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Abstract

This thesis deals with the development of exact algorithms based on mathematical programming
techniques for the solution of a combinatorial optimization problem which emerged in the context
of a new compression model recently developed at the Algorithms and Data Structures Group of
the Institute of Computer Graphics and Algorithms at the Vienna University of Technology. This
compression model is particularly suited for small sets of unordered and multidimensional data
having its application background in the field of biometrics. More precisely, fingerprint data given
as a set of characteristic points and associated properties should be compressed in order to be used
as an additional security feature for e.g. passports by embedding the data into passport images
by watermarking techniques.

The considered model is based on the well known Minimum Label Spanning Tree Problem
(MLST) with the objective to find a small set of labels, associated to the edges of the graph,
inducing a valid spanning tree. Based on this solution an encoding of the considered points being
more compact than their trivial representation can be derived. So far, heuristic and exact algo-
rithms have been developed, all of them requiring a time-consuming preprocessing step. The goal
of this work is to develop an improved exact algorithm carrying out the tasks of the preprocessing
algorithm during the execution of the exact methods in an profitable way.

Within this thesis the problem is solved by mixed integer programming techniques. For this
purpose a new flow formulation is presented which can be directly solved by linear programming
based branch-and-bound, or alternatively by branch-and-price, being the main approach of this
thesis. Branch-and-price works by starting with a restricted model, and then iteratively adding
new variables potentially improving the objective function value. These variables are determined
within the pricing problem which has to be solved frequently during the overall solution process.
For this purpose specialized data structures and algorithms, based on a k-d tree are used, with the
intention to exploit possible structures of the input data. Within this tree, improving variables can
be found by various traversing and bounding techniques. These algorithms can also be adapted
in order to work as an alternative to the existing preprocessing.

All algorithms have been implemented and comprehensively tested. For the existing ap-
proaches, the new methods reduced the preprocessing run times with a factor of 50 and use
now 2% of the original run times. With the presented branch-and-price approach it is possible to
solve a greater amount of test instances to optimality than previously. Generally, for most model
parameters the branch-and-price approach outperforms the previous exact method.
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Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der Entwicklung von exakten Algorithmen, welche auf
mathematischer Programmierung basieren. Ziel ist die Lösung eines kombinatorischen Optimie-
rungsproblems, welches im Kontext eines neuen Komprimierungsverfahren auftritt, das kürzlich
vom Arbeitsbereich für Algorithmen und Datenstrukturen des Institut für Computergraphik und
Algorithmen an der Technischen Universität Wien entwickelt wurde. Dieses Komprimierungsver-
fahren ist insbesondere geeignet für kleine Mengen von ungeordneten und multidimensionalen
Daten, wobei biometrische Applikationen den Anwendungshintergrund bilden. Insbesondere sol-
len Fingerabdruckdaten, sogenannte Minutien, gegeben als Menge charakteristischer Punkte mit
zugeordneten Eigenschaften, komprimiert werden, um als zusätzliches Sicherheitsmerkmal für z.B.
Reisepässe verwendet werden zu können, indem die Daten als Wasserzeichen in das Passbild ein-
gebettet werden.

Das betrachtete Modell basiert auf dem bekannten Minimum Label Spanning Tree Problem
(MLST). Das Ziel des Problems ist es, eine kleine Menge an Labels zu finden, welche den Kanten
des Graphen zugeordnet sind und so einen gültigen Spannbaum induzieren. Basierend auf dieser
Lösung kann eine Kodierung der betrachteten Punkte abgeleitet werden, welche kompakter als ihre
triviale Darstellung ist. Bislang wurden Heuristiken und ein exaktes Verfahren entwickelt, welche
alle einen laufzeitintensiven Preprocessing-Schritt voraussetzen. Das Ziel dieser Arbeit ist es, einen
verbesserten exakten Algorithmus zu entwickeln, welcher die Aufgaben des Preprocessing-Schritts
in einer vorteilhaften Weise während der Ausführung der exakten Methode erledigt.

