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Abstract

We consider the problem of minimizing the number of bends in a pla-
nar orthogonal graph drawing. While the problem can be solved via network
flow for a given planar embedding of a graph G, it is NP-hard if we con-
sider the set of all planar embeddings of G. Our approach for biconnected
graphs combines an integer linear programming (ILP) formulation for the set
of all embeddings of a planar graph with the network flow formulation for
fixed embeddings. We report on extensive computational experiments with
two benchmark sets containing a total of more than 12,000 graphs where we
compared the performance of our ILP-based algorithm with a heuristic and
a previously published branch & bound algorithm for solving the same prob-
lem. Our new algorithm is significantly faster than the previously published
approach for the larger graphs of the benchmark graphs derived from indus-
trial applications and almost twice as fast for the benchmark graphs from the
artificially generated set of hard instances of the problem.

1 Introduction

Drawing graphs is important in many scientific and economic areas. Applications
include the drawing of UML diagrams in software engineering and business process
modeling as well as in the visualization of databases. A popular way of drawing
graphs is representing the vertices as boxes and the edges as sequences of horizon-
tal and vertical line segments connecting the boxes. This drawing style is called
orthogonal drawing. A point where two segments of an edge meet is called a bend.

Fig. 1 shows an orthogonal drawing that represents ownership relations between
several Spanish companies [HJ00]. The vertices represent the companies and there
is an edge from one company to another if the first company owns a percentage of
the second company.

A well known approach for drawing general graphs is the topology-shape-metrics
method (see for example [DBETT99]). In the first step, the topology of the draw-
ing is computed. The objective in this phase is to minimize the number of edge
crossings. In the second step, the shape of the drawing is calculated. In the case
of orthogonal drawings, the angles and the bends of the edges are computed. The
objective is to minimize the number of bends for the given topology. Finally, the
metrics of the drawing is computed while trying to achieve short edge lengths and
small area for the given shape. In this paper, we focus on the bend minimization
step (the second step). Given a planar graph, the task is to compute an orthogonal
representation with the minimum number of bends.

The infinite set of different planar drawings of a graph can be partitioned into a
finite set of equivalence classes called embeddings of a graph. An embedding defines
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Figure 1: An orthogonal graph drawing representing ownership relations between
Spanish companies

the topology of a planar drawing without assigning lengths or shapes to the edges
or fixing the shapes and positions of vertices.

A combinatorial embedding fixes the sequence of incident edges around each
vertex in clockwise order. This also fixes the list of faces of a drawing. The faces
are the connected regions of the plane defined by a planar drawing. A planar
embedding additionally defines the outer (unbounded) face of a planar drawing.
Orthogonal representations are equivalence classes of orthogonal drawings, that fix
the planar embedding and the bends and angles in an orthogonal drawing.

There are some results in the literature on the topic of optimizing certain func-
tions over the set of all embeddings of a graph. Bienstock and Monma have studied
the complexity of covering vertices by faces [BM88] and minimizing certain dis-
tance measures on the faces of a graph with respect to the outer face [BM89, BM90].
Tamassia presented the first algorithm for minimizing the number of bends in a pla-
nar orthogonal drawing for the case where the embedding is fixed [Tam87]. Garg
and Tamassia have shown that optimizing the number of bends in an orthogo-
nal drawing over the set of all embeddings of a planar graph is NP-hard [GT01].
In [DBLV98], Di Battista, Liotta and Vargiu show that the problem is polynomially
solvable for series-parallel graphs and 3-planar graphs.

If we consider only orthogonal drawings where the bends of the edges are placed
on the same grid as the vertices and all vertices occupy only one grid point, we
can only represent graphs with a maximum degree of four (so called four-graphs).
In [DL98], Didimo and Liotta present an algorithm that produces planar orthogonal
drawings of four-graphs with the minimum number of bends. The running time is
exponential only in the number of vertices with degree four.

Bertolazzi et al [BDBD00] have devised a branch & bound algorithm for solving
the bend minimization problem over the set of all embeddings of a planar graph
using SPQR-trees. In this paper, we attack the same problem using integer linear
programming. To do this, we combine our integer linear program describing the
set of all combinatorial embeddings of a planar biconnected graph [MW99, MW00]
with a linear program that describes the set of all orthogonal representations of a
planar graph with a fixed embedding. The result is a mixed integer linear program
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that represents the set of all orthogonal representations for a planar biconnected
graph over the set of all embeddings.

We use this new mixed integer linear program to minimize the number of bends
in an orthogonal drawing over the set of all embeddings of a planar graph. Like
the approach in [BDBD00], our new method can only guarantee optimality for
biconnected graphs, because we also use the SPQR-tree, which is only defined for
graphs that have this property. Our algorithm first computes the mixed integer
linear program and then uses a commercial solver (CPLEX) to find an optimal
solution. This solution is then transformed into an orthogonal representation of the
graph.

We tested our approach on two different benchmark sets of graphs. The first
consists of graphs derived from industrial applications and the second one of graphs
computed by a graph generator. The latter set was also used in [BDBD00] to
measure the performance of the branch & bound algorithm. Our new approach
is faster for the large graphs in the first benchmark set than the branch & bound
approach of Bertolazzi et al and about twice as fast on the graphs in the seconds
benchmark set, as our computational results show.

