
A Learning Multilevel Optimization
Approach for a Large Location

Allocation Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Laurenz Tomandl, B.Sc.
Matrikelnummer 01326545

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Dipl.-Ing. Dr.techn. Thomas Jatschka

Wien, 14. Mai 2023
Laurenz Tomandl Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Learning Multilevel Optimization
Approach for a Large Location

Allocation Problem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Laurenz Tomandl, B.Sc.
Registration Number 01326545

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Dipl.-Ing. Dr.techn. Thomas Jatschka

Vienna, 14th May, 2023
Laurenz Tomandl Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Laurenz Tomandl, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Mai 2023
Laurenz Tomandl

v

Acknowledgements

Ich möchte mich ganz besonders bei meinen Betreuern Günther Raidl und Thomas
Jatschka bedanken, die mich in unzähligen Meetings unter fachkundiger Anleitung bei
dieser Arbeit unterstützt haben.

Weiters möchte ich mich bei meiner Eltern Barbara und Erich bedanken, die mich nicht
nur finanziell, sondern auch emotional während meines Studiums unterstützten.

Außerdem bedanke ich mich noch bei meiner Freundin Miriam, die alle Höhen und Tiefen,
die ich beim Entwickeln und Schreiben der Arbeit durchlebte, miterleben musste und
immer ein offenes Ohr für meine Probleme hatte.

vii

Kurzfassung

Ein Problem für die breite Akzeptanz von Elektrofahrzeugen sind die langen Ladezeiten der
Batterien. Um den Kunden die Wartezeit zu ersparen, sind Fahrzeuge mit austauschbaren
Batterien und ein Netz von Batterietauschstationen eine vielversprechende Lösung für
kleinere Fahrzeuge wie Elektroroller. Der Kunde kann zu einer Station fahren und seine
leere Batterie gegen eine bereits geladene austauschen und so die Wartezeit vermeiden.
Um die Einführung eines solchen Systems zu ermöglichen, ist eine gute Infrastruktur
erforderlich.

Wir betrachten daher das Demand Maximizing Battery Swapping Station Location
Problem (DMBSSLP). Das DMBSSLP modelliert die Herausforderung, optimale Stand-
orte und Konfigurationen für Batterietauschstationen in einer städtischen Umgebung zu
finden.

In dieser Arbeit entwickeln wir eine neuartige, durch maschinelles Lernen unterstützte
Metaheuristik, die darauf abzielt, dieses Problem für eine große Anzahl von potenziellen
Gebieten und Kunden zu lösen. Wir nennen diesen Algorithmus den Learning Multi
Level Optimization (LMLO) Ansatz. Dieser verwendet Elemente der konventionellen
Multi Level Optimization (MLO) Metaheuristik. Vergröberung einer Probleminstanz, bis
sie klein ist, genaue Lösung der kleinen Instanz und Projektion der Lösung der kleinen
Probleminstanz zurück auf die ursprüngliche Probleminstanz. Ein wichtiger Teil dieses
Ansatzes ist zu bestimmen, wie die Elemente der Probleminstanz vergröbert werden
sollen. Um dieses Problem zu lösen, benutzen wir zwei neuronale Netzwerke, die den
Vergröberungsprozess steuern.

Der Algorithmus wird an Probleminstanzen mit bis zu 10.000 Gebieten und Kunden getes-
tet und mit konventionellen MLO-Ansätzen verglichen, die das Jaccard-Ähnlichkeitsmaß
[Jac02] verwenden. Unser LMLO Ansatz ist in der Lage, die Anzahl der Kunden, die er-
folgreich ihre Batterien tauschen können, auf Instanzen dieser Größenordnung signifikant
zu verbessern.

ix

Abstract

A problem in the wide-scale adoption of electric vehicles is the long charging time. To
avoid the waiting time for the customer, vehicles with exchangeable batteries and a
network of battery swapping stations are a promising solution for smaller-scale vehicles
like electric scooters. A customer can drive to a station and exchange their depleted
batteries with an already charged battery and thus avoid the waiting that would be
necessary otherwise. A good infrastructure is needed to make the implementation of such
a system viable.

We, therefore, consider the Demand Maximizing Battery Swapping Station Location
Problem (DMBSSLP). The DMBSSLP models the challenge of finding optimal locations
and configurations for battery swapping stations in an urban environment.

In this thesis, we develop a novel machine learning supported metaheuristic which aims
to solve this problem for a large number of potential areas and customers. We call this
algorithm the Learning Multilevel Optimization (LMLO) approach. It uses elements of
the conventional Multilevel Optimization (MLO) metaheuristic. Coarsening a problem
instance until it is small, solving the small instance accurately, and projecting the solution
of the small problem instance back to the original problem instance. A challenging part of
this algorithm is to determine how elements of the problem instance should be coarsened.
To solve this problem we consider a machine learning approach using two Neural Network
(NN) models to guide the coarsening process.

The algorithm is tested on problem instances with up to 10.000 areas and customers
and is compared to conventional MLO approaches which use the Jaccard similarity
measures [Jac02]. Our LMLO approach can to significantly improve the number of
satisfied customers on instances of sizes up to 10000 areas and customers.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the work . 2
1.3 Structure of the work . 2

2 The Demand Maximizing Battery Swapping Station Location Problem 5
2.1 Graph Model . 5
2.2 MILP Formulation . 6

3 Methodology 11
3.1 Multilevel Optimization . 11
3.2 MLO for Bipartite Networks . 13
3.3 Mixed Integer Linear Programming . 14

4 Related Work 17
4.1 Previous Work . 17
4.2 Related Location Problems . 18
4.3 Related Work to MLO . 22

5 A Learning Multi Level Optimization Approach for the DMBSSLP 25
5.1 Overview and Nomenclature . 25
5.2 LMLO Details . 26
5.3 Similarity . 34
5.4 Instance Generation . 36
5.5 Data Generation . 38

6 Experiments and Results 45
6.1 Computing Environment . 45

xiii

6.2 Training Data Analysis . 45
6.3 Benchmark instances . 50
6.4 Model Training . 52

7 Conclusion and Future Work 67
7.1 Future Work . 68

List of Mathematical Symbols 71

List of Abbreviations 73

List of Figures 75

List of Tables 77

List of Algorithms 79

Bibliography 81

CHAPTER 1
Introduction

This chapter gives an overview of the motivation, aim, and structure of this work. First of
all the application scenarios and considered optimization task of the Demand Maximizing
Battery Swapping Station Location Problem (DMBSSLP) is described, secondly, the
algorithmic idea is sketched, lastly, the chapter concludes with an overview of the structure
of the thesis.

1.1 Motivation
The recharging of batteries for electric vehicles is usually a time-consuming process.
To reduce the time needed for the customer, a solution is to build vehicles with easily
exchangeable batteries. Battery swapping for large vehicles, like cars, is not easily
applicable due to the size and missing standardization of the batteries but, it is a
promising alternative for smaller vehicles like electric scooters. Customers can swap their
depleted battery for an already charged one and thus do not have to wait for their battery
to charge. Charged batteries are provided at a battery swapping station in exchange for
old depleted batteries. Such stations are relatively simple and can be easily attached to
supermarkets or conventional gas stations. The batteries are then recharged while the
user continues the journey.

An important task in designing such systems is to determine where battery swapping
stations should be set up and how many battery charging slots shall be provided at each
station. The construction and maintenance of such stations cost money thus such projects
often only have a set budget. The goal for our intents and purposes is to maximize the
fulfilled demand among all customers while keeping the cost within the budget.

To investigate this problem we examine the DMBSSLP which is an adapted version of
the Multiperiod Battery Swapping Station Location Problem (MBSSLP) by Jatschka et
al. [JRR23].

1

1. Introduction

1.2 Aim of the work

The DMBSSLP is an optimization problem that can be formulated in terms of a Mixed
Integer Linear Programming (MILP) approach. As such it can be very difficult to find
optimal or even good solutions when the problem instances get very large. The work
aims to develop and implement a novel machine learning supported metaheuristic for
the DMBSSLP. More specifically, our approach is based on the Multilevel Optimization
(MLO) approach (also called Multilevel Refinement (MLR)) by Walshaw [Wal02] and is
called Learning Multilevel Optimization (LMLO). MLO approaches scale very well in
terms of running time and solution quality for large instances and are therefore suited to
tackle the scalability problem.

The goal is to apply the LMLO to large instances of the DMBSSLP that resemble urban
environments. For large cities with a population of millions and nearly every intersection
being a possible location for a charging station, it is reasonable to assume that tens
of thousands of potential areas and tens of thousands of potential customers are to be
considered. To be able to solve such large instances of the problem we have to resort to
metaheuristics, which allow us to find solutions to large problems in reasonable time.

In the LMLO approach, the original problem instance is repeatedly coarsened to a smaller
instance until the problem is small enough to be quickly and accurately solved. The
found solution is then iteratively projected back through the coarsened levels and refined
until a solution for the original problem instance is found.

The difference between traditional MLO and our novel LMLO approach lies in the
coarsening process. Conventional methods use handcrafted similarity measures to decide
how to coarsen a problem instance. In the LMLO approach the decision of how to coarsen
an instance is guided by two Neural Networks that aim to predict which merging steps
lead to the smallest error in the final outcome.

The work aims to show that the LMLO approach can improve conventional MLO
approaches in terms of solution quality and still perform well in terms of scalability. This
is shown by applying MLO and LMLO to instances of the DMBSSLP.

1.3 Structure of the work

Chapter 2 starts by defining the DMBSSLP as a problem on a graph. This representation
on a graph is then transformed into a representation in terms of a Mixed Integer Linear
Program (MILP).

Chapter 3 concerns the general methodology we apply in this thesis. We give an exact
and detailed explanation of the MLO algorithm for different graph structures and discuss
MILP techniques and solvers.

Chapter 4 discusses work related to the DMBSSLP. In the beginning, we present
previous work that has been done as a foundation for this work. We continue with

2

1.3. Structure of the work

discussion of location problems representing generalized versions of the problem which in
turn leads problems that are very similar to the DMBSSLP.

In addition, we also discuss the MLO algorithm and what problems it already has been
applied to.

Chapter 5 describes the development and implementation process of the LMLO. This
includes similarity calculation, instance, and data generation processes.

In Chapter 6 we investigate the experimental results. We start by describing the
used computing environment, continue with a data analysis of the training data, and
a description of the benchmark instances we used is given. Finally, comparisons of the
models are made to other model structures and to results obtained by conventional
similarity measures.

In the final Chapter 7 we present a summary of the findings and also describe possible
future work.

3

CHAPTER 2
The Demand Maximizing Battery

Swapping Station Location
Problem

In this section, we formalize the DMBSSLP. First, we explain how the problem can
be understood on a graph. Secondly, we transform this graph model into the MILP
formulation.

2.1 Graph Model
The DMBSSLP is modeled on a graph 𝑃 (𝑉, 𝐸) with its vertex set 𝑉 and edge set 𝐸.
There are |𝑉 | = 𝑛 different nodes. Each node in the graph represents a possible area
for battery swapping stations. At each station battery charging slots can be built. The
expected customer demand is described in terms of origin-destination-pairs (OD-pairs).
These pairs consist of a starting node, an end node, and the number of expected customers,
called the demand, on this trip. Each edge has a distance property describing the distance
between the nodes it connects. The graph is connected which means for every node pair
there exists a path within the graph connecting the pair.

An example of a potential graph 𝑃 (𝑉, 𝐸) can be seen in Figure 2.1. This example graph
consists of 𝑛 = 10 possible areas and 𝑚 = 10 OD-pairs.

The graph formulation 𝑃 (𝑉, 𝐸) is very close to the real-world problem but does not allow
to grasp certain characteristics of the problem, e.g. which area can satisfy the demand of
an OD-pair. We, therefore, reformulate the problem and model it on a bipartite graph
𝐺(𝑄, 𝐿, 𝐸). This graph consists of two distinct node sets. There are no edges between
nodes that belong to the same set, only edges between nodes of different sets. In our
problem, the 𝑄 set represents all OD-pairs of the instance and the 𝐿 set represents all

5

2. The Demand Maximizing Battery Swapping Station Location Problem

1 2 3 4

5 6

7 8

9 10

1 1

2

3

1 2

2

1
1

1

3

2

2

2

0.1

5.3 1.1

0.5

0.9

0.9

0.3

1.3

1.3

0.4

connection with distance
OD-pair with demand

Figure 2.1: Graph model (own figure)

possible areas where stations can be built. A station built in area 𝑙 can meet the demand
of an OD-pair if the detour from the shortest path from the origin to the destination
does not exceed a certain allowed detour range. A node 𝑞 of the 𝑄 set has a connection
to a node 𝑙 of the 𝐿 set if the area 𝑙 is within the detour range and thus a station built
at this area could potentially satisfy the demand of 𝑞. This representation allows us to
quickly check if stations in an area can satisfy the demand of an OD-pair, as all eligible
OD-pairs are connected to the area via an edge.

An example of such a graph can be seen in Figure 2.2. This represents the corresponding
bipartite graph to the previously introduced graph in Figure 2.1 with a maximum detour
length of 0. We can see that all OD-pairs just consider areas that are along their shortest
path. For example the shortest path for OD-pair 1− 6 travels through area 1, 5 and 6,
therefore the 𝑄 node 1− 6 is connected to the 𝐿 nodes 1, 5 and 6. It might also happen
that an area is not considered by any OD-pair, as in this example area 4. This area will
later be trimmed when searching for solutions.

2.2 MILP Formulation
The MILP formulation for the DMBSSLP is based on the MILP formulation of the
MBSSLP by Jatschka et al. [JRR23] where additional time and customer loss constraints
are considered.

Until now we described the problem on a high level without defining any properties of

6

2.2. MILP Formulation

1-6

1-10

2-10

3-6

5-2

7-5

7-10

8-6

9-8

10-8

1

2

3

4

5

6

7

8

9

10

Q L

Figure 2.2: Bipartite graph (own figure)

the DMBSSLP outside of the set of potential areas 𝐿 and the set of OD-pairs 𝑄. To
describe the problem in terms of MILP we need to define some variables.

The variables defining our solution are:

• 𝑥𝑙: The 𝑥𝑙 variable represents the number of station being built at area 𝑙. At each
station, a certain number of battery charging slots can be built

• 𝑦𝑙: The 𝑦𝑙 variable represents the number of slots that are built at area 𝑙. Each
slot represents one battery that can be charged there.

7

2. The Demand Maximizing Battery Swapping Station Location Problem

• 𝑎𝑞𝑙: This represents the actual demand that is assigned from OD-pair 𝑞 to an area 𝑙.

The following properties are constant for a single instance.

• 𝑠: The number of slots that can maximally be built at a station.

• 𝑐: The cost of a station.

• 𝑏: The cost of a slot.

• 𝐵: The project budget for building stations and slots.

Properties that are variable for each area or OD-pair are denoted with a subscript
representing the node, e.g. the number of stations that are allowed to be built at an area
𝑙 is 𝑟𝑙.

The relevant properties for a node 𝑙 of the area set 𝐿 are:

• 𝑟𝑙: The number of stations that can be built in an area.

• 𝑁(𝑙): The set of OD-pairs that can fulfill their demand at a station built in area 𝑙.

• 𝑑𝑙: The maximum demand that can be fulfilled by an area.

𝑑𝑙 = min(𝑠𝑟𝑙,
∑︁

𝑞∈𝑁(𝑙)
𝑑𝑞) (2.1)

The relevant properties for a node 𝑞 of the OD-pair set 𝑄 are:

• 𝑑𝑞: The demand a OD-pair has.

• 𝑁(𝑞): The set of locations that can potentially fulfill the demand of OD-pair 𝑞.

The edges connecting nodes of the 𝐿 and 𝑄 set also have properties. These are described
with a subscript of firstly the 𝑞 node and secondly the 𝑙 node.

• 𝑒𝑞𝑙: The maximal demand that can be assigned from an OD-pair 𝑞 to an area 𝑙.

𝑒𝑞𝑙 = min(𝑑𝑙, 𝑑𝑞) (2.2)

With these definitions, we can create a MILP formulation for the problem.

8

2.2. MILP Formulation

max
∑︁
𝑞∈𝑄

∑︁
𝑙∈𝑁(𝑞)

𝑎𝑞𝑙 (2.3)

𝑠𝑥𝑙 ≥ 𝑦𝑙 𝑙 ∈ 𝐿 (2.4)∑︁
𝑙∈𝑁(𝑞)

𝑎𝑞𝑙 ≤ 𝑑𝑞 𝑞 ∈ 𝑄 (2.5)

∑︁
𝑞∈𝑁(𝑙)

𝑎𝑞𝑙 ≤ 𝑦𝑙 𝑙 ∈ 𝐿 (2.6)

∑︁
𝑙∈𝐿

(𝑐𝑙𝑥𝑙 + 𝑏𝑙𝑦𝑙) ≤ 𝐵 (2.7)

𝑥𝑙 ∈ {0, . . . , 𝑟𝑙} 𝑙 ∈ 𝐿 (2.8)
𝑦𝑙 ∈ {0, . . . , ⌈𝑑𝑙⌉} 𝑙 ∈ 𝐿 (2.9)
0 ≤ 𝑎𝑞𝑙 ≤ 𝑒𝑞𝑙 𝑞 ∈ 𝑄, 𝑙 ∈ 𝑁(𝑞) (2.10)

The goal of the objective (2.3) is to find the solutions that maximize the fulfilled demand.
With the inequality (2.4) we link the 𝑥𝑙 and 𝑦𝑙 variables and ensure that slots are only
opened if a sufficient number of stations are opened in the area. Constraint (2.5) enforces
that the total amount of demand assigned from an OD-pair to an area does not exceed
the given demand of the OD-pair. Inequality (2.6) ensures that the total amount of
demand assigned to an area is smaller than the number of slots at the location. With
the constraint (2.7) we assert that the total cost of all stations and slots stays within the
bounds of the available budget. Lastly, the domain of the 𝑥𝑙, 𝑦𝑙, and 𝑎𝑞𝑙 variables are
given in (2.8)-(2.10), where 𝑥𝑙 and 𝑦𝑙 are defined as integer variables and 𝑎𝑞𝑙 is defined
as a continuous variable.

9

CHAPTER 3
Methodology

In this chapter, we are going to explain the methodological approaches used in this thesis
on a high level. Firstly we will explain the Multilevel Optimization algorithm, secondly,
we give a short overview of MILP.

3.1 Multilevel Optimization

Algorithm 3.1: high level MLO based on [Wal02] and [VFF+20]
Input : a problem instance 𝐺0
Output: a solution 𝑆0(𝐺0)

1: for 𝑖 = 1 . . . 𝑁 do
2: 𝑀𝑖 ←partitioning(𝐺𝑖−1);
3: 𝐺𝑖 ←coarsen(𝐺𝑖−1, 𝑀𝑖);
4: end for
5: 𝑆𝑁 (𝐺𝑁)← solve problem 𝐺𝑁 ;
6: for 𝑖 = 𝑁 − 1 . . . 0 do
7: 𝑆0

𝑖 ← project(𝑆𝑖+1(𝐺𝑖+1), 𝐺𝑖);
8: 𝑆𝑖 ← refine(𝑆0

𝑖 (𝐺𝑖);
9: end for

10: return 𝑆0(𝐺0);

The Multilevel Optimization (MLO), also called Multilevel Refinement (MLR), approach
was first introduced in the 90s by Barnard et al. [BS94] and later formalized by Hen-
drickson et al. [HL+95] and Walshaw [Wal02]. The MLO approach is often well suited
to address very large instances of a problem.
A high-level illustration of the MLO can be seen in Figure 3.1 taken from Valejo et
al.[VFF+20].

11

3. Methodology

Figure 3.1: Phases of the MLO process [VFF+20]

The algorithm consists of three major steps. The first step is partitioning and coarsening
in which the original problem is iteratively simplified. Firstly a partition is created. The
partition decides which parts of the problem will be merged to create a smaller problem
instance. The next step is coarsening. One coarsening step is usually done by combining
partitioned items of a problem instance. e.g. nodes for a problem on a graph to create a
smaller coarser instance. This process is repeated 𝑁 times, where 𝑁 is chosen such that
the final instance is small enough to be solved efficiently.

In the second step, a solution is created for the smallest instance. This can be done in
a variety of ways. Often MILP solvers or well-working problem specific heuristics are
applied to create an initial solution.

In the third and final step, the found solution is repeatedly projected back and refined
to the less coarse instances until a solution for the original problem instance is found.
A high-level version of this Algorithm can be seen in 3.1 as described in [Wal02] and
[VFF+20].

3.1.1 Partitioning and Coarsening

During the coarsening process, vertices are merged according to the partitioning. This
leads to an inevitable loss of information about the structure and behavior of the problem.
It is therefore crucial that during the partitioning process, suitable merging partners are
selected to keep this loss of information minimal. Over the years, several partitioning
algorithms have been developed, and a select few are presented here:

• Heave Edge Matching (HEM): Iteratively a random item of the problem
instance is chosen, if it is still unmatched, it is matched with the neighbor it is
most similar to [KAKS97]. This method runs in 𝑂(𝑚) where 𝑚 is the number of
neighboring pairs.

