approximately to develop some kind of
benchmark and to be able to identify the factors influencing good performance. The basis for
all of these methods is a set of simple path changing operations. On the one hand, they allow
the generation of paths and, on the other, they build the central components for local search
operations.

We implemented five different fairly simple path changing operations. The result of such an
operation has to be a feasible path in respect of capacity, duration, and time window constraints.
Figure 4.4 shows the operations graphically. Let us denote np the number of customer vertexes
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Figure 4.4: Schematic of the five different path changing operations used
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that are part of the actual path, n− np is therefore the size of the pool of customer vertexes not
contained in the actual path.

• Insert operation: the insert operation takes a customer vertex from the pool of unused
vertexes and inserts it after an arbitrary vertex of the actual path. There are (n−np)(1+np)
possible insert operations based on an actual path that have to be checked for feasibility.

• Remove operation: this simplest of all operations removes an arbitrary customer vertex
from the actual path allowing np possible remove operations.

• Replace operation: this operation replaces a customer vertex from the actual path with a
vertex from the pool of unused vertexes. Based on an actual path there are np(n − np)
possible replace operations which have to be checked for feasibility.

• Move operation: the move operation is a path local operation. It takes a customer vertex
of the actual path and moves it to an arbitrary position in the path. There are (np − 1)2

different move operations that have to be checked for feasibility regarding duration and
time window constraints.

• Exchange operation: the last operation is also a path local operation that exchanges the
positions of a customer vertex of the actual path with another arbitrary selected customer
vertex. The 1

2np(np − 1) different exchange operations have also to be checked for feasi-
bility regarding duration and time window constraints.

As already mentioned these path changing operations are the core operations of the local
search procedures we used for the approximate ESPPRC solvers. We decided to apply a ran-
domized best improvement strategy for the local search as shown in algorithm 4.2: based on
an actual path the local search iterates until no further improvement can be applied. For each
iteration the algorithm chooses a randomized order of the described path change operations
with equal probabilities. The actual path is replaced with a path where the best improvement
is applied regarding the actual path change operation. If there is no improvement for the actual
operation the algorithm switches to the next operation in the randomized list.

In addition to ACO we implemented three other approximate ESPPRC solvers for bench-
marking purposes. The ILS starts with an empty path v0 → v0 and applies the aforementioned
local search procedure in each iteration. The perturbation operation is implemented by applying
10 feasible random path change operations (random in respect of type of the operation as well as
of instance of operation). New paths are accepted always, since no comparison of the perturbed
local best solution with the previous best solution is performed. The solution of each iteration
is checked as to whether it has negative reduced costs, in which case it is collected and finally
returned to the column generation algorithm.

The VNS also starts with an empty path. The neighborhood structures are defined by the
path changing operations: the first neighborhood consists of insert and remove operations, the
next neighborhood of move operations, the third of replace operations, and the last of exchange
operations. In our implementation only the shaking operator is influenced by the actual neigh-
borhood, the local search is always performed with the previously described algorithm using all
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Input: ESPPRC path s
Output: ESPPRC path with local maximal negative reduced costs

repeat1

Op←− random permutation of operations Insert, Remove, Replace, Move, Exchange2

o←− 13

improved←− false4

repeat5

if exists improvement of s with operation Opo then6

s←− perform best improvement with operation Opo on s7

improved←− true8

end9

o←− o+ 110

until improved or o > 511

until not improved12

return s13
Algorithm 4.2: Local search algorithm for the approximate ESPPRC solvers

path changing operations (this showed a higher performance than letting the VNS local search
depend on the actual neighborhood). Additionally the intensity of the shake operation also
depends on the actual neighborhood: the higher the neighborhood structure, the more stochasti-
cally random path change operations in the actual neighborhood are performed. If the costs of
the new path are negative, then the new path is accepted for the next iteration if the costs are
lower than the costs of the previously accepted path; otherwise the next neighborhood structure
is selected. All negative reduced costs paths are returned to the column generation algorithm.

The GRASP depends on a greedy randomized heuristic to create a path. For that the algo-
rithm starts with an empty path and adds customer vertexes stochastically to the last position
before returning to the depot until no further customer vertex can be added. To make the heuris-
tic greedy only those customer vertexes are taken into consideration that improve the path costs.
These customer vertexes are stored for each step in the restricted candidate list (RCL), and the
candidate to be added to the path is selected randomly. When no customer vertexes can be found
for the RCL, the construction step is finished and the solution is improved by applying the pre-
viously described local search. Each solution is returned to the columns generation algorithm,
since they all have negative reduced costs.

All of the implemented approximate pricing subproblem solvers only return distinct col-
umns. This means that before adding a vehicle route to the actual set of negative reduced cost
columns the algorithms check if the route is already contained. Nevertheless, calls from different
column generation iterations may produce vehicle routes that have already been submitted in a
previous iteration.

We loop all of the implemented approximate ESPPRC subproblem solvers for 1000 itera-
tions. This value is a trade-off between a short solution time and enough time for convergence.
The short solution time is important since the ESPPRC subproblem has to be solved several
times during column generation. The convergence is needed to find good solutions even in later
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calls of the subproblem solvers when the search space is very limited in respect of existing neg-
ative reduced cost columns. To enforce convergence the approximate subproblem solvers are
granted 4000 more iterations if no negative reduced cost column has been found during the first
1000 iterations. Actually this method balances the effort for RMP solving and ESPPRC solving
for the whole column generation process.

Solving the ESPPRC Exactly

For the exact solving of the ESPPRC as the pricing subproblem we used the algorithm presented
by Pirkwieser and Raidl [74]. The algorithm applies a dynamic programming approach and is
based on the improved label correcting algorithm introduced by Feillet et al [35]. The proposed
tripartite dominance rules are applied which makes the exact ESPPRC solver in the early stages
of the column generation procedure a semi-heuristic algorithm that does not find all negative
reduced cost columns. Nevertheless, because of the cascaded application of the dominance rules
it is ensured that in the last iteration of the column generation algorithm no negative reduced cost
columns exist. We used the variant of the algorithm where we stopped the column generating
procedure in each iteration after 1000 columns have been produced, which is called “forced
early stop” in [74].

Column Injection

The columns generated by the ESPPRC pricing subproblem solvers have to be injected into the
RMP. Since the subproblem is always solved for a single day, it is self-evident that the columns
for this day should be to the set of columns of the RMP. To this end one coefficient per negative
reduced cost columns has to be added to the objective function, one to the cover constraints, and
one to the fleet constraints.

Fortunately columns can be added not only to the single day, but also to several or even all
days of the planning horizon. Although the ESPPRC was solved for a single day, the result is a
feasible route for all days. This is because the subproblem’s constraints do not depend on the day
of the planning period, only the subproblem’s objective function is influenced by it. This allows
us to inject the negative reduced cost columns generated for a single day to the whole planning
period by adding t coefficients to the objective function, cover constraints and fleet constraints.
The impact is of course a faster growth of columns Ὼ which might slow down the solving of the
RMP. On the other hand, the columns of one day may be reasonable also for other days, which
might reduce the overall iterations of the column generation algorithm.

Figure 4.5 shows the typical behavior of the column generation algorithm regarding variable
injection. The dashed lines display the scenario when the columns are only added for the single
day of subproblem solving. The solid lines show the behavior when adding the columns for
all days of the planning horizon. This diagram displays the decreasing value of the objective
function, as well as the increasing size of the set of columns for the two scenarios. Although
the number of columns behaves as expected and rises faster when adding the routes to all days,
the objective function converges much faster to the optimal value of 2881.01. In this exam-
ple the problem instance has a planning horizon of four days. Even though the columns are
quadrupled when injecting them for all days into the RMP, because of the faster convergence
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Figure 4.5: Example of the behavior of the column generation algorithm with different variable
injection techniques

the final number of columns is just about 1.5 times as high as for the single day injection sce-
nario (≈ 60000 vs. ≈ 40000 columns). Numerous experiments have confirmed this behavior
for several PVRPTW problem instances. Therefore we inject negative reduced costs columns
generated by the ESPPRC solvers always for all days of the planning period.

Determining the Algorithm State

The last step of an iteration of the column generation algorithm for the PVRPTW is the determi-
nation of the state for the next iteration. As Pirkwieser and Raidl [74] showed a quite successful
technique is to start with the approximate ESPPRC solver and then switch to the exact ESPPRC
solver for the rest of the iterations. We apply the same strategy but adapt the rule for switching to
the exact solver. Since we want to focus on the approximate ESPPRC solver we emphasize this
phase of the algorithm. The exact solver is activated when the heuristic stalls, which is identified
by a reduced decrease of the objective value. Figure 4.6 shows the behavior of the algorithm.
As long as the objective value is improved relevantly the algorithm stays in the “approximate
state”. When the improvement of the objective value falls below a specific decline the algorithm
switches to the “exact state”. The rule for switching the state is: if the delta of the objective
value from one iteration to the next ∆ZRMP = ZRMP

it − ZRMP
it+1 < κZRMP

it for all days of
the planning period in a row, then switch from the approximate ESPPRC solver to the exact
ESPPRC solver. κ is a small constant value that was determined experimentally to 0.0001.

Unfortunately the rule does not work if the column generation algorithm was started with
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Figure 4.6: Example of the column generation algorithm started with slack variables switching
from approximate to exact ESPPRC solver
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Figure 4.7: Example of the column generation algorithm started with an initial solution switch-
ing from approximate to exact ESPPRC solver

an initial solution, because the pricing subproblem has to deliver several columns in numerous
iterations before a real improvement of the already good objective function can start. Figure 4.7
shows the plateau of the objective value at the beginning of the algorithm runtime. Therefore we
expand the rule for switching to the exact ESPPRC solver: this state change is only executed if
the algorithm had improved the objective value before, that is, if ∆ZRMP = ZRMP

it −ZRMP
it+1 >

κZRMP
it for a single iteration.
This behavior of the column generation algorithm started with an initial solution can be
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interpreted as a three-state machine: first the algorithm is in a setup state where the column pool
is enriched without improving the objective value. Then it enters the approximate state where
the approximate algorithm determines most promising columns with low computational effort
which reduce the objective value. And lastly it enters the exact state where the exact subproblem
solver generates the missing columns to determine the optimal objective.

4.3 Ant Colony Optimization for the ESPPRC as Pricing
Subproblem

Our ACO approach uses a mixture of the savings based ant system [33] and ant colony system
[30] to fulfill the preliminaries of an efficient algorithm that delivers good results early. This
is important due to the limitations of the pricing subproblem solving process: finding good
solutions within 1000 up to 5000 iterations which allow the column generation algorithm to
converge to the lower bound rapidly.

The components of our ACO approach are derived from well-known ACO applications and
consist of:

• Ant colony: we decided to allow a quite small ant colony to explore the search space con-
currently based on the actual pheromone trails and construction heuristic. After construct-
ing the paths for all ants of the colony the best path is selected to modify the pheromone
trails for future generations.

• Path construction: the path construction process for an ant follows the classic construc-
tion algorithms for ACO. It is therefore a probabilistic greedy heuristic biased by the
pheromone trails of past ant generations. The construction process adds customer ver-
texes at the end of the path as long as the resulting path is feasible. The probability of one
construction step is determined by the pheromones τi,j and the heuristic component ηi,j
using the common ACO formula

Pj =


τi,j

α×ηi,jβ∑
k∈V feasible

C

τi,kα×ηi,kβ
∀vj ∈ V feasible

C

0 ∀vj /∈ V feasible
C

where i denotes the index of the customer vi part of the actual path that is visited last
before returning to the depot: v0 → · · · → vi → v0. V feasible

C is the set of customer
vertexes that are not part of the actual path and that can be added to the path after the
customer vi without violating capacity, duration, and time window constraints. Based on
these probabilities the construction step is determined by roulette wheel selection.

• Heuristic component: the calculation of the heuristic component ηi,j was inspired by the
savings algorithm introduced by Clarke and Wright [10] as proposed by Dörner et al. [33].
The savings based heuristic does not only take into account the cost c̄i,j when appending
the customer vertex vj to an actual path ending with vertex vi. Moreover it calculates the
savings for merging the trivial path v0 → vj → v0 with the actual path. Since the trivial
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path is not necessarily a negative reduced cost column and therefore not an option as a
result, we modified the heuristic formula in a way so that it is based on the cost’s delta.
Figure 4.8 shows the situation when appending a customer vertex vj to an actual path with
last vertex vi: the heuristic pressure to add customer vertex vj is higher, the lower the cost
c̄i,j , the lower c̄j,0, and the higher c̄i,0. In contrary to the unmodified version of the savings
based heuristic we do not take into consideration the cost c̄0,j . This makes our heuristic
less a savings based heuristic than a delta cost based heuristic:

ηi,j =
1

c̄i,j + c̄j,0 − c̄i,0 − c̄norm + 1
∀vi ∈ V,∀vj ∈ V

Notice that the reduced costs c̄ may be negative and the triangle inequality is not valid
for the subproblem! Therefore, we normalize the delta costs with the term c̄norm =

min
vi∈V,vj∈VC

c̄i,j + c̄j,0 − c̄i,0 which can be calculated in advance.

• Local search: after constructing a path for each ant of the colony we apply a local search
to the best path found using the algorithm described before.

• Pheromone initialization: each feasible customer vertex should be eligible for selection in
the probabilistic construction step. Therefore, all pheromone values have to be initialized
to a value > 0. This initial pheromone value is based upon the difference between the
highest and lowest reduced costs of the ESPPRC and is calculated as

τmin =
1

c̄max − c̄min + 1

where c̄min and c̄max can be calculated in advance as min
vi,vj∈V

c̄i,j and max
vi,vj∈V

c̄i,j .

• Pheromone update strategy: after each iteration the pheromones are updated. The update
strategy takes into account an evaporation element, the path of the best ant of the current
iteration, and the path of the best ant over all iterations so far. The new pheromone values
for the next iteration are calculated as

τi,j = τmin + (1− ρ)(τi,j − τmin) + F best
i,j ∆τ best + F elitist

i,j ∆τ elitist ∀vi ∈ V,∀vj ∈ V

whereas F best
i,j = 1, if arc ai,j is part of the best path of the actual iteration, and F elitist

i,j = 1,
if arc ai,j is part of the best path so far, otherwise they are 0. The pheromone modifying
terms ∆τ best and ∆τ elitist depend on the total negative reduced cost of the best path of the
current iteration and the best path over all iterations respectively. The lower the cost, the
higher is the pheromone modifying effect of the paths. They can be calculated as

∆τ best =
1∑

vi∈V

∑
vj∈V

F best
i,j (c̄i,j − c̄min) + 1

∆τ elitist =
1∑

vi∈V

∑
vj∈V

F elitist
i,j (c̄i,j − c̄min) + 1
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Figure 4.8: Situation for the construction heuristic when adding the customer vertex vj to an
actual path

Algorithm 4.3 composes these components and shows the ACO algorithm for approximate
ESPPRC pricing subproblem solving. It has to be noted that the actual iteration limit itmax is
divided by the size of the ant colony. This ensures that this population based metaheuristic can
be compared with the other implemented simple point search algorithms.

ACO Choice of Parameters

Our ACO approach depends on four parameters: the colony size defines the number of ants that
concurrently construct paths during one iteration. α expresses the influence of the pheromone
values τ on the construction procedure, whereas β expresses the influence of the heuristic ele-
ment η on the construction procedure. And lastly ρ defines the evaporation rate of the pheromone
values.

To find a parameter setting that enables a solution of various problem instances with good
performance we tested numerous parameter value combinations on a representative set of prob-
lem instances. As performance indicator we defined the spent CPU time of the column gener-
ation algorithm to find the optimal lower bound. This includes the CPU times for solving the
RMP, for the exact ESPPRC subproblem solver, and of course for the ACO ESPPRC subprob-
lem solver. The set of problem instances consisted of the Pirkwieser/Solomon instances p4r103
and p6c101 as well as the Pirkwieser/Cordeau instances 3a, 9ar1, 3br1, and 8br1 (for discussion
about the instances please consult chapter 6.1).