In Section 2, we give a short overview of SPQR-trees. We present the four
different types of nodes in the tree and the properties of the tree that are important
in our approach. Section 3 summarizes the recursive construction of the integer
linear program that describes the combinatorial embeddings of a graph.

The linear program describing the orthogonal representations of a graph for a
fixed embedding is the topic of Section 4. This is basically the formulation as a
linear program of a minimum cost flow problem in a special network constructed
from the graph and the embedding. In Section 5, we present the new mixed integer
linear program that is the result of merging the integer linear program describing
the embeddings of a graph with the linear program that describes the orthogonal
representations for a graph where the embedding is fixed.

The topic of Section 6 is the algorithm that we use to compute an orthogonal
representation of a graph with the minimum number of bends over the set of all
embeddings. The computational results we obtained by applying the algorithm
to two sets containing a total of more than 12,000 benchmark graphs are given
in Section 7. We compare the algorithm with a well known heuristic and with
the branch & bound algorithm of Bertolazzi et al. The conclusion (Section 8)
summarizes the main results and contains possible starting points for future work.

2 SPQR-Trees

In this section, we give a brief overview of the SPQR-tree data structure for bicon-
nected graphs. A graph is biconnected, if it is connected and can not be discon-
nected by deleting a vertex. SPQR-trees have been developed by Di Battista and
Tamassia [DBT96]. They represent a decomposition of a biconnected graph into its
triconnected components. A connected graph is triconnected, if there is no pair of
vertices in the graph whose removal splits the graph into two or more components.

An SPQR-tree has four types of nodes and with each node we associate a bicon-
nected graph which is called the skeleton of that node. This graph can be seen as
a simplified version of the original graph and its vertices are vertices of the original
graph. The edges in a skeleton represent subgraphs of the original graph. Thus,
each node of the SPQR-tree defines a decomposition of the graph. The node types
and their skeletons are as follows:

1. Q-node: The skeleton consists of two vertices connected by two edges. One
of the edges represents an edge of the original graph and the other one the
rest of the graph.
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2. S-node: The skeleton is a simple cycle with at least three vertices.

3. P -node: The skeleton consists of two vertices connected by at least three
edges.

4. R-node: The skeleton is a triconnected graph with at least four vertices.

All leaves of the SPQR-tree are Q-nodes and all inner nodes S-, P or R-nodes.
When we see the SPQR-tree as an unrooted tree, then it is unique for every bicon-
nected graph. Another important property of these trees is that their size (including
the skeletons) is linear in the size of the original graph and that they can be con-
structed in linear time [HT73, GM01]. See Figure 2 for examples of the skeletons
of inner nodes of an SPQR-tree and the decomposition of the graph they define.
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Figure 2: The skeletons of the inner nodes of an SPQR-tree together with the
decomposition of the graph they define

As described in [DBT96], SPQR-trees can be used to represent the set of all
combinatorial embeddings of a biconnected planar graph. Every combinatorial em-
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bedding of the original graph defines a unique combinatorial embedding for each
skeleton of a node in the SPQR-tree. Conversely, when we define an embedding for
each skeleton of a node in the SPQR-tree, we define a unique embedding for the
original graph. The skeletons of S- and Q-nodes are simple cycles, so they have only
one embedding. But the skeletons of the R- and P -nodes have at least two different
combinatorial embeddings. This is the reason why they determine the embedding
of the graph and we call these nodes the decision nodes of the SPQR-tree.

3 The ILP-Formulation Describing the Set of All

Embeddings

The integer linear program (ILP) suggested in [MW99] describing the set of all
combinatorial embeddings of a planar graph is constructed recursively using the
SPQR-tree data structure. Because SPQR-trees are only defined for biconnected
graphs, the same is true for the ILP. We construct the program recursively by split-
ting the SPQR-tree into smaller SPQR-trees, constructing ILPs for these smaller
trees, and then merging them into an ILP for the original graph. The basis of the
recursive construction are SPQR-trees that have only one inner node (S-, P - or
R-node).

3.1 The ILP for Graphs Where the SPQR-tree Has Only

One Inner Node

If the SPQR-tree for a graph G has exactly one inner node µ, then G is isomorphic
to the skeleton Sµ of µ. It follows that the graph is either a simple cycle (µ is an
S-node), a triconnected graph (µ is an R-node) or consists of two vertices connected
by at least three edges (µ is a P -node).

In all three cases, the set of combinatorial embeddings is quite easy to describe. If
the graph is a cycle, it has only one combinatorial embedding. If it is a triconnected
graph, it has two embeddings that are mirror images of each other. If it consists
of two vertices and at least three edges, the embeddings are determined by the
different circular permutations of the edges incident to the two vertices.

The variables of the ILP correspond to the set of directed cycles of the graph,
that are face cycles in at least one embedding. A directed cycle is a face cycle in an
embedding, if the area of the plane on the right side of the cycle is empty in every
planar drawing that realizes the embedding. First we describe the three possible
cases for graphs whose SPQR-tree has only one inner node together with the ILPs
that describe their embeddings. We distinguish the three cases by the type of the
only inner node v of the SPQR-tree.