• Greedy Heave Edge Matching (GHEM): For every item, the similarity between
its neighbors is calculated. The item pairs are sorted according to their similarity.

12

3.2. MLO for Bipartite Networks

The most similar item pair is chosen and if both items are still unmatched they are
matched together. This is repeated until a large enough matching is created. This
method runs in 𝑂(𝑚 log 𝑛) [VFF+20] with the number of neighboring pairs being
𝑚 and the number of total items being 𝑛.

• Label Propagation: This method is inspired by the community detection
algorithm by Raghavan et al [RAK07] and was adapted by Meyerhenke et al. to a
cluster selection algorithm for graphs with a runtime of 𝑂(𝑛 + 𝑚) [MSS14]. This
method works over multiple time steps. Initially, a unique label is assigned to each
item. In the next time step, each node label is updated with the most frequent
label among its neighbors. The algorithm terminates when an additional time
step would not change any label. The idea is that closely connected items will
converge to the same label. The items with the same label can then be partitioned
together and will be collapsed into a single item in the coarsening step [VFF+20].
Notably different from HEM and GHEM is that with this method multiple items
are grouped together at the same time.

During the coarsening, the found partitioning is applied to the problem instance. Items
that are partitioned together are collapsed into a single item that derives its information
from both original items. Not partitioned items will be inherited as is. The resulting
problem instance is smaller than the original.

3.1.2 Solving

Once the problem instance is small enough a problem solution is searched. A variety
of strategies are applicable often MILP solvers (see Section 3.3) or meaningful problem
specific heuristics can be applied.

3.1.3 Projection and Refinement

During the projection phase also often called extension [VFF+20] the found solution is
projected to the next finer instance. This projection is problem specific and depends
on the chosen problem representation. In general, the contracted items that have been
coarsened are now again split apart.

In the refinement step, the projected solution is possibly improved. This means the
solution that has just been projected are reevaluated using fast problem specific heuristics
and adapted if needed.

3.2 MLO for Bipartite Networks
So far we explained the MLO in a generalized way so that it can be applied to any
problem. In Section 2.1 we defined our problem on a bipartite graph 𝐺(𝑄, 𝐿, 𝐸) with
two disjoint node sets 𝑄 and 𝐿. We therefore specify the definition of MLO according to
Valejo et al. [VdOGFdAL18] to bipartite networks.

13

3. Methodology

1-6

1-10

2-10

3-6

5-2

7-5

7-10

8-6

9-8

10-8

(a) two-hop graph of 𝑄 (own figure)

1

2

3

4

5

6

7

8

9

10

(b) two-hop graph of 𝐿 (own figure)

Figure 3.2: two-hop graphs for graph Figure 2.1

The core concepts of the algorithm remain: The phases are partitioning, coarsening,
solving, projecting, and refining. The only part that changes is the partitioning. We can
no longer contract neighboring vertices because they must lie in different node sets and
thus carry different meanings in the problem. Therefore we define the concept of the
two-hop neighborhood for bipartite graphs according to Valejo et al. [VdOdSNZ21]. In
the two-hop neighborhood, nodes are considered neighboring if they are connected via
exactly two edges. For a bipartite graph 𝐺(𝑄, 𝐿, 𝐸) with disjoint node sets 𝑄 and 𝐿 and
an Edge set 𝐸 this induces two separate two-hop graphs, one for either node-set. We
define the two-hop graph for the node set 𝑄 but the same definition holds for the other
node set. For all 𝑞1, 𝑞2 ∈ 𝑄 with 𝑞1 ̸= 𝑞2 and for all 𝑙 ∈ 𝐿 such that (𝑞1, 𝑙), (𝑞2, 𝑙) ∈ 𝐸 the
two hop graph 𝑄2(𝑄, 𝐸𝑄) is defined such that (𝑞1, 𝑞2) ∈ 𝐸𝑄.

This definition allows us to create a partitioning on these two-hop graphs with the
strategies explained in Section 3.1.1.

An example of these graphs for the 𝑄 and 𝐿 set of the example graph from Figure 2.1
can be seen in Figure 3.2. These graphs allow us to infer which nodes can be considered
neighbors. For example, in Figure 3.2b we can see that nodes 5 and 6 have the common
neighbors 1, 3, and 8 and thus can be considered neighbors. Referencing the original
graph in Figure 2.1 one can see that all paths that go to node 6 have to go through node
5 as well making it reasonable to consider them being neighbored.

3.3 Mixed Integer Linear Programming

The mathematical foundation for Linear Programming (LP) reaches far back to the 19th
century when Fourier first described an algorithm to solve a system of linear inequalities
in 1824 [BT97]. A milestone for LP was the development of the Simplex method by

14

3.3. Mixed Integer Linear Programming

Dantzig [DOW55]. Although this method does not guarantee sub-exponential runtime for
all problems it is still used in most solvers as it often works faster than other methods in
practice. An algorithm that guarantees polynomial runtime is the interior point method
developed by Karmarkar [Kar84]. This method often works slower than the Simplex
method in practice and is thus not generally applicable.

Nowadays these algorithms are packaged into solver libraries like Gurobi1 and can be
efficiently applied to relevant problems.

Mixed Integer Linear Programming (MILP) is a generalized version of LP in which the
domain of the solution variables can assume real and integer values. The standardized
form for MILP problems can be seen in formulas (3.1)-(3.6) [Obs22]. MILPs are typically
solved by a branch-and-bound framework in which the MILPs LP relaxation is solved
for obtaining dual bounds. The LP relaxation of the MILP (3.1)-(3.6) is obtained by
replacing the integrality constraints of (3.6) with x2 ∈ R. MILPs are 𝒩𝒫hard [GJ79]
and thus MILP solvers are not useful to solve very large problem instances.

max c′
1x1 + c′

2x2 (3.1)
A1x1 + A2x2 ≤ b (3.2)
x1 ≥ 0 (3.3)
x2 ≥ 0 (3.4)
x1 ∈ R (3.5)
x2 ∈ N (3.6)

c′
1 . . . 𝑛-dimensional vector

x1 . . . 𝑛-dimensional vector

c2 . . . 𝑝-dimensional vector

x2 . . . 𝑝-dimensional vector

A1 . . . 𝑚× 𝑛-dimensional Matrix

A2 . . . 𝑚× 𝑝-dimensional Matrix

b . . . 𝑚-dimensional vector

When describing a problem in terms of a MILP, the constraint in formula (3.2) are often
separated row-wise and depicted as their own inequalities to increase readability and
interpretability. For further information on modeling problems as MILPs and respective
solution techniques see the book by Bertsimas [BT97].

1www.gurobi.com

15

CHAPTER 4
Related Work

In this section, we are first going to discuss a previous project that has been carried out
at TU Wien on which a large part of our implementation and theoretical work builds
upon. We are then describing related location problems from literature and finally give
an overview of how MLO has developed and what problems it has already been applied
to.

4.1 Previous Work

Originally the Multi-Period Battery Swapping Station Location Problem (MBSSLP) has
been formulated and addressed by Jatschka et al. [JRR23, RKJ+23]. They investigate
how to distribute battery swapping stations in an urban environment. Similar to our
problem they try to find the optimal locations for battery swapping stations with a
variable number of charging slots. Instead of working with a limited budget, they try to
minimize the used budget while fulfilling a minimum amount of demand. As hinted in
the name of the work they also consider multiple time steps in the charging process. As
a consequence, not all batteries are always available as they need a certain amount of
time to charge. Furthermore, the expected workload differs over time. For example in
an urban environment, one can expect a high workload during the morning and evening
hours but a lower workload around midday and night. Instead of considering a maximum
detour length for customer trips, they apply a penalty to the satisfied demand meaning
customers assigned to stations that would include a far detour are less likely to use the
assigned station.

Using a Large Neighborhood Search [MG19] the authors were able to solve instances with
up to 2000 locations and 8000 OD-pairs [RKJ+23]. They later improved this approach
by switching the solution method from LNS to MLO with which they solved instances
with up to 10000 areas and 100000 OD-pairs [JRR23]. Their MLO approach is similar to

17

4. Related Work

our approach described in Chapter 5 but applies a rather simple fixed similarity measure,
the Jaccard similarity, to which we will compare our results.

4.2 Related Location Problems

One of the first papers on location problems was by Cooper [Coo63] who introduced the
p-median problem where the goal is to cover a set of nodes in a network with a limited
amount of locations. Since then the field has developed massively and influenced among
others on economics, geography, regional science, and logistics [LNS15].

Because of the variety of different types of location problems that exist we are going
to focus here on only a select few that appear to be most related to our problem. The
DMBSSLP falls under the category of Maximum Coverage Location Problems (MCLP).
Therefore we are going to describe the work that has been done in the category of
Covering Problems (CP) and then continue this description to MCLP which in itself is a
subcategory of CP.

4.2.1 Covering Problems

Covering Problems (CP) deal with the problem of finding the best possible areas for
stations such that a given demand is covered.

The following introduction is adapted from Laporte et al. [LNS15].

The idea for CP is that a node can only be considered covered if a station is within a
certain reach. For example, when considering emergency services like medical services
it is crucially important that every location can be reached within a limited time. An
area can be considered as covered if it is within the reach of an emergency station hence
comes the name covering problem.

Berge [Ber57] was the first to describe the problem of finding a minimum cover on a
graph. Hakimi [Hak65] developed an algorithm to find the minimum number of police
patrols required to protect a highway network. The first mathematical formulation of the
problem in a location context was done by Toregas et al. [TSRB71]. Out of a Location
context, it had already been formulated by Roth [Rot69].

There are two types of covering problems, set covering and maximal covering problems.
While the goal of set covering problems is to cover all nodes, the goal of maximal covering
problems is to cover a maximal amount of nodes. Because the DMBSSLP tries to
maximize the satisfied demand it falls under the latter category.

4.2.2 Maximum Coverage Location Problem

MCLP have been applied to a broad field of different research topics among others are
banking [XYD+09, AMVC15], restaurants [EA16, YK16], battery swapping [Wan08],
natural gas refueling stations [KBP14, BLM15] and urban parks [YCW+14]

18

4.2. Related Location Problems

The original MCLP was formulation by ReVelle et al. [CR74] and is denoted in Equations
(4.1)-(4.5). The objective (4.1) maximizes the fulfilled demand according to the population
at node 𝑞 if that node is covered, which is described by the binary variable 𝑎𝑞. Instead of
using 𝑎𝑞𝑙 as we do in Section 2.2 to describe which area covers which demand, they use
𝑎𝑞 to describe if the demand is covered at all. Constraint (4.2) ensures that a node is
only covered if at least one neighboring station is built. This is achieved by only iterating
over the neighboring 𝑙 nodes for each 𝑞 node. Constraint (4.3) is the equivalent of our
budget constraint and ensures that not more than 𝐵 stations are built. Equations (4.4)
and (4.5) define the 𝑥𝑙 and 𝑎𝑞 variables as binary.

max
∑︁
𝑞∈𝑄

𝑑𝑞𝑎𝑞 (4.1)

𝑎𝑞 ≤
∑︁

𝑙∈𝑁(𝑞)
𝑥𝑙 𝑞 ∈ 𝑄 (4.2)

∑︁
𝑙∈𝐿

𝑥𝑙 ≤ 𝐵 (4.3)

𝑥𝑙 ∈ {0, 1} 𝑙 ∈ 𝐿 (4.4)
𝑎𝑞 ∈ {0, 1} 𝑞 ∈ 𝑄 (4.5)

When comparing this formulation to the DMBSSLP described in Section 2.2 we see a lot
of similarities. Firstly the demand is being maximized as seen in formula (2.3) in the
DMBSSLP formulation. The difference is that the satisfied demand is intrinsic to the
𝑎𝑞𝑙 variable itself in our formulation while in (4.1) 𝑎𝑞 is just binary. Secondly in (2.6)
the demand satisfied at an area 𝑎𝑞𝑙 is capacitated while in (4.2) it is just necessary for a
station to be built anywhere in reach of 𝑞. Lastly, the budget constraint is different. In
(4.3) a set number of stations can be built while in (2.7) each slot and each area have a
cost and their sum must comply with the overall defined budget.

ReVelle et al. [CR74] use different heuristics to solve the MCLP. First, the Greedy
Adding Algorithm iteratively adds stations that satisfy the most demand. The second
heuristic which builds on the first heuristic is called the Greedy Adding with Substitution
Algorithm. Additionally to adding the most promising station in each step, they apply a
simple local search that tries to replace each already existing station with a better one.
Lastly, they also solved the MCLP using a Linear Programming approach to obtain exact
solutions.

They applied these methods to a network with 55 nodes. Where the Greedy Adding with
Substitution Algorithm found solutions within a range of 90% of the optimum.

4.2.3 Capacitated Maximum Coverage Location Problem

The original MCLP does not consider the stations capacitated. This means that a station
can serve any amount of demand. For real-world problems, it is often better to assume a
station to be capacitated because after it exceeds its capacity it might not be able to

19

4. Related Work

adequately service the demand. Therefore the Capacitated Maximum Coverage Location
Problem (CMCLP) is introduced. This problem was first described by Current and
Storbeck [CS88] as the capacitated plant location problem. The formulation (4.6)-(4.12)
is adapted from the formulation by Pirkul and Schilling [PS91].

max
∑︁
𝑞∈𝑄

∑︁
𝑙∈𝑁(𝑞)

𝑑𝑞𝑎𝑞𝑙 (4.6)

𝑎𝑞𝑙 ≤
∑︁

𝑙′∈𝑁(𝑞)
𝑥𝑙′ 𝑞 ∈ 𝑄, 𝑙 ∈ 𝑁(𝑞) (4.7)

∑︁
𝑙∈𝐿

𝑥𝑙 ≤ 𝐵 (4.8)
∑︁

𝑙∈𝑁(𝑞)
𝑎𝑞𝑙𝑑𝑞 ≤ 𝑦 𝑞 ∈ 𝑄 (4.9)

∑︁
𝑞∈𝑁(𝑙)

𝑎𝑞𝑙 ≤ 1 𝑙 ∈ 𝐿 (4.10)

𝑥𝑙 ∈ {0, 1} 𝑙 ∈ 𝐿 (4.11)
𝑎𝑞𝑙 ∈ {0, 1} 𝑙 ∈ 𝐿, 𝑞 ∈ 𝑄 (4.12)

The objective (4.6) maximizes the served population. The first constraint (4.7) defines
that the demand of a 𝑞 node can only be satisfied if a location is built on a neighboring 𝑙
node. The next constraint (4.8) limits the number of stations that can be built. The
capacity is introduced in constraint (4.9), this ensures that the demand satisfied at each
station is not higher than 𝑦. The last constraint (4.10) ensures that each demand node
is only served exactly once. The last two definitions (4.11) (4.12) (4.12) ensure that the
𝑥𝑙 and 𝑎𝑞𝑙 variable are binary. The 𝑥𝑙 is 1 if a station is to be built at location 𝑙. 𝑎𝑞𝑙 is 1
if the demand of an OD-pair 𝑞 is to be satisfied at location 𝑙.

Instead of 𝑎𝑞 describing if a node is covered at all this formulation now uses 𝑎𝑞𝑙 as we do in
Section 2.2 to describe which area covers which demand. The difference between formula
(4.10) and (4.7) to formula (4.2) can also be ascribed to 𝑎𝑞𝑙 now being a two-dimensional
variable. The only real relevant difference is the introduced capacity 𝑦 in formula (4.9).
The difference to our formulation is that the capacity in (2.6) is variable while the capacity
in (4.9) is constant.

Pirkul and Schilling [PS91] use a heuristic to generate solutions. The heuristic uses the
lagrangian relaxation of the problem as a starting solution. They were able to solve
problem instances of the CMCLP with up to 30 areas and 200 OD-pairs.

4.2.4 Modular Capacitated Maximum Coverage Location Problem

Another example from the literature that shares similarities with our problem is the
Modular Capacitated Maximal Covering Location Problem [YM12] (MCMCLP). Here
Yin and Mu introduce a variant of the CMCLP with modular capacities. An adapted

20

4.2. Related Location Problems

version of their model is described in (4.13)-(4.18).

max
∑︁
𝑞∈𝑄

∑︁
𝑙∈𝑁(𝑞)

𝑑𝑞𝑎𝑞𝑙 (4.13)

∑︁
𝑙∈𝐿

𝑦𝑙 = 𝐵 (4.14)
∑︁
𝑞∈𝑄

𝑑𝑞𝑎𝑞𝑙 ≤ 𝑦𝑙 𝑙 ∈ 𝐿 (4.15)

∑︁
𝑙∈𝐿

𝑎𝑞𝑙 ≤ 1 𝑞 ∈ 𝑄 (4.16)

𝑦𝑙 ∈ {0 . . . ⌈𝑑⌉} (4.17)
0 ≤ 𝑎𝑞𝑙 ≤ 1 𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿 (4.18)

The objective (4.13) maximizes the satisfied demand. Constraint (4.14) is the budget
constraint and ensures that exactly 𝐵 slots are being built. The capacity constraint
(4.15) enforces that the assigned demand to a location is not higher than the number of
slots built at that location. The last constraint (4.16) ensures that the demand assigned
from a demand node can not exceed the demand that is provided by the node. The
domains of the 𝑦𝑙 and 𝑎𝑞𝑙 variable can be seen in equations (4.17) and (4.18).

The most striking difference between the MCMCLP to the CMCLP is that instead of
having stations with a fixed number of slots, the MCMCLP does not use stations at all
but uses the slots of a station as a limited variable. This is already very close to the
definition of slots used in the DMBSSLP.

Yin and Mu [YM12] apply the MCMCLP to Emergency Medical Service Region 10 in
Georgia USA where they aim to optimally distribute ambulances. With a method called
the service area spatial demand representation, they can formulate this problem in terms
of an MCMCLP with 87 possible areas and 2721 OD-pairs. They create solutions for the
problem by solving the MILP using CPLEX1.

4.2.5 CMCLP with Heterogeneous Facilities, Vehicles and Setup Costs

The final model we are going to investigate here is that of CMCLP with heterogeneous
facilities, vehicles, and setup costs by Gazani et.al. [HGNN21]. For the sake of similarity,
we are going to call this problem the Modular Capacitated Maximum Coverage Location
Problem with Setup Cost (MCMCLPSC). The problem they examine contains a superset
of constraints considered in the DMBSSLP. Additionally to our constraints, they consider
different vehicle and location types with different costs and capacities associated with
them. They also consider an area constraint as the vehicles and facilities are bound by
an area constraint.

1https://www.ibm.com/products/ilog-cplex-optimization-studio

21

4. Related Work

By renaming, fixing certain variables, and deleting additional constraints in the problem
we transform it into a variation of the DMBSSLP. The transformed problem formulation
can be seen in equations (4.19)-(4.26)

max
∑︁
𝑞∈𝑄

∑︁
𝑙∈𝐿

𝑑𝑞𝑎𝑞𝑙 (4.19)

∑︁
𝑙∈𝐿

𝑐𝑙𝑥𝑙 + 𝑏𝑙𝑦𝑙 ≤ 𝐵 (4.20)
∑︁
𝑙∈𝐿

𝑎𝑞𝑙 ≤ 1 𝑞 ∈ 𝑄 (4.21)
∑︁
𝑞∈𝑄

𝑑𝑞𝑎𝑞𝑙 ≤ 𝑦𝑙 𝑞 ∈ 𝑄 (4.22)

𝑦𝑙 ≤ 𝑠𝑥𝑙 𝑙 ∈ 𝐿 (4.23)
𝑎𝑞𝑙 ∈ {0, 1} 𝑞 ∈ 𝑄, 𝑙 ∈ 𝐿 (4.24)
𝑥𝑙 ∈ {0, 1} 𝑙 ∈ 𝐿 (4.25)
𝑦𝑙 ≥ 0 𝑙 ∈ 𝐿 (4.26)

As we can see the constraints (4.19)-(4.23) are the same as in the DMBSSLP. The
differences lie within the domains of the variables (4.24)-(4.26). The 𝑎𝑞𝑙 variable in the
MCMCLPSC is binary meaning the demand of an OD-pair can be assigned to an area in
total or not at all, whereas in the DMBSSLP the 𝑎𝑞𝑙 is continuous, meaning multiple
different areas can satisfy the demand of a single OD-pair. In the MCMCLPSC the 𝑥𝑙

variable is also binary. The 𝑥𝑙 variable in the DMBSSLP is an integer but can be in a
certain range of values. The capacities represented in the 𝑦𝑙 variables are also different.
In the MCMCLPSC it is continuous while in the DMBSSLP 𝑦𝑙 is an integer and can only
take a certain range of values.

Gazani et.al. [HGNN21] used a handcrafted heuristic as well as a Genetic Algorithm
[MG19] to create solutions for their problem. They were able to produce good solutions
for instances with up to 50 areas and 200 OD-pairs. These results are not directly
comparable to our problem as they considered more constraints and their problem was
more difficult to solve.