In dieser Arbeit wurde das Problem mit Mixed Integer Programmierungstechniken gelöst. Zu
diesem Zweck wird eine neue Flußnetzwerk Formulierung vorgestellt, welche direkt mittels Branch-
and-Bound, basierend auf Linearer Programmierung, gelöst werden kann. Alternativ dazu gelingt
die Lösung auch mittels Branch-and-Price, welches den Hauptansatz darstellt. Branch-and-Price
beginnt mit einem reduzierten Problem und fügt dann schrittweise neue Variablen, welche den
Zielfunktionswert verbessern können, diesem reduzierten Problem hinzu. Diese Variablen werden
mittels des Pricing Problems bestimmt, welches oftmals während des Lösungsvorgangs berechnet
werden muss. Zu diesem Zweck wurden spezialisierte, auf einem k-d Tree basierende Datenstruk-
turen und Algorithmen entwickelt, welche mögliche Strukturen der Eingabedaten in geschickter
Weise ausnützen. Mittels verschiedener Traversierungs- und Boundingtechniken können aus dieser
Baumdatenstruktur verbessernde Variablen effizient extrahiert werden. Weiters können die entwi-
ckelten Algorithmen zu einer Alternative für den Preprocessing-Schritt adaptiert werden.

Alle Algorithmen wurden implementiert und umfangreich getestet. Für die bestehenden Ansätze
wurde die Zeit, die für den ursprünglichen Vorberechnungsschritt gebraucht wurde, um Faktor 50
reduziert, die Laufzeiten sinken auf 2% der ursprünglichen Zeit. Mit dem vorgestellten Branch-
and-Price Verfahren ist es möglich eine größere Anzahl an Testinstanzen optimal zu lösen als
bisher. Für die meisten Modellparameter übertrifft der Branch-and-Price Ansatz die bisherige
exakte Methode.
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Chapter 1

Introduction

The main goal of this diploma thesis is the compression of fingerprint data in such a way that
additional encoded information can be stored in images by watermarking techniques. Application
background is the use of such watermarks on identification cards and passports, to enhance the
security of the stored images (for example a fingerprint image) by embedding additional com-
pressed information. In the case of identification cards and passports, only a very limited amount
of storage is at disposal for this task, which implies the need of a compact representation and a
good compression mechanism, that is capable of compressing as much data as much as possible in
a reasonable amount of time, without loosing too much precision.

Various methods for compressing fingerprint data were analysed in the course of a research
project at the Institute of Computer Graphics and Algorithms (Algorithms and Data Structures
Group) at the Vienna University of Technology. The performance and compression ratios of the
approaches have been evaluated. While investigating common standard compression techniques
the view fell upon dictionary based techniques. Thus, a special tree based compression model has
been developed in order to extract a dictionary from the fingerprint data and represent the features
of a fingerprint through this dictionary. To name a few details, the extraction of the dictionary
revealed itself to be accomplished through various approaches, which again are classified into two
main categories: algorithms that find approximate solutions for the dictionary and algorithms
providing optimal dictionaries. Normally the former ones perform very fast but the quality of
the result might not be sufficiently high, whereas the latter supply optimal results but require
significant computational effort. Amongst approximating algorithms heuristics and memetic algo-
rithms have been evaluated. While developing an exact algorithm (e.g. branch-and-cut) this class
of problem solving approaches was found to have great potential. This thesis pursues the ideas and
modelling approaches developed in [ChwRai09, Dietzel08]. In particular elaborate combinatorial
optimization techniques are investigated and applied to the given problem. The main contribution
is the development of a branch-and-price approach, and algorithms for solving the corresponding
pricing problem.

The following sections give an overview of the application background where the problem
emerges, which approaches were already examined and how the task is approached.

The document is segmented into two main parts: The first part includes a short introduction to
the topic (chapter 1) and covers the underlying theory. Chapter 2 is concerned with graph theory
and geometric algorithms, whereas chapter 3 covers linear and integer optimization and introduces
the central topics column generation and branch-and-price. The following chapter 4 contains a
detailed formal problem definition. The second part is concerned with specific algorithms and
their evaluation: It is structured into chapter 5, which explains the branch-and-price approach
including the formulation as a flow network, and chapter 6, which describes developed concepts
and algorithms for solving the arising pricing problem. Chapter 7 introduces an alternative for the
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1.1. Biometric Background Chapter 1. Introduction

intermediate step, called preprocessing, needed in all previously developed solution approaches.
It is followed by chapter 8, where the implementation is outlined as well as architectural details,
used programming language and the framework integrated for the solution of our problem. The
chapter 9 lists test methods as well as experimental results, and is followed by the chapter 10,
where final conclusions are drawn. The appendix summarizes some often used terms and naming
conventions and includes additional tables for experimental results.

1.1 Biometric Background

The central problem of this thesis comes from the field of biometric data processing. The term bio-
metrics (Greek: Bio life, Metron measure) collects many procedures of measuring and analyzing
humans based on one or more physical and behavioral traits. Of the many fields of which biomet-
rics is comprised in this diploma thesis the procedures of biometric recognition processing are of
interest. The origins of biometrics are located in forensic sciences, dactyloscopy and cryptography.
In the past decades, with the progression of information technology, the interest and distribution
of biometric applications ever increased, since cataloguing and analyzing huge amounts of data
became only possible with recent technology.