If v is an S-node, then G is a simple cycle. Therefore, G contains exactly two
directed cycles and both are face cycles in the only combinatorial embedding of G.
It follows that the corresponding ILP has two variables that are both equal to one
in the only solution.

If v an R-node, the graph G is triconnected. A triconnected graph has two
combinatorial embeddings that are mirror images of each other. This means that
for any directed cycle c that is a face cycle in the first embedding, the directed cycle
c̄ passing the same edges as c in the opposite direction is a face cycle of the other
embedding.

Let l be the number of faces in an embedding of G (note that l = m − n + 2
if m is the number of edges in G and n the number of vertices since G is planar).
Then there are 2l directed cycles in G that are face cycles in an embedding. If we
write down the two embedding of G as two vectors ~s1, ~s2 ∈ {0, 1}2l, then each of
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the vectors contains l ones. Any entry with value one in ~s1 has value zero in ~s2 and
vice versa. Therefore it is straight forward to describe the embeddings of G as an
ILP.

If v is a P -node, the graph G consists of two vertices connected by k edges with
k ≥ 3. Since combinatorial embeddings can be defined by the circular sequence of
the edges around each vertex, G has (k − 1)! different embeddings. Each pair of
edges in G corresponds to two directed cycles and all the cycles are face cycles in
at least one of the embeddings. Therefore, there are k2 − k variables in the ILP.

We realized that in this case, the set of embeddings of G can be interpreted as
the set of Hamiltonian tours in a complete directed graph H [MW00]. The graph
H has one vertex for every edge of G and one edge for each directed cycle. The
edge in H that corresponds to the directed cycle c in G connects the vertices that
correspond to the two edges that form the cycle c.

Figure 3 shows this correspondence. The numbers of the edges of the graph on
the left correspond to the numbers of the vertices in the complete directed graph
H on the right. Edge (vi, vj) in H corresponds to the cycle in G that passes edge
ei from va to vb and edge ej from vb to va. The cycles that are face cycles in the
embedding of G on the left correspond to the thick edges in the graph H on the
right. Thus, the embedding of G corresponds to the tour in H consisting of the
thick edges. Note that the sequence of the edges in clockwise order around vertex
va corresponds to the sequence of the vertices defined by the tour.
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Figure 3: A graph where the only inner node in its SPQR-tree is a P -node and the
corresponding graph H

Because of the correspondence between the Hamiltonian tours in H and the
embeddings of G, we can use the ILP-formulation for the asymmetric traveling
salesman problem (ATSP) to describe the set of embeddings of G. We use the
formulation of [CDT95], which consists of a linear number of degree constraints and
an exponential number of subtour elimination constraints. The degree constraints
say that each edge in G is contained in exactly two face cycles of each embedding,
once for each direction of the edge. The subtour elimination constraints say that
for each proper subset E′ of the edges of G, there must be at least one face cycle
that contains an edge of E′ and an edge not contained in E′.

Because the number of subtour elimination constraints grows exponential with
the number of edges in G (there is one constraint for each proper subset of the edges
of G), we define the ILP for a graph whose SPQR-tree has a P -node as the only inner
node just as the set of degree constraints. To cope with the subtour elimination
constraints, we use the same approach that is used for the ATSP-problem: We
separate the subtour elimination constraints during the optimization process.

So we first compute a solution vector ~s for the problem without the subtour
elimination constraints and then check if ~s violates any of the subtour elimination
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constraints. If this is not the case, we have found a valid solution. Otherwise,
we add the violated subtour elimination constraints to the set of constraints and
re-optimize. To check if there is a violated subtour elimination constraint, we can
find a minimum cut in the graph H where the weight of each edge is defined by the
corresponding component of the vector ~s.

If we define the value of the cut as the sum of the weights of all the edges
that leave the cut, then we have found a violated subtour elimination constraint
if the cut has weight smaller than one. Otherwise, we know that ~s satisfies all
subtour elimination constraints and degree constraints. Every integer vector that
satisfies the degree constraints and the subtour elimination constraints represents a
combinatorial embedding of G.

3.2 The ILP for Graphs whose SPQR-tree Has More than

One Inner Node

If the SPQR-tree of G has more than one inner node, we split the tree at an arbitrary
decision node (R- or P -node). This is done as shown in Fig. 4. In this figure, the
split node is v. We split all the edges that connect v to the rest of the tree by
inserting two new Q-nodes per edge. The reason why we have to insert these nodes
is that in every SPQR-tree, the leaves of the tree must be Q-nodes. The result of the
splitting operation is a set of SPQR-trees called split trees. The graph represented
by a split tree is called split graph. Each split graph can be obtained from G by
replacing subgraphs connected to the rest of G only via a pair of vertices by an
edge. These new edges, that we call virtual edges, correspond to the Q-nodes we
add in the splitting process. Figure 5 shows an example for a graph and its three
split graphs. The grey edges are the virtual edges of the split graphs.
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Figure 4: Splitting an SPQR-tree at an inner node

One of the resulting split trees contains v as the only inner node and so the ILP
for the corresponding split graph has already been defined in the last section. We
call this split graph the center split graph. In Figure 5, the center split graph is G0.
All other split trees contain at least one decision node less than the original tree,
because they do not contain v. We continue the recursive splitting process until we
have only SPQR-trees with just one inner node. This is always possible because
any SPQR-tree with more than one inner node contains at least one decision node
(two S-nodes can never be adjacent).