4.3 Related Work to MLO

The MLO method was first introduced in the 90s by Barnard et al. [BS94] and applied to
improve the Recursive Spectral Bisection method. The MLO method was later adapted
by Hendrickson et al. [HL+95] and applied to the graph partitioning problem. Their
adapted version looked similar to the MLO known today and already contained the steps
of coarsening, solving, and extending.

22

4.3. Related Work to MLO

Walshaw solidified this approach and showed that the MLO approach is applicable to
a variety of optimization problems [Wal08]. Among those are the graph partitioning
problem [Wal08], the traveling salesman problem [Wal02] where Walshaw presents a
framework to apply the MLO method to other optimization problems, and the vehicle
routing problem [RSW07] where Rodney et al. apply the MLO method to the vehicle
routing problem. Other application fields are Network drawing and visualization, Image
segmentation, Dimensionality reduction, Graph contraction, Classification, and Graph
coloring [VFF+20].

4.3.1 MLO for Bipartite Networks

As we explained in Section 3.2 the MLO approach needs to be extended to be applicable
to bipartite networks. The extension of MLO to bipartite networks is relatively new and
thus not so well established. A pioneer in this specific field is Alan Valejo as most papers
considering explicitly MLO for bipartite networks list him as the main author.

Some relevant contributions that he made are the extension of the MLO algorithm to
bipartite networks [VdOGFdAL18] and the development and continuation of the label
propagation coarsening method for bipartite networks [VAdPF+21, VFdOdAL20] as well
as relevant review papers about the different coarsening methods in bipartite networks
[VdOdSNZ21] and a review of the MLO method, in general, [VFF+20].

23

CHAPTER 5
A Learning Multi Level

Optimization Approach for the
DMBSSLP

In this chapter, we are going to explain the Learning Multilevel Optimization approach
that we developed for the DMBSSLP. First, we give an overview of our algorithmic
approach and define a nomenclature. Secondly, we give a detailed explanation of all the
major steps of MLO: partitioning, coarsening, solving, projection, and refinement. We
continue with the different similarity measures that are learned and compared. Second to
last we take a look at the instance generation and finally, we explain the different data
generation strategies.

5.1 Overview and Nomenclature
The MLO follows the basic scheme described in Section 3.1 and 3.2. To define the
concrete approach we first need to make some basic definitions.

First we define the graph sequence {𝐺0, . . . , 𝐺𝐾} of 𝐺 with 𝐺𝑖 = (𝑄𝑖, 𝐿𝑖, 𝐸𝑖), for
𝑖 = 0, . . . , 𝐾 where 𝐾 is the number of coarsened graphs. This sequence represents
all intermediate graphs that are created during the coarsening. The graph 𝐺(𝑄, 𝐿, 𝐸)
which is the original graph corresponds to 𝐺0(𝑄0, 𝐿0, 𝐸0) = 𝐺(𝑄, 𝐿, 𝐸). The graph
𝐺𝐾(𝑄𝐾 , 𝐿𝐾 , 𝐸𝐾) corresponds to the coarsest problem instance. Each intermediate
graph has the same properties 𝑟𝑖

𝑙 , and 𝑑𝑖
𝑙 for its nodes 𝑙 ∈ 𝐿𝑖, values 𝑑𝑖

𝑞 for nodes 𝑞 ∈ 𝑄𝑖,
and values 𝑒𝑖

𝑞𝑙 for the edges (𝑞, 𝑙) ∈ 𝐸𝑖. Variables marked with (·)𝑖 describe properties of
the respective graph of 𝐺𝑖.

The graphs 𝐺𝑖+1 with 𝑖 ∈ {0, . . . , 𝐾 − 1} are derived from 𝐺𝑖 by coarsening 𝑄𝑖 and 𝐿𝑖

and merging all nodes in each partition. Each vertex 𝑞 ∈ 𝑄𝑖+1 and 𝑙 ∈ 𝐿𝑖+1 has an

25

5. A Learning Multi Level Optimization Approach for the DMBSSLP

associated partition represented by a non-empty subset in 𝑄𝑖 and 𝐿𝑖. These subsets
are denoted as 𝑄𝑖

𝑞 and 𝐿𝑖
𝑙 where the nodes 𝑞 and 𝑙 represent nodes from the coarse new

sets 𝑄𝑖+1 and 𝐿𝑖+1. These subsets 𝑄𝑖
𝑞 and 𝐿𝑖

𝑙 refer to the partition of 𝐺𝑖. As a node
can not be partitioned twice it must hold that 𝑄𝑖

𝑞 ∩ 𝑄𝑖
𝑞′ = ∅ and 𝐿𝑖

𝑙 ∩ 𝐿𝑖
𝑙′ = ∅ for any

𝑞, 𝑞′ ∈ 𝑄𝑖, 𝑞 ̸= 𝑞′ and 𝑙, 𝑙′ ∈ 𝐿𝑖, 𝑙 ̸= 𝑙′, and 𝑖 = 1, . . . , 𝐾 − 1. At last, if there is at least
one edge between the nodes 𝑄𝑖

𝑞 and 𝐿𝑖
𝑙 in 𝐺𝑖 there must also be an edge (𝑞, 𝑙) in 𝐸𝑖+1.

We are dealing with a problem defined on a bipartite network, therefore, we coarsen and
project the nodes in 𝐿 and 𝑄 separately. The processes are split into two steps. For
the coarsening from 𝐺𝑖 to 𝐺𝑖+1 we initially only coarsen the nodes in 𝐿𝑖. This yields
an intermediate graph �̃�𝑖+1. Next, we coarsen only the nodes �̃�𝑖+1 of the �̃�𝑖+1 graph
which are the same as 𝑄𝑖, which yields the graph 𝐺𝑖+1. With this two-step process, we
obtain a full coarsening from 𝐺𝑖 to 𝐺𝑖+1.

The same follows for the projection. First, we project the solution regarding the 𝑄𝑖

nodes in 𝐺𝑖. This yields a solution for �̃�𝑖. We now project the solution regarding the
nodes of �̃�𝑖 of the �̃�𝑖 graph which are the same as 𝐿𝑖 to obtain the solution for 𝐺𝑖−1.
Variables marked with (̃·) are associated with the intermediate graph �̃�. For example,
the description �̃� 𝑖(𝑞) refers to the neighbors of node 𝑞 ∈ �̃�𝑖 in the graph �̃�𝑖. Similar we
denote the intermediate solutions 𝑥𝑖, 𝑦𝑖, 𝑎𝑖 for the problem 𝐺𝑖.

A small difference to the earlier MLO versions we described is that we use a while loop
and a shrinkage factor 𝜉. 𝜉 defines the percentage of the original problem size to which
the smallest graph should be coarsened. The LMLO algorithm is denoted in Algorithm
5.1. A detailed explanation of all steps is described in the following sections.

5.2 LMLO Details

In this section, we are going to explain the details of the LMLO implementation for
the DMBSSLP. This involves explanations for all major steps: partitioning, coarsening,
solving, projection, and refinement as they are listed in Algorithm 5.1.

5.2.1 Partitioning

To create a partitioning we use Greedy Heavy Edge Matching [VFF+20] (see Section
3.1.1). The DMBSSLP is defined on a bipartite graph we therefore calculate the similarity
for all neighboring nodes in the two-hop graph (see Section 3.2). An explanation of how
the similarity calculation works is described in Section 5.3.

The first partitioning step on Line 4 in Algorithm 5.1 creates a partition for the nodes
in 𝐿𝑖. Every node 𝑙 ∈ 𝐿𝑖 is paired with all its neighbors in the two-hop graph and
their similarity is calculated. All pairs are then sorted according to their similarity. A
node pair (𝑢, 𝑣) is put into the partition if both nodes are not partitioned and it has a
higher similarity than other pairs (𝑢, 𝑥) or (𝑣, 𝑥) where 𝑥 is also an unpartitioned node.
To realize this sorting we use a max-heap which allows us to efficiently access the best

26

5.2. LMLO Details

Algorithm 5.1: LMLO
Input : a DMBSSLP instance 𝐺(𝑄, 𝐿, 𝐸), a value 0 ≤ 𝜉 ≤ 1
Output: a solution (𝑥0, 𝑦0, 𝑎0)

1: 𝑖← 0;
2: 𝐺𝑖 ← 𝐺;
3: while |𝑄𝑖| > 𝜉 · |𝑄| ∧ |𝐿𝑖| > 𝜉 · |𝐿| do
4: 𝐿𝑖

𝑙 ← derive partitioning of 𝐿𝑖 in 𝐺𝑖;
5: �̃�𝑖+1 ← Coarsen(𝐺𝑖) w.r.t. 𝐿𝑖

𝑙;
6: 𝑄𝑖

𝑞 ← derive partitioning of �̃�𝑖+1 in �̃�𝑖+1;
7: 𝐺𝑖+1 ← Coarsen(�̃�𝑖+1) w.r.t. 𝑄𝑖

𝑞;
8: 𝑖← 𝑖 + 1;
9: end while

10: (𝑥𝑖, 𝑦𝑖, 𝑎𝑖)← solve problem w.r.t. 𝐺𝑖; // coarsest problem
11: while 𝑖 > 0 do
12: (�̃�𝑖, 𝑦𝑖, �̃�𝑖)← project solution (𝑥𝑖, 𝑦𝑖, 𝑎𝑖) for 𝐺𝑖 to �̃�𝑖;
13: (𝑥𝑖−1, 𝑦𝑖−1, 𝑎𝑖−1)← project solution (�̃�𝑖, 𝑦𝑖, �̃�𝑖) for �̃�𝑖 to 𝐺𝑖−1;
14: (𝑥𝑖−1, 𝑦𝑖−1, 𝑎𝑖−1)← refine solution (𝑥𝑖−1, 𝑦𝑖−1, 𝑎𝑖−1)
15: 𝑖← 𝑖− 1;
16: end while
17: return (𝑥0, 𝑦0, 𝑎0);

element. In Line 6 the same partitioning process is applied to the �̃� nodes. Nodes that
are not partitioned after the procedure are left as is. They will not be coarsened but will
remain as they are in the following step.

The pseudo code representation of this Algorithm can be seen in 5.2.

5.2.2 Coarsening

We now explain the procedure for obtaining a coarsened graph 𝐺𝑖 from a given graph
𝐺𝑖−1. Recall that we denote a partition of nodes of 𝐺𝑖−1 as 𝑄𝑖−1

𝑞 and 𝐿𝑖−1
𝑙 , respectively,

with 𝑞 ∈ 𝑄𝑖, 𝑙 ∈ 𝐿𝑖, for 𝑖 = 1, . . . , 𝐾.

When contracting nodes, one has to also aggregate the associated node and edge properties
appropriately. We first coarsen the set 𝐿𝑖−1 of the graph 𝐺𝑖−1 to obtain an intermediate
graph �̃�𝑖 and then in a second step coarsen the set �̃�𝑖 of the graph �̃�𝑖 to obtain the
coarse graph 𝐺𝑖.

Coarsening for 𝐿

In the inital step we merge all nodes 𝑙1, 𝑙2 ∈ 𝐿𝑖−1 that are partitioned in 𝐿𝑖−1
𝑙 . The

relevant properties that need handling are all properties of the areas: 𝑟𝑖
𝑙 , 𝑁 𝑖(𝑙), 𝑑𝑖

𝑙 as well
as properties associated with edges: 𝑒𝑖

𝑞𝑙.

27

5. A Learning Multi Level Optimization Approach for the DMBSSLP

Algorithm 5.2: Partitioning
Input : a set of nodes 𝑈
Output: a partitioning 𝑀(𝑈)

1: 𝑆 ←empty max heap;
2: for 𝑢 ∈ 𝑈 do
3: for 𝑣 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑢) s.t. (𝑢, 𝑣) /∈ 𝑆 do
4: 𝑆(𝑢, 𝑣) = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣));
5: end for
6: end for
7: 𝑀 ← ∅;
8: 𝑢𝑛𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑← 𝑈 ;
9: while 𝑆 is not empty do

10: (𝑢, 𝑣)← pop pair with highest similarity from 𝑆;
11: if 𝑢, 𝑣 ∈ 𝑢𝑛𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 then
12: 𝑀 ←𝑀 ∪ (𝑢, 𝑣);
13: remove 𝑢, 𝑣 from 𝑢𝑛𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑;
14: end if
15: end while
16: add all nodes in 𝑢𝑛𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 to 𝑀 partitioned just to themselves ;
17: return 𝑀 ;

𝑒𝑖
𝑞𝑙 = min

⎛⎜⎝ ∑︁
𝑙′∈𝐿𝑖−1

𝑙

𝑒𝑖−1
𝑞𝑙′ , 𝑑𝑖−1

𝑞

⎞⎟⎠ , (5.1)

Equation (5.1) describes 𝑒𝑖
𝑞𝑙 which represents the maximal demand that can be assigned

from an OD-pair 𝑞 to a new area 𝑙. The new 𝑒𝑖
𝑞𝑙 is composed of the sum of old 𝑒𝑖−1

𝑞𝑙′ or if
that sum is now higher than the provided demand of OD-pair, the total demand 𝑑𝑖−1

𝑞 of
an OD-pair. If two areas are merged they now should be able to serve the same demand
along the same connections that the old areas were able to serve and only if this demand
can not be delivered from the OD-pair should the new demand be capped.

When two nodes 𝑙1, 𝑙2 ∈ 𝐿𝑖−1 are merged to a node 𝑙 ∈ �̃�𝑖 the new node 𝑙 is now neighbored
to all nodes �̃� 𝑖(𝑙) = (𝑁 𝑖−1(𝑙1) ∪𝑁 𝑖−1(𝑙2)) meaning the new node 𝑙 is neighbored to all
nodes either of the original nodes 𝑙1 or 𝑙2 were neighbored to. Note that �̃�𝑖 = 𝑄𝑖−1

because only the 𝐿𝑖−1 set was coarsened yet.

The new maximum demand that can be fulfilled by the stations in an area 𝑙 ∈ �̃�𝑖 is
determined by Formula (5.2).

𝑑𝑖
𝑙 = min

⎛⎜⎝ ∑︁
𝑙′∈𝐿𝑖−1

𝑙

𝑑
𝑖−1
𝑙′ ,

∑︁
𝑞∈�̃� 𝑖(𝑙)

𝑒𝑖−1
𝑞𝑙

⎞⎟⎠ . (5.2)

28

5.2. LMLO Details

The new area can serve as much demand as both old areas with the caveat that if the
neighboring OD-pairs can not deliver enough demand for the new area the maximum
satisfiable demand is bound by the demand that the OD-pairs can deliver.

Finally, maximum station numbers are derived by Formula (5.3).

𝑟𝑙 =
⌈︃ ˜̄𝑑𝑙

𝑠

⌉︃
. (5.3)

This ensures that at an area 𝑙 only so many slots and stations can be built that all
possible demand is satisfiable.

Coarsening for 𝑄

After a partitioning 𝑄𝑖−1
𝑞 for the nodes of �̃�𝑖 of the graph �̃�𝑖 has been derived we can

coarsen the nodes 𝑞1, 𝑞2 ∈ �̃�𝑖 to the new node 𝑞 ∈ 𝑄𝑖. The relevant properties that need
handling are the features of the OD-pairs: 𝑑𝑞, 𝑁(𝑞) as well as properties associated with
edges: 𝑒𝑞𝑙.

For each edge (𝑞, 𝑙) ∈ �̃�𝑖 the maximum assignable demand is calculated by Equation
(5.4).

𝑒𝑖
𝑞𝑙 = min

⎛⎜⎝ ∑︁
𝑞′∈𝑄𝑖−1

𝑞

𝑒𝑖
𝑞′𝑙, 𝑑𝑖

𝑙

⎞⎟⎠ (5.4)

If only one of the old nodes 𝑞1, 𝑞2 served an area 𝑙 the maximum assignable demand along
that edge should not increase. If both OD-pairs were able to serve the area the demand
should now be the sum of them unless the area can not handle that much demand in
which case the second condition takes over and the maximum assignable demand is
capped at 𝑑𝑖

𝑙

When two nodes 𝑞1, 𝑞2 ∈ �̃�𝑖 are merged to a node 𝑞 ∈ 𝑄 the new node 𝑞 is now neighbored
to all nodes 𝑁 𝑖(𝑞) = (�̃� 𝑖(𝑞1) ∪ �̃� 𝑖(𝑞2)). Note that �̃�𝑖 = 𝐿𝑖 because only the �̃�𝑖 set is
coarsened in this step. The new 𝑞 node is now neighbored to all nodes 𝑙 that either 𝑙1 or
𝑙2 were neighbored to before.

The final property for which a coarsening needs to be defined is the demand of an OD-pair.
The demands of the merged OD-pairs are aggregated by taking the respective sums for
all 𝑞 ∈ 𝑄𝑖−1

𝑞 while also considering the maximal amount of demand that can be assigned
to stations at all adjacent areas 𝑙 ∈ �̃� 𝑖(𝑞). A Formula for this can be seen in (5.5).

𝑑𝑖
𝑞 = min

⎛⎜⎝ ∑︁
𝑞′∈𝑄𝑖

𝑞

𝑑𝑖
𝑞′ ,

∑︁
𝑙∈�̃� 𝑖(𝑞)

𝑒𝑖
𝑞𝑙

⎞⎟⎠ . (5.5)

When two OD-pairs 𝑞1, 𝑞2 ∈ �̃�𝑖 are coarsened their demands are added up, unless this
would cause an overflow in the assigned demands along the adjacent edges in which case
the 𝑒𝑞𝑙 are the limiting factor.

29

5. A Learning Multi Level Optimization Approach for the DMBSSLP

5.2.3 Solving

With the partitioning and coarsening being repeatedly applied we obtain the smallest
problem instance 𝐺𝐾 . We can now apply a solver using the MILP-formulation from
Section 2.2. This will produce an inital solution (𝑥𝑖, 𝑦𝑖, 𝑎𝑖) for the problem 𝐺𝐾 . In the
following sections, we will explain how to project this solution to the less coarse instance
𝐺𝑖−1.

5.2.4 Projection

In this section we describe how a solution (𝑥𝑖, 𝑦𝑖, 𝑎𝑖) to a graph 𝐺𝑖 is projected to
graph 𝐺𝑖−1.

The projection of a solution is done in two steps: First projecting from 𝐺𝑖 to �̃�𝑖 and then
further projecting to 𝐺𝑖−1. Both of these projections are done by solving multiple smaller
subproblems, one subproblem for each node that was obtained during the partitioning
and coarsening.

A solution for the problem instance 𝐺𝑖, is 𝑥𝑖 = (𝑥𝑖
𝑙)𝑙∈𝐿𝑖 with 𝑥𝑖

𝑙 ∈ {0, . . . , 𝑟𝑖
𝑙}, 𝑦𝑖 = (𝑦𝑖

𝑙)𝑙∈𝐿𝑖

with 𝑦𝑖
𝑙 ∈ {0, . . . , ⌈𝑑𝑖

𝑙⌉} and 𝑎𝑖 = (𝑎𝑖
𝑞𝑙)𝑞∈𝑄𝑖,𝑙∈𝐿𝑖 with 0 ≤ 𝑎𝑖 ≤ 𝑒𝑖

𝑞𝑙. We describe the
intermediate solution on the graph �̃�𝑖 with �̃�𝑖, 𝑦𝑖, and �̃�𝑖.

Projecting from 𝐺𝑖 to �̃�𝑖

To project a solution (𝑥𝑖, 𝑦𝑖, 𝑎𝑖) given on graph 𝐺𝑖 to obtain a solution (�̃�𝑖, 𝑦𝑖, �̃�𝑖) on
graph �̃�𝑖 we need to undo the coarsening of the 𝑄𝑖 nodes. This is done by solving the
following independent LP for each 𝑞 ∈ 𝑄𝑖:

max
∑︁

𝑞′∈𝑄𝑖−1
𝑞

∑︁
𝑙∈�̃� 𝑖(𝑞′)

�̃�𝑖
𝑞′𝑙 (5.6)

∑︁
𝑙∈�̃� 𝑖(𝑞′)

�̃�𝑖
𝑞′𝑙 ≤ 𝑑𝑖

𝑞′ 𝑞′ ∈ 𝑄𝑖−1
𝑞 (5.7)

∑︁
𝑞′∈�̃� 𝑖(𝑙)∩𝑄𝑖−1

𝑞

�̃�𝑖
𝑞′𝑙 ≤ 𝑎𝑖

𝑞𝑙 𝑙 ∈ 𝑁 𝑖(𝑞) (5.8)

0 ≤ �̃�𝑖
𝑞′𝑙 ≤ 𝑒𝑞′𝑙 𝑞′ ∈ 𝑄𝑖−1

𝑞 , 𝑙 ∈ �̃� 𝑖(𝑞) (5.9)

The objective function (5.6) of the LP maximizes the satisfied demand. Constraints (5.7)
ensure that assigned demand does not exceed an OD-pair’s available demand. Formula
(5.8) ensure that the total demand assigned to each area 𝑙 ∈ 𝑁 𝑖(𝑞) does not exceed the
amount of demand assigned to 𝑙 in solution (𝑥𝑖, 𝑦𝑖, 𝑎𝑖). The final constraint (5.9) gives
the domain of the �̃�𝑖

𝑞𝑙 variable. Because of constraint (5.8) the total number of battery
slots required in an area does not increase when projecting the solution to �̃�𝑖. Therefore,
all these subproblems can be solved independently of each other.