The CPU time was normalized by dividing it through the average CPU time for all experi-
ments performed on the same problem instance. The outcome of this is a comparable CPU time
indicator which is distributed around 1. Values < 1 indicate that the column generation of those
experiments was shorter than the average CPU time; values > 1 indicate that the experiments
took longer than the average.

We performed ten experiments for each parameter setting and each problem instance. The
parameters were set as following: colony size ∈ {1, 3, 10}, α ∈ {0, 1, 2, 5}, β ∈ {0, 1, 2, 5}, and
ρ ∈ {0, 0.01, 0.1}, which results in a total of 6instances×10runs×3colony size×4α×4β×3ρ = 8640
experiments.

To measure the different parameter settings we looked at each parameter separately and
visualized the distribution of the CPU time indicator for all experiments clustered by the specific
parameter values with a box plot, showing the minimal and maximal value, the lower and upper
quartile, as well as the median of the CPU time indicator. Figure 4.9 shows four charts, one
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Input: ESPPRC with reduced costs c̄
Output: negative reduced costs paths

calculate c̄min, c̄max, c̄norm, and τmin from ESPPRC1

initialize pheromones τi,j ←− τmin ∀vi, vj ∈ V2

NRC ←− {} // negative reduced costs paths3

selitist ←− {} // best ant’s path so far4

itmax ←− 1000/colony size5

for it←− 1 to itmax do6

sbest ←− {} // iteration best ants path7

for each ant in colony do8

s←− {(v0 → v0)} // initial path9

vi ←− v010

while V feasible
C 6= {} do11

calculate Pj ∀vj ∈ V feasible
C based on τi,j , c̄i,j , c̄j,0, c̄i,0, and c̄norm12

vj ←− select next vertex by roulette wheel selection based on Pj13

s←− s\{(vi → v0)} ∪ {(vi → vj), (vj → v0)} // add vertex14

vi ←− vj15

end16

if sbest = {} or costs of s < costs of sbest then sbest ←− s17

end18

sbest ←− local search of sbest19

if selitist = {} or costs of sbest < costs of selitist then selitist ←− sbest20

calculate τi,j ∀vi, vj ∈ V based on τi,j , τmin, sbest, and selitist21

// pheromone update
if costs of sbest < 0 then22

if sbest /∈ NRC then NRC ←− NRC ∪ {sbest}23

end24

if it = itmax and NRC = {} then itmax ←− 5000/colony size25

end26

return NRC27
Algorithm 4.3: ACO algorithm for the ESPPRC pricing subproblem

for each parameter. The first chart shows the parameter colony size. The 8640 experiments are
clustered by the colony sizes of 1, 3 and 10 ants. The distribution of the CPU time indicator for
the 2880 experiments per colony size is shown in the corresponding box plot. The other three
charts show the distributions for α, β and ρ respectively.

The charts show that for our algorithm a colony size of 3 ants has on average a better per-
formance than a colony size of 1 or 10 ants. This is indicated by a lower median and also by
lower quartile values. Interestingly the α parameter had no noticeable influence on the average
performance of our experiments; the same is true for the parameter ρ. For the parameter β it
seems that higher values show a worse performance.

Based on these charts we set the parameter values for our ACO algorithm to solve the ESP-

65



a)

0.5 

1 

1.5 

1 3 10 

colony size 

c)

0.5 

1 

1.5 

0 1 2 5 

alpha 

b)

0.5 

1 

1.5 

0 0.01 0.1 

rho 

d)

0.5 

1 

1.5 

0 1 2 5 

beta 

Figure 4.9: Box plots showing the distribution of the CPU time indicator over all experiments
for the ACO parameters a) colony size, b) ρ, c) α, and d) β

PRC pricing subproblem as shown in table 4.1.

Parameter Value
colony size 3

α 1
β 1
ρ 0.01

Table 4.1: Parameter settings for the ACO algorithm

To verify the parameter setting we visualized the distribution of the CPU time indicator for
the experiments made with the selected parameter values. We expect noticeably lower distri-
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bution values than the average, especially the median should be below 1. Figure 4.10 shows
the distribution based on the 60 experiments with selected parameter setting as green box plot
confirming our expectations. Additionally each chart of this figure shows the distribution of
the other parameter values for each parameter when fixing the values of the complementary pa-
rameters to the determined best parameter setting. A Wilcoxon rank-sum test3 showed that the
experiments with a colony size of 3 ants had a significantly better performance than with 1 or
10 ants (P-value < 0.05 one-tailed). The same is true for experiments with β = 0 or β = 1
compared with β = 5. For the other comparisons of parameter settings no significant evidence
of a performance gain or loss could be found.

4.4 Implementation

The column generation approach to solve the linear relaxation of the PVRPTW was implemented
in C++. The following class diagram 4.11 shows an overview of the implementation structure.

3in the literature also called the Mann-Whitney U test or Mann-Whitney-Wilcoxon test
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Figure 4.10: Box plots showing the distribution of the CPU time indicator over the experiments
with best parameter setting for the ACO parameters a) colony size with α = 1, β = 1 and
ρ = 0.01, b) ρ with colony size = 3, α = 1 and β = 1, c) α with colony size = 3, β = 1 and
ρ = 0.01, and d) β with colony size = 3, α = 1 and ρ = 0.01
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+solveLinearRelaxation()

-createEspprc()

-allRoutes[*]

ColumnGenerator

+negativeReducedCostsExact()

+negativeReducedCostsILS()

+negativeReducedCostsVNS()

+negativeReducedCostsGRASP()

+negativeReducedCostsACO()

-localSearch()

-bestInsert()

-bestRemove()

-bestReplace()

-bestMove()

-bestExchange()

-reducedCosts[*]

-durations[*]

-customerDemands[*]

-customerServiceTimes[*]

-customerTimeWindows[*]

-maxVehicleLoad[1]

-maxRouteDuration[1]

Espprc

+solve()

+objective[1]

+variables[*]

+constraints[*]

CplexModel

+load()

-costs[*]

-durations[*]

-noVehicles[1]

-maxVehicleLoad[1]

-maxRouteDuration[1]

ProblemInstance

-serviceFrequency[1]

-visitCombinations[*]

-demand[1]

-serviceTime[1]

-timeWindow[1]

Customer

*

1

-depotLeavingTime[1]

-customers[*]

Route

*

1

*

1

«creates»

Figure 4.11: Class diagram of the implemented column generation approach
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CHAPTER 5
ACO for whole Problem

In this chapter an ACO algorithm is presented to solve the whole PVRPTW heuristically. The
algorithm focuses on the core elements of ACO and tries to apply them to the challenges of this
highly constrained variant of vehicle routing problems.

5.1 Cascaded Ant Colony Optimization

The difficulty in applying the ACO metaheuristic to the whole PVRPTW is to find a method for
optimization that meets two distinct aims: on the one hand, the optimal visit combinations for
all customers have to be found; on the other, the best routes have to be determined satisfying
temporal, capacity and fleet constraints. These two aims are hierarchically connected since
an optimal routing depends on the selected visit combinations. Based on the structure of this
problem we propose a hierarchical application of ACO to the PVRPTW: the cascaded ant colony
optimization (cascaded ACO).

Algorithmic Principle

Our algorithm follows a simple decomposition principle. For a given combination of customers’
visit combinations the PVRPTW is nothing more that t VRPTWs, one for each day of the plan-
ning period P . Therefore the PVRPTW can be interpreted as multiple VRPTWs, one for each
day and combination of visit combinations. Thus it can be decomposed by enumerating all com-
binations of visit combinations and solving the resulting VRPTWs. The best solution composed
of the relevant VRPTWs solutions determines the best routes as well as the optimal combination
of visit combinations. Of course the size of the set of all combinations of visit combinations
grows exponentially with the number of customers (as long as they have two or more visit com-
binations to select); therefore enumeration is not efficiently possible.

This is the reason why we apply ACO as an approximate solution strategy to find a good
combination of visit combinations. We call this ACO the upper level ACO – it generates itera-
tively combinations of visit combinations based on pheromones that have been influenced by the
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quality of previously generated solutions. To evaluate the quality of a solution it needs to solve
the daily VRPTWs resulting from the selected visit combinations. These VRPTWs are solved
by the lower level ACO which tries to find good VRPTW solutions in a short time.

Figure 5.1 illustrates the decomposition principle of our approach. Each ant of the upper
level ACO searches the search space of the customers’ visit combinations, the ants of the lower
level ACO find a solution for the VRPTWs that result from the selected visit combinations
of the actual upper level ant. Notice that each combination of visit combinations generates t
independent VRPTWs, one for each day of the planning horizon.

PVRPTW

search space of visit combinations

t VRPTW 

search spaces

t VRPTW 

search spaces

t VRPTW 

search spaces

upper level ACO

lower level ACO

Figure 5.1: Decomposition principle of cascaded ACO

A related decomposition principle can be found in other approaches to solving periodic rout-
ing problems, e.g. by Cordeau et al. for the PVRP [13] and the PVRPTW [14]. But unlike these
approaches we keep the solving procedures for the lower level VRPTW completely independent
from the upper level PVRPTW solver and can therefore apply independent solution algorithms.
A quite similar decomposition approach is found in Vianna et al. for the PVRP [94], where the
chromosomes of a hybrid genetic algorithm represent the selected visit combinations and a fast
heuristic solves the resulting VRPs for solution quality evaluation.

General Design Decisions

Algorithmic Structure

The two distinct ACO algorithms face different requirements. The upper level ACO is started
once and has to converge continuously in a good solution. For each iteration exploitation of
the search history and exploration of promising regions of the search space have to be balanced
carefully. A premature convergence towards a local minimum has direct impact on the total
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solution quality. A search pattern that focuses too much in exploring all regions of the search
space leads to long runtimes. The computational effort for a single iteration of the upper level
ACO is very high, since t VRPTWs have to be solved to evaluate the solution quality of this
iteration. Therefore we decided to implement an ACO variant that makes use of each ant of the
construction process. We used for that a slightly modified version of the ACO schema presented
by Matos and Oliveira [63].

On the other hand, the lower level ACO is started numerous times with totally different
but also with similar or even equal search space configurations. The main focus is to converge
quickly since the runtime of the lower level ACO is a major performance factor for the overall
cascaded ACO algorithm. Moreover, VRPTW solutions generated in spite of an early termina-
tion should nevertheless indicate if the actual combination of visit combinations has the potential
to bear a good PVRPTW solution. The exploration drive of the lower level ACO does not has
to be that explicit, because multiple starts triggered by different iterations of the upper level
ACO induce an implicit exploration force. To cover these requirements we used the savings ant
system introduced by Dörner et al. [33] which promises an early convergence based on a strong
heuristic component.

A further challenge for the design of cascaded ACO was the fact that due to the short runtime
of the VRPTW solving lower level ACO the final solution quality is not as good as it could be.
Therefore we experimented with different algorithmic structures to improve the single VRPTW
solution qualities for the final PVRPTW solution. Tests with a continuously increasing number
of iterations for the lower level ACO, starting with a small number of iterations at the beginning
and finishing with a reasonably high number of iterations at the end of cascaded ACO produced
no satisfying results. In fact we measured the same runtime and quality when setting the number
of iterations for the lower level ACO to a constant value between the starting and finishing
number. Therefore we decided to introduce a finalizing intensification step to cascaded ACO.
In this step the best PVRPTW solution is further improved by restarting the lower level ACO
for each day of the planning period, initialized by the single VRPTW solutions of the PVRPTW
solution. The lower level ACO gets for that a reasonably high number of iterations to improve
the VRPTW solutions further.

The structure of our cascaded ACO algorithm is shown in figure 5.2. During the regular
construction phase of the algorithm the upper level ACO constructs iteratively combinations
of visit combinations which are evaluated by calling the lower level ACO for each day of the
planning period. A local search step improves the combination of visit combinations based on
the actual solution, and the pheromone update step concludes an iteration of the upper level
ACO. The lower level ACO works as a nested iterative procedure that constructs vehicle routes
which are improved by a local search procedure. Here too an iteration is completed with a
pheromone update step. To support a reasonable algorithm runtime we decided to use a constant
value kU for the number of iterations of the upper level ACO. The number of iterations for
the lower level ACO depends on a constant value kL and is linearly scaled by the number of
customers of the PVRPTW. This schema balances the computational effort for upper level and
lower level solution generation.

The finalizing intensification phase can be interpreted as one additional iteration of the upper
level ACO without construction of the combination of visit combinations. Instead the best solu-
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Figure 5.2: Overall structure of cascaded ACO

tion found during the regular construction phase is improved by starting the lower level ACO for
each day with a number of iterations which is multiplied by the factor kI . A concluding upper
level local search to improve the visit combinations generates the final PVRPTW solution.

The total number of VRPTW solution generating lower level ACO iterations can therefore
be calculated as kU tkLn + tkIkLn. The constant values have been determined experimentally
for reasonable algorithm runtimes as kU = 1000, kL = 5, and kI = 20.

Figure 5.3 shows an example of the behavior of cascaded ACO. The diagram for the
PVRPTW solving progress displays for all 1000 (kU ) iterations of the upper level ACO the
development of the solution quality. The black bold line represents the best solution found so
far, whereas the gray dotted line shows the solution quality of the current iteration. To determine
the PVRPTW solution cost the lower level ACO is called four times because in this example
the problem instance defines a planning period of four days. For a single exemplary iteration
the upper part of the figure shows the behavior of the four lower level ACO calls. Based on the
constructed combination of visit combinations for that iteration four VRPTWs are solved using
the fast converging lower level ACO. Since the problem instance contains 100 customers each
solving procedure runs for 500 (kLn) iterations. The combination of the best VRPTW solutions
of all four days produces the PVRPTW solution which is improved further by an upper level
local search resulting in the solution quality for the upper level ACO iteration.

Feasibility and Penalties

Cascaded ACO does accept just feasible intermediate PVRPTW as well as VRPTW solutions
regarding visit, capacity, duration, and time window constraints. The fleet constraint may be vio-
lated for a solution but it is penalized by a high constant value for each extra vehicle needed. The
penalty cV RPTWP = kP max(routes(sV RPTW ) −m, 0) is added to the costs when evaluating a
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Figure 5.3: Example of the behavior of the cascaded ACO algorithm

lower level VRPTW solution, the penalty cPV RPTWP = kP max(vehicles(sPV RPTW ) −m, 0)
is added to the costs when evaluating an upper level PVRPTW solution, whereas the func-
tion routes() determines the number of routes a VRPTW solution contains, and the function
vehicles() determines the vehicles needed for a PVRPTW solution.

Independent Solvers

It has to be noted that in principle the algorithmic structure does not need to implement the lower
level solver as an ACO algorithm. Any fast converging VRPTW solving algorithm can substitute
the lower level ACO. Even for the intensification phase a distinct VRPTW solver could be used
which focuses less on fast convergence and more on the solution quality.
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5.2 Upper Level ACO

The upper level ACO is implemented as an ordinary ACO algorithm based on a pheromone
structure as memory, a probabilistic construction step to determine a combination of visit com-
binations, a local search step to improve the constructed solution, and a pheromone update step
to allow exploitation of the search history. But since the construction of a combination of visit
combinations does not construct a full PVRPTW solution the lower level ACO is needed to
generate such a solution.

Algorithm 5.1 shows the upper level ACO consisting of the regular construction phase and
the intensification phase. After initializing the pheromone structure the algorithm iterates for
kU iterations1. Each iteration starts with the probabilistic construction of a combination of visit
combinations based on the pheromone values of previous iterations. For each day of the planning
period the set of customers is built which has to be visited on that day regarding the selected
combination of visit combinations. This set defines a VRPTW for that day which is solved by
the lower level ACO. The solutions of the VRPTWs for each day are combined to a PVRPTW
solution that is improved further by a local search step that optimizes the visit combinations of
the current solution. Based on the current and best solution found so far the pheromones are
updated. Please notice that no ant colony is used for an iteration, since each ant modifies the
pheromone values. After the regular construction phase intensification is performed by reading
the combination of visit combinations of the best solution. This determines for each day of the
planning horizon the set of customers that have to be visited. By starting the lower level ACOs
with an initial VRPTW solution for the corresponding day the algorithm improves the current
best solution further. The combination of the improved VRPTW solutions results in an improved
PVRPTW solution which is finalized by a local search call.