Biometric recognition bases upon several traits and characteristics of the human body and
behaviour, named biometric identifiers. According to [MalJai05] these identifiers are categorized
into physiological (fingerprints, iris, retina, vene structure, DNA, teeth alignment, hand, palm
and face geometry) and behavioral (written signature, gait, voice, typing rhythm). In [Jain08],
the author describes several properties that such a trait must suffice, in order to be used as a
biometric identifier:

• Universality : The characteristic is found on every individual to be verified.
• Uniqueness: The characteristic is sufficiently different across the individuals.
• Permanence: The characteristic remains constant over time, and depends not on age or

measure datum.
• Measurability : The characteristic is acquirable with a suited device, without incommoding

the providing person. Digitalizing and further processing must be possible.
• Performance: Accuracy and resource consumption for acquiring and processing should have

acceptable time, computation and hardware effort.
• Acceptability : Persons should be willing to present their biometric trait to the system.
• Circumvention: The characteristic should not be easily imitated, reproduced or acquired.

One main application for biometric recognition is the authentication of a person, for which
following scenarios exist (from [Jain08]):

• Verification: A person claims an identity through a user name, key or PIN and provides the
appropriate biometric trait for the system. The system validates the person by matching the
captured biometric data with the samples stored in its database in a one-to-one comparison.

• Identification: A person provides only the biometric trait(s) for the system, for which then
the system searches in the database of templates in order to find a possible match. The
comparison is one-to-many and has the advantage that the person does not have to claim
an identity.

Verification is accompanied by ID-cards, tokens, keys, passwords and user names, whereas iden-
tification is only established with biometrics. It lies at hand that biometric applications prefer
stable, unique, physiological characteristics for their recognition process.

When realizing such a biometric recognition system, several components are necessary: First a
sensor produces a digital sample image for further processing. The sensor depends on the selected
characteristic and ranges from a simple video camera or recorder to a highly sophisticated eye
scanner. Specialized algorithms extract the appropriate traits and construct an internal model.

2
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Then a comparison algorithm matches the extracted traits with templates from a database and
returns a score for the match of a template and the sample.

Biometric traits are used ever increasingly in governmental, forensic and commercial applica-
tions. In [Jain08], the authors give an overview of some of the uses:

• Government : National ID card, drivers licence, voter registration, welfare disbursement,
border crossing, asylum seekers, and more.

• Forensics: corpse identification, criminal investigation, parenthood determination, missing
children, and other applications from this field.

• Commercial : ATM, access control of all kinds (security doors, season tickets, casino visitors),
computer login, mobile phone, e-commerce, internet banking, smart cards, and many more.

The basic subject of this thesis are fingerprints, which will be regarded more thoroughly in the
next section. Fingerprints suffice all properties listed above [Jain08]. They are efficiently collected
with affordable hardware requirements, easily digitalised and processable and do not require huge
storage. Fingerprints are easily “at hand”, unique, and in the use do not incommode users.

1.1.1 Dactyloscopy

Dactyloscopy, the science of analysing fingerprints, has enormous popularity in forensic applica-
tions. With the advent of computerization automated fingerprint cataloguing, identification and
processing became well-investigated and many industrial applications, such as security systems,
started to use and research the uniqueness, portability, simplicity of use of biometric data.

(a) Minutiae types [BasSchu05]. (b) Minutiae schema [webWong]. (c) Extracted minutiae [Jain08].

Figure 1.1: Fingerprint minutiae in dactyloscopy.

Fingerprints are catalogued with various methods. Of these, applications broadly use the
minutiae representation, which is a schematic description of special features in a fingerprint like
bifurcations, whorls, crossovers, and many others, as listed in figure 1.1a. Such minutiae are
extracted out of a scanned fingerprint image by specialized algorithms. A minutiae data set
consists of usually 15-80 minutiae per fingerprint. A formal representation of one minutia consists
of [BasSchu05]:

• Type of the minutia: crossover, whorl, bifurcation, ridge ending, and others (see figure 1.1a).
• Position (x, y) coordinates based on an imaginary zero point (see figure 1.1b).
• Local orientation θ of the minutia.
• Reliability rθ of orientation data1.