30

5.2. LMLO Details

Projecting from �̃�𝑖 to 𝐺𝑖−1

When the solution is projected from �̃�𝑖 to 𝐺𝑖−1, we again have one subproblem for each
𝑙 ∈ �̃�𝑖. When projecting the demand assignment of an area 𝑙 ∈ �̃�𝑖 to the areas 𝑙′ ∈ 𝐿𝑖−1

𝑙

not all of the demand assigned to 𝑙 can necessarily also be assigned to the areas 𝑙′. But
there may also be unused demand that could potentially be satisfied in the areas 𝑙′.
This interaction results in dependence between the subproblems. One subproblem might
result in some demand being left unsatisfied and another subproblem can now use this
unsatisfied demand to increase the overall demand it satisfies. The order in which the
problems will be solved now does affect the results. Some preliminary tests showed that
solving the areas first that have the highest amount of fulfilled demand per cost yields
the best results.
The subproblem for 𝑙 ∈ �̃�𝑖 consider the areas 𝐿𝑖−1

𝑙 and the OD-pairs 𝑞 ∈ �̃� 𝑖−1(𝑙). We
define a helper variable 𝛿𝑞 which represents the unassigned demand of an OD-pair 𝑞. For
details on how this value is calculated, we refer to Algorithm 5.3. A solution for each
subproblem can be obtained by solving the MILP (5.10)-(5.17).

max
∑︁

𝑙′∈𝐿𝑖−1
𝑙

∑︁
𝑞∈𝑁 𝑖−1(𝑙′)

𝑎𝑖−1
𝑞𝑙′ (5.10)

𝑠𝑥𝑖−1
𝑙′ ≥ 𝑦𝑖−1

𝑙′ 𝑙′ ∈ 𝐿𝑖−1
𝑙 (5.11)∑︁

𝑙′∈𝐿𝑖−1
𝑙

∩𝑁 𝑖−1(𝑞)

𝑎𝑖−1
𝑞𝑙′ ≤ 𝛿𝑞 𝑞 ∈ 𝑁 𝑖−1(𝑙) (5.12)

∑︁
𝑞∈𝑁 𝑖−1(𝑙′)

𝑎𝑖−1
𝑞𝑙′ ≤ 𝑦𝑖−1

𝑙′ 𝑙′ ∈ 𝐿𝑖−1
𝑙 (5.13)

∑︁
𝑙′∈𝐿𝑖−1

𝑙

(𝑐𝑥𝑖−1
𝑙′ + 𝑏𝑦𝑖−1

𝑙′) ≤ 𝑐�̃�𝑖
𝑙 + 𝑏𝑦𝑖

𝑙 (5.14)

𝑥𝑖−1
𝑙′ ∈ {0, . . . , 𝑟𝑖−1

𝑙′ } 𝑙′ ∈ 𝐿𝑖−1
𝑙 (5.15)

𝑦𝑖−1
𝑙′ ∈ {0, . . . , ⌈𝑑𝑖−1

𝑙′ ⌉} 𝑙′ ∈ 𝐿𝑖−1
𝑙 (5.16)

0 ≤ 𝑎𝑖−1
𝑞𝑙′ ≤ 𝑒𝑖−1

𝑞𝑙′ 𝑙′ ∈ 𝐿𝑖−1
𝑙 , 𝑞 ∈ 𝑁 𝑖−1(𝑙′) (5.17)

This model is derived from the original MILP (2.3)-(2.10). Slight differences are in
Equation (5.12) and (5.14). Inequality (5.14) restricts what is spent in (𝑥𝑖−1, 𝑦𝑖−1, 𝑎𝑖−1)
in areas 𝐿𝑖−1

𝑙 to the corresponding costs in the solution to �̃�𝑖, i.e., 𝑐�̃�𝑖
𝑙 + 𝑏𝑦𝑖

𝑙 . Inequality
(5.12) restricts the demand of each OD-pair 𝑞 ∈ 𝑁 𝑖−1(𝑙) that may at most be covered by
adjacent areas in 𝐿𝑖−1

𝑙 to 𝛿𝑙. The demand 𝛿𝑞, for 𝑞 ∈ 𝑁 𝑖−1(𝑙), consists of the demand of
�̃�𝑞𝑙 fulfilled in 𝑙 in �̃�𝑖 and additionally the so far uncovered demand of 𝑞, 𝑑𝑞−

∑︀
𝑙∈�̃� 𝑖(𝑞) �̃�𝑞𝑙

w.r.t. any area in �̃�𝑖.
Algorithm 5.3 shows how the areas in �̃� are sequentially projected. The core part of
this method is how 𝛿𝑞 is updated in each step. The other parts consist of solving the
corresponding MILP and bookkeeping the different variables.

31

5. A Learning Multi Level Optimization Approach for the DMBSSLP

Algorithm 5.3: Project Solution from �̃�𝑖 to 𝐺𝑖−1

Input : a solution (�̃�𝑖, 𝑦𝑖, �̃�𝑖) to �̃�𝑖

Output: a (𝑥𝑖−1, 𝑦𝑖−1, 𝑎𝑖−1) solution to 𝐺𝑖−1

1: (𝑥𝑖−1, 𝑦𝑖−1, 𝑎𝑖−1)← empty solution w.r.t. 𝐺𝑖−1;
2: 𝛿𝑞 ←

(︁
𝑑𝑞 −

∑︀
𝑙∈�̃� 𝑖(𝑞) �̃�𝑞𝑙

)︁
; ∀𝑞 ∈ �̃�𝑖 // unassigned demand w.r.t. �̃�𝑖

3: for 𝑙 ∈ �̃�𝑖 according to decreasing
∑︀

𝑞∈𝑁𝑖(𝑙) �̃�𝑞𝑙

�̃�𝑙𝑐+𝑦𝑙𝑏
do

4: 𝛿𝑞 ← 𝛿𝑞 + �̃�𝑞𝑙 ∀𝑞 ∈ �̃� 𝑖(𝑙); // demand available for areas in 𝐿𝑖−1
𝑙

5: (𝑥′, 𝑦′, 𝑎′)← solve(𝐿𝑖−1
𝑙 , �̃� 𝑖(𝑙), 𝛿); // apply MILP (5.10)–(5.17)

6: 𝑥𝑖−1
𝑙′ ← 𝑥′

𝑙′ , 𝑦𝑖−1
𝑙′ ← 𝑦′

𝑙′ ∀𝑙′ ∈ 𝐿𝑖−1
𝑙 ;

7: 𝑎𝑖−1
𝑞′𝑙′ ← 𝑎′

𝑞′𝑙′ , 𝛿𝑞′ ← 𝛿𝑞′ − 𝑎𝑞′𝑙′ ∀𝑙′ ∈ 𝐿𝑖−1
𝑙 ∀𝑞′ ∈ 𝑁 𝑖−1(𝑙′);

8: end for
9: return (𝑥𝑖−1, 𝑦𝑖−1, 𝑎𝑖−1);

During the procedure 𝛿𝑞 is repeatedly updated on the go for each area. At first in Line 2
the variable 𝛿𝑞 is initialized with the demand of each OD-pair 𝑞 ∈ �̃�𝑖. From these values
the sum of the already allocated demands of the previous solution �̃�𝑖 is subtracted. This
leaves us with the so far not allocated demand. In each iteration of the for-loop in Line 4
𝛿𝑞 is updated to include the demand that was assigned to the area 𝑙. This allows the
MILP (5.10)-(5.17) to allocate the same amount of demand that was already allocated
in the previous solution �̃�𝑖−1

𝑞𝑙 plus the so far unaccounted demand with which 𝛿𝑞 was
initialized with. Lastly in Line 7 the newly allocated demand is again subtracted from 𝛿𝑞.
If not all demand is assigned again in the current solution it will therefore remain in 𝛿𝑞

and can thus be allocated when projecting another area 𝑙.

The order in which the areas 𝑙 are solved is according to non-decreasing efficiencies∑︀
𝑞∈𝑁𝑖(𝑙) �̃�𝑞𝑙

�̃�𝑙𝑐+𝑦𝑙𝑏
reflecting the potentially fulfillable demand per cost of the stations.

5.2.5 Refinement

The final step of the MLO Algorithm 5.1 is the refinement. In this step, a greedy
Construction Heuristic (CH), which can also be used as a stand-alone to find solutions,
is applied to improve the so-far found solution. During the projection, it happens that
the optimal solution uses less budget than available. In this case, the budget will be left
over in the end. Applying the CH improves the solution by using this leftover budget to
build additional stations and slots. In Algorithm 5.4 we describe how the CH for the
refinement works.

At first, we reallocate the 𝑎𝑖
𝑞𝑙 values in Line 1 according to the LP in (5.18) - (5.21).

After the different subproblems for 𝑙 and 𝑞 are solved the demands might be distributed
unfavorable. By fixing the 𝑥 and 𝑦 values and solving the LP just for the 𝑎 values it can

32

5.2. LMLO Details

Algorithm 5.4: Construction Heuristic
Input : an unrefined solution (𝑥𝑖, 𝑦𝑖, 𝑎𝑖) to 𝐺𝑖

Output: a refined solution (𝑥𝑖, 𝑦𝑖, 𝑎𝑖) to 𝐺𝑖

1: Reallocate 𝑎𝑖 by solving LP (5.18) - (5.21) ;
2: 𝐵𝑙𝑒𝑓𝑡 ← 𝐵 −

∑︀
𝑙∈𝐿𝑖(𝑥𝑖

𝑙𝑐 + 𝑦𝑖
𝑙𝑏)

3: Δ𝑑𝑙 ← 𝑑𝑙 −
∑︀

𝑞∈𝑁 𝑖(𝑙) 𝑎𝑞𝑙 ∀𝑙 ∈ 𝐿𝑖

4: Δ𝐵𝑙 ← (𝑟𝑙 − 𝑥𝑙)𝑐 + (⌈𝑑𝑙⌉ − 𝑦𝑙)𝑏 ∀𝑙 ∈ 𝐿𝑖

5: for 𝑙 ∈ 𝐿𝑖 according to decreasing Δ𝑑𝑙
Δ𝐵𝑙

do
6: 𝑦𝑛𝑒𝑤 ← min(𝑠𝑥𝑖

𝑙 − 𝑦𝑖
𝑙 , ⌈𝑑𝑙⌉ − 𝑦𝑙, ⌊

𝐵𝑙𝑒𝑓𝑡

𝑏 ⌋)
7: 𝐵𝑙𝑒𝑓𝑡 ← 𝐵𝑙𝑒𝑓𝑡 − 𝑦𝑛𝑒𝑤 · 𝑏
8: 𝑦𝑖

𝑙 ← 𝑦𝑖
𝑙 + 𝑦𝑛𝑒𝑤

9: while 𝑥𝑖
𝑙 < 𝑟𝑖

𝑙 ∧ (𝑐 + 𝑏) > 𝐵𝑙𝑒𝑓𝑡 do
10: 𝑥𝑖

𝑙 ← 𝑥𝑖
𝑙 + 1

11: 𝐵𝑙𝑒𝑓𝑡 ← 𝐵𝑙𝑒𝑓𝑡 − 𝑐

12: 𝑦𝑛𝑒𝑤 ← min(𝑠𝑥𝑖
𝑙 − 𝑦𝑖

𝑙 , ⌈𝑑𝑙⌉ − 𝑦𝑙, ⌊
𝐵𝑙𝑒𝑓𝑡

𝑏 ⌋)
13: 𝐵𝑙𝑒𝑓𝑡 ← 𝐵𝑙𝑒𝑓𝑡 − 𝑦𝑛𝑒𝑤 · 𝑏
14: 𝑦𝑖

𝑙 ← 𝑦𝑖
𝑙 + 𝑦𝑛𝑒𝑤

15: end while
16: allocate 𝑎𝑖

17: end for
18: Reallocate 𝑎𝑖 by solving LP (5.18) - (5.21) ;
19: return (𝑥, 𝑦, 𝑎);

be possible to improve the solution slightly. Then the leftover Budget is calculated in
Line 2. The For loop in Line 5 iterates over the 𝑙 values in 𝐿𝑖 such that the locations
which offer the most demand for the cheapest price are considered first. Then as many
battery charging slots as possible are built. In the while loop in Line 9 additional stations
and slots are built until no more can be built. In Line 16 the demand of the neighboring
OD-pairs is assigned to 𝑎𝑖. This process is repeated until all areas have been considered.
Finally in the last step in Line 18 the 𝑎𝑖 values are once again reallocated according to
LP (5.18) - (5.21). This reallocation is necessary as it is not checked during the CH if
some demand has been assigned twice.

33

5. A Learning Multi Level Optimization Approach for the DMBSSLP

max
∑︁

𝑞∈𝑄𝑖

∑︁
𝑙∈𝑁 𝑖(𝑞)

𝑎𝑖
𝑞𝑙 (5.18)

∑︁
𝑙∈𝑁 𝑖(𝑞)

𝑎𝑖
𝑞𝑙 ≤ 𝑑𝑖

𝑞 𝑞 ∈ 𝑄𝑖 (5.19)

∑︁
𝑞∈𝑁 𝑖(𝑙)

𝑎𝑖
𝑞𝑙 ≤ 𝑦𝑖

𝑙 𝑙 ∈ 𝐿𝑖 (5.20)

0 ≤ 𝑎𝑖
𝑞𝑙 ≤ 𝑒𝑖

𝑞𝑙 𝑞 ∈ 𝑄𝑖, 𝑙 ∈ 𝑁 𝑖(𝑞) (5.21)

5.3 Similarity
Similarity measures are used to quantify how similar two nodes of the network are. As
we are creating a partitioning on a bipartite graph we always consider the similarity for
two nodes that are neighbored considering the two-hop neighborhood. Recall that in
contrast to the two-hop neighborhood where we consider nodes 𝑞1, 𝑞2 ∈ 𝑄 neighbored
if they are neighbored in the respective two-hop graph, the neighbors considering the
variable 𝑁(𝑞) for 𝑞 ∈ 𝑄 are in the 𝐿 set.

In this section, we give an overview of different similarity measures that can be used to
create the partitioning. At first, we explain the Jaccard similarity which is a conventional
similarity measure that has been used by Jatscka et al.[JRR23] in a previous MLO
approach to a similar problem. Secondly, we are going to define a machine learning based
similarity calculation that is based on two neural networks that predict the similarity of
two nodes based on handcrafted input features.

5.3.1 Jaccard Similarity

The Jaccard similarity was used by Jatschka et al. [JRR23] in an MLO approach for the
Multi Period Battery Swapping Station Problem the equation for the Jaccard similarity
can be seen in Equation (5.22). The Jaccard similarity also called Intersection over Union
similarity compares the number of common neighbors to the total number of neighbors.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑞1, 𝑞2) = |𝑁(𝑞1) ∩𝑁(𝑞2)|
|𝑁(𝑞1) ∪𝑁(𝑞2)| (5.22)

An interpretation of this measure might be that if nodes 𝑞1, 𝑞2 ∈ 𝑄 have a high Jaccard
similarity they have a lot of common neighboring areas in the 𝐿 set. Meaning a station
built at area 𝑙 ∈ 𝐿 that is neighbored to 𝑞1 will likely also be neighbored to 𝑞2. Meaning
both OD-pairs 𝑞1 and 𝑞2 can potentially satisfy their demand at that station. The other
way around if two nodes 𝑙1, 𝑙2 ∈ 𝐿 have a high similarity, they have a lot of similar
OD-pairs as neighbors. A station built at either 𝑙1 or 𝑙2 can thus fulfill most of the
demand that the other station would also be able to fulfill.

34

5.3. Similarity

5.3.2 Learned Similarity

The goal is to train two neural networks (NN), one for the 𝑄 similarity and one for the
𝐿 similarity. These NNs will use handcrafted input features reflecting the properties
of a problem instance to calculate a similarity measure between the two input nodes.
Those features contain properties of the finer problem instance as well as properties of
the potential coarsened problem instance. The models will be trained using the Mean
Squared Error (MSE) as a loss function and the ADAM optimizer [KB14]. The MSE
is not applied to the output directly as this would increase the influence of the far
outliers existing in the distributions of 𝑧𝑙1𝑙2 , 𝑧𝑞1𝑞2 and 𝑧𝑗 . Instead, we apply the symlog
transformation [HPBL23] as seen in Equation (5.23) to both the predicted output of the
network and ground truth and calculate the MSE on the difference between the symlog
values.

symlog(𝑥) := sign(𝑥) log(𝑥 + 1) (5.23)

Details on architecture, as well as training data generation, follow in Section 6.4.

Neural Network Features for 𝐿

We describe the neural network features in terms of a problem instance 𝐺𝑖(𝑄𝑖, 𝐿𝑖, 𝐸𝑖) and
the respective coarsened problem instance �̃�𝑖+1(�̃�𝑖+1, �̃�𝑖+1, �̃�𝑖+1) where the 𝐿𝑖 nodes
have been coarsened.

The nodes 𝑙, 𝑙′ ∈ 𝐿𝑖 are neighbored considering the two-hop neighborhood of 𝐿𝑖 in
𝐺𝑖(𝑄𝑖, 𝐿𝑖, 𝐸𝑖). The prospective future node they would be coarsened into is the node
𝑙′′ ∈ �̃�𝑖+1. We denote the vector of input features as ℎ𝑖

𝐿,𝑙,𝑙′ . The input features of the
neural network are:

1. 𝑟𝑖
𝑙 , 𝑑𝑖

𝑙

2. 𝑟𝑖
𝑙′ , 𝑑𝑖

𝑙′

3. 𝑟𝑖+1
𝑙′′ , ˜̄𝑑𝑖+1

𝑙′′

4. ∑︀
𝑞∈𝑁 𝑖(𝑙)∩𝑁 𝑖(𝑙′) 𝑑𝑞, ∑︀

𝑞∈𝑁 𝑖(𝑙)Δ𝑁 𝑖(𝑙′) 𝑑𝑞,
∑︀

𝑞∈𝑁𝑖(𝑙)∩𝑁𝑖(𝑙′) 𝑑𝑞∑︀
𝑞∈𝑁𝑖(𝑙)∪𝑁𝑖(𝑙′) 𝑑𝑞

5. min(∑︀𝑞∈𝑁 𝑖(𝑙) 𝑒𝑖
𝑞𝑙, 𝑑𝑖

𝑙), min(∑︀𝑞∈𝑁 𝑖(𝑙′) 𝑒𝑖
𝑞𝑙′ , 𝑑𝑖

𝑙′), min(∑︀𝑞∈�̃� 𝑖+1(𝑙′′) 𝑒𝑖+1
𝑞𝑙′′ , ˜̄𝑑𝑖+1

𝑙′′)

6. |𝑁(𝑙) ∩𝑁(𝑙′)|, |𝑁(𝑙)∩𝑁(𝑙′)|
|𝑁(𝑙)∪𝑁(𝑙′)|

7. 𝑠, 𝑐, 𝑖

35

5. A Learning Multi Level Optimization Approach for the DMBSSLP

Features 1, 2 and 3 represent the distinctive features of each node 𝑙, 𝑙′, 𝑙′′. Features 4
represent the possible demand combinations of the neighboring 𝑞 nodes to 𝑙, 𝑙′. Features 5
represent the possible demand for an area 𝑙, 𝑙′, 𝑙′′. Features 6 are the number of common
neighbors as well as the Jaccard similarity. Features 7 are global properties of the problem
instance as well as the current level in the MLO that is being handled.

Neural Network Features for 𝑄

We describe the neural network features in terms of a problem instance �̃�𝑖(�̃�𝑖, �̃�𝑖, �̃�𝑖)
and the respective coarsened problem instance 𝐺𝑖(𝑄𝑖, 𝐿𝑖, 𝐸𝑖) where the �̃�𝑖 nodes have
been coarsened.