Pheromone Structure

The purpose of the pheromone structure of the upper level ACO is to memorize combinations
of visit combinations of previous iterations. Therefore we propose a simple two-dimensional
hierarchical structure: the first dimension represents the customer vi ∈ VC ; the second dimen-
sion represents the visit combination of the customer Ci,x ∈ Ri. The size of the structure is∑

vi∈VC ri elements. Each element contains the pheromone value of a specific customer’s visit
combination.

Construction Step

The construction step has to construct a complete PVRPTW solution. On the one hand, it con-
sists of the probabilistic construction of a combination of visit combinations and, on the other,
of the evaluation of it by generating solutions for the resulting VRPTWs.

For the generation of a combination of visit combinations the classic ACO construction
schema is applied: the solution elements are the single customer’s visit combinations. To select
a solution element the algorithm chooses probabilistically a visit combination of the set of visit

1We use the subscript U to mark elements belonging to the upper level ACO and the subscript L for elements of
the lower level ACO
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Input: PVRPTW
Output: best solution found by cascaded ACO
// regular construction phase
τU ←− initialize pheromones1

sUbest ←− null2

repeat3

vc←− create visit combinations using τU4

foreach day p ∈ P do5

VCp ←− set of customers to be visited on day p regarding vc, VCp ⊆ VC6

sLp ←− LowerLevelACO(kL, PVRPTW, VCp) // solving the VRPTW7

end8

sU ←− compose solution as
⋃
p∈P sLp9

s∗U ←− LocalSearchU(sU)10

if sUbest is null or costs of sUbest > costs of s∗U then sUbest ←− s∗U τU ←− update11

pheromones using s∗U and sUbest
until termination criterion kU iterations12

// intensification phase
foreach day p ∈ P do13

VCp ←− set of customers visited on day p regarding visit combinations of sUbest14

sLp ←− VRPTW solution for day p of sUbest15

sLp ←− LowerLevelACO(kIkL, PVRPTW, VCp, sLp)16

end17

sU ←− compose solution as
⋃
p∈P sLp18

s∗U ←− LocalSearchU(sU)19

return s∗U20
Algorithm 5.1: Upper level ACO algorithm

combinations for a customer. The probability to choose a visit combination Ci,x of a customer
vi is determined by

Pi,x =
τU i,x

αU∑
y∈Ri

τU i,yαU
∀vi ∈ VC , ∀Ci,x ∈ Ri

Please notice the missing factor for a heuristic component ηUβU that differentiates the con-
struction schema implemented here from a classic ACO construction schema. The difficulty is
to find an appropriate factor ηU that distinguishes between good and bad visit combinations for
a customer. Experiments with heuristic factors that try to equally distribute customers over the
days of the planning period did not markedly improve the solution quality; therefore we de-
cided to remove the heuristic component entirely. Nevertheless, this might be a topic for further
improvement of cascaded ACO.

Unlike the construction step for classic routing elements the solution elements for the upper
level ACO are independent and consist ordinarily of a limited number of choices. Therefore,
the sequence of customers for construction of the combination of visit combinations does not
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influence the result. The customers are simply looped and the visit combination is determined
by roulette wheel selection based on the probabilities Pi,x.

The selected visit combinations determine the customers that have to be visited on the dif-
ferent days of the planning period. The lower level ACO then generates a VRPTW solution for
each day; the combination of these solutions comprises a PVRPTW solution that is used for
evaluation of the selected combination of visit combinations.

Local Search

The upper level ACO uses a local search step to improve the PVRPTW solution generated by
the construction step. For this purpose the solution is iteratively modified until no further im-
provement is possible. One iteration tries to perform a single visit combination exchange move.
For that a customer is selected and the algorithm tries to change the visit combination of this
customer to obtain a better solution. Actually, the local search operator tests all alternative
visit combinations; if an improvement is found the best visit combination exchange move is
performed; if not the next customer is tested. This local search procedure is performed using a
randomized best exchange schema to optimality, i.e. the sequence of customers is determined by
random, the operator always selects the best exchange alternative, and the local search procedure
stops if no improvement could be performed for all customers.

Algorithm 5.2 shows the local search procedure for the upper level ACO. The outermost
loop iterates until no customer’s visit combination could be improved. The next inner loop tests
all customers in random sequence. For each customer the best delta cost ∆cbest is determined
by looping the visit combinations. For a visit combination all days are checked if the customer
has to be removed from or inserted into the days. If the customer is neither removed from nor
inserted to a day, the position of the customer at that day is not changed. For each remove or
insert operation the delta costs are calculated. This implies that the best insert position has to be
found in the case of an insert operation. The sum of all delta costs for a visit combination defines
the quality of the visit combination exchange move. The best exchange move is determined by
the visit combination with the highest negative delta costs.

To illustrate a local search operation an example is shown in figure 5.4. The first row displays
the solution before the local search operation was performed. The PVRPTW instance consists
of nine customers, three vehicles, and a planning horizon of four days. Customer v1 is selected
for improvement. Its current visit combination determines that customer v1 has to be visited on
day 1 and day 3, but the local search operator identified a better visit combination: day 2 and
day 4. Therefore customer v1 is removed from the routes of the days 1 and 3 and is inserted to
the best position (that is the best route as well as the best position inside this route) of the days
2 and 4. This is displayed in the second row of the figure.

Actually the local search operator goes one step further: it applies additionally a route local
node insertion move operator to the routes where the customer has to be removed and the routes
where it has to be inserted for further improvement. For explanation of the node insertion move
please see section Local Search of chapter 5.3.

Since solutions are allowed that violate the fleet constraint, the local search procedure serves
also as an important factor to generate feasible solutions: Removing the last node of a route
is the same as reducing the number of vehicles by one for that specific day. If the number of
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Input: PVRPTW solution sU
Output: PVRPTW solution with local minimal costs

repeat1

ṼC ←− random permutation of customers from PVRPTW2

ĩ←− 13

improved←− false4

repeat5

vi ←− customer at position ĩ of ṼC6

∆cbest ←− 0; Ci,best ←− null7

foreach visit combination Ci,x ∈ Ri do8

∆c←− 09

foreach day p ∈ P do10

if customer has to be removed from day p then ∆c←− ∆c+ remove cost11

if customer has to be inserted to day p then ∆c←− ∆c+ insert cost12

end13

if ∆c < ∆cbest then ∆cbest ←− ∆c; Ci,best ←− Ci,x14

end15

if ∆cbest < 0 then16

sU ←− perform remove and insert operations on sU changing to visit17

combination Ci,best
improved←− true18

end19

ĩ←− ĩ+ 120

until improved or ĩ > |VC |21

until not improved22

return sU23
Algorithm 5.2: Upper level local search procedure

vehicles exceeds the fleet size such a move is highly rewarded because the penalty is reduced or
even removed from the new solution. This automatically produces pressure to generate feasible
solutions regarding the fleet constraint.

Pheromone Update

The update schema for the upper level ACOs pheromones was inspired by the update schema of
Matos and Oliveira [63]. It uses evaporation, the best solution found so far, and the solution of
the current iteration to modify the pheromone values for the next iteration. The pheromones are
updated each iteration using the formula

τU i,x = τUmin + (1− ρU )(τU i,x − τUmin)

+ F best
i,x ∆τU

best + F actual
i,x ∆τU

actual ∀vi ∈ VC , ∀Ci,x ∈ Ri
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Figure 5.4: Example of a single local search operation for the upper level ACO

where F best
i,x is 1 if visit combination Ci,x was selected for customer vi in the best solution found

so far, otherwise it is 0. Respectively, F actual
i,x indicates if visit combination Ci,x was selected for

customer vi in the solution of the actual iteration. The upper level ACO uses a constant value to
increase pheromones by the best solution:

∆τU
best = σU

The increment by the current solution depends on the quality of the solution related to the quality
of the best solution found so far:

∆τU
actual = ωU

cbest

cactual

whereas cactual represents the total costs of the actual PVRPTW solution and cbest the costs of
the best solution.

The pheromone structure is initialized at the beginning of the upper level ACO by setting all
pheromones to the value τUmin. This is also the lower limit of the pheromone values ensured by
the update schema. τUmin is set to the constant value 1.

Parameters

The upper level ACO contains the following parameters that have to be setup for an algorithm
execution with good performance regarding quality of solution and algorithm runtime:

80



Parameter Description
αU Emphasis of the pheromone values for selection of visit combinations
ρU Evaporation factor for pheromone values
σU Increment value for pheromones based on the best solution
ωU Increment value for pheromones based on the current solution

Table 5.1: Parameters of the upper level ACO

5.3 Lower Level ACO

The challenge for the lower level ACO is to solve a VRPTW in a short time, i.e. with few
iterations. We therefore implemented a savings based ant system algorithm as introduced by
Dörner et al. [33] for the VRP, slightly adapting it to intensify the support for early convergence.

The savings based ant system combines the exploratory properties of ACO with the savings
heuristic proposed by Clarke and Wright [10] that assumes starting with n vehicles, each servic-
ing just one single customer. Then iteratively the two vehicle routes are merged that produce the
“maximum saving” of costs which is determined by the term δsaving = ci,0 + c0,j − ci,j , where
vi is the last node of the first vehicle route and vj the first node of the second vehicle route.

To speed up the construction procedure and to explicitly balance exploitation and exploration
of the lower level ACO we added the pseudo-random-proportional state transition rule that was
originally introduced by Dorigo and Gambardella [30] for the ant colony system.

The savings based ant system uses a colony of ants which concurrently explore the search
space. Each ant constructs a VRPTW solution which is further improved by a randomized local
search procedure based on an inter-route node insertion move operator.

The best solution found so far and the top ants of the actual ant colony bias the update
schema for the pheromones.

An overview of the lower level ACO is shown in algorithm 5.3. After initialization of the
pheromones the algorithm initializes the best solution found so far. If an initial VRPTW solution
was passed as a parameter to the lower level ACO to intensify an already generated solution, the
best solution is initialized with that solution, otherwise the best solution is set to null. Then
the algorithm enters the main loop. The iterations are given as input parameter enabling the
upper level ACO to call the lower level ACO during the regular construction phase (using less
iterations) as well as the intensification phase (using more iterations). The real loop count is
upscaled by the number of customers and downscaled by the colony size. The downscale is
performed since we prefer to loop over ants rather than iterations. In the main loop a sorted
attractiveness matrix is generated that is the basis of the construction step for each ant of the
colony. The ants generate solutions by performing a probabilistic construction step followed
by a local search step. After each ant of the colony has created a solution the pheromones are
updated. The best solution of all ants is returned.
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Input: iterations, PVRPTW, VC set of customers, optional sLinit initial VRPTW solution
Output: best VRPTW solution found by lower level ACO
τL ←− initialize pheromones1

sLbest ←− sLinit2

itmax ←− n× iterations / colony size3

repeat4

ξL ←− calculate attractiveness for each customer ∈ VC using τL5

ScolonyL ←− {} // set of colony solutions6

foreach ant in colony do7

sL ←− construct solution using ξL8

s∗L ←− LocalSearchL(sL)9

if sLbest is null or costs of sLbest > costs of s∗L then sLbest ←− s∗L10

ScolonyL ←− ScolonyL ∪ s∗L
end11

τU ←− update pheromones using sLbest and top solutions of ScolonyL12

until termination criterion itmax iterations13

return sLbest14
Algorithm 5.3: Lower level ACO algorithm

Construction Step

Before an ant can construct a solution an attractiveness matrix is generated that is used by the
whole colony. The attractiveness of a solution element, that is, an arc ai,j , is calculated as

ξLi,j = τL
αL
i,j × ηL

βL
i,j ∀vi ∈ V,∀vj ∈ VC

where τLi,j represents the pheromone value of the arc biased by previously generated solutions
and ηLi,j is the heuristic component. αL and βL are the parameters that balance the influence
of pheromones and problem dependent heuristic. For the savings based ant system the heuristic
component is the savings term of the savings heuristic ηLi,j = ci,0 + c0,j − ci,j .

The attractiveness matrix consists of n + 1 attractiveness vectors, one for each vertex (in-
cluding the depot). The cells of a vector represent the attractiveness values of all arcs leaving the
vertex which is similar to the attractiveness of a customer to follow the vertex in a route. These
arcs are sorted in decreasing order based on the attractiveness value. This ensures that during
the roulette wheel selection of the construction step of an ant the solution elements with higher
probability appear before solution elements with lower probability. It even allows us to skip less
probable arcs and accelerate the construction step.

After generation of the attractiveness matrix the ant colony generates the VRPTW solutions.
For that purpose each ant starts with an empty route, and the customer vertexes are appended
probabilistically. We implemented the pseudo-random-proportional state transition rule to de-
termine how a new customer vertex is appended.

The basis of the pseudo-random-proportional state transition rule is the preset probability
value q0L ∈ [0, 1]. q0L determines the probability that the next vertex to select is the best option
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of vertexes based on the attractiveness. Therefore, every time a vertex has to be appended to
a route a random value q ∈ [0, 1[ is generated. If q < q0L the attractiveness vector of the
last customer in the actual route is scanned for the arc with the highest attractiveness. The
scanning is necessary because only feasible solutions are allowed. Nevertheless it is efficient
because the attractiveness vector is sorted. If q ≥ q0L the next vertex to select is determined
probabilistically by roulette wheel selection based on the attractiveness vector. The parameter
q0 directly influences the balance between exploitation and exploration: a high value of q0L

intensifies the exploitation force; a low value of q0L favors the biased exploration strategy of the
classic ant system.

If the next customer vertex to select for a route that ends with vertex vi has to be determined
by roulette wheel selection, the probability of a vertex vj is calculated as

Pj =


ξLi,j∑

k∈VC
feasible

ξLi,k
∀vj ∈ VC

feasible

0 ∀vj /∈ VC
feasible

where VC
feasible is the reduced set of customer vertexes that can be reached by the vertex vi

in the current route without violating any constraints. The set is reduced by letting only the
top µL customer vertexes participate in the roulette wheel selection. The parameter µL defines
the size of the neighborhood for the roulette wheel selection of the construction step. From a
performance perspective this reduces the algorithm’s runtime since the attractiveness vectors are
sorted which allows a part of the customer vertexes to be skipped.

By combining the pseudo-random-proportional state transition rule and neighborhood re-
duction the parameter q0L can also be interpreted as the probability that the neighborhood µL is
set to 1. Therefore, q0L and µL both regulate the balance between exploitation and exploration
of the lower level ACO.

If VC
feasible becomes empty but there are still customers in VC that have not been serviced

yet, the current route is closed and a new empty route is started. The construction step stops
when all customer vertexes have been assigned to a route of the VRPTW solution.

Local Search

When the construction step of an ant is finished it has generated a feasible VRPTW solution
regarding capacity, duration, and time window constraints. The fleet constraint may be violated,
because the construction step cannot prevent solutions that need too many vehicles. The local
search procedure of the lower level ACO has two purposes: first it has to improve the quality
of the VRPTW solution regarding solution costs. Second it should encourage the solution to
become feasible regarding the fleet constraint.

The basic operation of the lower level ACOs local search algorithm is the single node inser-
tion move (NIM). Experiments with other moves such as the single node exchange move, the Lin
2-exchange move, the Lin 3-exchange move, and the Or insertion move did not improve perfor-
mance regarding quality and runtime sufficiently or at all. Therefore, and because we wanted to
focus more on the properties of the ACO than of the local search procedure, we decided to stay
with the simple NIM.
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We use the NIM in two variants: the route local NIM moves an arbitrary customer vertex
inside a single route to a new position; the inter-route NIM removes a customer from an arbitrary
route and inserts it into a new route. Figure 5.5 shows an example of the two NIM variants.
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Figure 5.5: Node insertion moves for the local search of the lower level ACO

There are |VC |(|VC | − 1) different NIMs to check for improvement during the local search
to reach a local minimum. But since we experienced that for larger problem instances (n > 100)
the runtime of the lower level ACOs local search becomes the dominant part of the whole cas-
caded ACO we decided not to implement it to reach a local minimum. Instead we reduced the
runtime complexity of our local search implementation by linearization through randomization.
To achieve this, a local search operation takes two random routes – a source route and a des-
tination route – from the VRPTW solution. If the routes are identical then route local NIMs
are performed to optimality. If they differ the first inter-route NIM between the two routes that
improves the solution costs is performed; then the source and the destination route are further
improved by applying route local NIMs to optimality. The local search operations are repeated
n times before the local search algorithm terminates.