After recursively computing the ILPs for the split graphs, we merge them into
an ILP for the original graph G. To achieve this, we need to lift the constraints
computed for the split graphs, since G contains more potential face cycles than the
split graphs. Therefore, the ILP describing its embeddings has more variables and
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thus a higher dimension. The crucial fact in this step is to find for each cycle c in
a split graph the set of cycles of G that are represented by c.

Let G0, . . . , Gk be the split graphs of G and G0 the center split graph. Let Ci

for 0 ≤ i ≤ k be the set of cycles in Gi that are represented by a variable in the
corresponding ILP and C =

⋃k
i=0 Ci. Then we can split C into two sets: The set

CL of cycles that are also contained in G (because they do not include a virtual
edge) and the set CM of cycles that are not cycles in G (because they contain a
virtual edge).

The cycles in CL are also represented by variables in the ILP for G. We use the
cycles in CM to construct cycles in G. Every cycle c in Ci ∩ CM with 1 ≤ i ≤ k

contains exactly one virtual edge. If we remove this edge, we get a path p in Gi

connecting the two vertices of Gi that it shares with G0. If we take a cycle of
C0 ∩CM and replace each virtual edge by a path p in the corresponding split graph
obtained from a cycle in CM , we get a cycle in G that is a face cycle in at least one
embedding of the graph (this can be shown by structural induction).

Consider for example Figure 5. We construct cycles in G by taking a cycle in the
center split graph G0 and replacing its virtual edges by paths in the corresponding
split graphs. We choose the directed cycle c1 that passes the left virtual edge of
G0 from vertex 0 to vertex 7 and the non-virtual edge from 7 to 0. The set Lc1

consists of the three cycle (7, 0, 1, 3, 6), (7, 0, 1, 4, 6) and (7, 0, 1, 5, 6) (given by the
sequence of vertices on the cycle). We combine c1 with the cycle c2 in G1 given by
the sequence (0, 1, 3, 6, 7) of vertices. The set Lc2

consists of the cycles (0, 1, 3, 6, 7),
(0, 1, 3, 6, 7, 10, 8, 2) and (0, 1, 3, 6, 7, 10, 9, 2). Note that there are no cycles in Lc2

using edge (8, 9) because such a cycle can never be a face cycle. The combination
of the cycles c1 and c2 results in cycle (0, 1, 3, 6, 7) in G.
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Figure 5: A graph G and its splitgraphs G0, G1 and G2

The variables in the ILP for G correspond to the cycles in CL and to the cycles
in G that we can construct by combining cycles in CM . In general, a cycle in CM

is used to construct several cycles in G. We store for each cycle c in CM the set Lc
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of cycles in G constructed by combining c with other cycles. For each cycle in CL,
we define Lc as the cycle itself. These sets are used for lifting the constraints of the
ILPs of the split graphs.

Let c be a cycle in a split graph that is represented by variable xc in the corre-
sponding ILP. The set Lc defines a set Lxc

of variables in the ILP for the original
graph. We use these sets Lxc

to lift the constraints of the ILPs of the split graphs.
We simply replace each variable xc in each constraint computed for a split graph
by the sum of the variables in Lxc

.
Remember that we have not explicitly computed the subtour elimination con-

straints for graphs whose only inner node in the SPQR-tree is a P -node. Instead,
there is a complete bidirected graph H for each such graph where we can find vi-
olated subtour elimination constraints by computing a minimum cut. When we
compute the ILP for G from the ILPs of the split graphs, we have to updated the
set of cycles that are represented by each edge of H.

If the only inner node of an SPQR-tree is a P -node, every edge e in H represents
exactly one directed cycle c of the graph. The weight of e is the value of the
corresponding component in the current solution vector corresponding to c. When
we compute the ILP of the original graph from the ILPs of the split graphs, we
assume that every edge in H represents a set of cycles. If the only inner node of
the split graph is a P -node, each of these sets has only one element. Let H be
a complete bidirected graph computed for the separation of subtour elimination
constraints in a split graph and e an edge in H representing the set Ce of cycles.
When we have computed the composed cycles of the original graph, we replace each
cycle c in Ce by the set Lc of composed cycles generated using c. Thus, the new set
of cycles represented by e consists of the set of all the cycles in G constructed from
cycles in Ce.

After we have computed the new variables, lifted the constraints of the split
graphs and updated the complete bidirected graphs computed for each P -node
skeleton, we add some additional constraints. The first type of constraints says
that out of all cycles that are represented by the same cycle in a split graph, at
most one can be a face cycle in any embedding of the original graph. This is true
because there is a split component of a split pair of the graph that all these cycles
pass in the same direction.

To get an intuition why two such cycles can never be face cycles in the same
embedding consider Figure 6. We assume that v1 and v2 are a split pair of the
graph with the split components G1 and G2. We also assume that the two directed
cycles c1 and c2 use the same path p in G1 but different paths (p1 and p2) in G2. If
we assume that both c1 and c2 are face cycles in the same embedding Π of G, then
we have a contradiction: Since c1 is a face cycle, the area right of c1 must be empty
in Π and so the edges of p2 must be left of p1. But since c2 is also a face cycle, the
area to the right of c2 must be empty and the path p1 must be left of p2.