The nodes 𝑞, 𝑞′ ∈ �̃�𝑖 are neighbored considering the two-hop neighborhood of �̃�𝑖 in
�̃�𝑖(�̃�𝑖, �̃�𝑖, �̃�𝑖). The prospective future node they would be coarsened into is the node
𝑞′′ ∈ 𝑄𝑖. We denote the vector of input features as ℎ𝑖

𝑄,𝑞,𝑞′ . The input features of the
neural network are:

1. 𝑑𝑖
𝑞, 𝑑𝑖

𝑞′ , 𝑑𝑖
𝑞′′

2. ∑︀
𝑙∈�̃� 𝑖(𝑞)∩�̃� 𝑖(𝑞′)

˜̄𝑑𝑖
𝑙,

∑︀
𝑙∈�̃� 𝑖(𝑞)Δ�̃� 𝑖(𝑞′)

˜̄𝑑𝑖
𝑙,

∑︀
𝑙∈�̃�𝑖(𝑞)∩�̃�𝑖(𝑞′)

˜̄𝑑𝑖
𝑙∑︀

𝑙∈�̃�𝑖(𝑞)∪�̃�𝑖(𝑞′)
˜̄𝑑𝑙

3. ∑︀
𝑙∈�̃� 𝑖(𝑞)∩�̃� 𝑖(𝑞′) 𝑟𝑖

𝑙 ,
∑︀

𝑙∈�̃� 𝑖(𝑞)Δ�̃� 𝑖(𝑞′) 𝑟𝑖
𝑙 ,

∑︀
𝑙∈�̃�𝑖(𝑞)∩�̃�𝑖(𝑞′) 𝑟𝑖

𝑙∑︀
𝑙∈�̃�𝑖(𝑞)∪�̃�𝑖(𝑞′) 𝑟𝑖

𝑙

4. min(∑︀𝑙∈�̃� 𝑖(𝑞) 𝑒𝑖
𝑞𝑙, 𝑑𝑖

𝑞), min(∑︀𝑙∈�̃� 𝑖(𝑞′) 𝑒𝑖
𝑞′𝑙, 𝑑𝑖

𝑞′), min(∑︀𝑙∈𝑁 𝑖(𝑞′′) 𝑒𝑖
𝑞′′𝑙, 𝑑𝑖

𝑞′′)

5. |�̃� 𝑖(𝑞) ∩ �̃� 𝑖(𝑞′)|, |�̃� 𝑖(𝑞)∩�̃� 𝑖(𝑞′)|
|�̃� 𝑖(𝑞)∪�̃� 𝑖(𝑞′)|

6. 𝑖

Features 1 are the demands of the nodes 𝑞, 𝑞′, 𝑞′′. Features 2 represent different set
combinations of ˜̄𝑑𝑖 in the neighboring nodes of 𝑞 and 𝑞′ in the 𝐿𝑖 set. Feature 3 is similar
it contains information of 𝑟𝑖

𝑙 in different set combinations of the neighboring nodes in
the 𝐿𝑖 set. Feature 4 is the demand an OD-pair 𝑞, 𝑞′, 𝑞′′ can maximally assign to any
neighboring area 𝑙. The second to last Feature 5 contains the Jaccard similarity as well
as the total number of common neighbors of two nodes. Lastly, Feature 6 is the level
information of the MLO.

5.4 Instance Generation
For training the model that represents the similarity measure we need to create a sizeable
amount of different representative problem instances. To create a DMBSSLP instance
𝐺(𝑄, 𝐿, 𝐸) we define |𝐿| = 𝑛 and |𝑄| = 𝑚. Before we create the bipartite network we

36

5.4. Instance Generation

create a graph 𝑃 (𝑉, 𝐸) as discussed in Section 2.1. The steps that are carried out to
create a problem instance are explained in the following paragraphs. Our approach
reuses the approach from Jatschka et al. [JORR20] where a detailed explanation of the
instance creation for MBSSLP is given. We use a slightly adapted version of this to
create instances for the DMBSSLP.

First, 𝑛 points with coordinates (𝑥, 𝑦) uniformly distributed in an euclidean square of
size 800

√
𝑛 representing the areas 𝑉 are created.

The primal edges 𝐸 of 𝑃 (𝑉, 𝐸) are composed of an euclidean spanning tree (EST).
This ensures that all areas are connected. The EST is calculated by first creating the
intermediate Graph containing the Delaunay triangulation [Del34] of the areas 𝑉 and
secondly calculating an EST on the Delaunay graph.

Additionally 𝑛 edges (𝑢, 𝑣) ∈ 𝑉 × 𝑉 are added. These edges represent faster connections
between areas e.g. direct connections in an urban street network.

We fill the instance with the 𝑠, 𝑐, 𝑏 values. In the MBSSLP the 𝑐 values are associated with
an area itself and thus can differ. The 𝑠 values which represent the maximum battery slots
per station are set to 70. This value is hardly ever used thou as the maximum number
of battery slots is reduced during the demand calculation to the maximum demand a
location can fulfill 𝑑 and 70 is rarely reached. In the end, these values are averaged for
all areas. For the cost of building a battery slot 𝑏 we choose 40. Each location then gets
a value 𝑐 chosen uniformly from 40 ≤ 𝑐 ≤ 70. For the DMBSSLP we can thus just take 𝑠
and 𝑏 values as constants as they already are and set the 𝑐 value to the mean of all 𝑐
values in the MBSSLP.

In the next step, the OD-pairs are created. The origin and destination are chosen from
a random subset 𝑉 ′ ⊆ 𝑉 with |𝑉 ′| = min(𝑚

2 , 𝑛). This creates demand hubs for smaller
instances where the demand is concentrated in fewer nodes. For instances with 𝑚 > 2𝑛
all nodes are eligible and the demand is more evenly distributed. Each area has a weight
𝑤𝑙 assigned to it according to a log-normal distribution with 𝜇 = log(100) and 𝜎 = 0.5.

So far there have been no major changes between the instance generation for the MBSSLP
and the DMBSSLP. Where the methods differ is how the demands for the OD-pairs for
the two problems are generated. As the MBSSLP operates on different time steps, 24
different demand values, one for each hour of the day are generated. The total demand
of an OD-pair (𝑢, 𝑣) is calculated according to the weights of the nodes 𝑢, 𝑣 and their
distance 𝑝𝑞 according to 𝑑𝑡𝑜𝑡 = 𝑤𝑢 · 𝑤𝑣 · 𝑓𝑃 𝐷𝐹 (𝑝𝑞, 𝜇, 𝜎) where 𝑓𝑃 𝐷𝐹 (𝑝𝑞, 𝜇, 𝜎) represents
the probability density function (PDF) of a log-normal distribution with 𝜇 = 5000 and
𝜎 = 0.2. The PDF is used so that the trips customers take are on average 5km long.
Very short trips < 2km result in the PDF being almost 0 as it is unlikely that a customer
would need to refuel during such a short trip. Very long trips > 10km are also unlikely
as the goal is to represent trips in an urban network. To accommodate that such trips
might still be possible we set the demand for OD-pairs where the demand would be 0 to
at least 0.01.

37

5. A Learning Multi Level Optimization Approach for the DMBSSLP

With the premise that most traffic is concentrated in the early morning hours when
most people drive to work and the late evening hours when people drive home, two
separate normal distributions, one for the morning traffic with 𝒩𝑚𝑜𝑟𝑛𝑖𝑛𝑔(8, 1) with the
mean at 8 hours and a standard deviation of 1 and one for the evening 𝒩𝑒𝑣𝑒𝑛𝑖𝑛𝑔(18, 2)
are created. From each distribution, 100 values 𝑡𝑖 are drawn and transformed to integral
values according to 𝑡 = (⌈𝑡𝑖⌉ mod 24) + 1. Finally, the demand 𝑑𝑡𝑜𝑡 is distributed over
all time steps according to how often a time step appears in the random drawings.

Because we do not consider all 24 hours of the day in the DMBSSLP we simplify the
created demand and take the hour of the day which has the highest sum of all demands
associated with it. This allows us to still solve the most challenging variant of the problem
while simplifying the problem enough.

Next, we compute the pairwise shortest paths between all nodes using the Johnson
Shortest Path algorithm [CLRS22]. This algorithm runs in 𝑂(|𝑉 |2 log |𝑉 |+ |𝑉 ||𝐸|) which
can be simplified to 𝑂(|𝑉 |2 log |𝑉 |) considering the graph has 2𝑛 − 1 edges and thus
𝑂(𝑉) = 𝑂(𝐸).

The graph 𝑃 (𝑉, 𝐸) is now transformed into the bipartite graph 𝐺(𝑄, 𝐿, 𝐸) that we
already know of. We set the maximum detour length 𝑤𝑑𝑒𝑡𝑜𝑢𝑟 to 400m. Every OD-pair 𝑞
with starting and end areas 𝑢, 𝑣 ∈ 𝑉 will now be connected to every area 𝑥 ∈ 𝑉 such
that the distance 𝑝𝑢𝑣 in the graph 𝑃 (𝑉, 𝐸) does not exceed the maximum detour length.
Meaning if the inequality 𝑝𝑢𝑥 + 𝑝𝑥𝑣 ≤ 𝑝𝑢𝑣 + 𝑤𝑑𝑒𝑡𝑜𝑢𝑟 holds, there will be a connection from
𝑞 ∈ 𝑄 to 𝑥 ∈ 𝐿 in 𝐺(𝑄, 𝐿, 𝐸)

Second to last we calculate the Budget for the instance as seen in Equation (5.24)

𝐵 = 0.5

⎛⎝𝑐 ·
⌈︃∑︀

𝑞∈𝑄 𝑑𝑞

𝑠

⌉︃
+ 𝑏 ·

⎡⎢⎢⎢
∑︁
𝑞∈𝑄

𝑑𝑞

⎤⎥⎥⎥
⎞⎠ (5.24)

This ensures that close to 50% of the demand can be fulfilled for every instance. The
first fraction gives the number of stations that are needed to fulfill all demand and the
second sum gives the number of slots needed. This assumes ideal scenarios where the
demand can be distributed easily among those stations and slots.

Finally, the created graph 𝐺(𝑄, 𝐿, 𝐸) is trimmed meaning areas that have no connection
to any OD-pair are removed.

5.5 Data Generation

Our goal is to train two neural networks which can be used to create a partitioning in the
MLO. The idea is not to directly predict the similarity of two nodes but to predict the
error that is implied when merging two nodes. To train this NN in a classical supervised
fashion we first need to create training data.

38

5.5. Data Generation

This training data creation follows the scheme of: Create a training instance; Coarsen
the instance; Solve the coarse problem instance as well as the fine and all intermediate
problem instances using the MILP formulation (2.3)-(2.10).

The training data is then composed of two parts, the independent variables X, which
represent the input features of the NN and are composed of the row vectors ℎ𝑖

𝐿,𝑙,𝑙′ and
ℎ𝑖

𝑄,𝑞,𝑞′ for the two separate NNs and the dependent variable z which represents the error
we created when merging the two nodes.

The first strategy we tried was to coarsen a single node pair in each iteration. This
proved to be far too slow to create a meaningful amount of data points because a MILP
needs to be solved for every intermediate result.

Therefore we developed two more meaningful ways to create training data. The first
strategy is the so-called subproblem data strategy. In this strategy, we create the
dependant data directly when solving the projection of every single subproblem as
described in Section 5.2.4. In the second strategy, the 𝑘-data strategy, we coarsen 𝑘
nodes and take the overall error created during the coarsening as dependent variable.

The following sections present both strategies in detail.

5.5.1 Subproblem Data Strategy

To create data according to the subproblem data strategy we first coarsen the instance.
We use two different partitioning strategies here.

The first is random partitioning. In this strategy, two random nodes that are neighboring,
in the respective two-hop graph, are merged. This strategy proposes the greatest diversity
as we do not introduce any bias when choosing nodes to partition.

The second partitioning strategy follows the Jaccard similarity as described in Section
5.3.1. On the one hand, this strategy gives us a lot more data on nodes that might be
good to partition but also introduces a bias.

After the coarsening is done the independent data can be collected in terms of the ℎ𝑖
𝐿,𝑙,𝑙′

and ℎ𝑖
𝑄,𝑞,𝑞′ vectors of the merged nodes.

First, we explain how the dependent data for two nodes 𝑞1, 𝑞2 ∈ �̃�𝑖 that have been
merged in a node 𝑞3 ∈ 𝐺𝑖 can be obtained. After a solution 𝑥𝑖, 𝑦𝑖, 𝑎𝑖 has been found for
𝐺𝑖 it is projected to the next finer instance �̃�𝑖 by solving the independent LP (5.6)-(5.9).
The dependant data for the merged nodes 𝑞1, 𝑞2 is described as 𝑧𝑞1𝑞2 and is obtained
as the difference between the demand that has been satisfied in the coarse and the fine
solution as can be seen in Equation (5.25)

𝑧𝑞1𝑞2 =

⎛⎝ ∑︁
𝑙∈𝑁 𝑖(𝑞3)

𝑎𝑖
𝑞3𝑙

⎞⎠−
⎛⎝ ∑︁

𝑙∈𝑁 𝑖(𝑞3)
�̃�𝑖

𝑞1𝑙 + �̃�𝑖
𝑞2𝑙

⎞⎠ (5.25)

39

5. A Learning Multi Level Optimization Approach for the DMBSSLP

Notice that 𝑁 𝑖(𝑞3) = �̃� 𝑖(𝑞1) ∪ �̃� 𝑖(𝑞2) and thus we can just sum over the earlier neigh-
borhood.

With this definition we can obtain the independant variable ℎ𝑖
𝑄,𝑞1,𝑞2

and the respective
dependant variable 𝑧𝑞1𝑞2 for two merged nodes 𝑞1, 𝑞2 ∈ �̃�𝑖. A caveat is that if the merged
OD-pairs 𝑞1, 𝑞2 are not part of the found solution we delete the observation. The motive
for this is to avoid accidentally giving bad merges 0 error that usually would cause some
error if their representative nodes would have played a part in the found solution. To
detect if a node pair is part of the solution we check if any demand has been allocated
from them. This is done by checking if Inequality (5.26) holds.

⎛⎝ ∑︁
𝑙∈𝑁 𝑖(𝑞3)

�̃�𝑖
𝑞1𝑙 + �̃�𝑖

𝑞2𝑙

⎞⎠ > 0 (5.26)

To obtain the dependent variable for two nodes 𝑙1, 𝑙2 ∈ 𝐿𝑖−1 from the solution �̃�𝑖, 𝑦𝑖, �̃�𝑖

of a graph �̃�𝑖 we use two different strategies. Recall that solving the subproblems (5.10)
- (5.17) when projecting a node 𝑙 ∈ �̃�𝑖 the individual subproblems are not independent of
each other because of 𝛿 being able to change depending on the order of subproblems.

The first strategy we are going to explore just uses the dependant 𝛿 as is. We obtain the
dependent variable 𝑧𝑙1𝑙2 for two nodes 𝑙1, 𝑙2 ∈ 𝐿𝑖−1 and 𝑙3 ∈ �̃�𝑖 by solving the LP stated
by inequalities (5.10) - (5.17). Similar to before we use the difference in fulfilled demands
as the dependent variable as described in Equation (5.27)

𝑧𝑙1𝑙2 =

⎛⎝ ∑︁
𝑞∈�̃� 𝑖(𝑙3)

�̃�𝑖
𝑞𝑙3

⎞⎠−
⎛⎝ ∑︁

𝑞∈�̃� 𝑖(𝑙3)

𝑎𝑖−1
𝑞𝑙2

+ 𝑎𝑖−1
𝑞𝑙3

⎞⎠ (5.27)

If an area is deemed unimportant for a solution it is not recorded. This is checked by
observing the number of slots built in areas 𝑙1, 𝑙2. If 𝑦𝑖−1

𝑙1
> 0 ∨ 𝑦𝑖−1

𝑙2
> 0 the observation

is important and is not deleted.

The second strategy to collect the dependant variable 𝑧𝑙1𝑙2 involves making the LP (5.10)
- (5.17) that is solved when calculating a projection independent. To adapt the projection
Algorithm 5.3 the Lines 2 and 7 are changed to set 𝛿 to 0. These are the lines where 𝛿 is
first initialized and updated after a single subproblem is solved. With 𝛿 being set to 0
the subproblems can be solved independently of each other as the order of solving the
individual subproblems no longer influences the solution.

Overall this leaves us with four variants of the subproblem data strategy. The variants
Jaccard and random in which different partitioning strategies are used to create a
coarsening and the dependant and independent 𝛿 strategy where the 𝛿 variable in
algorithm 5.3 is changed to create the data.

40

5.5. Data Generation

5.5.2 𝑘-data Strategy

With the subproblem data strategy we pursue the idea that every individual node is
responsible for the error it creates. For a complex network structure, this might not be
the case as there might be numerous interdependencies between nodes during coarsening
that we cannot capture like this. We, therefore, try to obtain a more complete view of
the problem with the 𝑘-data strategy. We want to avoid bias to understand the network
structure more completely and thus only use random partitioning. Additionally solving
for two different partitioning strategies would also double the already large number of
models being trained.

In the 𝑘-data strategy, an observation is no longer only the features ℎ𝑖
𝑄,𝑞,𝑞′ or ℎ𝑖

𝐿,𝑙,𝑙′ for a
single merge but an observation is the entirety of all features ℎ𝑖 of all coarsened nodes.
This means we can no longer represent our data as a two-dimensional independent feature
matrix X with a dependent variable vector z.

A single observation now is a two-dimensional matrix A. We thus have to upscale
the two-dimensional feature matrix X to a three-dimensional one with the dimensions
𝑘 × |ℎ𝑖| ×𝑁 where 𝑁 is the number of observations and |ℎ𝑖| is the number of features.
To create a single observation A we coarsen 𝑘 nodes and record all their features |ℎ𝑖|.
To create the dependent variable for a single observation which we denote as 𝑧𝑗 we take
the difference between the objective value after it was projected and compare it to the
optimal solution which we obtain by solving MILP (2.3)-(2.10). The equation for 𝑧𝑗

can be seen in Equation (5.28). The values 𝑎MLO,𝑖
𝑞𝑙 and 𝑎MILP,𝑖

𝑞𝑙 describes the 𝑎 values
obtained after solving the MLO and MILP for graph 𝐺𝑖 respectively.

𝑧𝑗 =

⎛⎝ ∑︁
𝑞∈𝑄𝑖

∑︁
𝑙∈𝐿𝑖

𝑎MILP,𝑖
𝑞𝑙

⎞⎠−
⎛⎝ ∑︁

𝑞∈𝑄𝑖

∑︁
𝑙∈𝐿𝑖

𝑎MLO,𝑖
𝑞𝑙

⎞⎠ (5.28)

Unlike for the subproblem strategy, data is not deleted immediately in the 𝑘-data strategy
if it does not play a role in the solution. Instead, the data is flagged as being relevant
or not. In the final training described in Section 6.4 we will distinguish between those
strategies as using only relevant data and using all data.

5.5.3 Training Data Creation

As described in the section above we use four different data creation strategies to create
data with the subproblem data strategy. We create samples from two different instance
sizes. One dataset with constant instance size 𝑚, 𝑛 = 500 and another dataset with
varying instance size with 𝑚, 𝑛 uniformly at random chosen in the range 100 to 1000.

We create datasets using different instance sizes, different partitioning strategies, and
different delta strategies. Additionally, the data is also split between data for the 𝑄 and
𝐿 nodes. An overview of the created data can be seen in Table 5.1. We create about
10000 instances each to collect data from. This results in about 2.5 to 3 million data

41

5. A Learning Multi Level Optimization Approach for the DMBSSLP

Table 5.1: Subproblem data strategy training data overview

size similarity 𝛿 nodes instances datapoints memory in MB
500 Jaccard independant 𝑄 10000 2720000 538
500 Jaccard independant 𝐿 10000 388000 79
500 Jaccard dependant 𝑄 9900 2540000 502
500 Jaccard dependant 𝐿 9900 361000 73
500 Random independant 𝑄 9700 2380000 465
500 Random independant 𝐿 9700 398000 81
500 Random dependant 𝑄 10000 2510000 490
500 Random dependant 𝐿 10000 381000 78
100-1000 Jaccard independant 𝑄 10000 3050000 598
100-1000 Jaccard independant 𝐿 10000 377000 75
100-1000 Jaccard dependant 𝑄 9900 2960000 580
100-1000 Jaccard dependant 𝐿 9900 346000 69
100-1000 Random independant 𝑄 9600 2662000 519
100-1000 Random independant 𝐿 9600 379000 76
100-1000 Random dependant 𝑄 10000 2868000 559
100-1000 Random dependant 𝐿 10000 367000 73

points for 𝑄 and about 350 to 400 thousand data points for the 𝐿 data. The 𝐿 data is
much more sparse because we delete data points that do not play a role in the solution.
A datapoint in 𝐿 is deleted if there are no slots 𝑦 built at that area while a datapoint in
𝑄 is only deleted if all neighboring 𝑎𝑞𝑙 are 0. Making it much more likely that a data
point in 𝐿 will be deleted.

For the 𝑘-data strategy, we create data using different values, for 𝑘. A very small value
𝑘 = 5, a medium value 𝑘 = 30, and a large value 𝑘 = max. 𝑘 = max means the whole
instance is partitioned meaning every node that can be paired will be paired if there is
a suitable partner left. For smaller 𝑘 values the created data represents the individual
nodes a lot better. Larger 𝑘 values contract the whole problem instance and thus are
much closer to how the MLO will be eventually applied. For each strategy, we create a
sizeable dataset using the different training data sizes as can be seen in Table 5.2. The
reason we have so much fewer data points than with the subproblem strategy although
the data takes up a lot more memory is because a single data point now contains multiple
coarsened nodes.