Additionally we defined the parameter r0L ∈ [0, 1]. r0L determines the probability for
vehicle reduction: if the VRPTW solution is not feasible regarding the fleet constraint, then with
a probability of r0L the source route is not selected randomly. Instead the route with the fewest
customers serviced is selected as source route, and the first inter-route NIM is performed even
when it does not improve solution quality but increases solution costs. This rule supports the
reduction of vehicles since it encourages a reduction in the route size (in terms of number of
customers) of the smallest route until it is reduced to zero.

The local search procedure for the lower level ACO is shown in algorithm 5.4. In the main
loop the random value r is compared with the parameter r0L. If r < r0L the algorithm tries to
reduce the number of routes by removing a customer from the route with the fewest customers
and inserting it into a random route. Otherwise two random routes are selected for inter-route
NIM. To accept an inter-route NIM the costs of the solution have to be reduced (∆c < 0) or the
algorithm tries currently to reduce the number of vehicles (routes(sL) > m and r < r0L).
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Input: VRPTW solution sL
Output: potentially improved VRPTW solution

repeat1

r ←− random value between 0 and 12

if routes(sL) > m and r < r0L then3

routeS ←− route with fewest serviced customers of sL4

else5

routeS ←− random route of sL6

end7

routeD ←− random route of sL8

if routeS = routeD then9

sL ←− sL with routeS improved by route local NIMs to optimality10

else11

foreach vi ∈ routeS\{v0} do12

foreach vj ∈ routeD do13

∆c←− remove cost vi from routeS + insert cost vi after vj in routeD14

if ∆c < 0 or (routes(sL) > m and r < r0L) then15

routeS ←− routeS with vi removed16

routeD ←− routeD with vi inserted after vj17

sL ←− sL with routeS improved by route local NIMs to optimality18

and routeD improved by route local NIMs to optimality
break foreach loops19

end20

end21

end22

end23

until termination criterion n iterations24

return sL25
Algorithm 5.4: Lower level local search procedure

Pheromone Update

The pheromones of the lower level ACO are updated after an ant colony has created their
VRPTW solutions. For that the update schema takes into consideration an evaporation effect
as well as the best solution found so far and the σL best solutions of the current ant colony – we
call them the top solutions of the ant colony. Let ρL be the evaporation factor of the lower level
ACO then the pheromones are updated as

τLi,j = (1− ρL)colony sizeτLi,j + F best
i,j ∆τ best

L +
∑

k=1...σL

F
topk
i,j ∆τ

topk
L ∀vi ∈ V, vj ∈ VC

F best
i,j is 1 if the arc ai,j is part of the best solution, otherwise it is 0. F topk

i,j is 1 if the arc ai,j is
part of the top solution with rank k, otherwise it is 0. The best of the top solutions has rank 1,
the worst of the top solutions rank σL.
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The pheromone increment for the best solution is determined as a constant value based on
the number of top ants:

∆τ best
L = σL + 1

whereas the pheromone increment for the top solutions depends on the rank of the solution
scaled by the solutions quality:

∆τ
topk
L = (σL + 1− k)

cbest

ctopk

where cbest represents the VRPTW solution costs of the best solution found so far and ctopk the
costs of the top solution with rank k.

Notice that we scale the evaporation factor by the colony size. This also allows for few
iterations to produce an evaporation effect. With this evaporation scaling, pheromone values of
arcs that are never part of a best or top solution decrease independently of the colony size.

The pheromones are initialized at the start of the lower level ACO with the value 1. If a
pheromone decreases to a value lower then τLmin the pheromone value is reset to τLmin. This
prevents arcs from disappearing as candidates for a solution, although we determined τLmin
experimentally to the very low value of 10−6. Therefore, the lower limit of the pheromones is
only relevant during the intensification phase of the cascaded ACO, because the few iterations of
the lower level ACO during the regular construction phase prevent the pheromone values from
reaching τLmin (even with relatively high evaporation rates ρL).

Parameters

The lower level ACO contains the following parameters that have to be setup for an algorithm
execution with good performance regarding quality of solution and algorithm runtime:

Parameter Description
colony sizeL Size of the ant colony

q0L Probability for the pseudo-random-proportional state transition rule
αL Influence of pheromone values for construction step
βL Influence of savings based heuristic for construction step
µL Neighborhood size for construction step
r0L Probability of reducing the number of vehicles for local search
ρL Evaporation factor for pheromone values
σL Number of top ants in the ant colony

Table 5.2: Parameters of the lower level ACO

5.4 Intensification

As already mentioned the intensification phase is a simple “restart” of the lower level ACO
initialized with a predefined solution, followed by a final upper level local search step. However,
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intensification is reasonable especially for larger instances (n > 100). Due to the very limited
iterations of the lower level ACO during the regular construction phase, the algorithm to solve the
VRPTWs of large instances cannot converge quickly enough to generate an excellent solution.

Although for intensification the lower level ACO starts with a “clean” pheromone matrix,
the preset VRPTW solution as best solution found so far rapidly generates pheromone values
that favor the surrounding search space around this VRPTW solution. This leads quickly to
a pheromone memory similar to that of the original lower level ACO call, thus supporting a
successful intensification.

With the constants for iteration determination that we selected (kU = 1000, kI = 20) the
intensification phase does not take more than approximately 2% of the total cascaded ACO
runtime. But since the intensification causes a twenty-fold increase in the lower level ACO’s
time to converge to a better solution than during the regular construction phase, we measured
improvements of several percent due to intensification for some of the larger instances.

We also experimented with an intermediate intensification during the regular construction
phase: each time the lower level ACO finds a new best solution we started an intensification
of that solution to bias the pheromones accordingly. But as it turned out, this leads to worse
results. This can be explained by the insight that the pheromones are indeed biased towards a
better solution than found during the regular lower level ACO call, but subsequent regular lower
level ACO calls cannot reach the quality of an intensified solution since they get too little time.
Therefore an intermediate intensification leads to a very early convergence towards a suboptimal
solution.

5.5 Parameters for Cascaded ACO

There are a lot of parameters that influence the solving behavior of the cascaded ACO. Actu-
ally, there are too many parameters to determine an optimal setting by combining considered
parameter values of all parameters.

To find a good parameter setting we wanted to satisfy two criteria: quality of the solutions
should be optimized, and algorithm runtime should be minimized. By iteratively checking pa-
rameter values and combinations regarding these criteria we determined a good parameter setup.

By testing this setup a sensitivity analysis for the parameters was performed. For this a
representative set of test instances was selected – representative regarding size, distribution of
customer vertexes, and narrowness of time windows. This set contains the Solomon/Pirkwieser
instances p4r101, p4rc104, r6c102, and p6rc105 as well as the Cordeau instances 1a, 3a, 8a, 4b,
and 7b (for discussion about test instances see chapter 6.1).

For a specific parameter a set of parameter values was defined that surrounds the parameter
value of the previously determined good parameter setup. Then cascaded ACO was called 20
times with each parameter value of the currently selected parameter. This was repeated for all
parameters. The result is a distribution of solution qualities and algorithm runtimes for each test
instance and parameter value of a parameter. To compare solution qualities independently of the
test instance the solution costs were normalized: the result of each experiment was divided by
the average result of all experiments with the same test instance. Therefore the solution quality
is distributed around 1.
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The distribution of the solution qualities for the parameter values are displayed as box plots
for each parameter separately, which at least permits us to verify the chosen parameter setup. It
also indicates the algorithm’s sensitivity to quality and runtime regarding each parameter. The
box plot contains minimal and maximal value, lower and upper quartile, and the median of the
solution qualities. Additionally the average algorithm runtime is displayed as a line.

In the following diagrams the chosen parameter values are displayed in green. Each tested
parameter value represents 180 experiments (9 test instances, 20 experiments each). Parameter
values that are marked with a star (*) indicate a setting where one or more experiments produced
an infeasible solution. The blue line shows the average relative runtime of the parameter values.
The axis for the relative solution quality is shown on the left (95% – 105% scaled to the median
of the experiments with the chosen parameter setting); the axis for the relative algorithm runtime
is on the right (0.5 – 3.5 scaled to the average relative algorithm runtime with chosen parameter
setting).

Parameters of the upper level ACO

Figure 5.6 shows the results for the parameters contained in the upper level ACO. αU (5.6 a)
specifies the influence of the pheromone values for the upper level construction process. A
value of 1 is the obvious choice for this parameter. If αU is set to 0 the upper level construction
process becomes a pure random search due to the missing heuristic component. Higher values
increase the sensitivity of the construction process to small differences of the pheromones, but
the experiments showed an unstable behavior allowing infeasible solutions to be generated (for
αU = 2 five of 180 experiments, for αU = 5 even ten of 180 experiments generated infeasible
solutions). A Wilcoxon rank-sum test clearly confirms (P-value < 0.05 one-tailed) the choice
of αU = 1 as a superior value.

For the evaporation factor of the upper level ACO ρU (5.6 b) we decided to take the value
0.1. Here a value of 1 allowed the upper level construction process becoming a random search
- confirming the results of the setting of αU to 0. The Wilcoxon rank-sum test showed that the
experiments with ρU = 0.1 generated significantly better solutions than with other tested values.

The values for the pheromone increment parameters σU (5.6 d) and ωU (5.6 c) were set to 10
and 3 respectively. A σU value that is too high may generate infeasible solutions (for σU = 50
one of 180 experiments resulted in an infeasible solution). Wilcoxon rank-sum confirmed that
σU = 10 performs better than other σU values, except for σU = 5 which seems to be an
equally good choice. On the other hand, the influence of the parameter ωU is marginal for the
performance of cascaded ACO.

No parameter of the upper level ACO significantly influences the overall runtime of the
cascaded ACO algorithm.

Parameters of the lower level ACO

Results for the parameters of the lower level ACO are shown in figures 5.7 and 5.8. The colony
size of the lower level ACO (5.7 b) has an influence on the solution quality as well as on the
runtime of the algorithm. A Wilcox rank-sum test verified that a colony size of n/3 or n/10
generates significantly better solutions than with colony sizes of n, n/30, or even 1 ant. Since

88



a)

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

95% 

100% 

105% 

0 1 2* 5* 

alphaU 

b)

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

95% 

100% 

105% 

0 0.001 0.01 0.1 1 

rhoU 

c)

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

95% 

100% 

105% 

0 1 3 10 

omegaU 

d)

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

95% 

100% 

105% 

0 1 5 10 50* 

sigmaU 

Figure 5.6: Box plots showing relative solution quality as well as runtime of the parameters for
the upper level ACO using the selected parameter setup. Sensitivity of parameters a) αU , b) ρU ,
c) ωU , and d) σU

larger colony sizes show a better runtime behavior the choice of n/3 is justified. The increas-
ing runtime for smaller colonies can be explained by the decreasing effect of the attractiveness
matrix, which has to be rebuilt more often for small colonies.

The parameter αL (5.7 a) and βL (5.7 c) determine the influence of the pheromones and of
the savings based heuristic to the construction step of the lower level ACO. As proved by several
examples in the literature (e.g. Dorigo et al. [31]) αL = 1 shows the most stable algorithm per-
formance with the best results, particularly since a pure heuristic search with αL = 0 generates
approximately 25% infeasible solutions (49 of 180 experiments), and a too high alphaL value of
5 also tends to generate infeasible solutions (one of 180 experiments). Based on these findings
βL was set to 2, although βL = 5 would also show similar solution qualities but with a slightly
increased runtime. Both choices showed significantly better solution qualities than βL = 0 or
βL = 1 based on a Wilcoxon rank-sum test.

A rising probability of the pseudo-random proportional state transition rule q0L (5.7 d) obvi-
ously decreases the algorithm runtime, because with higher q0L values the computational costly
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Figure 5.7: Box plots showing relative solution quality as well as runtime of the parameters
for the lower level ACO using the selected parameter setup. Sensitivity of parameters a) αL, b)
colony sizeL, c) βL, and d) q0L

roulette wheel selection for the construction step is more likely skipped. Interestingly ignoring
the pseudo-random proportional state transition rule (q0L = 0) shows significantly worse re-
sults than enforcing exploitation to 50% of the construction decisions (q0L = 0.5). The same
is true for a too strong exploratory force (q0L = 0.8 or 0.9). Therefore we have chosen to use
q0L = 0.5.

Similar to q0L the parameter µL (5.8 b) balances exploitation and exploration of the lower
level ACO. For the same reasons a decreasing neighborhood also decreases the algorithm run-
time. But too small neighborhoods may generate infeasible solutions (for µL = n/20 one of
180 experiments). An effective compromise between good runtime and stability of the algorithm
seems to be the value µL = 0.5, although this parameter value does not show significantly better
solutions than with other values (except for µL = n/20).

The parameter r0L (5.8 a) determines the probability of the local search procedure of the
lower level ACO to try to reduce the number of vehicles. The tests showed that by using a
too low value for r0L the cascaded ACO indeed becomes instable in terms of feasibility. For
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Figure 5.8: Box plots showing relative solution quality as well as runtime of the parameters for
the lower level ACO using the selected parameter setup. Sensitivity of parameters a) r0L, b) µL,
c) ρL, and d) σL

r0L = 0 two of 180 experiments, for r0L = 0.3 one of 180 experiments generated an infeasible
solution. We decided to use the value 0.6.

The last two parameters determine pheromone evaporation ρL (5.8 c) and pheromone in-
crementation σU (5.8 d). For ρL we identified the value 0.99 to generate significantly better
solutions than with the other tested values. σL specifies the number of top ants of an ant colony.
The experiments showed that the solutions generated with 5 top ants were significantly better
than with only 1 top ant regarding a Wilcoxon rank-sum test. Nevertheless the other tested values
seem to perform quite similarly. Therefore we decided to rely on literature (Dörner et al. [33])
and selected σ = 5.

Summary

The choice of parameter values significantly influences solution quality as well as the runtime
of the cascaded ACO. An unbalanced parameter setup can even generate infeasible solutions:
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settings that do not allow the algorithm to converge and degrade it to a random search procedure
(αL = 0, r0L = 0 or 0.3), as well as settings that focus too much on exploitation of memory
or heuristics that let the algorithm converge too quickly and do not allow it to escape from local
minima appropriately (αU = 2 or 5, σU = 50, αL = 5, µL = n/20) produced such infeasible
solutions.

The following table summarizes the parameter settings we used for the cascaded ACO:

Parameter Value
αU 1
ρU 0.9
σU 10
ωU 3

colony sizeL n/3
q0L 0.5
αL 1
βL 2
µL n/5
r0L 0.6
ρL 0.99
σL 5

Table 5.3: Parameter settings for the cascaded ACO algorithm

5.6 Implementation

The cascaded ACO to solve the whole PVRPTW was implemented in C++. The following class
diagram 5.9 shows an overview of the implementation structure.
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+removeNode()

+insertNode()

+localNIM()

-costs[1]

-load[1]

-depotLeavingTime[1]
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Path

+removeNode()

+insertNode()

+interRouteNIM()

-costs[1]

-penalty[1]

MultiPath

+localSearch()

-costs[1]

-penalty[1]

-visitCombinations[*]

Solution

+solveVRPTW()

-allowedCustomers[*]

LowerLevelACO

+solvePVRPTW()

-createLowerLevelACO()

UpperLevelACO

1

*

1

*

+load()

-costs[*]

-durations[*]

-noVehicles[1]

-maxVehicleLoad[1]

-maxRouteDuration[1]

ProblemInstance

-serviceFrequency[1]

-visitCombinations[*]

-demand[1]

-serviceTime[1]

-timeWindow[1]

Customer

*

1

«creates»

«creates»

Figure 5.9: Class diagram of the implemented cascaded ACO
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CHAPTER 6
Computational Results

6.1 Problem Instances

The presented algorithms were tested with different well known problem instances to allow
comparison of the methods used. In the literature there are PVRPTW instances from Cordeau et
al. [14], Pirkwieser and Raidl [75] that were developed from VRPTW instances of Solomon [88],
and new large scale PVRPTW instances from Vidal et al. [95] that were constructed by following
the generation procedure of Cordeau et al. [14].