The second type of constraints fixes the number of cycles in each embedding
that contains edges from more than one split graph. This number is equal to the
number of face cycles in an embedding of the center split graph that contain virtual
edges. Using structural induction, we can show that the resulting ILP is correct
and that its variables correspond to the set of cycles that are face cycles in at least
one embedding of the graph. The last fact is important, because it is the reason
why the number of variables is still manageable for practical problem instances (see
Section 7).



BEND MINIMIZATION USING INTEGER PROGRAMMING 10

v1

v2

G1

G2
p2

p1

p

Figure 6: Two cycles that pass a split component in the same direction can not
both be face cycles in the same embedding

4 The Linear Program Describing Orthogonal Rep-

resentations for a Fixed Embedding

Orthogonal representations not only fix the embedding of a graph but also the
number, type and sequence of the bends on each edge and the angles between edges
incident to the same vertex in an orthogonal drawing. They do not fix the lengths
of the edge segments in the drawing. The first efficient algorithm for computing an
orthogonal representation of a graph with the minimum number of bends for a fixed
planar embedding was presented by Tamassia [Tam87]. This algorithm constructs a
flow network using the planar embedding and then computes a minimum cost flow
in this network. This flow can be translated into an orthogonal representation of
the graph with the minimum number of bends for the fixed embedding.

The drawback of the original method of Tamassia is that it can not deal with
vertices of degree greater than four. Some modifications of the algorithm have been
published that get over this constraint. The approach that we use implements the
podevsnef drawing convention (planar orthogonal drawings with equal vertex size
and non-empty faces) first defined in [FK96]. According to this convention, the
vertices are drawn as boxes of equal size and the edges are positioned on a finer
grid than the vertices. Because of this modification, more than one edge can be
incident to each of the four sides of a vertex (see Fig. 7 for an example of a podevsnef
drawing).

Bertolazzi et al describe a minimum cost flow network N that can be used to
compute an orthogonal representation in a simplified podevsnef model with the
minimum number of bends for a fixed embedding [BDBD00]. The model is simpli-
fied, because whenever edges run parallel, the first bend of the rightmost edge in
the bundle is a bend to the right. Another property of the simplified model is that
a vertex with degree at least four has always at least one edge attached to each side.
This is the case in Fig. 7. The network N for G contains one node for every vertex
of G (called v-nodes) and one vertex for every face cycle of the given embedding
(called f-nodes).

The basic idea of the network is that the flow on its arcs corresponds to bends on
edges and to the angles between neighboring edges incident to the same vertex. One
unit of flow corresponds to an angle of 90 degrees. The supply of flow assigned to
each node and the capacity of the edges guarantee that a feasible flow corresponds
to an orthogonal representation of the graph. The costs are assigned to the arcs
such that the cost of a flow is equal to the number of bends in the corresponding
orthogonal representation.

Let b be the bijection that maps the vertices of G to the v-nodes of N and the
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Figure 7: A podevsnef drawing of a graph.

face cycles of the planar embedding to the f -nodes. Then there is an arc between
the v-node v1 and the f -node v2 if the vertex b−1(v1) is on the boundary of the
face b−1(v2). The direction of this arc depends on the degree d of b−1(v1). If d is
at most four, the arc is directed towards v2 and otherwise towards v1. The set Evf

is the set of all arcs that start in a v-node and end in an f -node, while the set Ecf

is the set of arcs that start in an f -node and end in a v-node of N .
There is an arc from the f -node v3 to the f -node v4 if the two face cycles b−1(v3)

and b−1(v4) share an edge. So we have a pair of arcs running in opposite directions
for each pair of f -nodes corresponding to face cycles that share an edge of G. The
set of these arcs is called Eff .

The supply of a v-node v is 4 − deg(b−1(v)). The reason is that the sum of
the angles between neighboring edges incident to the vertex b−1(v) must be 360
degrees (remember that each unit of flow corresponds to 90 degrees). If we define
the degree of a face cycle as the number of its edges, then the supply of a node w in
N corresponding to an inner face cycle b−1(w) is also 4−deg(b−1(w)) and if b−1(w)
is the outer face cycle, the supply is −4 − deg(b−1(w)). This guarantees that the
flow in N describes shapes for the face cycles that correspond to simple polygons
of vertical and horizontal line segments.

Each unit of flow on the edges in Eff has cost one because it corresponds to a
bend in the orthogonal representation. The same holds for edges in Efv because
flow on these edges corresponds to a zero degree angle that causes a bend on one of
the two edges that run parallel. The correspondence between the flow in N and an
orthogonal representation with the number of bends equal to the cost of the flow is
described in more detail in [BDBD00].

We used this network and transformed it into a linear program. There is one
variable fe for each arc e in the network that represents the amount of flow routed
via e. One constraint for each vertex in the network makes sure that the outgoing
amount of flow minus the incoming amount is equal to the supply of the node.
Some nodes in the network have negative supply, and thus consume flow. We have
one constraint for each arc that says that the flow on the arc must be non-negative
and also upper bounds on the flow on arcs in Evf and Efv. The objective function
minimizes the sum of the amount of flow over each arc multiplied by the cost of
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the arc. An optimal solution represents a minimum cost flow in N and thus an
orthogonal representation with the minimum number of bends.