42

5.5. Data Generation

Table 5.2: 𝑘 data strategy training data overview

size 𝑘 nodes instances datapoints memory in MB
500 5 𝑄 7050 418000 523
500 5 𝐿 7050 418000 502
500 30 𝑄 5000 65000 405
500 30 𝐿 5000 65000 383
500 max 𝑄 7500 22500 646
500 max 𝐿 7500 22500 644
100-1000 5 𝑄 6000 297000 370
100-1000 5 𝐿 6000 297000 353
100-1000 30 𝑄 5000 51500 318
100-1000 30 𝐿 5000 51500 300
100-1000 max 𝑄 7500 22500 715
100-1000 max 𝐿 7500 22500 677

43

CHAPTER 6
Experiments and Results

In this chapter, we describe our experiments and the results we obtained. We first
start by giving a short description of the computing environment and continue with a
data analysis of the training data. Then the benchmark instances we used for testing
are described. In the following section, we explain the different model parameters we
evaluated how they compare to each other, and how they compare to the conventional
Jaccard similarity strategy. In the final section, we analyze the running times of the more
complex ML strategy.

6.1 Computing Environment
The computation cluster that was used for the experiments consists of two main com-
ponents. A fast one with a lot of memory and a slower one with a medium amount of
memory. The fast compute node uses an AMD EPYC 7402, 2.80GHz 24-core with up to
1024GB of RAM. This node was used for memory-intensive tasks such as large instance
creation. As this is the fastest node available on the server it receives a lot more traffic
than the slower node. Therefore we used the slower node with an Intel Xeon E5-2640 v4,
2.40GHz 10-core, and 160GB of RAM for time-sensitive experiments to obtain consistent
results. Still, traffic might have influenced some results.

6.2 Training Data Analysis
We continue with a data analysis to explore how the different features ℎ𝑖

𝐿,𝑙,𝑙′ and ℎ𝑖
𝑄,𝑞,𝑞′

are distributed and correlate with our target feature. We make comparisons between the
different data collection strategies as well as grouping the features by the MLO level to
see how and if they change during the coarsening.
In Tables 6.1 and 6.2 we see the correlations of the most significant features for the 𝐿 and
𝑄 set respectively. The most significant features seem to be the symmetric difference of

45

6. Experiments and Results

Table 6.1: Features of 𝐿 with the strongest correlation to the objective

Δ𝑑𝑞 𝑑𝑙3
dependent 100-1000 jaccard -0.354 -0.39
dependent 100-1000 random -0.281 -0.3377
dependent 500 jaccard -0.128 -0.0569
dependent 500 random 0.00258 0.00283
independent 100-1000 Jaccard 0.323 0.327
independent 100-1000 random 0.446 0.385
independent 500 Jaccard 0.086 0.227
independent 500 random 0.325 0.336

Table 6.2: Features of 𝑄 with the strongest correlation to the objective

𝑑𝑞1 𝑑𝑞2 𝑑𝑞3

dependent 100-1000 jaccard 0.229 0.23 0.298
dependent 100-1000 random 0.223 0.222 0.289
dependent 500 jaccard 0.192 0.187 0.263
dependent 500 random 0.182 0.176 0.248
independent 100-1000 Jaccard 0.229 0.229 0.298
independent 100-1000 random 0.223 0.222 0.289
independent 500 Jaccard 0.186 0.181 0.256
independent 500 random 0.177 0.172 0.243

the neighboring 𝑑𝑞 values of the merged 𝑙 nodes and the future 𝑑𝑙 value when the nodes
are merged. For the 𝑄 set the former and future demands 𝑑𝑞 of the nodes are the most
significant.

We inspect how the target values 𝑧𝑞𝑞′ , 𝑧𝑙𝑙′ , and 𝑧𝑗 are distributed referencing the different
data collection strategies. In Figure 6.1 we see the distribution of the dependent variable
𝑧𝑞1𝑞2 for the 𝑄 set with different parameters for partitioning and size. The distributions
are very similar. Almost all node merges cause no change in the target variable but the
few that do cause a significant reduction in the target variable. The different merging
strategies do not have a significant impact on the distributions of 𝑧𝑞𝑞′ . The different
strategies for the 𝛿 variable do not influence the shown data of the 𝑄 set as 𝛿 only
influences the 𝐿 projection.

Considering the 𝐿 set we explore the different strategies for the 𝛿 variable and partitioning
strategy in Figure 6.2. First, we compare the dependent 𝛿 to the independent 𝛿 strategy
in Figures 6.2a and 6.2b. The dependent 𝛿 strategy allows a single subproblem to
improve the objective value we therefore can obtain negative values of 𝑧𝑙1𝑙2 . In contrast
when setting 𝛿 independent as described in section 5.5.1 we can not obtain negative
values. When comparing the partitioning strategies as seen in Figures 6.2b and 6.2d
the differences are only minimal. Random partitioning can cause slightly higher errors
but the overall difference is marginal. The Figures 6.2 contain the data for the training

46

6.2. Training Data Analysis

(a) 𝑧𝑞1𝑞2 Jaccard partitioning and size 500 (b) 𝑧𝑞1𝑞2 random partitioning and size 500

(c) 𝑧𝑞1𝑞2 Jaccard partitioning and size 100-1000 (d) 𝑧𝑞1𝑞2 random partitioning and size 100-1000

Figure 6.1: dependent variable 𝑧𝑞1𝑞2 for different subproblem strategies

data of size 500. For problem instances of varying sizes in the range of 100-1000, the
maximum error increases but the relative distribution remains the same.

An interesting observation is that there seems to be a break in continuity to the right of
the distribution where 𝑧𝑙1𝑙2 shortly plateaus and afterward the values sharply increase. A
plot with a zoomed-in version on this part can be seen in Figure 6.3. We see a plateau at
integer values e.g. 1, 2, 3, or 4. This is likely because the number of slots 𝑦𝑙 at a station
are integer. We cannot explain why the gradient sharply increases after the plateau at 2.

As a final bit of analysis, we take a look at the estimated probability density functions
(PDF) of the features with the most important correlations. The PDF for 𝑑𝑙3 and Δ𝑑𝑞

can be seen in Figure 6.4. Both functions look left skewed with a majority of the values
being low.

When examining the distributions split up over 3 coarsening levels we see distributions
as follows in Figure 6.5 and 6.6. Especially interesting are the ripples in 6.5a these are
caused by the instance generation making certain demand values more likely to appear
than others. Over the coarsening the PDF of both distributions smooth out and get
wider. When nodes are being merged their properties often are added up which creates

47

6. Experiments and Results

(a) 𝑧𝑞1𝑞2 Jaccard partitioning and dependent 𝛿 (b) 𝑧𝑞1𝑞2 Jaccard partitioning and indepen-
dent 𝛿

(c) 𝑧𝑞1𝑞2 random partitioning and dependent 𝛿 (d) 𝑧𝑞1𝑞2 random partitioning and indepen-
dent 𝛿

Figure 6.2: dependent variable 𝑧𝑞1𝑞2 for different subproblem strategies

Figure 6.3: Zoom for 𝑧𝑞1𝑞2 jaccard partitioning and independent 𝛿

48

6.2. Training Data Analysis

(a) PDF of 𝑑𝑙3 (b) PDF of Δ𝑑𝑞

Figure 6.4: PDF of most correlated features

the increase as well as the smoothing effect.

The PDF of 𝑑𝑞1 , 𝑑𝑞2 and 𝑑𝑞3 which can be seen in Figure 6.7 are not that meaningful.
Most OD-pairs have very low demand in the range of 0.01 − 0.1 with few containing
high demands of up to 30 expected users. The PDFs are therefore very skewed to the
left. After merging, the PDF for 𝑑𝑞3 , which represents the prospective merged node,
gets a little wider but overall not a huge difference can be seen. The same follows when
comparing the feature over the different levels as seen in Figure 6.8. Notice that 6.8g
look the same as 6.8b and 6.8e and 6.8h look the same as 6.8c and 6.8f because the 𝑑𝑞1

and 𝑑𝑞2 merged to 𝑑𝑞3 represent the merged node. Therefore the distribution of future
primary nodes 𝑑𝑞1 and 𝑑𝑞2 at higher levels are the same.

Because datapoints of the 𝑘-data strategy consist of multiple observations of ℎ𝐿,𝑙,𝑙′ or
ℎ𝑄,𝑞,𝑞′ it is not entirely obvious how one would plot a single datapoint for this strategy.
We refer to the analysis above for the subproblem data strategy as the way the features
are calculated is the same as for the random partitioning case. The only real difference is
in the calculation of the dependent variable 𝑧𝑗 . A short analysis for different 𝑘 values
for the problem instances of size 500, for the 𝑄 and 𝐿 nodes, can be seen in Figures
6.9 and 6.10 respectively. High 𝑘 values cause the curves to be very smooth but also
comparatively steep to the earlier subproblem strategy plots in Figure 6.1 and 6.2. For
the 𝐿 set the curve again shows the bumps we already have seen during the investigation
of the subproblem strategy. Especially for low 𝑘 values the curve gets very bumpy. This
suggests that single nodes are responsible for the majority of the error and if it just so
happens that these nodes are being merged the error increases dramatically. In Figure
6.11 we show a zoomed version of the bumps in Figure 6.10b. Again this plateaus at
integer values and behaves relatively continuously in between.

49

6. Experiments and Results

(a) PDF of 𝑑𝑙3 for level 1 (b) PDF of 𝑑𝑙3 for level 2 (c) PDF of 𝑑𝑙3 for level 3

Figure 6.5: PDF of 𝑑𝑙3 for different levels

(a) PDF of Δ𝑑𝑞 level 1 (b) PDF of Δ𝑑𝑞 level 2 (c) PDF of Δ𝑑𝑞 level 3

Figure 6.6: PDF of Δ𝑑𝑞 for different levels

(a) PDF of 𝑑𝑞1 (b) PDF of 𝑑𝑞2 (c) PDF of 𝑑𝑞3

Figure 6.7: PDF of 𝑑𝑞

6.3 Benchmark instances

To thoroughly test the models we trained we define a set of independent benchmark
instances. These instances represent instances of similar size to the training instances as
well as larger instances to understand how well the trained models generalize to instances
of larger sizes.

We created benchmark instances with four size ranges. The first and smallest set contains
20 instances of size 𝑛 = 500 and 𝑚 = 500. The second set contains 20 instances with 𝑛, 𝑚
chosen uniformly at random from the range 100 to 1000. The second to last set contains
18 instances with 𝑛, 𝑚 ∈ {2000, 4000, 8000} with 2 instances for each possible combination
of 𝑛 and 𝑚. The final set contains two very large instances with 𝑛, 𝑚 = 10000.

50

6.3. Benchmark instances

(a) PDF of 𝑑𝑞1 at level 1 (b) PDF of 𝑑𝑞1 at level 2 (c) PDF of 𝑑𝑞1 at level 3

(d) PDF of 𝑑𝑞2 at level 1 (e) PDF of 𝑑𝑞2 at level 2 (f) PDF of 𝑑𝑞2 at level 3

(g) PDF of 𝑑𝑞3 at level 1 (h) PDF of 𝑑𝑞3 at level 2 (i) PDF of 𝑑𝑞3 at level 3

Figure 6.8: PDF of 𝑑𝑞 at different levels

(a) 𝑧𝑗 for 𝑘 = 500 (b) 𝑧𝑗 for 𝑘 = 30 (c) 𝑧𝑗 for 𝑘 = 5

Figure 6.9: 𝑧𝑗 value for 𝑄 with different values for 𝑘

(a) 𝑧𝑗 for 𝑘 = 500 (b) 𝑧𝑗 for 𝑘 = 30 (c) 𝑧𝑗 for 𝑘 = 5

Figure 6.10: 𝑧𝑗 value for 𝐿 with different values for 𝑘

51

6. Experiments and Results

Figure 6.11: Zoom for 𝑧𝑗 for 𝑘 = 30

6.4 Model Training

Finding the optimal settings for models in terms of hyperparameters, architecture, and
training data is often a difficult task. We, therefore, conducted a series of tests to find
good values for all parameters. We filtered the results for the best parameters to compare
only the models which produced the best results.

6.4.1 Model Architecture

The first thing we experimented with was the architecture of the models. The input size
is defined by the size of ℎ𝐿,𝑙,𝑙′ and ℎ𝑄,𝑞,𝑞′ and the output is just a single node with no
activation function as we want a numeric value for the similarity. As an activation function
for our hidden layers, we choose ReLu (Rectified Linear Unit). For the remaining analysis,
we describe the architecture of a model within square brackets with the individual number
of nodes being separated by a comma in the fashion [1𝑠𝑡 layer, 2𝑛𝑑 layer].

We experimented with deep networks with up to 10 layers and also wide but shallow
networks with up to 640 nodes in a single layer. We mostly focused our analysis on shallow
networks with only two dense layers. A comparison between these models according to
the number of trainable weights is shown in Figure 6.12. These results were obtained with
models trained on the dataset of size 100 to 1000 obtained using the subproblem-data
strategy. The results are shown for the test data of the same size. We see that increasing
the number of trainable weights in a network does not necessarily improve the results.

In the next step, we considered regularization for which we used dropout. A dropout
layer with 30% dropout was added after the first hidden layer. In Figure 6.13 we see a
plot comparing the results of the dropout models to the models without. On the x-axis,
we see the average fulfilled demand for the model without dropout while on the y-axis we
see the fulfilled demand for the same model with the added dropout layer. Points below
the line support the hypothesis that models without dropout perform better. Points
above the line support the inverse hypothesis that dropout models are better. The mean
of all dropout models is 47.7% while the mean for all models without dropout is 48.4%.

52

6.4. Model Training

Figure 6.12: Average fulfilled demand over number of trainable weights

With a Wilcoxon Ranked Sum Test (WRST) [Wil92] we confirmed that the distributions
are significantly different (𝑝 = 10−5).

We also compared the results for individual models as it could be that the overall number
of models performs worse when using dropout but individual models might perform
better. In Figure 6.14 we see the comparison of a select number of models with and
without dropout. The two best-performing models use the architecture [40,20] and
[160,Dropout,160]. When comparing the two models in figure 6.14b we see no significant
advantage for either model which is confirmed with a WRST with a p-value of 0.7. On
the other hand, it seems like bigger models like 6.14d do not automatically perform better
when dropout is added but smaller models perform worse with dropout. We also found
no advantage when training deeper models with more layers. We, therefore, continue
the analysis only with smaller models as they perform equally as well or better than
larger models and offer an advantage in terms of training time and practicability. The
structures we continue to evaluate are [40,20], [40,40], and [80,40]. Smaller models than
[40,20] also drop in performance very quickly and are thus discarded as well.

After we conducted the preliminary tests we tested the three chosen architectures with
the test instances described in Section 6.3. We aggregated the results for all benchmark
instances and compared the two different training data creation strategies. The results
can be seen in Table 6.3.

53

6. Experiments and Results

Figure 6.13: Dropout comparison all models

Table 6.3: Mean objective for different architectures

architecture subproblem data strategy 𝑘-data strategy
[40, 20] 47.6% 47.3%
[40, 40] 47.7% 46.9%
[80, 40] 47.6% 46.9%

We find that for the subproblem strategy the models of size [40,40] and for the 𝑘-data
strategy the [40,20] model outperform the other models. This is confirmed by WRST
with 𝑝 = 10−2 and 𝑝 = 10−6 respectively to the next best model.

6.4.2 Learning Rate and Batch Size

Two hyperparameters that influence the learning curve dramatically are the batch size
and the learning rate. We tested two different batch sizes 64 and 256 as well as two
learning rates 10−3 and 10−4 against each other and compared the learning curve as well
as the performance of the final models.

We compare the result of all trained models on all test sets. We only split the analysis
between the models trained on the subproblem data strategy and the 𝑘-data strategy.
The average performance for each batch size can be seen in Table 6.4. Although the
results are not much better for either batch size. A higher batch size ensures a smoother

54

6.4. Model Training

(a) [40,Dropout,20] over [40,20] (b) [40,20] over [160,Dropout,160]

(c) [160,Dropout,160] over [160,160] (d) [320,Dropout,160] over [320,160]

Figure 6.14: Comparison of different architectures with and without dropout

Table 6.4: Mean objective for different batch size

batch size subproblem data strategy 𝑘-data strategy
64 47.6% 46.9%
256 47.7% 47%

Table 6.5: Mean objective for different learning rates

learning rate subproblem data strategy 𝑘-data strategy
10−3 47.7% 46.7%
10−4 47.6% 47.1%

learning curve as can be seen in Figures 6.15 and was thus our preferred strategy. The
plots were created for the models of size [80,40] using a low learning rate and trained on
the subproblem data with independent 𝛿.

We now inspect the results for different learning rates. We experimented with two levels
of learning rate a high and a low one with the values 10−3 and 10−4 respectively. In Table
6.5 we see the results for different learning rates split for the different data collection

55

6. Experiments and Results

(a) Learning curve for [80,40] model with batch
size 64

(b) Learning curve for [80,40] model with batch
size 256

Figure 6.15: Learning curves for different batch sizes for the model [80,40]

(a) Learning curve for [80,40] model with learn-
ing rate 10−3

(b) Learning curve for [80,40] model with learn-
ing rate 10−4

Figure 6.16: Learning curves for different learning rates for the model [80,40]

strategies. Although a lower learning rate performs slightly worse for the subproblem
data strategy this difference is not significant 𝑝 = 0.6. The lower learning rate does
improve the results for the 𝑘-data strategy significantly 𝑝 = 4 · 10−5. Lowering the
learning rate also has a smoothing effect as seen in Figure 6.16 similar to the higher
batch size. Lowering the learning rate can prevent the creation of large spikes as we see
in Figure 6.16a around epoch 250.

As a final remark here we state that we probably could have turned the learning rate
even lower to smooth out the spikes that remain in the learning curve.

6.4.3 Training Data Size

Models were trained using two different instance sizes. For the first training data set the
instances were created with 𝑚 = 500 and 𝑛 = 500. For the other training data set the
individual values 𝑚 and 𝑛 were chosen uniformly at random from the range 100 to 1000

56

6.4. Model Training

Table 6.6: Mean objective for different training data sizes

Training data size subproblem data strategy 𝑘-data strategy
500/500 47.6% 47.5%
100-1000/100-1000 47.7% 46.8%

Table 6.7: Mean objective for different partitioning strategies

partitioning subproblem data strategy
Random 47.9%
Jaccard 47.4%

for each instance. We split all trained models according to the size of their training data
and compared the results on the benchmark instances in Table 6.6.

When applying the models to the benchmark instances their generalizability is tested
because the benchmark instances are of different size than the training data. For the
subproblem data strategy, this does not seem to be a problem to generalize from the
smaller training data to the bigger benchmark data although the training data set with
varying sizes outperforms the training data with constant size (𝑝 = 0.01) slightly.

For the 𝑘-data strategy, the difference is more significant. A very likely cause of this
is that with varying instance sizes in the training data, the number of OD-pairs and
areas may not be equal. When exactly 𝑘 nodes are merged this increases the relative
imbalance between both sets further possibly leading to bad training data. A fix for that
would be to draw a random number from the training set and set both OD-pairs and the
number of areas equal to that number.

6.4.4 Specifics for Subproblem Data Strategy

In this section, we compare parameters that are specific to the subproblem data strategy.

Partitioning

Here we compare the models created on training data using the random partitioning
strategy and the Jaccard partitioning strategy during data creation. In Table 6.7 we see
the results for the different partitioning strategies. As we always use random partitioning
for the 𝑘-data strategy it is not shown here.

Random partitioning significantly (𝑝 = 10−30) outperforms the biased Jaccard partition-
ing.

dependent and Independent 𝛿

Here we compare the strategies that use the independent 𝛿 versus the strategy using
dependent 𝛿. In Table 6.8 we see the average performance on the benchmark instances
for the two strategies.

57

6. Experiments and Results

Table 6.8: Mean objective for different 𝛿 strategies

𝛿 subproblem data strategy
dependent 47.7%
independent 47.6%

Table 6.9: Mean objective for different 𝑘 values

𝑘-values 𝑘-data strategy
𝑘 = 5 47.7%
𝑘 = 30 47.5%
𝑘 = max 47.4%

The results are very close and no significant difference is found using WRST (𝑝 = 0.2).

6.4.5 Specifics for 𝑘-data Strategy

In this section, we compare parameters that are specific to the 𝑘-data strategy.

The Values of 𝑘

The primary tuning factor for this strategy is the value of 𝑘. We tested three different
values a small one 𝑘 = 5, a medium one 𝑘 = 30, and a large value 𝑘 = max. The instances
during training had the sizes of 𝑚, 𝑛 = 500 or 𝑚, 𝑛 ∈ 100 . . . 1000. When using 𝑘 = max
all nodes in an instance are coarsened if suitable partitioning partners exist. The results
for the different 𝑘 values on the benchmark instances can be seen in Table 6.9.