To test the column generation approach we used a modified set of instances from Cordeau
et al. and the set of instances from Pirkwieser and Raidl, both containing problems with a
planning period of four and six days. The set of instances from Cordeau et al. was modified to
reduce the size of some problems by randomly removing customers and decreasing fleet size.
This “reduced” set of Cordeau instances was introduced by Pirkwieser and Raidl [74] – we will
refer to this set of instances as Pirkwieser/Cordeau instances. The second set of instances was
derived by Pirkwieser and Raidl from VRPTW instances introduced by Solomon. For this set
visit combinations were assigned evenly to the customers of the problem instances at random –
we will call these instances the Pirkwieser/Solomon instances.

To test the cascaded ACO we used the original set of instances introduced by Cordeau et al.
and we refer to it as the Cordeau instances. As a second test set we used the Pirkwieser/Solomon
instances.

Tables 6.1 and 6.2 show some of the main characteristics of the original Cordeau instances
and the reduced set of Pirkwieser/Cordeau instances. In addition to the name of the instance,
the number of customer vertexes (n), fleet size (m), the number of days of the planning horizon
(t), and the average frequency over all customers (avg(fi)) is displayed. Additionally the tables
contain the maximum carrying load of the vehicles (Q) and the average demand over all cus-
tomers (avg(qi)). Finally, maximal route duration of the vehicles (D), average service duration
(avg(di)), average distance1 to the depot (avg(zi0)), and average time window size relative to the

1travel costs and travel duration between two vertexes vi and vj is calculated as Euclidean distance between the
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n m t avg(fi) Q avg(qi) D avg(di) avg(zi0) avg(windowi)

1a 48 3 4 2.0 200 13.7 500 11.5 47.0 14.7%

2a 96 6 4 2.0 195 12.7 480 13.4 43.7 13.5%

3a 144 9 4 2.0 190 12.4 460 12.5 55.5 13.1%

4a 192 12 4 2.0 185 12.9 440 13.0 49.5 13.3%

5a 240 15 4 2.0 180 14.0 420 13.0 41.7 13.6%

6a 288 18 4 2.0 175 12.7 400 13.3 48.5 13.6%

7a 72 5 6 3.0 200 13.2 500 14.0 51.3 13.4%

8a 144 10 6 3.0 190 13.9 475 13.2 51.4 13.2%

9a 216 15 6 3.0 180 12.7 450 11.9 53.0 13.6%

10a 288 20 6 3.0 170 13.4 425 12.8 50.5 13.5%

1b 48 3 4 2.0 200 13.7 500 11.5 47.0 28.0%

2b 96 6 4 2.0 195 12.7 480 13.4 43.7 25.9%

3b 144 9 4 2.0 190 12.4 460 12.5 55.5 27.0%

4b 192 12 4 2.0 185 12.9 440 13.0 49.5 27.5%

5b 240 15 4 2.0 180 14.0 420 13.0 41.7 26.9%

6b 288 18 4 2.0 175 12.7 400 13.3 48.5 26.9%

7b 72 4 6 3.0 200 13.2 500 14.0 51.3 27.4%

8b 144 8 6 3.0 190 13.9 475 13.2 51.4 27.0%

9b 216 12 6 3.0 180 12.7 450 11.9 53.0 27.0%

10b 288 16 6 3.0 170 13.4 425 12.8 50.5 26.9%

Instance

Table 6.1: Cordeau instances

n m t avg(fi) Q avg(qi) D avg(di) avg(zi0) avg(windowi)

1a 48 3 4 2.0 200 13.7 500 11.5 47.0 14.7%

2a 96 6 4 2.0 195 12.7 480 13.4 43.7 13.5%

3a 144 9 4 2.0 190 12.4 460 12.5 55.5 13.1%

4ar1 160 10 4 2.0 185 12.6 440 12.8 49.1 13.3%

7a 72 5 6 3.0 200 13.2 500 14.0 51.3 13.4%

9ar1 96 7 6 3.0 180 13.1 450 11.8 54.5 13.6%

9ar2 120 8 6 3.0 180 12.3 450 12.0 51.8 13.6%

8a 144 10 6 3.0 190 13.9 475 13.2 51.4 13.2%

2br1 32 2 4 2.0 195 13.1 480 12.2 47.7 26.2%

1b 48 3 4 2.0 200 13.7 500 11.5 47.0 28.0%

2br2 64 4 4 2.0 195 12.5 480 14.0 41.7 25.8%

3br1 72 4 4 2.0 190 12.5 460 12.1 52.4 27.0%

7br1 24 2 6 3.0 200 12.5 500 11.3 55.2 28.0%

8br1 36 2 6 3.0 190 12.9 475 11.2 50.6 26.8%

7br2 48 3 6 3.0 200 13.5 500 15.4 49.4 27.2%

8br2 60 3 6 3.0 190 14.4 475 13.8 53.2 27.2%

Instance

Table 6.2: Pirkwieser/Cordeau instances
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time window size of the depot in percent (avg(windowi)) is shown, where windowi = li−ei
l0−e0 .

The Cordeau as well as the Pirkwieser/Cordeau instances can be grouped into 4-day period
problem instances with narrow time windows (instances 1a - 6a), 6-day period problem instances
with narrow time windows (instances 7a - 10a), 4-day period problem instances with medium
sized time windows (instance 1b - 6b), and 6-day period problem instances with medium sized
time windows (instances 7b - 10b). In each group the problem instances consist of different num-
bers of customers: from 48 customers up to 288 customers. For Pirkwieser/Cordeau instances
the subscript in the instance name indicates that this instance was generated by removing cus-
tomers from the original Cordeau instance.

The time windows for Cordeau instances have been constructed using a method that leads
to a normal distribution around the average time window size, and the time window positions
(early or late during the day) were assigned randomly.

Table 6.3 shows the Pirkwieser/Solomon instances which all consist of 100 customers. They
can also be differentiated into instances with a planning period of four days indicated by the in-
stance name prefix “p4” and those with a planning period of six days with prefix “p6”. A further
characteristic of the Pirkwieser/Solomon instances is the distribution of customer vertexes. In
instances where the name contains an “r” the customers’ locations are randomly set, in those
with a “c” the customers are clustered, and in those with an “rc” there is a mixture of randomly
placed customers and customer clustering. Based on period and customer placement six groups
can be distinguished, each containing five problem instances.

For the Pirkwieser/Solomon instances it should be noticed that the average time window
sizes vary severely. But even in instances with large average time window sizes there are cus-
tomers with very narrow time windows. This is because in Solomon instances the time window
sizes are not normally distributed around the average. Furthermore, there are always two classes
of customers: some with very large time windows (ca. 90% of the depot’s time window size)
and some with very narrow time windows (ca. 10% or less of the depot’s time window size);
customers with medium sized time windows do not exist. Therefore, larger average time win-
dow sizes of an instance result from the fact that the instance contains more customers with large
time windows and vice versa.

The first instance of each instance group (p4r101, p4c101, p4rc101, p6r101, p6c101,
p6rc101) consists only of customers with narrow time windows. The subsequent instances of
the instance groups include more and more customers with large time windows, except for the
last instance per group (. . . 05): here all customers have narrow time windows again, but the
time window has about twice the size of the . . . 01 instances. An exception to this schema are
the “rc” instance groups with a mixture of random and clustered customer placement: here the
instances p4rc105 and p6rc105 consist additionally to the customers with narrow time windows
of customers with medium to larger window sizes (50% of the day time). Generally, narrow
time window customers within the “rc” instance group have time windows twice the size of the
other instance groups.

The time window positions (early or late during the day) of the Pirkwieser/Solomon in-
stances are randomly distributed over the day.

The visit combinations follow a strict construction schema for all instances. The 4-day

position of the two vertexes given by the coordinates x and y: ci,j = zi,j =
√

(xi − xj)2 + (yi − yj)2
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n m t avg(fi) Q avg(qi) D avg(di) avg(zi0) avg(windowi)

p4r101 100 14 4 2.4 200 14.6 ∞ 10.0 24.9 4.3%

p4r102 100 13 4 2.4 200 14.6 ∞ 10.0 24.9 25.0%

p4r103 100 10 4 2.4 200 14.6 ∞ 10.0 24.9 44.8%

p4r104 100 7 4 2.4 200 14.6 ∞ 10.0 24.9 64.5%

p4r105 100 11 4 2.4 200 14.6 ∞ 10.0 24.9 13.0%

p4c101 100 10 4 2.4 200 18.1 ∞ 90.0 28.9 4.9%

p4c102 100 8 4 2.4 200 18.1 ∞ 90.0 28.9 26.4%

p4c103 100 7 4 2.4 200 18.1 ∞ 90.0 28.9 47.6%

p4c104 100 7 4 2.4 200 18.1 ∞ 90.0 28.9 69.0%

p4c105 100 8 4 2.4 200 18.1 ∞ 90.0 28.9 9.8%

p4rc101 100 10 4 2.4 200 17.2 ∞ 10.0 33.1 12.5%

p4rc102 100 10 4 2.4 200 17.2 ∞ 10.0 33.1 29.8%

p4rc103 100 8 4 2.4 200 17.2 ∞ 10.0 33.1 46.9%

p4rc104 100 7 4 2.4 200 17.2 ∞ 10.0 33.1 64.4%

p4rc105 100 11 4 2.4 200 17.2 ∞ 10.0 33.1 22.6%

p6r101 100 14 6 3.0 200 14.6 ∞ 10.0 24.9 4.3%

p6r102 100 12 6 3.0 200 14.6 ∞ 10.0 24.9 25.0%

p6r103 100 9 6 3.0 200 14.6 ∞ 10.0 24.9 44.8%

p6r104 100 8 6 3.0 200 14.6 ∞ 10.0 24.9 64.5%

p6r105 100 9 6 3.0 200 14.6 ∞ 10.0 24.9 13.0%

p6c101 100 7 6 3.0 200 18.1 ∞ 90.0 28.9 4.9%

p6c102 100 7 6 3.0 200 18.1 ∞ 90.0 28.9 26.4%

p6c103 100 6 6 3.0 200 18.1 ∞ 90.0 28.9 47.6%

p6c104 100 6 6 3.0 200 18.1 ∞ 90.0 28.9 69.0%

p6c105 100 7 6 3.0 200 18.1 ∞ 90.0 28.9 9.8%

p6rc101 100 10 6 3.0 200 17.2 ∞ 10.0 33.1 12.5%

p6rc102 100 9 6 3.0 200 17.2 ∞ 10.0 33.1 29.8%

p6rc103 100 7 6 3.0 200 17.2 ∞ 10.0 33.1 46.9%

p6rc104 100 7 6 3.0 200 17.2 ∞ 10.0 33.1 64.4%

p6rc105 100 9 6 3.0 200 17.2 ∞ 10.0 33.1 22.6%

Instance

Table 6.3: Pirkwieser/Solomon instances

period instances contain customers with one, two, or four visits per period; the 6-day period
instances customers with one, two, three, or six visits. The visit combinations for a customer
are constructed such that each single day of the planning period is contained in only one single
visit combination. E.g. the visit combinations for a customer of a 4-day period instance with
two visits per period are: day 1 and day 3 (first visit combination); day 2 and day 4 (second visit
combination).

Table 6.4 displays the schema for the construction of the visit combinations. Each row
represents a single visit combination: a filled square (�) indicates that this day is part of it; an
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4-day period 6-day period
visit day visit day

frequency 1 2 3 4 frequency 1 2 3 4 5 6
1 � � � � 1 � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

2 � � � � � � � � � �
� � � � � � � � � �

4 � � � � 2 � � � � � �
� � � � � �
� � � � � �

3 � � � � � �
� � � � � �

6 � � � � � �

Table 6.4: Construction schema for the visit combinations of the used PVRPTW test instances

empty square (�) that this day is not part of it.
The Cordeau and Pirkwieser/Cordeau instances use this schema to assign visit combinations

to the customers, where in 4-day period instances half of the customers are set with frequency 1,
a quarter are set with frequency 2 and the remaining quarter with frequency 4. In 6-day period
instances the four different frequencies 1, 2, 3 and 6 are distributed equally among the customers,
each to a quarter of the customers.

For the Pirkwieser/Solomon instances the schema was applied in a way that in all instances
– regardless if 4-day or 6-day period – the different frequencies were distributed equally among
the customers.

6.2 ACO for Pricing Problem

The column generation approach to solve the LP-relaxed PVRPTW was implemented in C++
compiled with GCC 4.3. The RMP was solved using IBM ILOG CPLEX 12.2. The tests were
executed on a 2.83 GHz Intel Core2 Quad Q9550 CPU with 8 GB RAM using a Linux server
with 2.6.38 kernel.

Table 6.5 shows the results for the Pirkwieser/Cordeau instances comparing the ACO al-
gorithm as an approximate ESPPRC solver with the other implemented metaheuristics. As a
baseline column generation was started without any approximate ESPPRC solver using only the
exact dynamic programming based ESPPRC solver with a forced early termination. Each con-
figuration was started 30 times using slack variables instead of providing initial solutions. The
table contains the problem instance, the lower bound of the LP-relaxed problem (LB), and the
average CPU times of the different variants calculating this lower bound. tCG is the average
CPU time of the whole column generation algorithm in seconds; tHeur is the average CPU time
percentage of the approximate ESPPRC solver as part of the whole column generation process.
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Excact

Instance LB tCG tCG tHeur tCG tHeur tCG tHeur tCG tHeur sd(tCG)

1a 2882.01 23.6 2.4 84% 2.3 84% 2.4 85% 2.8 85% (0.3)

2a 4993.48 852.3 18.3 45% 19.6 50% 22.6 55% 22.7 54% (3.5)

3a 6841.44 3129.0 113.5 15% 115.5 17% 143.5 20% 121.6 20% (11.9)

4ar1 6641.67 7183.6 358.9 7% 341.7 9% 390.5 11% 355.9 10% (29.7)

7a 6641.39 48.7 9.8 72% 9.9 76% 12.1 77% 10.4 74% (0.8)

9ar1 8035.09 170.8 48.3 39% 47.2 43% 57.0 44% 50.3 45% (13.0)

9ar2 8140.15 1461.0 304.2 13% 306.0 14% 328.8 17% 296.6 16% (3.1)

8a 9153.79 1522.5 195.3 40% 193.0 43% 226.2 48% 208.6 44% (47.0)

2br1 2682.52 43.6 16.0 13% 15.2 14% 16.5 12% 15.8 11% (5.3)

1b 2258.85 73.0 30.2 10% 27.8 13% 26.4 15% 27.5 18% (4.7)

2br2 2733.55 188.0 51.0 9% 48.7 11% 50.1 13% 53.0 15% (11.5)

3br1 3241.90 1334.1 252.9 2% 236.1 3% 275.8 3% 248.8 3% (62.2)

7br1 3677.21 1.4 1.1 92% 1.2 93% 0.9 90% 1.0 91% (0.1)

8br1 3476.43 27.5 4.2 60% 4.0 64% 4.5 60% 4.0 61% (1.2)

7br2 3599.72 39.7 11.6 39% 11.4 43% 12.6 39% 12.2 46% (0.4)

8br2 4324.87 2835.6 595.8 1% 597.9 2% 655.3 2% 633.4 2% (187.1)

GRASP ILS VNS ACO

Table 6.5: Column generation approach: results for Pirkwieser/Cordeau instances regarding
CPU time