LP 1 shows the corresponding linear program. The set EN is the set of arcs in
the network, V the set of vertices in G and F the set of faces in the embedding.
The face fo is the outer face of the embedding. The degree of a face is defined as
the number of edges that form the boundary of the face. The variable fe denotes
the flow on arc e. The constraints guarantee that the solution corresponds to an
orthogonal representation of G.

LP 1

min
∑

e∈EN

cost(e) · fe

subject to

∑

e=(v,w)∈EN

fe −
∑

e=(w,v)∈EN

fe = 4 − deg(b−1(v)) ∀ nodes v with b−1(v) 6= fo

∑

e=(b(fo),w)∈EN

fe −
∑

e=(w,b(fo))∈EN

fe = −4 − deg(fo)

fe ≤ 4 − deg(b−1(v)) ∀ e = (v, w) ∈ Evf

fe ≤ 1 ∀ e ∈ Efv

fe ≥ 0 ∀ e ∈ EN

5 The Mixed Integer Linear Program Describing

the Set of All Orthogonal Representations of a

Graph

The flow network N of the last section describing the set of orthogonal represen-
tations of a graph for a fixed embedding contains one f -node for every face of the
embedding. When we want to optimize over the set of all embeddings of a graph,
we do not know at the beginning which cycles will be face cycles in an optimal
solution. Therefore, we construct a new network N ′, where we have one c-node for
every cycle in the graph, that is a face cycle in at least one embedding. These nodes
play a similar role to the f -nodes in the LP for a fixed embedding in the previous
section. The set of cycles that are face cycles in at least one embedding of the graph
corresponds to the set of variables in our ILP from Section 3 that describes the set
of all embeddings of a graph.

In a solution of the embedding ILP, the variable corresponding to a cycle has
value one if this cycle is a face cycle in the embedding represented by the solution
and zero otherwise. The capacities of the arcs in the network N ′ depend on the
values of the cycle variables. If the cycle-variables represent an embedding Π of the
graph, then the set of feasible flows in N ′ corresponds to the set of feasible flows in
the network N constructed for embedding Π. Let A be the set of arcs incident to
the c-node for cycle c in N ′ and the variable for c in the embedding ILP be zero.
Then all arcs in A must have capacity zero. This has the same effect on the flow as
removing the c-node from the network.

We first compute the capacities of the arcs and the demand of each c-node
analogously to the corresponding values for the f -nodes in the network N . Then
we multiply the amount of flow produced or consumed by a c-node with the value
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of the corresponding variable in the ILP. This ensures that vertices in N ′ that
correspond to cycles in G that are not face cycles do not produce or consume flow.

Any arc that starts or ends at a c-node has capacity zero if the c-node corre-
sponds to a cycle whose ILP-value is zero. If the capacity of the arc is limited even
if the corresponding cycle is a face cycle, we can just multiply this limit with the
ILP-value of the cycle to achieve this behavior. The arcs in the network N that
connect two f -nodes have unlimited capacity. But we can easily compute an upper
bound fmax for the flow produced in the whole network N , for example by com-
puting the sum of all positive supplies in the network. The resulting value can be
used as the upper bound on the flow on any arc. For each arc a in N ′ connecting
two c-nodes v1 and v2, we set the capacity to the minimum of fmaxxi where xi is
the binary variable in the embedding ILP for the cycle corresponding to node vi.
This guarantees that the flow on a is zero if at least one of the cycles represented
by the nodes vi is not a face cycle in the represented embedding.

In this way, the capacities of the arcs and the amount of flow produced and
consumed by the vertices in N ′ depend on the values of the cycle variables in the
ILP. We transform N ′ into a linear program and merge it with the ILP that
represents the embeddings of the graph. Since we need to know the cycle chosen
as the outer face cycle, we introduce an outer face variable for each cycle and
add constraints that guarantee that exactly one of the cycles chosen as face cycles
is chosen as the outer face cycle. The result is a mixed integer linear program
(MILP), where an optimal solution corresponds to an orthogonal representation
with the minimum number of bends over the set of all embeddings of the input
graph.

MILP 1 is the resulting mixed integer linear program. We omitted the con-
straints that define the embedding because they are defined recursively and are not
the main topic of this paper. Again, variable fe denotes the flow on arc e. The set
C is the set of cycles in G that are face cycles in at least one embedding. For each
of these cycles c, the variable xc is one if c is a face cycle and variable oc is one if
c is the outer face cycle. The set Ecc is the set of arcs that connect two c-nodes.
Arcs in Evc start in a v-node and end in a c-node while the arcs in Ecv start in a
c-node and end in a v-node. The expression len(c) denotes the number of edges in
cycle c. The function b is the bijection from the vertices of G to the v-nodes in N ′

and from the directed cycles in C to the c-nodes of the network.