These results have to be taken with a grain of salt because we could not obtain results
for some benchmark instances when using 𝑘 = 5 or 𝑘 = 30. The results in Table 6.9 are
only for the instances where all strategies were able to produce results. These results
therefore can not be used to compare to other strategies yet. The reason why lower 𝑘
values can not obtain all results is because of the increased size of the feature table. A
feature of ℎ𝐿,𝑙,𝑙′ and ℎ𝑄,𝑞,𝑞′ is the level 𝑖. During training the lower 𝑘 values produce
many levels and thus when the values later were one hot encoded created a larger feature
matrix than other strategies. This resulted in memory errors during the application of
these strategies although a larger amount of memory (100GB of RAM) was allocated for
these experiments. To eliminate the problem I would suggest to either only use large 𝑘
values or improve the memory management by using sparse matrices for this part.

All data vs. only relevant

During the 𝑘-data creation, all observations are recorded even if they are not part of
the solution. This is done to have a consistent size for the features in matrix A. Still,
it is tracked for each individual observation if that coarsening was part of the solution
so we can split the data into use only relevant or use all. When using only the relevant

58

6.4. Model Training

Table 6.10: Mean objective for different relevant features

data relevance 𝑘-data strategy
all data 46.7%
only relevant 47.5%

observation, the A matrix is pruned to only contain the relevant rows. The comparison of
the results using models trained on all observations versus only the relevant observations
can be seen in Table 6.10.

The results show that using only the relevant data gives a significant increase in perfor-
mance (𝑝 = 10−33).

6.4.6 Summary of Parameters

The parameters that were best for both strategies are a low learning rate and a high
batch size. This decreases the learning speed and thus over many epochs allows the
model to get closer to the optimum.

For the subproblem data strategy, the optimal model architecture seems to contain 40
hidden nodes in both layers. It uses dependent 𝛿 and random partitioning.

For the 𝑘-data strategy the optimal configuration of parameters uses a smaller architecture
of [40,20], the value of 𝑘 should be set as small and only relevant nodes should be considered
during training. The fact that lower 𝑘 values seem to produce better results suggests
that the subproblem strategy is superior to the 𝑘-data strategy.

6.4.7 Model similarity vs. Jaccard similarity

As a final part of our model evaluation, we are going to evaluate the models in contrast to
the previously defined Jaccard similarity (see Section 5.3.1) on our benchmark instances.

Comparison to Jaccard Similarity

To compare the overall applicability of ML in this setting we compare the results of
all models to the Jaccard similarity and thus show that using ML for the similarity
calculation dominates the use of the Jaccard similarity.

At first, we take a look at the PDF induced by the results of all models on all benchmark
instances and compare that to the result of the Jaccard similarity. The Figure depicting
this can be seen in 6.17. Although there is some overlap we see that using pretty much
any ML strategy outperforms the Jaccard similarity. The overlap stems from the great
variance of the Jaccard similarity. We will later see this explored further in Figure 6.19.

A clearer picture is drawn when filtering for the individual benchmark instance sets. We
see in Figure 6.18a and 6.18b that the models perform best on the benchmark instances
of the same size as their training data. There they very clearly dominate the Jaccard

59

6. Experiments and Results

Figure 6.17: PDF comparison of all models vs. Jaccard similarity

similarity which has an average performance far to the left. When the instances get
larger and reach the size of 2k-10k 6.18c, 6.18d the PDF representing the model results
gets wider suggesting that some models are better suited for generalization than others.
Overall the performance still clearly dominates the Jaccard similarity. For the large
10k/10k instances we see a bimodal distribution for the Jaccard similarity this is because
there are only 2 entries in this dataset.

As a final piece of analysis in this chapter we evaluate the best-performing models of
the subproblem strategy and the 𝑘-data strategy in detail on all benchmark instances.
The best-performing model for the subproblem strategy was trained on instances of size
500/500 and uses random partitioning, independent 𝛿, a batch size of 64, a high learning
rate of 103 and an architecture of [40,20]. The best-performing model for the 𝑘-data
strategy was trained on instances of size 500/500, using all features not just relevant ones,
had 𝑘 = 30, a batch size of 64, a high learning rate of 10−3 and an architecture of [40,20].

These results were a bit surprising to us as a lot of settings we deemed worse resulted
in the best models. For example, using a low batch size and high learning rate usually
results in a more chaotic learning process. An interpretation of why this still performs
better is that this increases the variance during the learning process and with the sheer
amount of different models we trained it was likely that a model relying on high variance
would perform well on a limited benchmark set.

60

6.4. Model Training

(a) PDF comparison for the 500/500 instances (b) PDF comparison for the 100-1000/100-1000
instances

(c) PDF comparison for the 2000-8000/2000-
8000 instances

(d) PDF comparison for the 10k/10k instances

PDF comparison of all models vs. Jaccard similarity

Nonetheless, we evaluate the results of these models on all benchmark instances. In
Figure 6.19 we see boxplots of the results of the models on the individual benchmark
sets. A clear difference is that the results produced by the Jaccard similarity have a lot
higher variance while the ML similarity produces a lot more consistent results. We also
see the subproblem strategy outperform the 𝑘-data strategy in terms of consistency most
of the time.

For a detailed look into the results of different models on the individual benchmark
instances, we refer to Tables 6.12 and 6.13. The best results for a benchmark data set
are marked in bold numbers. Results that are indicated with a * only contain partially
obtained values. For these values, the set limit of 100GB was exceeded and not all
instances were able to be solved.

6.4.8 Time Analysis

In this section, we take a look at the running time of the ML similarity strategies and
compare them to the runtime of the Jaccard similarity.

61

6. Experiments and Results

Figure 6.19: Boxplot comparison of the best models to Jaccard

In Figure 6.20 we see a comparison of the runtimes for the Jaccard similarity and the
ML similarity. At first glance, no real differences can be established but when filtering
the plots for the different benchmark sets the differences become apparent. In Figure
6.21 we see the PDFs split for each benchmark set. A very interesting observation is
the bimodal distribution that can be seen in Figure 6.21a. This likely stems from the
underlying MILP that is performed when solving the coarsest instance. The difference
between the two hills is about 60 seconds which is the same time we had as a time
limit for solving the MILP. This means that small instances like the 500/500 instances,
are coarsened to such a small level that the MILP can find the optimal solution nearly
instantly sometimes. Another interesting observation is that the instances for which the
ML similarity produced fast solutions also produced fast solutions using the Jaccard
similarity. The other way around was not always the case meaning that if the Jaccard
similarity produced a quickly solvable problem instance the ML similarity not necessarily
did. Overall our interpretation here is that some problem instances are a lot easier to
solve than others and using the Jaccard similarity it is more likely that such instances
are produced after the coarsening. In contrast, the ML similarity seems to not create
such easy to solve problem instances as often we thus assume that defining features that
make a problem hard to solve are more likely preserved through the coarsening levels
when applying the ML similarity.

For the other distributions 6.21b 6.21c and 6.21d we see a steady move to the right.

62

6.4. Model Training

Figure 6.20: PDF comparison of all models vs. Jaccard similarity

Table 6.11: Mean runtime for benchmark datasets

benchmark dataset ML similarity runtime Jaccard similarity runtime
500/500 68s 43s
100-1000/100-1000 64s 46s
2000-8000/2000-8000 31min 11min
10k/10k 180min 105min

Especially very large instances like the 10k/10k instances in 6.21d or the 8000/8000
instance in 6.21c which causes the rightmost bump, create a significant difference in
running times.

Overall our observation is that for large instances the increased running time becomes
noticeable. In Table 6.11 we see the runtimes for the different benchmark datasets listed.
The increased calculation effort induces a large increase in running times on instances of
all sizes.

63

6. Experiments and Results
Table

6.12:
M

ean
objective

for
allm

odels
on

allbenchm
ark

instances
a

architecture
[40,20]

batch
size

batch
size

256
learning

rate
0.0001

training
data

size
100-1000/100-1000

500/500
subproblem

or
𝑘-data

specifics
dependent

independent
k=

m
ax

k=
30

dependent
independent

k=
30

k=
5

subproblem
or

𝑘-data
specifics

jaccard
random

jaccard
random

alldata
relevant

alldata
relevant

jaccard
random

jaccard
random

alldata
relevant

alldata
relevant

500/500
48.1%

48.6%
47.9%

48.1%
46.3%

48.2%
46.8%

46.9%
47.5%

49.0%
47.7%

48.3%
47.0%

48.2%
47.0%

48.0%
100-1000/100-1000

48.5%
48.5%

48.0%
48.5%

46.7%
47.9%

47.5%
48.1%

47.6%
48.0%

47.8%
48.8%

47.4%
48.1%

47.1%
48.3%

2000-8000/2000-8000
46.6%

48.3%
44.8%

46.2%
46.0%

47.1%
*45.3%

47.4%
45.0%

45.4%
46.5%

47.7%
45.6%

*48.9%
45.6%

47.8%
10k/10k

42.5%
47.4%

38.0%
39.6%

41.9%
44.5%

*nan%
44.2%

44.7%
40.5%

38.7%
48.4%

40.8%
46.9%

45.9%
*nan%

architecture
[40,40]

batch
size

batch
size

256
learning

rate
0.0001

training
data

size
100-1000/100-1000

500/500
subproblem

or
𝑘-data

specifics
dependent

independent
k=

m
ax

k=
30

dependent
independent

k=
30

k=
5

subproblem
or

𝑘-data
specifics

Jaccard
random

Jaccard
random

alldata
relevant

alldata
relevant

Jaccard
random

Jaccard
random

alldata
relevant

alldata
relevant

500/500
47.8%

48.6%
48.0%

48.9%
46.7%

46.8%
46.7%

47.8%
48.5%

48.5%
48.1%

48.9%
46.5%

48.5%
46.6%

47.8%
100-1000/100-1000

47.9%
48.7%

48.1%
48.8%

46.9%
47.6%

47.6%
48.3%

48.7%
48.2%

48.3%
48.4%

48.1%
48.4%

47.4%
48.0%

2000-8000/2000-8000
48.1%

46.4%
46.2%

46.9%
45.0%

46.2%
*48.1%

46.1%
47.0%

45.7%
48.2%

47.8%
46.3%

*47.9%
45.8%

*46.6%
10k/10k

45.0%
43.1%

39.2%
40.7%

41.3%
45.6%

*nan%
42.0%

41.4%
39.3%

45.5%
40.3%

39.3%
*nan%

42.1%
*nan%

architecture
[80,40]

batch
size

batch
size

256
learning

rate
0.0001

training
data

size
100-1000/100-1000

500/500
subproblem

or
𝑘-data

specifics
dependent

independent
k=

m
ax

k=
30

dependent
independent

k=
30

k=
5

subproblem
or

𝑘-data
specifics

Jaccard
random

Jaccard
random

alldata
relevant

alldata
relevant

Jaccard
random

Jaccard
random

alldata
relevant

alldata
relevant

500/500
48.4%

48.5%
48.4%

47.6%
47.0%

48.2%
46.0%

47.6%
47.8%

48.9%
48.7%

48.9%
46.2%

47.0%
48.0%

48.2%
100-1000/100-1000

48.6%
48.8%

47.6%
48.2%

46.2%
48.1%

47.9%
48.2%

47.6%
48.6%

48.4%
49.0%

47.7%
47.8%

47.6%
48.5%

2000-8000/2000-8000
47.5%

48.5%
46.0%

47.5%
46.0%

47.0%
*46.3%

47.2%
44.2%

46.5%
48.0%

48.0%
45.9%

*48.9%
46.1%

*47.5%
10k/10k

44.1%
47.4%

45.0%
41.9%

41.2%
46.8%

*nan%
46.5%

39.1%
44.4%

47.7%
45.5%

46.6%
*nan%

46.2%
*nan%

architecture
[40,20]

[40,20]
batch

size
batch

size
64

batch
size

256
learning

rate
0.0001

0.001
training

data
size

100-1000/100-1000
500/500

100-1000/100-1000
500/500

subproblem
or

𝑘-data
specifics

dependent
independent

k=
30

dependent
independent

k=
30

k=
30

k=
30

subproblem
or

𝑘-data
specifics

Jaccard
random

Jaccard
random

alldata
relevant

Jaccard
random

Jaccard
random

alldata
relevant

alldata
relevant

alldata
relevant

500/500
48.5%

48.3%
47.7%

48.1%
46.0%

47.5%
47.7%

48.3%
47.0%

47.8%
46.5%

48.8%
46.2%

48.2%
47.3%

48.0%
100-1000/100-1000

48.4%
48.4%

48.1%
48.7%

46.8%
48.2%

48.4%
48.6%

47.7%
48.8%

47.8%
48.5%

46.6%
47.5%

47.8%
48.3%

2000-8000/2000-8000
48.3%

48.0%
45.5%

47.4%
45.1%

47.0%
46.0%

44.6%
45.2%

46.9%
46.1%

*48.0%
45.3%

48.0%
47.8%

*47.4%
10k/10k

47.3%
48.2%

44.3%
44.8%

46.9%
44.6%

46.2%
37.4%

44.1%
43.4%

42.6%
47.9%

*nan%
46.4%

44.3%
40.1%

architecture
[40,20]

[40,40]
batch

size
batch

size
64

batch
size

256
learning

rate
0.001

0.001
training

data
size

100-1000/100-1000
500/500

100-1000/100-1000
500/500

subproblem
or

𝑘-data
specifics

dependent
independent

k=
30

dependent
independent

k=
30

k=
30

k=
30

subproblem
or

𝑘-data
specifics

Jaccard
random

Jaccard
random

alldata
relevant

Jaccard
random

Jaccard
random

alldata
relevant

alldata
relevant

alldata
relevant

500/500
48.0%

48.3%
47.7%

48.3%
47.2%

47.9%
48.1%

48.3%
48.4%

48.9%
47.6%

48.8%
46.4%

44.1%
45.6%

48.1%
100-1000/100-1000

48.4%
48.3%

48.2%
48.1%

46.7%
47.5%

47.9%
48.1%

48.1%
49.1%

48.3%
48.5%

46.0%
45.4%

47.5%
47.5%

2000-8000/2000-8000
46.0%

47.9%
46.0%

46.3%
45.3%

46.6%
47.5%

46.0%
46.5%

48.6%
47.6%

*48.7%
46.1%

44.8%
46.8%

*49.0%
10k/10k

44.9%
45.6%

39.4%
45.0%

39.2%
43.9%

47.5%
45.1%

43.1%
47.8%

47.9%
45.6%

*nan%
43.7%

42.6%
*nan%

aO
nly

partialresults
w

ere
obtained

for
elem

ents
signed

w
ith

*

64

6.4. Model Training
ar

ch
ite

ct
ur

e
[4

0,
40

]
ba

tc
h

siz
e

ba
tc

h
siz

e
64

le
ar

ni
ng

ra
te

0.
00

01
tr

ai
ni

ng
da

ta
siz

e
10

0-
10

00
/1

00
-1

00
0

50
0/

50
0

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

de
pe

nd
en

t
in

de
pe

nd
en

t
k=

30
de

pe
nd

en
t

in
de

pe
nd

en
t

k=
30

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

50
0/

50
0

48
.8

%
48

.5
%

47
.8

%
48

.1
%

47
.0

%
46

.7
%

47
.9

%
49

.0
%

48
.1

%
48

.7
%

46
.4

%
48

.7
%

10
0-

10
00

/1
00

-1
00

0
48

.6
%

48
.8

%
47

.9
%

48
.2

%
47

.2
%

47
.2

%
47

.5
%

48
.4

%
48

.0
%

48
.5

%
47

.3
%

48
.2

%
20

00
-8

00
0/

20
00

-8
00

0
48

.0
%

47
.2

%
46

.4
%

48
.1

%
47

.3
%

47
.1

%
44

.9
%

47
.4

%
42

.1
%

47
.5

%
44

.4
%

*4
9.

2%
10

k/
10

k
48

.1
%

44
.2

%
44

.7
%

46
.6

%
46

.0
%

46
.6

%
43

.6
%

47
.8

%
37

.9
%

42
.5

%
38

.4
%

44
.4

%
ar

ch
ite

ct
ur

e
[4

0,
40

]
ba

tc
h

siz
e

ba
tc

h
siz

e
64

le
ar

ni
ng

ra
te

0.
00

1
tr

ai
ni

ng
da

ta
siz

e
10

0-
10

00
/1

00
-1

00
0

50
0/

50
0

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

de
pe

nd
en

t
in

de
pe

nd
en

t
k=

30
de

pe
nd

en
t

in
de

pe
nd

en
t

k=
30

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

50
0/

50
0

48
.2

%
48

.5
%

47
.5

%
48

.6
%

46
.4

%
45

.8
%

48
.4

%
47

.9
%

48
.3

%
48

.2
%

45
.6

%
46

.3
%

10
0-

10
00

/1
00

-1
00

0
48

.3
%

48
.5

%
47

.3
%

48
.6

%
47

.1
%

46
.6

%
46

.8
%

48
.5

%
49

.2
%

48
.5

%
47

.3
%

47
.6

%
20

00
-8

00
0/

20
00

-8
00

0
48

.1
%

49
.0

%
46

.9
%

48
.0

%
45

.5
%

45
.8

%
45

.6
%

47
.1

%
48

.9
%

46
.0

%
46

.8
%

*4
7.

0%
10

k/
10

k
46

.9
%

48
.5

%
38

.8
%

44
.7

%
45

.7
%

34
.6

%
44

.9
%

43
.7

%
48

.4
%

43
.1

%
45

.8
%

*n
an

%
ar

ch
ite

ct
ur

e
[8

0,
40

]
ba

tc
h

siz
e

ba
tc

h
siz

e
64

le
ar

ni
ng

ra
te

0.
00

01
tr

ai
ni

ng
da

ta
siz

e
10

0-
10

00
/1

00
-1

00
0

50
0/

50
0

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

de
pe

nd
en

t
in

de
pe

nd
en

t
k=

30
de

pe
nd

en
t

in
de

pe
nd

en
t

k=
30

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

50
0/

50
0

47
.5

%
48

.6
%

47
.6

%
48

.7
%

45
.9

%
46

.5
%

48
.4

%
48

.0
%

47
.2

%
48

.4
%

46
.5

%
47

.7
%

10
0-

10
00

/1
00

-1
00

0
47

.8
%

48
.3

%
47

.3
%

48
.5

%
46

.8
%

47
.7

%
46

.9
%

48
.3

%
48

.0
%

48
.8

%
47

.1
%

48
.0

%
20

00
-8

00
0/

20
00

-8
00

0
47

.4
%

47
.7

%
46

.6
%

46
.7

%
43

.9
%

47
.0

%
47

.0
%

46
.4

%
48

.1
%

48
.6

%
47

.0
%

*4
8.

7%
10

k/
10

k
42

.8
%

46
.3

%
41

.3
%

38
.9

%
39

.7
%

45
.8

%
46

.8
%

40
.9

%
47

.3
%

48
.4

%
43

.3
%

47
.7

%
ar

ch
ite

ct
ur

e
[8

0,
40

]
ba

tc
h

siz
e

ba
tc

h
siz

e
64

le
ar

ni
ng

ra
te

0.
00

1
tr

ai
ni

ng
da

ta
siz

e
10

0-
10

00
/1

00
-1

00
0

50
0/

50
0

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

de
pe

nd
en

t
in

de
pe

nd
en

t
k=

30
de

pe
nd

en
t

in
de

pe
nd

en
t

k=
30

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

Ja
cc

ar
d

ra
nd

om
Ja

cc
ar

d
ra

nd
om

al
ld

at
a

re
le

va
nt

50
0/

50
0

47
.8

%
48

.5
%

47
.6

%
48

.4
%

46
.1

%
43

.8
%

46
.6

%
47

.4
%

48
.5

%
47

.4
%

46
.1

%
47

.0
%

10
0-

10
00

/1
00

-1
00

0
48

.3
%

48
.1

%
48

.0
%

48
.2

%
45

.8
%

47
.0

%
47

.5
%

48
.5

%
48

.2
%

47
.9

%
48

.0
%

48
.0

%
20

00
-8

00
0/

20
00

-8
00

0
47

.7
%

48
.0

%
44

.1
%

46
.4

%
46

.3
%

46
.9

%
43

.4
%

48
.2

%
47

.1
%

47
.3

%
47

.4
%

*4
5.

6%
10

k/
10

k
47

.4
%

47
.5

%
40

.7
%

44
.2

%
40

.4
%

43
.1

%
40

.3
%

47
.6

%
47

.6
%

46
.2

%
45

.8
%

*n
an

%
ar

ch
ite

ct
ur

e
[8

0,
40

]
ba

tc
h

siz
e

ba
tc

h
siz

e
25

6
le

ar
ni

ng
ra

te
0.

00
1

tr
ai

ni
ng

da
ta

siz
e

10
0-

10
00

/1
00

-1
00

0
50

0/
50

0
su

bp
ro

bl
em

or
𝑘
-d

at
a

sp
ec

ifi
cs

k=
30

k=
30

su
bp

ro
bl

em
or

𝑘
-d

at
a

sp
ec

ifi
cs

al
ld

at
a

re
le

va
nt

al
ld

at
a

re
le

va
nt

50
0/

50
0

45
.9

%
44

.9
%

45
.4

%
47

.8
%

10
0-

10
00

/1
00

-1
00

0
46

.8
%

45
.7

%
47

.4
%

48
.1

%
20

00
-8

00
0/

20
00

-8
00

0
45

.6
%

46
.5

%
45

.6
%

*4
7.