Instance LB UBB&B SB&B UBB&B SB&B UBB&B SB&B UBB&B SB&B UBB&B SB&B

1a 2882.01 3094.83 100% 3018.88 100% 3014.33 100% 3013.70 100% 3010.82 100%

2a 4993.48 5159.97 100% 5125.07 100% 5112.35 100% 5099.61 100% 5118.69 100%

3a 6841.44 7425.35 100% 7378.81 100% 7380.00 100% 7391.17 100% 7390.07 100%

4ar1 6641.67 7221.26 100% 7246.70 100% 7230.85 100% 7222.80 100% 7246.81 100%

7a 6641.39 7218.52 100% 7365.18 47% 7349.47 73% 7313.71 80% 7324.91 67%

9ar1 9153.79 10507.5 100% 10483.1 100% 10473.5 100% 10471.2 100% 10466.3 100%

9ar2 8035.09 9128.64 100% 9059.07 100% 9035.00 100% 9007.51 100% 9007.82 100%

8a 8140.15 9163.46 100% 9133.61 100% 9143.06 100% 9170.15 100% 9153.41 100%

2br1 2258.85 2287.77 100% 2290.39 100% 2289.13 100% 2293.51 100% 2290.17 100%

1b 2682.52 0% 2775.06 60% 2760.85 83% 2765.95 80% 2781.76 73%

2br2 2733.55 2816.36 100% 2815.35 100% 2806.75 100% 2807.64 100% 2811.32 100%

3br1 3241.90 3416.69 100% 3361.23 100% 3356.06 100% 3358.24 100% 3356.54 100%

7br1 3677.21 3934.84 100% 3909.92 100% 3916.42 87% 3915.10 93% 3943.35 90%

8br1 3599.72 3834.09 100% 3840.60 100% 3854.30 100% 3828.17 100% 3848.71 100%

7br2 3476.43 0% 0% 0% 0% 0%

8br2 4324.87 0% 0% 0% 0% 0%

Exact GRASP ILS VNS ACO

Table 6.6: Column generation approach: results for Pirkwieser/Cordeau instances regarding
quality of columns
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For the ACO variant we also report the standard deviation of CPU times in seconds (sd(tCG)).
In addition to the runtime of the algorithm the quality of the generated columns was ana-

lyzed. For this we used the branch and bound component of the IBM ILOG CPLEX optimizer
to solve the RMP including integrality constraints. This “price and branch” approach gener-
ates a feasible solution of the PVRPTW whereas the value of the cost function represents the
quality of the columns injected into the RMP during the column generation process. Because
of the set covering formulation of the problem a simple repair step is applied to the branch and
bound solution correcting over-covered visit constraints and cover constraints. If the total costs
of the PVRPTW solution are low we deduce that the generated columns have to be relevant and
therefore of high quality and vice versa. Table 6.6 shows the results of the column’s quality
analysis for the Pirkwieser/Cordeau instances. The average total costs of the PVRPTW solution
generated with branch and bound is displayed in UBB&B. We limited the runtime of the branch
and bound procedure to 10 minutes; the percentage of runs that produced a solution within this
time is shown in SB&B.

The results for the Pirkwieser/Solomon instances regarding CPU time are shown in table
6.7. Table 6.8 shows the corresponding results of the analysis of the columns’ qualities. Notice
that for the instances p4c104 and p6c104 no results have been produced since the runtime of the
column generation algorithm exceeded several hours preventing us from generating statistically
significant results.

In general the column generation approach requires more CPU time the larger the time win-
dow sizes of the problem instance. This is because the performance of the dynamic programming
approach of the exact ESPPRC solver scales with the solution space of the problem. Wider time
windows allow more feasible solutions which slow down the exact ESPPRC solver; narrower
time windows reduce the set of feasible solutions allowing the exact ESPPRC solver to increase
performance. The CPU time of approximate ESPPRC solvers based on metaheuristics do not
typically depend on the time window sizes. This is confirmed by the percentage of the approxi-
mate ESPPRC solver as part of the whole column generation process: for instances with narrow
time windows tHeur indicates a stronger influence of the approximate ESPPRC solver than for
instances with larger time window sizes.

When comparing the column generation approach without an approximate ESPPRC solver
with the variants with an approximate ESPPRC solver the later show significantly reduced CPU
times. This effect is most pronounced for larger instances or instances with wider time windows.
This confirms the results presented by Pirkwieser and Raidl [74] which performed similar exper-
iments with a slightly different column generation algorithm and by providing initial solutions
instead of using slack variables.

By comparing the CPU time of the ACO variant with the other metaheuristics used as ap-
proximate ESPPRC solver the GRASP and ILS metaheuristics show in general a better runtime
behavior than ACO which in turn shows a better performance than our VNS implementation.
The higher CPU times for the ACO variant might be explained by the higher complexity of
the algorithm which consists of a computationally expensive construction procedure and it has
to manage the pheromone structure. Apparently the computationally simpler metaheuristics
GRASP and ILS can provide columns more quickly without forcing the column generation al-
gorithm to increase the number of iterations significantly which would negate the positive CPU
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Excact

Instance LB tCG tCG tHeur tCG tHeur tCG tHeur tCG tHeur sd(tCG)

p4r101 4151.54 4.7 3.4 88% 3.2 87% 5.8 92% 3.6 89% (0.3)

p4r102 3729.84 15.2 8.6 62% 8.3 64% 11.4 69% 10.0 67% (1.0)

p4r103 3154.65 67.1 14.8 51% 15.5 54% 19.5 57% 18.0 53% (2.4)

p4r104 2528.55 2197.7 426.1 2% 465.1 2% 500.8 3% 473.4 3% (109.4)

p4r105 3605.43 12.7 6.4 69% 6.4 69% 9.1 75% 6.7 70% (0.5)

p4c101 2910.89 25.3 6.5 85% 6.5 86% 7.1 33% 7.6 88% (0.8)

p4c102 2874.62 119.3 22.4 51% 23.2 56% 26.8 58% 26.6 61% (3.2)

p4c103 2682.76 536.3 33.9 37% 32.4 41% 41.9 40% 40.8 40% (5.7)

p4c104 2406.80

p4c105 2882.37 92.1 11.3 83% 11.2 82% 16.0 81% 11.9 81% (1.2)

p4rc101 3920.75 8.9 5.1 83% 5.0 81% 8.8 86% 5.7 84% (0.7)

p4rc102 3726.64 21.6 9.6 56% 9.8 58% 12.4 63% 10.3 63% (0.7)

p4rc103 3410.76 154.6 19.8 37% 19.7 39% 23.3 43% 21.6 43% (2.6)

p4rc104 2952.09 4553.8 4401.4 0% 3208.2 0% 4859.0 0% 3375.7 0% (996.6)

p4rc105 3894.41 14.1 7.0 64% 7.3 65% 9.2 70% 7.6 68% (0.5)

p6r101 5341.25 8.5 6.1 93% 6.2 93% 9.2 93% 6.6 93% (0.6)

p6r102 5234.66 23.7 14.5 59% 14.9 61% 18.5 65% 15.8 65% (1.6)

p6r103 3809.98 98.5 41.1 36% 41.8 40% 46.5 42% 43.7 42% (2.8)

p6r104 3250.04 275.6 112.8 18% 111.6 20% 124.2 22% 117.5 21% (13.4)

p6r105 4163.21 23.7 13.8 79% 14.0 79% 16.6 80% 13.3 79% (1.1)

p6c101 3809.55 112.4 20.1 82% 22.4 84% 27.0 86% 20.8 87% (3.2)

p6c102 3777.94 164.8 23.0 70% 26.9 76% 29.5 76% 26.7 75% (3.3)

p6c103 3442.89 335.6 60.2 39% 63.0 44% 72.4 45% 66.9 44% (7.5)

p6c104 3093.83

p6c105 3991.09 98.7 23.6 83% 23.7 82% 29.5 84% 25.4 85% (4.3)

p6rc101 5607.60 13.1 8.1 81% 8.0 82% 12.4 86% 8.0 83% (0.7)

p6rc102 5195.34 31.5 16.3 68% 16.5 70% 18.8 66% 17.2 71% (1.5)

p6rc103 4112.32 123.3 56.6 27% 58.5 29% 62.2 32% 59.3 30% (6.7)

p6rc104 3923.74 3080.2 3246.7 1% 2193.7 1% 3317.2 1% 2951.0 1% (776.9)

p6rc105 5081.55 26.5 12.8 69% 13.0 69% 16.9 74% 12.7 71% (0.8)

GRASP ILS VNS ACO

Table 6.7: Column generation approach: results for Pirkwieser/Solomon instances regarding
CPU time
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Instance LB UBB&B SB&B UBB&B SB&B UBB&B SB&B UBB&B SB&B UBB&B SB&B

p4r101 4151.54 4236.14 100% 4194.97 100% 4194.32 100% 4193.92 100% 4192.83 100%

p4r102 3729.84 3806.70 100% 3773.64 100% 3779.96 100% 3772.02 100% 3770.79 100%

p4r103 3154.65 3274.37 100% 3230.69 100% 3226.15 100% 3222.20 100% 3237.92 100%

p4r104 2528.55 2673.32 100% 2683.56 97% 2692.57 97% 2700.10 90% 2693.53 87%

p4r105 3605.43 3763.25 100% 3756.82 100% 3760.67 100% 3760.10 100% 3755.99 100%

p4c101 2910.89 2930.70 100% 2922.34 100% 2922.36 100% 2926.72 100% 2923.60 100%

p4c102 2874.62 2919.05 100% 2915.35 100% 2914.94 100% 2911.84 100% 2921.53 100%

p4c103 2682.76 0% 2878.88 60% 2855.89 93% 2840.79 70% 2841.73 63%

p4c104 2406.80

p4c105 2882.37 0% 2941.12 97% 2942.12 100% 2951.15 100% 2932.61 97%

p4rc101 3920.75 4120.78 100% 4069.02 100% 4082.63 100% 4082.77 100% 4079.08 100%

p4rc102 3726.64 3846.47 100% 3821.05 100% 3816.03 100% 3818.42 100% 3813.47 100%

p4rc103 3410.76 3590.75 100% 3632.61 100% 3624.35 93% 3609.02 100% 3620.07 100%

p4rc104 2952.09 3065.24 100% 3105.35 100% 3108.34 100% 3108.82 100% 3130.40 93%

p4rc105 3894.41 4012.46 100% 4006.88 100% 4007.17 100% 4004.48 100% 4006.74 100%

p6r101 5341.25 5534.54 100% 5489.49 100% 5483.33 100% 5500.05 100% 5493.39 100%

p6r102 5234.66 5424.42 100% 5454.09 100% 5457.57 100% 5438.50 100% 5451.63 100%

p6r103 3809.98 4126.51 100% 4135.07 100% 4135.61 100% 4135.17 100% 4153.54 100%

p6r104 3250.04 3508.25 100% 3578.00 100% 3578.65 100% 3574.43 100% 3588.02 100%

p6r105 4163.21 4566.12 100% 4519.91 100% 4533.33 100% 4521.92 100% 4531.89 100%

p6c101 3809.55 0% 0% 0% 0% 0%

p6c102 3777.94 0% 4083.55 13% 4235.81 27% 4125.09 13% 4169.78 23%

p6c103 3442.89 0% 0% 0% 0% 0%

p6c104 3093.83

p6c105 3991.09 0% 0% 0% 4314.67 3% 0%

p6rc101 5607.60 0% 6009.78 100% 6019.65 100% 6031.97 100% 6018.97 100%

p6rc102 5195.34 5613.13 100% 5620.42 100% 5615.99 100% 5578.86 100% 5614.20 100%

p6rc103 4112.32 0% 4592.24 93% 4583.52 90% 4566.81 97% 4579.08 100%

p6rc104 3923.74 4338.57 100% 4344.25 100% 4332.28 100% 4319.21 100% 4333.74 100%

p6rc105 5081.55 5506.94 100% 5463.80 100% 5477.66 100% 5459.61 100% 5464.46 100%

Exact GRASP ILS VNS ACO

Table 6.8: Column generation approach: results for Pirkwieser/Solomon instances regarding
quality of columns
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time effect. Interestingly, our VNS variant cannot outperform the ACO variant regarding CPU
time.

The analysis of the quality of the columns reveals a different picture. Although, the column
generation variant without an approximate ESPPRC solver produced by far the most columns,
the quality is not superior to the metaheuristically enhanced variants which produce only a frac-
tion of these columns. This indicates that the introduction of an approximate ESPPRC solver
does not necessarily decrease the quality of the columns; rather it seems to find the relevant
columns for the PVRPTW solution more quickly.

Moreover, it can be observed that the branch and bound process to generate a feasible
PVRPTW solution for instances with clustered customer locations has difficulties in produc-
ing such solutions in the provided time with the routes generated during column generation. The
quality of the columns for these instances seems not to be sufficient for branch and bound. Inter-
estingly, the introduction of an approximate ESPPRC solver improves the quality of the columns
as can be observed for the Pirkwieser/Solomon instances p4c103, p4c105, p6c102, p6rc101, and
p6rc103.

A Wilcoxon rank-sum test (P-value < 0.05 one-tailed) performed between the different vari-
ants showed that each of the metaheuristically enhanced ESPPRC solvers produces columns
with significantly better quality then the exact ESPPRC solver. By comparing the approximate
ESPPRC solvers no significantly preferable variant could be found, except for the VNS variant:
the quality of the columns produced by the VNS metaheuristics is significantly higher for 7 in-
stances compared to the ACO variant, for 10 instances compared to the GRASP variant, and for
7 instances compared to the ILS variant.

A possible explanation for this result could be that the main component of the different ap-
proximate ESPPRC solvers is the local search. It seems to be more important than the type of
the metaheuristic and it takes a dominant role regarding column quality. The VNS naturally em-
phasizes local search since it searches in different neighborhoods. This assumption is supported
by the results obtained from the analysis of the parameters for the ACO variant: Surprisingly,
parameter values of α = 0 and β = 0 would also produce acceptable columns which is only
possible when the local search becomes the main factor for column generation.

6.3 ACO for whole Problem

The cascaded ACO to solve the whole PVRPTW was implemented in C++ compiled with GCC
4.3. The tests were executed on a 2.83 GHz Intel Core2 Quad Q9550 CPU with 8 GB RAM
using a Linux server with 2.6.38 kernel. Due to scheduling conflicts tests were also executed on
a 2.53 GHz Intel Xeon Core2 Quad E5540 CPU with 24 GB RAM also using a Linux server
with 2.6.38 kernel. Extensive testing showed that the second system increases CPU time for
about 10% (±3%) compared to the first system when executing cascaded ACO. Therefore we
divided CPU times measured on the second system by 1.1 and reported it as CPU time for the
first system.

For all experiments we applied the feasibility rule proposed by Savelsberg [85] for the
VRPTW. This rule allows a delay in the start of the vehicle from the depot to the latest possible
time by introducing a forward time slack making more routes feasible regarding the duration
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constraint. For the comparison part of this section we only present results from previous work
which also uses the same feasibility rule2.

Instance n m t avg(c)30 min(c)30 BKS gap

1a 48 3 4 2926.24 2909.02 2909.02 0.00%

2a 96 6 4 5076.71 5035.59 5026.57 0.18%

3a 144 9 4 7270.52 7179.31 7023.90 2.21%

4a 192 12 4 8127.14 8037.12 7755.77 3.63%

5a 240 15 4 8840.18 8740.60 8311.17 5.17%

6a 288 18 4 11271.12 11180.09 10473.24 6.75%

7a 72 5 6 6825.90 6797.93 6782.68 0.22%

8a 144 10 6 9916.52 9762.91 9574.80 1.96%

9a 216 15 6 13871.96 13676.71 13201.06 3.60%

10a 288 20 6 18322.97 17890.98 16920.96 5.73%

1b 48 3 4 2289.66 2277.44 2277.44 0.00%

2b 96 6 4 4203.95 4155.67 4121.50 0.83%

3b 144 9 4 5727.39 5655.25 5489.33 3.02%

4b 192 12 4 6680.08 6571.51 6347.77 3.52%

5b 240 15 4 7314.60 7178.08 6777.54 5.91%

6b 288 18 4 9273.37 9181.62 8582.72 6.98%

7b 72 4 6 5572.30 5511.49 5481.61 0.55%

8b 144 8 6 7912.07 7785.00 7599.01 2.45%

9b 216 12 6 11216.51 11077.92 10532.51 5.18%

10b 288 16 6 14510.05 14356.55 13406.89 7.08%

Table 6.9: Cascaded ACO for whole problem: results for Cordeau instances

Table 6.9 shows the results of the cascaded ACO for the Cordeau instances. In addition to
instance name, number of customers (n), fleet size (m), and number of days of the planning
period (t), the table contains the average solutions costs (avg(c)30), and the costs of the best
solution found (min(c)30) for the 30 runs performed on each problem instance. Additionally the
best known solution (BKS) based on previous work reviewed in chapter 3 is provided. The last
column contains the gap between the best solution found by cascaded ACO for the 30 runs and
the best known solution in percent.