MILP 1

min
∑

e∈EN

cost(e) · fe

subject to

∑

c∈C

oc = 1 (1)

xc − oc ≥ 0 ∀ c ∈ C (2)
∑

e=(v,w)∈EN

fe −
∑

e=(w,v)∈EN

fe = 4 − deg(v) ∀ v ∈ V (3)

∑

e=(c,w)∈EN

fe −
∑

e=(w,c)∈EN

fe = xc(4 − len(c)) − 8oc ∀ c ∈ C (4)

fe ≤ xc(4 − deg(v)) ∀ e = (v, c) ∈ Evc (5)

fe ≤ xc ∀ e = (c, v) ∈ Ecv (6)

fe ≤ xc1
fmax ∀ e = (c1, c2) ∈ Ecc (7)

fe ≤ xc2
fmax ∀ e = (c1, c2) ∈ Ecc (8)
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fe ≥ 0 ∀ e ∈ EN (9)

xc, oc ∈ {0, 1} ∀ c ∈ C (10)

Constraint 1 says that there is exactly one cycle chosen as the outer face cycle and
the constraints of type 2 guarantee that this cycle is chosen among the face cycles.
Constraint 3 is the same as in the LP of the previous section because the supply
of the nodes representing vertices of G is independent of the chosen embedding.
The node in N ′ corresponding to a cycle that is not chosen as a face cycle does not
consume or supply any flow since its cycle variable and its outer face variable are
both zero. This is guaranteed by Constraint 4. If the outer face variable of a cycle
is one, the constraint sets its supply to −4 − len(c) and if the cycle variable is one
but the outer face variable is zero to 4 − len(c).

The constraints of type 5, 6, 7 and 8 make sure that the arcs incident to c-
vertices where the corresponding cycle is not a face cycle in the chosen embedding
have capacity zero. If a cycle is chosen as face cycle, the arcs incident to the
corresponding c-node in N ′ have either the same capacities as in the network N of
the previous section or if the capacity in N is unbounded (for the arcs in Ecc), the
capacity is now set to an upper bound on the flow in the network.

6 The Algorithm for Minimizing the Number of

Bends

The algorithm first computes the recursive ILP describing the set of all combina-
torial embeddings of the graph. This also gives us the set of cycles of the graph
that are face cycles in at least one embedding. This information is then used for
computing the network N ′ and the corresponding MILP. We use CPLEX (ver-
sion 6.5) to compute a solution and then check if there are any violated subtour
elimination constraints by computing a minimum cut in the ATSP-graph computed
for each P -node skeleton. If we find a violated constraint, we add it to the MILP
and re-optimize. When we have found a feasible solution, we transform it into an
orthogonal representation of the graph.

To improve the performance of the algorithm, we modified the MILP slightly.
For example, we only need outer face variables for half of the cycles. The reason is
that for every cycle c represented by a variable in the embedding ILP, the cycle c̄

passing the same edges in the opposite direction is also represented by a variable.
The orthogonal representations we exclude by introducing outer face variables only
for one direction of each undirected cycle are mirror images of other orthogonal
representations that can still be represented. Of course, every orthogonal represen-
tation has the same number of bends as its mirror image. We also hard-coded a
complete description of the set of embeddings for P -node skeletons with less than
five vertices into our program to reduce the need for separating subtour elimination
constraints.

7 Computational Results

To test our approach, we used two sets of benchmark graphs. The first was intro-
duced in [DBGL+97] and consists of 11,529 graphs that either come from industrial
applications or were derived from such graphs by introducing small changes. We
call this set the real world set. The second set consists of randomly generated
graphs that were used in [BDBD00] to test the performance of the branch & bound
approach for minimizing the number of bends. We call this set the artificial set.
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The graphs in the artificial set are already biconnected and planar, so we can
directly apply our new algorithm for minimizing the number of bends as well as the
branch & bound algorithm. The majority of the graphs in the real world set are
not planar and biconnected. Therefore, we used a standard approach to transform
them into planar biconnected graphs whose drawing can be easily transformed into
a drawing of the original graph.

This is done as follows: We first determined the topology of the graphs using
the standard planarization method implemented in the AGD-library [AGD99]. This
method computes an embedding of a planar subgraph of the original graph and then
inserts the missing edges one by one into the current embedding. The crossings
produced by inserting an edge are replaced by artificial vertices with degree four. If
the resulting graph was not biconnected, we introduced new edges while maintaining
planarity using the heuristic presented in [FM98] that is also implemented in the
AGD-library. Note that these operations can increase the number of vertices and
edges of a graph considerably.

First, we compared the results produced by our algorithm for minimizing the
number of bends over all embeddings to the results computed by a popular heuristic.
This heuristic chooses an arbitrary embedding for the graph and then computes a
minimum cost flow in the network given in section 4. The flow defines an orthogonal
representation of the graph with the minimum number of bends for the chosen
embedding.

Let h be the number of bends in the orthogonal representation computed by
the heuristic and o the number of bends in an orthogonal representation with the
minimum number of bends over all embeddings. For each graph in the benchmark
sets, we computed the following value: h−o

h
100%. This is the percentage of the

improvement we get using an optimal algorithm.
We broke the set of all graphs of each benchmark set into 10 subsets. The first

subset contained the graphs where the improvement was smaller than 10 percent, the
second subset the graphs where the improvement was at least 10 and smaller than
20 percent and so on. The last subset contained the graphs where the improvement
was at least 90 percent. Note that the improvement is 100 percent if the heuristic
solutions contains bends while the optimum solution contains no bends.