5%
10

k/
10

k
*n

an
%

43
.4

%
36

.2
%

*n
an

%

Ta
bl

e
6.

13
:

M
ea

n
ob

je
ct

iv
e

fo
r

al
lm

od
el

s
on

al
lb

en
ch

m
ar

k
in

st
an

ce
s

a

a O
nl

y
pa

rt
ia

lr
es

ul
ts

w
er

e
ob

ta
in

ed
fo

r
el

em
en

ts
si

gn
ed

w
ith

*

65

6. Experiments and Results

(a) PDF comparison for the 500/500 instances
runtimes

(b) PDF comparison for the 100-1000/100-1000
instances runtimes

(c) PDF comparison for the 2000-8000/2000-
8000 instances runtimes

(d) PDF comparison for the 10k/10k instances
runtimes

Figure 6.21: PDF comparison of all models vs. Jaccard runtimes

66

CHAPTER 7
Conclusion and Future Work

In this work, we considered the Demand Maximizing Battery Swapping Station Location
Problem, a maximum coverage location problem. The motivation behind solving this
problem is to optimize the infrastructure for a network of battery swapping stations
for electric vehicles such that as many users as possible can swap batteries during their
trips. This infrastructure involves the areas containing the battery swapping stations, the
number of slots where batteries can be charged at a station, and the specific allocation
of users to certain stations.

We first defined a graph representation of the DMBSSLP on a graph 𝑃 (𝑉, 𝐸) and then
transformed this representation into a bipartite graph representation 𝐺(𝑄, 𝐿, 𝐸).

To solve the DMBSSLP we developed a novel machine learning supported Multilevel
Optimization algorithm called the Learning Multilevel Optimization. This algorithm is
built upon the Multilevel Optimization algorithm and uses two neural networks to guide
the partitioning process of the algorithm. To create an implementation of this algorithm
we first devised a Mixed Integer Linear Programming formulation for the DMBSSLP
which allows us to solve smaller instances efficiently and accurately. We used this MILP
formulation and the standard MLO to create training data for the neural networks. Two
different strategies were applied to create training data: the subproblem strategy, which
creates data for two individually merged nodes, and the 𝑘-data strategy which creates
aggregated data points for multiple merges.

These data collection strategies were then divided into multiple further categories. For
the subproblem strategy, we experimented with different partitioning strategies of the
training data, and different settings for the variable 𝛿 during the subproblem solving.
For the 𝑘-data strategy, we experimented with different settings for the value 𝑘 and
different parameters for the data relevance, where we used only relevant data or all data
for training.

67

7. Conclusion and Future Work

For the neural network parameters, we experimented with different settings for regular-
ization, architecture, learning rate, and batch size.
In total, this resulted in 132 different parameter combinations for which we trained
models and which we investigated closer. Many more models did not make it into the
final analysis as they were rejected early.
From all these parameters we identified some that are important for the applicability
of the models. The most important one for the subproblem strategy was an unbiased
partitioning strategy during data creation. For the 𝑘-data strategy smaller values of 𝑘
and exclusively using relevant data during training resulted in the best performance.
For a better overall model performance, it was also important that the learning rate was
low and the batch size was high resulting in a slower more accurate learning process,
although the very best models violated this principle and used a high learning rate and
low batch size.
Overall we showed that using the LMLO can improve the performance of conventional
MLO strategies significantly. The cost associated with this increase in objective value is
an increased time demand for the neural network predictions. This increase in runtime
and objective value becomes more distinct the bigger the problem instances that are
solved.

7.1 Future Work
At the moment our implementation of the algorithm is rather memory intensive. Part of
the reason for this is that during the similarity calculation a dataframe of size |ℎ| × |𝐸|
is created. This dataframe can get very large and thus takes a lot of time to create and
predict. A possible solution for that would be to apply a different partitioning algorithm
like heavy edge matching which we expect to produce worse results as it relies much
more on randomness but could solve the problem of large memory requirements.
Also concerning the partitioning: At the moment if two nodes are merged they must
not be merged any further in this coarsening step. This creates a partnering problem at
the end of the partitioning process. When only few nodes are left unpartitioned they
will be merged with each other regardless of their similarity value. This means that
nodes that are bad to merge will be merged anyway. A solution would be to allow the
partitioning of multiple nodes at the same time. If two nodes are merged they create
a temporary merged node which can be merged again in the same step. This strategy
could potentially decrease the number of bad merges being made but creates an increased
calculation demand because, for each temporary node, all similarities of neighbors have
to be added to the heap of similarities while similarities with the old already merged
nodes need to be deleted. Overall this additional computational cost could probably
improve the results but further tests would be needed.
As a final remark for the future outlook, we want to discuss the potential applicability of
graph neural networks (GNNs) instead of dense neural networks for similarity calculation.

68

7.1. Future Work

As the problem is already defined on a graph, applying GNNs to this structure could
potentially improve the results. GNNs use message passing and excel at capturing more
information on the complete structure of a graph. We did not apply this method yet
as the time constraints of this work did not allow deviations from the initial plan we
proposed but we hope to explore this approach further in future work.

69

List of Mathematical Symbols

𝑎𝑞𝑙 demand of OD-pair 𝑞 assigned to be satisfied in area 𝑙
A The matrix of size 𝑘 × |ℎ| representing an observation in the 𝑘-data

strategy
𝑏 costs for one additional charging slot
𝐵 The Budget available for a project
𝑐 costs for setting up a charging station
𝑑𝑞 demand of an OD-pair 𝑞 ∈ 𝑄

𝑑𝑙 The sum of all demands that might be satisfied at area 𝑙
𝛿 Leftover or so far unused demand that may be assigned again in later

subproblem solutions
𝑒𝑞𝑙 The maximum demand that can be assigned from OD-pair 𝑞 to area 𝑙.
𝐸 edge set of graph 𝐺
𝐺 bipartite Graph
ℎ0

𝐿 feature matrix for all 2-hop connected pairs of nodes in 𝐿
ℎ0

𝑄 feature matrix for all 2-hop connected pairs of nodes in 𝑄

𝑙 an area of 𝐿 or the respective area set of the coarsened graphs
𝐿 set of considered areas for placing battery swapping station
𝑚 number of OD-pairs
𝑛 number of areas in 𝐿
𝑁(𝑙), 𝑁(𝑞) set of neighboring nodes of an area node 𝑙 or OD-pair node 𝑞 in 𝐺
𝑞 an OD-pair from 𝑄 or the respective sets of the coarsened graphs
𝑄 a set of 𝑚 O/D pairs
𝑟𝑙 maximum number of stations in area 𝑙
𝑠 maximum number battery charging slots in any station
𝑥𝑙 number of stations to be built in area 𝑙
X The matrix of dependant features ℎ for the subproblem strategy or A

for the 𝑘-data strategy
𝑦𝑙 total number of charging slots to be built in the stations of area 𝑙
𝑧𝑞1𝑞2 The error of merging nodes 𝑞1, 𝑞2 ∈ 𝑄 in the subproblem strategy
𝑧𝑙1𝑙2 The error of merging nodes 𝑙1, 𝑙2 ∈ 𝐿 in the subproblem strategy
𝑧𝑗 The error caused by observation 𝑗 in the 𝑘-data strategy

71

List of Abbreviations

ADAM Adaptive Momentum Estimation
CH Construction Heuristic
CMCLP Capacitated Maximum Coverage Location Problem
CP Covering Problems
DMBSSLP Demand Maximizing Battery Swapping Station Location Problem
EST Euclidean Spanning Tree
EV Electric Vehicle
GHEM Greedy Heavy Edge Matching
GNN Graph Neural Network
HEM Heave Edge Matching
LMLO Learning Multi Level Optimization
LP Linear Program
MBSSLP Multi-Period Battery Swapping Station Location Problem
MCLP Maximum Coverage Location Problems
MCMCLP Modular Capacitated Maximal Covering Location Problem
MCMCLPSC Modular Capacitated Maximum Coverage Location Problem with Setup

Cost
MILP Mixed Integer Linear Program
MLO Multi Level Optimization
MLR Multi Level Refinement
MSE Mean Squared Error
NN Neural Network
PDF Probability Density Function
WRST Wilcoxon Rank Sum Test

73

List of Figures

2.1 Graph model (own figure) . 6
2.2 Bipartite graph (own figure) . 7

3.1 Phases of the MLO process [VFF+20] . 12
3.2 two-hop graphs for graph Figure 2.1 . 14

6.1 The average and standard deviation of critical parameters 47
6.2 The average and standard deviation of critical parameters 48
6.3 Zoom for 𝑧𝑞1𝑞2 jaccard partitioning and independent 𝛿 48
6.4 PDF of most correlated features . 49
6.5 PDF of 𝑑𝑙3 for different levels . 50
6.6 PDF of Δ𝑑𝑞 for different levels . 50
6.7 PDF of 𝑑𝑞 . 50
6.8 PDF of 𝑑𝑞 at different levels . 51
6.9 𝑧𝑗 value for 𝑄 with different values for 𝑘 51
6.10 𝑧𝑗 value for 𝐿 with different values for 𝑘 51
6.11 Zoom for 𝑧𝑗 for 𝑘 = 30 . 52
6.12 Average fulfilled demand over number of trainable weights 53
6.13 Dropout comparison all models . 54
6.14 The average and standard deviation of critical parameters 55
6.15 The average and standard deviation of critical parameters 56
6.16 The average and standard deviation of critical parameters 56
6.17 PDF comparison of all models vs. Jaccard similarity 60
6.19 Boxplot comparison of the best models to Jaccard 62
6.20 PDF comparison of all models vs. Jaccard similarity 63
6.21 PDF comparison of all models vs. Jaccard runtimes 66

75

List of Tables

5.1 Subproblem data strategy training data overview 42
5.2 𝑘 data strategy training data overview . 43

6.1 Features of 𝐿 with the strongest correlation to the objective 46
6.2 Features of 𝑄 with the strongest correlation to the objective 46
6.3 Mean objective for different architectures 54
6.4 Mean objective for different batch size . 55
6.5 Mean objective for different learning rates 55
6.6 Mean objective for different training data sizes 57
6.7 Mean objective for different partitioning strategies 57
6.8 Mean objective for different 𝛿 strategies 58
6.9 Mean objective for different 𝑘 values . 58
6.10 Mean objective for different relevant features 59
6.11 Mean runtime for benchmark datasets . 63
6.12 Caption for Mean objective for all models 64
6.13 Caption for Mean objective for all models 65

77

List of Algorithms

3.1 high level MLO based on [Wal02] and [VFF+20] 11

5.1 LMLO . 27

5.2 Partitioning . 28

5.3 Project Solution from �̃�𝑖 to 𝐺𝑖−1 . 32

5.4 Construction Heuristic . 33

79

Bibliography

[AMVC15] Sajjad Allahi, Mohammadsadegh Mobin, Amin Vafadarnikjoo, and
Christian Salmon. An integrated AHP-GIS-MCLP method to locate
bank branches. In Proceedings of the 2015 Industrial and Systems
Engineering Research Conference, pages 1104–1113, 2015.

[Ber57] Claude Berge. Two theorems in graph theory. Proceedings of the National
Academy of Sciences, 43(9):842–844, 1957.

[BLM15] Shahzad F. Bhatti, Michael K. Lim, and Ho-Yin Mak. Alternative fuel
station location model with demand learning. Annals of Operations
Research, 230(1):105–127, 2015.

[BS94] Stephen T Barnard and Horst D Simon. Fast multilevel implementation
of recursive spectral bisection for partitioning unstructured problems.
Concurrency: Practice and Experience, 6(2):101–117, 1994.

[BT97] Dimitris Bertsimas and John N Tsitsiklis. Introduction to Linear Opti-
mization. Athena scientific, 3rd edition, 1997.

[CLRS22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to Algorithms. MIT press, 2022.

[Coo63] Leon Cooper. Location-allocation problems. Operations Research,
11(3):331–343, 1963.

[CR74] Richard Church and Charles ReVelle. The maximal covering location
problem. Papers of the Regional Science Association, 32(1):101–118,
1974.

[CS88] John Richard Current and James Edward Storbeck. Capacitated covering
models. Environment and Planning B: Planning and Design, 15(2):153–
163, 1988.

[Del34] Boris Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, 7(793-800):1–2, 1934.

81

[DOW55] George B Dantzig, Alex Orden, and Philip Wolfe. The generalized
simplex method for minimizing a linear form under linear inequality
restraints. Pacific Journal of Mathematics, 5(2):183–195, 1955.

[EA16] Sahar K Elkady and Hisham M Abdelsalam. A modified multi-objective
particle swarm optimisation algorithm for healthcare facility planning.
International Journal of Business and Systems Research, 10(1):1–22,
2016.

[GJ79] Michael R Garey and David S Johnson. Computers and Intractability.
Freeman, San Francisco, 1979.

[Hak65] Seifollah Louis Hakimi. Optimum distribution of switching centers in
a communication network and some related graph theoretic problems.
Operations Research, 13(3):462–475, 1965.

[HGNN21] Masoud Hatami Gazani, Seyed Armin Akhavan Niaki, and Seyed
Taghi Akhavan Niaki. The capacitated maximal covering location prob-
lem with heterogeneous facilities and vehicles and different setup costs:
An effective heuristic approach. International Journal of Industrial
Engineering Computations, 12(1):79–90, 2021.

[HL+95] Bruce Hendrickson, Robert W Leland, et al. A multi-level algorithm for
partitioning graphs. SC, 95(28):1–14, 1995.

[HPBL23] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap.
Mastering diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

[Jac02] Paul Jaccard. Lois de distribution florale dans la zone alpine. Bulletin
de la Société vaudoise des sciences naturelles, 38:69–130, 01 1902.

[JORR20] Thomas Jatschka, Fabio F. Oberweger, Tobias Rodemann, and Gün-
ther R. Raidl. Distributing battery swapping stations for electric scooters
in an urban area. In Nicholas Olenev, Yuri Evtushenko, Michael Khachay,
and Vlasta Malkova, editors, Optimization and Applications, Proceed-
ings of OPTIMA 2020 – XI International Conference Optimization and
Applications, volume 12422 of LNCS, pages 150–165. Springer, 2020.

[JRR23] Thomas Jatschka, Tobias Rodemann, and Günther R. Raidl. A mul-
tilevel optimization approach for large scale battery exchange station
location planning. In Leslie Pérez Cáceres and Thomas Stützle, editors,
Evolutionary Computation in Combinatorial Optimization, volume 13987
of LNCS, page 50–65. Springer, 2023.

[KAKS97] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar.
Multilevel hypergraph partitioning: Application in vlsi domain. In

82

Proceedings of the 34th annual Design Automation Conference, pages
526–529, 1997.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM symposium
on Theory of computing, pages 302–311, 1984.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[KBP14] Tony Lee Kerzmann, Gavin A. Buxton, and Jonathan Preisser. A
computer model for optimizing the location of natural gas fueling stations.
Sustainable Energy Technologies and Assessments, 7:221–226, 2014.

[LNS15] Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama. Loca-
tion Science. Springer, 1st edition, 2015.

[MG19] Jean-Yves Potvin Michel Gendreau. Handbook of Metaheuristics.
Springer, 3rd edition, 2019.

[MSS14] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning
complex networks via size-constrained clustering. In Joachim Gud-
mundsson and Jyrki Katajainen, editors, Experimental Algorithms: 13th
International Symposium, SEA 2014, Copenhagen, Denmark, June 29–
July 1, 2014. Proceedings 13, pages 351–363. Springer, 2014.

[Obs22] Daniel Obszelka. Lecture notes in Algorithmics. Lecture Notes by
Algorithms and Complexity institute TU Wien, 2022.

[PS91] Hasan Pirkul and David A Schilling. The maximal covering location prob-
lem with capacities on total workload. Management Science, 37(2):233–
248, 1991.

[RAK07] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near
linear time algorithm to detect community structures in large-scale
networks. Physical Review E, 76(3):036106, 2007.

[RKJ+23] Tobias Rodemann, Hiroaki Kataoka, Thomas Jatschka, Günther R.
Raidl, Steffen Limmer, and Meguro Hiromu. Optimizing the positions
of battery swapping stations. In Proceedings to the 6th International
Electric Vehicle Technology Conference, 2023.

[Rot69] R Roth. Computer solutions to minimum-cover problems. Operations
Research, 17(3):455–465, 1969.

[RSW07] Demane Rodney, Alan Soper, and Chris Walshaw. The application of
multilevel refinement to the vehicle routing problem. In 2007 IEEE
Symposium on Computational Intelligence in Scheduling, pages 212–219.
IEEE, 2007.

83

[TSRB71] Constantine Toregas, Ralph Swain, Charles ReVelle, and Lawrence
Bergman. The location of emergency service facilities. Operations
Research, 19(6):1363–1373, 1971.

[VAdPF+21] Alan Demétrius Baria Valejo, Paulo Eduardo Althoff, Thiago
de Paulo Faleiros, Maria Lígia Chuerubim, Jianglong Yan, Weiguang
Liu, and Liang Zhao. Coarsening algorithm via semi-synchronous label
propagation for bipartite networks. In Intelligent Systems: 10th Brazil-
ian Conference, BRACIS 2021, Virtual Event, November 29–December
3, 2021, Proceedings, Part I, pages 437–452. Springer, 2021.

[VdOdSNZ21] Alan Demétrius Baria Valejo, Wellington de Oliveira dos Santos,
Murilo Coelho Naldi, and Liang Zhao. A review and comparative
analysis of coarsening algorithms on bipartite networks. The European
Physical Journal Special Topics, 230(14-15):2801–2811, 2021.

[VdOGFdAL18] Alan Valejo, Maria Cristina Ferreira de Oliveira, PR Geraldo Filho,
and Alneu de Andrade Lopes. Multilevel approach for combinatorial
optimization in bipartite network. Knowledge-Based Systems, 151:45–61,
2018.

[VFdOdAL20] Alan Valejo, Thiago Faleiros, Maria Cristina Ferreira de Oliveira, and
Alneu de Andrade Lopes. A coarsening method for bipartite networks
via weight-constrained label propagation. Knowledge-Based Systems,
195:105678, 2020.

[VFF+20] Alan Valejo, Vinícius Ferreira, Renato Fabbri, Maria Cristina Ferreira de
Oliveira, and Alneu de Andrade Lopes. A critical survey of the multilevel
method in complex networks. ACM Computing Surveys (CSUR), 53(2):1–
35, 2020.

[Wal02] Chris Walshaw. A multilevel approach to the travelling salesman problem.
Operations Research, 50(5):862–877, 2002.

[Wal08] Chris Walshaw. Hybrid metaheuristics: an emerging approach to opti-
mization, chapter Multilevel refinement for combinatorial optimisation:
Boosting metaheuristic performance, pages 261–289. Springer, 2008.

[Wan08] Ying-Wei Wang. Locating battery exchange stations to serve tourism
transport: A note. Transportation Research Part D: Transport and
Environment, 13(3):193–197, 2008.

[Wil92] Frank Wilcoxon. Breakthroughs in Statistics: Methodology and Distri-
bution, chapter Individual Comparisons by Ranking Methods, pages
196–202. Springer, 1992.

84

[XYD+09] Ming Xie, Wenjun Yin, Jin Dong, Jinyan Shao, and Lili Zhao. A
marginal increment assignment algorithm for maximal coverage location
problem. In 2009 IEEE/INFORMS International Conference on Service
Operations, Logistics and Informatics, pages 651–656. IEEE, 2009.

[YCW+14] Jia Yu, Yun Chen, Jianping Wu, Rui Liu, Hui Xu, Dongjing Yao, and
Jing Fu. Particle swarm optimization based spatial location allocation of
urban parks—a case study in baoshan district, shanghai, china. In 2014
The Third International Conference on Agro-Geoinformatics, pages 1–6.
IEEE, 2014.

[YK16] Huairen Ye and Hyun Kim. Locating healthcare facilities using a
network-based covering location problem. GeoJournal, 81(6):875–890,
2016.

[YM12] Ping Yin and Lan Mu. Modular capacitated maximal covering location
problem for the optimal siting of emergency vehicles. Applied Geography,
34:247–254, 2012.

85

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the work
	Structure of the work

	The Demand Maximizing Battery Swapping Station Location Problem
	Graph Model
	MILP Formulation

	Methodology
	Multilevel Optimization
	MLO for Bipartite Networks
	Mixed Integer Linear Programming

	Related Work
	Previous Work
	Related Location Problems
	Related Work to MLO

	A Learning Multi Level Optimization Approach for the DMBSSLP
	Overview and Nomenclature
	LMLO Details
	Similarity
	Instance Generation
	Data Generation

	Experiments and Results
	Computing Environment
	Training Data Analysis
	Benchmark instances
	Model Training

	Conclusion and Future Work
	Future Work

	List of Mathematical Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