A detailed comparison between cascaded ACO and the results from previous work for the
Cordeau instances is shown in table 6.10. Here the results of the improved tabu search algo-
rithm (improved TS) by Cordeau et al. [15], the best VNS variant ((R)VNS) by Pirkwieser and
Raidl [73], the improved ACO algorithm (IACO) by Yu and Yang [97], the best variant of the
parallel hybrid iterated tabu search (ITS) by Cordeau and Maischberger [16], and the hybrid
genetic search with adaptive diversity control (HGSADC) by Vidal et al. [95] are presented and

2Notice that this rule is relevant only for instances with a duration constraint. Therefore, there is no difference if
forward time slack is applied or not for the Pirkwieser/Solomon instances since these instances contain no duration
constraint (D =∞)
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(R)VNS ITS

Instance min(c)10 avg(t) min(c)30 avg(c)10 min(c)10 avg(t) min(c) avg(c)10 min(c)10 avg(t) avg(c)30 min(c)30 avg(t)

1a 2911.03 30 2909.02 3107.04 2959.09 2.9 2909.02 2909.05 2909.02 1.1 2926.24 2909.02 1.7

2a 5055.05 70 5036.27 5658.66 5323.29 5.7 5026.57 5031.50 5026.57 3.3 5076.71 5035.59 7.8

3a 7229.73 109 7138.70 8158.86 7554.50 10.2 7062.00 7091.51 7050.72 8.1 7270.52 7179.31 19.7

4a 7953.08 155 7882.06 9117.42 8364.61 29.0 7807.32 7818.75 7791.93 17.9 8127.14 8037.12 41.2

5a 8593.00 189 8492.45 9591.97 8964.46 30.2 8358.96 8368.98 8341.93 31.0 8840.18 8740.60 74.2

6a 10927.45 245 10713.75 12346.09 11122.60 47.9 10542.10 10595.85 10477.01 65.4 11271.12 11180.09 113.0

7a 6825.07 53 6787.72 8023.27 7100.24 8.8 6782.68 6788.67 6783.23 3.8 6825.90 6797.93 5.3

8a 9748.36 114 9721.25 11305.93 10094.58 14.2 9603.92 9623.72 9593.43 17.0 9916.52 9762.91 30.1

9a 13614.47 206 13463.96 15936.16 14356.90 44.6 13299.80 13285.89 13247.38 45.9 13871.96 13676.71 84.2

10a 17735.59 290 17650.89 19151.86 17733.20 63.4 17261.30 17058.89 16999.88 96.0 18322.97 17890.98 162.6

1b 2294.03 37 2277.44 2277.44 2277.44 2277.44 0.8 2289.66 2277.44 2.2

2b 4257.40 78 4137.45 4124.76 4130.64 4122.03 4.9 4203.95 4155.67 11.1

3b 5648.76 120 5575.27 5489.84 5555.77 5521.71 8.4 5727.39 5655.25 29.3

4b 6594.54 190 6476.67 6383.28 6400.55 6352.28 27.8 6680.08 6571.51 62.0

5b 7054.95 222 6970.33 6800.45 6838.54 6790.44 47.5 7314.60 7178.08 104.4

6b 8928.37 293 8819.32 8659.44 8647.15 8595.10 77.5 9273.37 9181.62 168.8

7b 5505.23 73 5504.67 5481.61 5491.08 5481.61 3.6 5572.30 5511.49 8.0

8b 7875.31 148 7729.32 7656.13 7665.10 7619.95 16.8 7912.07 7785.00 44.5

9b 10889.77 253 10885.93 10579.50 10653.60 10569.68 68.1 11216.51 11077.92 130.7

10b 13980.55 318 13943.61 13490.80 13502.65 13442.57 110.0 14510.05 14356.55 245.6

cascaded ACOIACO HGSADCimproved TS

Table 6.10: Cascaded ACO for whole problem: comparison of results for Cordeau instances

compared to the results from cascaded ACO. The column avg(c)x presents average solution
costs performed on x runs, min(c)x contains the costs of the best solution found based on x
runs performed, and avg(t) contains the average runtime of the algorithm in minutes. Be aware
that the runtime is based on different test systems and therefore only gives an indication of the
runtime behavior of the algorithms.

The results of the cascaded ACO for the Pirkwieser/Solomon instances are shown in table
6.11. Because previous authors interpreted the instances differently we provide results for both
variants: in the first variant travel costs and travel duration of an arc base on the coordinates
x and y and are not modified; in the second variant they are truncated to the first digit, that is,

ci,j = zi,j =
b10
√

(xi−xj)2+(yi−yj)2c
10 .

Table 6.12 allows a comparison of the cascaded ACO with the only published results of
the variant without truncation of travel costs and duration: the hybrid genetic algorithm (HGA)
by Nguyen et al. [67]. A detailed comparison for the variant with truncation is shown in table
6.13. The results of cascaded ACO are compared with the best variant of the VNS improved
with integer linear programming techniques (best VNS/ILP) by Pirkwieser and Raidl [75], the
best variant of the multiple VNS approach optionally improved with integer linear programming
techniques (best mVNS/ILP) by Pirkwieser and Raidl [76], the evolutionary algorithm initial-
ized by the routes generated with column generation (CG-EA) by Pirkwieser and Raidl [77], the
hybrid genetic algorithm (HGA) by Nguyen et al. [67], and the hybrid genetic search with adap-
tive diversity control (HGSADC) by Vidal et al. [95]. Notice that the average runtimes of the
last algorithm marked with an asterisk (*) represent average runtimes over the whole instance
group of five instances since no detailed runtimes are provided.

Cascaded ACO generated feasible solutions in all runs for all tested instances. This indicates
that the parameters of the algorithm have been set adequately to enable stable execution.
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Instance n m t avg(c)30 min(c)30 BKS gap avg(c)30 min(c)30 BKS gap

p4r101 100 14 4 4254.16 4214.25 4142.35 1.74% 4160.29 4114.0 4082.0 0.78%

p4r102 100 13 4 3809.08 3772.58 3739.34 0.89% 3792.74 3763.2 3724.3 1.04%

p4r103 100 10 4 3212.85 3173.71 3165.62 0.26% 3199.04 3159.6 3153.1 0.21%

p4r104 100 7 4 2639.72 2611.02 2582.67 1.10% 2625.43 2602.1 2566.0 1.41%

p4r105 100 11 4 3740.79 3712.50 3664.14 1.32% 3722.31 3691.6 3638.9 1.45%

p4c101 100 10 4 2919.78 2916.59 2913.81 0.10% 2914.41 2910.2 2907.4 0.10%

p4c102 100 8 4 2931.30 2892.03 2888.31 0.13% 2921.01 2882.9 2882.9 0.00%

p4c103 100 7 4 2779.61 2748.53 2742.17 0.23% 2772.77 2741.6 2734.5 0.26%

p4c104 100 7 4 2483.15 2451.74 2446.85 0.20% 2483.75 2453.4 2419.0 1.42%

p4c105 100 8 4 2917.36 2893.99 2893.99 0.00% 2921.17 2884.5 2884.1 0.01%

p4rc101 100 10 4 4058.08 4005.47 3975.39 0.76% 4037.64 3998.3 3955.9 1.07%

p4rc102 100 10 4 3839.92 3803.01 3765.03 1.01% 3844.21 3816.3 3755.7 1.61%

p4rc103 100 8 4 3567.99 3517.67 3472.07 1.31% 3559.31 3523.8 3449.9 2.14%

p4rc104 100 7 4 3081.21 3036.18 3004.59 1.05% 3078.90 3034.9 2991.5 1.45%

p4rc105 100 11 4 4038.71 3997.99 3953.91 1.11% 4029.74 3988.8 3932.6 1.43%

p6r101 100 14 6 5451.70 5420.99 5394.13 0.50% 5435.61 5400.2 5376.1 0.45%

p6r102 100 12 6 5356.49 5336.09 5295.50 0.77% 5265.33 5239.3 5201.6 0.72%

p6r103 100 9 6 4066.84 4016.98 3961.67 1.40% 4046.36 3993.9 3940.5 1.36%

p6r104 100 8 6 3417.14 3378.12 3361.71 0.49% 3400.10 3369.0 3335.8 1.00%

p6r105 100 9 6 4422.53 4350.61 4308.19 0.98% 4415.55 4329.6 4272.9 1.33%

p6c101 100 7 6 4081.72 4002.62 3992.66 0.25% 4068.31 4000.8 3981.2 0.49%

p6c102 100 7 6 3888.62 3855.63 3850.02 0.15% 3884.89 3847.2 3841.7 0.14%

p6c103 100 6 6 3579.20 3547.92 3535.06 0.36% 3576.29 3535.2 3523.6 0.33%

p6c104 100 6 6 3298.96 3260.18 3244.48 0.48% 3290.89 3255.0 3206.3 1.52%

p6c105 100 7 6 4144.34 4087.71 4059.07 0.71% 4133.33 4066.6 4052.1 0.36%

p6rc101 100 10 6 5887.99 5821.50 5799.67 0.38% 5865.51 5817.0 5781.5 0.61%

p6rc102 100 9 6 5504.74 5426.32 5387.76 0.72% 5488.80 5433.4 5333.3 1.88%

p6rc103 100 7 6 4418.70 4355.65 4316.78 0.90% 4407.55 4341.7 4273.1 1.61%

p6rc104 100 7 6 4216.36 4158.93 4109.99 1.19% 4195.85 4126.9 4062.0 1.60%

p6rc105 100 9 6 5382.81 5341.07 5280.32 1.15% 5376.57 5311.8 5227.1 1.62%

without truncation to the first digit with truncation to the first digit

Table 6.11: Cascaded ACO for whole problem: results for Pirkwieser/Solomon instances with-
out and with truncation of ci,j and zi,j to the first digit
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Instance avg(c)30 min(c)30 avg(t) avg(c)30 min(c)30 avg(t)

p4r101 4163.43 4142.35 51.5 4254.16 4214.25 4.6

p4r102 3744.30 3739.34 73.6 3809.08 3772.58 6.3

p4r103 3168.57 3165.62 71.8 3212.85 3173.71 7.7

p4r104 2592.07 2582.67 76.0 2639.72 2611.02 10.0

p4r105 3678.06 3664.14 65.7 3740.79 3712.50 5.6

p4c101 2913.83 2913.81 68.5 2919.78 2916.59 6.4

p4c102 2893.86 2888.31 71.3 2931.30 2892.03 8.9

p4c103 2763.43 2742.17 88.6 2779.61 2748.53 10.6

p4c104 2468.79 2446.85 93.9 2483.15 2451.74 11.3

p4c105 2907.47 2893.99 69.3 2917.36 2893.99 7.4

p4rc101 3977.81 3975.39 60.9 4058.08 4005.47 5.5

p4rc102 3777.56 3765.03 66.1 3839.92 3803.01 7.1

p4rc103 3479.30 3472.07 64.9 3567.99 3517.67 8.6

p4rc104 3019.73 3004.59 70.2 3081.21 3036.18 10.0

p4rc105 3959.46 3953.91 65.9 4038.71 3997.99 6.1

p6r101 5398.65 5394.13 77.5 5451.70 5420.99 5.9

p6r102 5302.56 5295.50 75.0 5356.49 5336.09 8.2

p6r103 3980.51 3961.67 89.5 4066.84 4016.98 10.2

p6r104 3375.91 3361.71 95.1 3417.14 3378.12 11.3

p6r105 4321.17 4308.19 77.5 4422.53 4350.61 8.1

p6c101 4015.34 3992.66 75.9 4081.72 4002.62 9.7

p6c102 3858.76 3850.02 88.6 3888.62 3855.63 11.9

p6c103 3575.18 3535.06 104.5 3579.20 3547.92 14.3

p6c104 3259.09 3244.48 105.6 3298.96 3260.18 15.1

p6c105 4076.46 4059.07 85.6 4144.34 4087.71 10.1

p6rc101 5812.68 5799.67 76.0 5887.99 5821.50 7.2

p6rc102 5402.64 5387.76 83.9 5504.74 5426.32 8.9

p6rc103 4339.45 4316.78 84.0 4418.70 4355.65 11.6

p6rc104 4152.33 4109.99 97.1 4216.36 4158.93 12.4

p6rc105 5290.84 5280.32 80.2 5382.81 5341.07 8.5

HGA cascaded ACO

Table 6.12: Cascaded ACO for whole problem: comparison of results for Pirkwieser/Solomon
instances without truncation of ci,j and zi,j
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Instance avg(c)30 avg(t) avg(c)30 avg(t) avg(c)30 avg(t) avg(c) min(c) avg(t) min(c) avg(t) avg(c)30 min(c)30 avg(t)

p4r101 4095.28 1.0 4090.09 0.5 4162.54 0.5 4085.94 4082.6 51.5 4082.0 4160.29 4114.0 4.7

p4r102 3748.38 0.9 3732.34 0.5 3780.50 0.5 3730.56 3725.2 73.6 3724.3 3792.74 3763.2 6.3

p4r103 3181.41 1.1 3165.72 0.6 3217.31 0.6 3160.81 3153.1 71.8 3153.1 3199.04 3159.6 7.7

p4r104 2599.15 1.2 2595.44 0.7 2673.09 0.7 2581.53 2570.8 76.0 2566.0 2625.43 2602.1 10.1

p4r105 3675.09 1.0 3679.66 0.8 3745.00 0.5 3650.45 3638.9 65.7 3638.9 3722.31 3691.6 5.6

p4c101 2910.17 0.6 2909.39 0.4 2921.08 0.6 2907.49 2907.4 68.5 2907.4 2914.41 2910.2 6.3

p4c102 2940.16 0.9 2905.16 0.6 2963.28 0.7 2890.98 2883.3 71.3 2882.9 2921.01 2882.9 8.8

p4c103 2804.11 0.7 2759.78 0.9 2825.01 0.7 2746.23 2735.8 88.6 2734.5 2772.77 2741.6 10.5

p4c104 2468.82 1.2 2454.69 0.8 2518.90 0.8 2450.91 2424.3 93.9 2419.0 2483.75 2453.4 11.2

p4c105 2957.54 0.7 2906.69 0.6 2977.45 0.6 2895.33 2884.1 69.3 2884.1 2921.17 2884.5 7.3

p4rc101 3981.48 1.1 3974.09 0.8 4047.87 0.5 3963.02 3955.9 60.9 3956.4 4037.64 3998.3 5.5

p4rc102 3796.19 0.9 3764.99 0.7 3869.21 0.5 3761.92 3755.8 66.1 3755.7 3844.21 3816.3 7.0

p4rc103 3485.47 1.2 3466.99 0.6 3549.13 0.6 3454.60 3450.1 64.9 3449.9 3559.31 3523.8 8.5

p4rc104 3045.37 0.7 3031.49 1.0 3114.51 0.7 3008.34 2996.5 70.2 2991.5 3078.90 3034.9 10.1

p4rc105 3985.82 1.0 3970.49 0.8 4040.32 0.5 3954.16 3942.6 65.9 3932.6 4029.74 3988.8 6.1

p6r101 5389.07 1.3 5385.03 0.8 5453.07 0.7 5379.73 5377.5 77.5 5376.1 5435.61 5400.2 5.8

p6r102 5237.75 1.1 5244.59 0.5 5318.87 0.7 5215.61 5206.4 75.0 5201.6 5265.33 5239.3 8.1

p6r103 4001.86 0.9 3991.46 0.5 4120.37 0.8 3968.69 3946.9 89.5 3940.5 4046.36 3993.9 10.0

p6r104 3372.30 1.1 3372.81 1.0 3441.55 0.9 3362.09 3352.9 95.1 3335.8 3400.10 3369.0 11.2

p6r105 4334.60 0.8 4337.54 0.5 4457.93 0.7 4302.94 4291.0 77.5 4272.9 4415.55 4329.6 7.9

p6c101 4070.44 0.7 4050.81 1.0 4162.92 0.8 3995.69 3984.3 75.9 3981.2 4068.31 4000.8 9.5

p6c102 3877.56 1.4 3861.86 1.0 3950.54 0.9 3853.83 3841.7 88.6 3841.7 3884.89 3847.2 11.7

p6c103 3594.89 0.9 3576.50 1.1 3719.95 0.9 3555.71 3529.6 104.5 3523.6 3576.29 3535.2 14.1

p6c104 3280.58 0.8 3284.07 0.6 3422.22 0.9 3248.35 3236.5 105.6 3206.3 3290.89 3255.0 14.8

p6c105 4158.06 0.7 4104.31 1.0 4181.50 0.9 4060.14 4052.1 85.6 4052.1 4133.33 4066.6 9.9

p6rc101 5818.06 1.3 5821.63 0.9 5909.63 0.7 5801.08 5791.9 76.0 5781.5 5865.51 5817.0 7.0

p6rc102 5467.22 1.4 5446.00 1.0 5553.47 0.7 5373.82 5352.6 83.9 5333.3 5488.80 5433.4 8.8

p6rc103 4344.02 0.8 4351.50 0.6 4476.44 0.8 4298.33 4288.1 84.0 4273.1 4407.55 4341.7 11.5

p6rc104 4122.25 1.0 4130.70 0.6 4267.67 0.8 4100.14 4092.5 97.1 4062.0 4195.85 4126.9 12.3

p6rc105 5319.48 0.7 5321.82 0.5 5450.10 0.7 5263.35 5253.0 80.2 5227.1 5376.57 5311.8 8.5

4.5*

4.0*

4.9*

best VNS/ILP best mVNS/ILP CG-EA HGA HGSADC cascaded ACO

3.0*

2.7*

3.9*

Table 6.13: Cascaded ACO for whole problem: comparison of results for Pirkwieser/Solomon
instances with truncation of ci,j and zi,j to the first digit

It can be observed that the solutions of the cascaded ACO for small instances can com-
pete with state-of-the-art algorithms developed recently. For problem instances with less than
100 customers the gap between the best known solutions and the best solutions generated by
cascaded ACO is between 0% and 1%. With increasing problem instance size the quality of
the solutions decrease compared with algorithms from previous work. For the largest tested
instances with 288 customers the gap to the best known solutions reaches about 7%.