The x-axes in Figure 8 show the improvement ranges while the height of the
boxes corresponds to the number of graphs that fall into that range. The diagram
on the left shows the data for the real world graphs while the diagram on the right
shows the data for the artificial graphs. Both diagrams are remarkably similar.
For about half of all graphs, optimizing over all embeddings results in a significant
reduction of the number of crossings (at least 10 percent).

We compared the average running times for graphs with the same number of
vertices of our new algorithm (MIX) and the branch & bound algorithm (B&B)
from [BDBD00]. Both algorithms are written in C++ and were compiled with the
flag -O using gcc version 2.95.1. The algorithms ran on a Sun Enterprise 450 Model
4400 with four Sun UltraSPARC-II 400 MHz CPUs and 4 GB of memory. Figure 9
shows the corresponding diagrams for the real world graphs (Figure 9(a)) and for
the artificial graphs (Figure 9(b)). The x-axes show the number of vertices while
the y-axes give the average time in seconds needed for a problem instance. Note
that the times given for MIX include the time needed for constructing the recursive
ILP, the flow network and the complete MILP.

Figure 9(a) shows that B&B is faster for graphs with up to 120 vertices, but
for larger graphs, our new algorithm is faster. E.g. for one graph with 130 vertices
and 205 edges, B&B needed 5244 seconds while MIX found an optimal solution
in only 108 seconds. The corresponding drawing is shown in Figure 7 on page 11.
Our integer linear program for this graph has 10,059 rows and 3473 columns. The
number of binary variables is 333. In the preprocessing step, CPLEX eliminated
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Figure 8: Improvement ranges of our algorithm compared to the heuristic for the
real world benchmark set (a) and the artificial benchmark set (b).

4920 rows and 544 columns. The resulting matrix has 15,974 non-zeroes. The
branch & bound tree computed by CPLEX has 282 nodes, the number of simplex
iterations is 32,512. The solver generated 20 flow cover cuts in the root node. These
are valid for all nodes in the tree. Flow cover cuts can be used whenever the capacity
of an arc in a flow network depends on a binary variable [PRW85, GNS99].

There were 197 graphs in the real world benchmark set, that B&B could not
solve in one hour computation time. Our algorithm could not solve 25 graphs within
the same time limit. Another interesting fact is that we only had to add subtour
elimination constraints and re-optimize for six graphs out of 11,529. We never had
to add more than one subtour elimination constraint.

As Figure 9(b) shows, the speed advantage of our new algorithm is very pro-
nounced for the artificial graphs. The branch & bound algorithm needs on average
almost twice as long to compute an optimal solution compared to our new method.

Figure 10 shows the average number of embeddings for graphs with the same
number of vertices for the real world benchmark set and the artificial benchmark
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Figure 9: Runtime comparison of our new algorithm with the branch & bound
algorithm for the real world benchmark set (a) and the artificial benchmark set (b)

set. Again, the x-axes show the number of vertices. The y-axes have a logarithmic
scale and show the average number of embeddings for the graphs.

Figure 10(a) shows the number of embeddings of the real world graphs. Until
about 150 vertices, the average number of embeddings grows exponentially with the
size of the graphs (remember that the y-axis is logarithmic). The reason for the
drop in the number of embeddings for larger graphs is the planarization method.
Graphs where many edges have to be deleted to obtain a planar graph tend to have
large three-connected components after the planarization method is applied because
this method replaces crossings with vertices of degree four.

The growth of the average number of embeddings for the artificial graphs is also
roughly exponential until about 80 vertices, as Figure 10(b) shows. The number of
embeddings varies widely for graphs with the same number of vertices because the
set was generated using five different settings for the parameters of the generation
algorithm that influence the number of embeddings. The details of the generation
algorithm and the parameter settings can be found in [BDBD00].
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Figure 10: The average number of embeddings for graphs in the real world bench-
marks set (Figure 10(a)) and the artificial benchmark set (Figure 10(b))

Figure 11 shows the average number of constraints and embeddings in the mixed
integer linear programs computed by our algorithm for the real world graphs (Fig-
ure 11(a)) and for the artificial graphs (Figure 11(b)). For both benchmarks sets,
the number of variables and constraints grows roughly linear with the size of the
graphs. This benign growth behavior is in sharp contrast to the exponential growth
of the number of embeddings. The spike at 35 vertices in Figure 11(a) mirrors the
smaller spike in the number of embeddings for the real world graphs.

8 Conclusion

Using methods of integer linear programming to minimize the number of bends in
an orthogonal drawing seems to be a promising approach. The main drawback is
that at the moment, the algorithm only works for biconnected graphs. The reason
is that SPQR-trees are only defined for biconnected graphs. One possible approach
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Figure 11: The average number of constraints and variables in the mixed integer
linear programs for the real world benchmark set (a) and the artificial benchmark
set (b)

to get overcome this limitation is to work with the block-cut-tree of biconnected
components of the graph. If it can be used to describe the set of all embeddings of
a connected graph as an ILP, our approach can be easily extended to deal with any
planar graph.
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