We explain the decreasing solution quality for large instances with reference to the charac-
teristics of the upper level ACO. In our current implementation the upper level ACO lacks a
heuristic component that can guide the algorithm to better regions of the search space. With an
increasing number of customers the size of this search space increases exponentially. Without
the heuristic component and by using the current parameter setting the upper level ACO con-
verges to an arbitrary combination of visit combinations too quickly and with too little guidance.
So for large instances the algorithm tends to pick a combination of visit combinations randomly
and then to explore just the close neighborhood of this combination.
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A second factor is the intensification phase of the cascaded ACO. We observed that for
small instances intensification does not improve the solution quality at all. For medium sized
(n ≈ 100) instances intensification improves the solution by up to 1%; and for large instances
the intensification phase can decrease solution costs by several percent. This indicates that the
lower level ACO of the regular construction phase is able to generate semi-optimal VRPTW
solutions for small problem instances. With an increasing number of customers the lower level
ACO is stopped too early to reach a semi-optimal state – the quality of the VRPTW solutions
become merely indicators for the PVRPTW evaluation. Therefore we suspect that the lower
level ACO is not well suited for the intensification phase. Either the parameters of the lower level
ACO should be revised for the intensification phase or a different algorithm should optimize the
VRPTW solutions for intensification.

In general cascaded ACO enriches the portfolio of algorithms solving the PVRPTW. It re-
places the previously published ACO based algorithm by Yu and Yang as best ant colony opti-
mization implementation for the PVRPTW, although competing with but not reaching the results
of the most recently published algorithms by Pirkwieser and Raidl, Cordeau and Maischberger,
Nguyen et al., and Vidal et al.
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CHAPTER 7
Conclusion

The PVRPTW is a highly constrained variant of routing problems which belongs to the com-
plexity class ofNP-hard problems. On the other hand, ACO is a metaheuristic solution strategy
for combinatorial optimization that uses nature inspired techniques to solve such problems ap-
proximately. We applied ACO to the PVRPTW in two different ways: first, to solve the pricing
subproblem of a column generation approach that provides lower bounds for the LP-relaxed
PVRPTW which could be embedded in an exact solution algorithm; second, as a method to
solve the whole problem approximately by decomposing it into a optimization problem for visit
combinations (upper level) and an ordinary VRPTW (lower level) leading to our cascaded ACO
approach.

ACO bases on a fairly large set of parameters to setup and tune the solving power of the
metaheuristic. For both applications of ACO we used a method to find good parameter settings
which bases on statistical comparison of the performance for selected test instances.

For the column generation approach ACO was used to solve the pricing subproblem that was
formulated as ESPPRC. We compared ACO with three other metaheuristics that should generate
relevant columns in good quality during the approximate state of the algorithm. Although, ACO
showed no superior performance regarding CPU runtime and quality of columns compared to the
other metaheuristics, the comparison with the variant, which does not apply any metaheuristic
during the solving procedure, showed clearly an advantage for the metaheuristically enhanced
algorithm.

The analysis of the quality of the columns showed that there is no metaheuristic that could be
preferred for the solution of the ESPPRC. Therefore, it appeared that the type of metaheuristic
is not the main characteristic to determine the solution quality. In fact, we deduced that the
local search is the component that influences most the quality of the columns for the pricing
subproblem solution.

Therefore we can conclude that ACO is suited to generate high quality columns for the pric-
ing problem of the LP-relaxed PVRPTW as long as it contains a strong local search component,
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but there is no reason to prefer it over any other approximate solving procedure with the same
precondition.

For the application of ACO to solve the whole problem we introduced a new algorithm:
the cascaded ACO. The algorithm decomposes the problem into two separate parts that are
both solved by ACO variants. The upper level ACO optimizes the visit combinations and the
lower level ACO solves the resulting VRPTW, whereas the two ACOs are applied in a cascaded
manner.

We combined several techniques published in the literature to create an efficient solving
algorithm. These techniques introduced several parameters that had to be setup appropriately.

In an extensive comparison with previous publications which presented results for the solu-
tion of the PVRPTW we showed that the cascaded ACO can compete with these algorithms.
Cascaded ACO outperforms the sole other ACO algorithm solving the PVRPTW published
by Yu and Yang. Although, recently developed algorithms based on hybrids of metaheuris-
tics and/or exact solution techniques show for large problem instance better solution power than
cascaded ACO.

Additionally, this thesis pointed out some open issues that merit more detailed investigation
and that can potentially increase performance of the cascaded ACO for large problem instances.
These issues include the exchange of the lower level ACO with another fast converging VRPTW
solving algorithm and the optimization of the lower level algorithm or its parameters for the
intensification phase. Also a field of interest is the development of a heuristic construction
component for the upper level ACO to guide the selection of visit combinations. And finally
the cascaded ACO could be modified to allow infeasible solutions regarding capacity, duration,
and/or time window constraints as also the recently published successful algorithms propose.

We conclude that the cascaded ACO is an efficient application of ACO which enriches the
portfolio of algorithms solving the PVRPTW bearing the potential of even better performance
especially for large problem instances.
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Glossary

ACO
ant colony optimization - metaheuristic.

cascaded ACO
cascaded ant colony optimization - algorithm.

ESPPRC
elementary shortest path problem with resource constraints.

GA
genetic algorithms - metaheuristic.

GLS
guided local search - metaheuristic.

GRASP
greedy randomized adaptive search procedure - metaheuristic.

ILP
integer linear programming.

ILS
iterated local search - metaheuristic.

IP
integer linear programming (see also ILP).

LP
linear programming.

LU decomposition
a matrix decomposition into a lower and upper triangular matrix.

MILP
mixed integer linear programming.
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MIP
mixed integer linear programming (see also MILP).

NIM
node insertion move.

PVRP
periodic vehicle routing problem.

PVRPTW
periodic vehicle routing problem with time windows.

RCL
restricted candidate list.

RMP
restricted master problem.

SA
simulated annealing - metaheuristic.

SPPRC
shortest path problem with resource constraints.

TS
tabu search - metaheuristic.

TSP
travelling salesman problem.

VNS
variable neighborhood search - metaheuristic.

VRP
vehicle routing problem.

VRPTW
vehicle routing problem with time windows.
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[64] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & Op-
erations Research, 24:1097–1100, 1997.

119



[65] Magalie Mourgaya Virapatrin and François Vanderbeck. Column generation based heuris-
tic for tactical planning in multi-period vehicle routing. European Journal of Operational
Research, 183(3):1028–1041, 2007.

[66] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization,
volume 18 of Wiley Interscience Series in Discrete Mathematics & Optimization. John
Wiley & Sons, 1988.

[67] Phuong K. Nguyen, Teodor G. Crainic, and Michel Toulouse. A Hybrid Genetic Algorithm
for the Periodic Vehicle Routing Problem with Time Windows. Technical Report 2011-25,
CIRRELT, April 2011.

[68] William Orchard-Hays. Advanced Linear-Programming Computing Techniques. McGraw-
Hill, 1968.

[69] Manfred Padberg and Giovanni Rinaldi. Optimization of a 532-city symmetric traveling
salesman problem by branch and cut. Operations Research Letters, 6(1):1–7, March 1987.

[70] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[71] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover, 1998.

[72] Sophie N. Parragh, Karl F. Dörner, and Richard F. Hartl. A survey on pickup and deliv-
ery problems, Part II: Transportation between pickup and delivery locations. Journal für
Betriebswirtschaft, 58(2):81–117, 2008.

[73] Sandro Pirkwieser and Günther R. Raidl. A Variable Neighborhood Search for the Peri-
odic Vehicle Routing Problem with Time Windows. In Caroline Prodhon et al., editors,
Proceedings of the 9th EU/MEeting on Metaheuristics for Logistics and Vehicle Routing,
2008.

[74] Sandro Pirkwieser and Günther R. Raidl. A Column Generation Approach for the Peri-
odic Vehicle Routing Problem with Time Windows. In Maria G. Scutellà et al., editors,
Proceedings of the International Network Optimization Conference 2009, April 2009.

[75] Sandro Pirkwieser and Günther R. Raidl. Boosting a Variable Neighborhood Search for the
Periodic Vehicle Routing Problem with Time Windows by ILP Techniques. In Stefan Voss
and Marco Caserta, editors, Proceedings of the 8th Metaheuristic International Conference
(MIC 2009), July 2009.

[76] Sandro Pirkwieser and Günther R. Raidl. Multiple Variable Neighborhood Search enriched
with ILP Techniques for the Periodic Vehicle Routing Problem with Time Windows. In
María J. Blesa et al., editors, Proceedings of Hybrid Metaheuristics – Sixth International
Workshop, HM 2009, volume 5818 of LNCS, pages 45–59. Springer, 2009.

120



[77] Sandro Pirkwieser and Günther R. Raidl. Matheuristics for the Periodic Vehicle Routing
Problem with Time Windows. In Proceedings of Matheuristics 2010: third international
workshop on model-based metaheuristics, June 2010.

[78] Jakob Puchinger and Günther R. Raidl. Combining Metaheuristics and Exact Algorithms
in Combinatorial Optimization: A Survey and Classification. In José Mira and José R. Ál-
varez, editors, Proceedings of the First International Work-Conference on the Interplay Be-
tween Natural and Artificial Computation, volume 3562 of LNCS, pages 41–53. Springer,
June 2005.

[79] Günther R. Raidl. A Unified View on Hybrid Metaheuristics. In Francisco Almeida et al.,
editors, Proceedings of the Hybrid Metaheuristics Workshop, volume 4030 of LNCS, pages
1–12. Springer, October 2006.

[80] Ted K. Ralphs, Laszlo Ladányi, and Matthew J. Saltzman. Parallel Branch, Cut, and Price
for Large-Scale Discrete Optimization. Mathematical Programming, 98:253–280, Septem-
ber 2003.

[81] M.R. Rao. A Note on the Multiple Traveling Salesmen Problem. Operations Research,
pages 628–632, 1980.

[82] Marc Reimann, Karl F. Dörner, and Richard F. Hartl. D-Ants: Savings Based Ants divide
and conquer the vehicle routing problem. Computers & Operations Research, 31(4):563–
591, April 2004.

[83] Geraldo Ribeiro Filho and Luiz A.N. Lorena. Constructive Genetic Algorithm and Column
Generation: an Application to Graph Coloring. In Proceedings of APORS 2000 - The Fifth
Conference of the Association of Asian-pacific Operations Research Societies, July 2000.

[84] Stefan Ropke and Jean-François Cordeau. Branch-and-Cut-and-Price for the Pickup and
Delivery Problem with Time Windows. Transportation Science, 43(3):267–286, 2009.

[85] Martin W.P. Savelsbergh. The Vehicle Routing Problem with Time Windows: Minimizing
Route Duration. ORSA Journal on Computing, 4:146–154, 1992.

[86] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of Computer and System Sciences, 4(2):177–192, April 1970.

[87] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24
of Algorithms and Combinatorics. Springer, 2003.

[88] Marius M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints. Operations Research, 35(2):254–265, 1987.

[89] Thomas Stützle and Holger H. Hoos. MAX–MIN Ant System. Future Generation Com-
puter Systems, 16(8):889–914, 2000.

121



[90] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley Series on Paral-
lel and Distributed Computing. John Wiley & Sons, 2009.

[91] Tamás Terlaky. A finite crisscross method for oriented matroids. Journal of Combinatorial
Theory, Series B, 42(3):319–327, 1987.

[92] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics,
2002.

[93] Alan M. Turing. On Computable Numbers, with an Application to the Entscheidungsprob-
lem. In Proceedings of the London Mathematical Society, volume 42, pages 230–265,
1937.

[94] Dalessandro S. Vianna, Luiz S. Ochi, and Lúzia M.A. Drummond. A Parallel Hybrid Evo-
lutionary Metaheuristic for the Period Vehicle Routing Problem. In José D.P. Rolim et al.,
editors, Proceedings of Parallel and Distributed Processing, 11 IPPS/SPDP’99 Workshops,
volume 1586 of LNCS, pages 183–191. Springer, 1999.

[95] Thibaut Vidal, Teodor G. Crainic, Michel Gendreau, and Christian Prins. A Hybrid Ge-
netic Algorithm with Adaptive Diversity Management for a Large Class of Vehicle Routing
Problems with Time Windows. Technical Report 2011-61, CIRRELT, October 2011.

[96] Christos Voudouris and Edward Tsang. Guided local search and its application to the
traveling salesman problem. European Journal of Operational Research, 113(2):469–499,
1999.

[97] Bin Yu and Zhong Zhen Yang. An ant colony optimization model: The period vehicle
routing problem with time windows. Transportation Research Part E: Logistics and Trans-
portation Review, 47(2):166–181, 2011.

[98] Tao Zhang, Shanshan Wang, Wenxin Tian, and Yuejie Zhang. ACO-VRPTWRV: A New
Algorithm for the Vehicle Routing Problems with Time Windows and Re-used Vehicles
based on Ant Colony Optimization. In Sixth International Conference on Intelligent Sys-
tems Design and Applications, 2006 (ISDA ’06), volume 1, pages 390–395, October 2006.

122


	Introduction
	Motivation
	Computational Complexity
	The Periodic Vehicle Routing Problem with Time Windows
	Outline of the Thesis

	Preliminaries
	Combinatorial Optimization
	Exact Solution
	Metaheuristics
	Hybridization

	Related Work
	ACO for Pricing Problem
	Formulation of the PVRPTW
	Design Decisions
	Ant Colony Optimization for the ESPPRC as Pricing Subproblem
	Implementation

	ACO for whole Problem
	Cascaded Ant Colony Optimization
	Upper Level ACO
	Lower Level ACO
	Intensification
	Parameters for Cascaded ACO
	Implementation

	Computational Results
	Problem Instances
	ACO for Pricing Problem
	ACO for whole Problem

	Conclusion
	Glossary
	Bibliography