1This datum is only used in representations extracting ridge orientation information. The value is the higher if
the orientation is similar to the orientation of marks in the vicinity.
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The processing of most biometric applications is based upon this minutiae representation. The
minutiae data itself is extracted and compared efficiently and has many uses. Of these the most
common are database searches for matching fingerprints, or in general person identification, such
as in crime reconnaissance, person tracking, or access limitation with security door scanners. Fur-
ther applications can be found in cryptographic context, where fingerprints are used as additional
identification feature on important documents of various sorts, to secure and guarantee provenance
of the documents themselves and to impede theft, falsification and prevent abuse. Since nowadays
many documents provide facilities for digital storage, like microchips, magnet strips and so on,
there are many concerns to enhance the security of the stored data. For this purpose, besides
encryption watermarking is a commonly used technique. Since the considered devices have strong
storage limitations, the interest for compression comes now into play.

Furthermore it has to be mentioned, that scanning and decomposing fingerprints is not the
task of the fingerprint minutiae compression project and can be performed by highly specialized
algorithms. Starting point for the work are data sets of already extracted minutiae which are then
further processed for the intended use as a watermark. Digital watermarks and compression basics
are presented in the following section.

1.1.2 Digital Watermarking, Steganography and Compression

Watermarking is a technique old as humankind. With the advent of information technology the
concept of embedding information about provenience and ownership in digital media was adapted.
A digital watermark is additional information interwoven in digital media files (audio, video, im-
ages, text, database records, geodata) in such a way that media and watermark information cannot
be separated again. According to [Fraun08] digital watermarks are independent from data format
and remain intact after modification of the medium, for example format conversion, compression,
scaling and clipping, since the watermark is not embedded into some data format dependent meta
header but into the data itself. Also the technique discerns from copy protection mechanisms
and encryption methods since copying and displaying of content is not impeded. For that reason
watermarks are called non restrictive.

Besides visible watermarks, which mostly consist of company logos and author names, there also
exist invisible watermarks, whereby the main aim is to maintain data integrity. After signing, the
original content appears not to be altered and enables the following security objectives [Fraun08]:

• Copyright protection for creators, authors and ownership holders. Unambiguous identifica-
tion of media through an ID, for example the ISBN embedded as watermark in an e-book.

• Integrity protection against manipulation and alteration of content. Tracking of data flow
through transaction numbers and purchaser ID, for example color laser printouts.

• Authenticity protection for definite identification of the origin (cryptographic applications).
• Other objectives are: marketing and advertising, additional services as lyrics in audio files,

partial encryption for preventing previews.

Watermarks can be engineered in such a way that any alteration of the signed content de-
stroys or damages the signature and the manipulation can be reconstructed. These techniques
relate to steganography, the science of concealing information in content. Key features of digital
watermarks are perceptibility, transparency, robustness against alterations, capacity (the amount
of information to be embedded), security (manipulation of the key and watermark renders useless
the original data), performance of embedding and retrieving (reading/playback in real time).
Steganographic embedding of information is technically realized by replacing bits or greater sec-
tions of the carrier medium, mostly irrelevant or redundant, with some value calculated out of the
information part. Methods altering single bits at appropriate locations are substitution methods
whereas greater portion altering methods perform domain transformation, with the result that
the embedded parts are more robust against manipulation and alteration, but require more space.
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In the course of the research project on fingerprint minutiae compression a very sophisticated
mechanism in the fashion of domain transformation was developed, which also suffices the stor-
age requirements of small devices. Since our storage capabilities are limited, data compression is
applied. Data compression is the process of replacing original data with a representation of the
data using fewer storage consumption on a digital medium. Compression mechanisms are divided
into lossless and lossy, whereby the former ones make it possible to reconstruct the original data
from the compressed data, whereas the latter do not permit this and information is lost after the
compression process. In the present case a lossless compression is main target.

The following section summarizes the precedent work for minutiae compression. This section
gives an overview about the compression model as well as problem solution strategies which have
been already investigated in the course of this project.

1.2 Previous Work

In the course of the research project [ChwRai09] and [Dietzel08] analyzed quite a number of con-
ventional standard compression algorithms for their performance and efficiency when set at work
to compress minutiae data. A comprehensive introduction to data compression can be found in
[Sayood06].

Amongst the examined algorithms is arithmetic coding and Huffman coding. Further on dic-
tionary based algorithms originating from image, audio and video compression were tested. These
algorithms identify redundant structures and condense them into a dictionary, in order to express
information to be encoded through this dictionary. Mostly these standard algorithms perform
very badly and were found not to be suited for the task. Investigation of the steganographic back-
ground and compression technologies in relation to fingerprint minutiae compression are described
in [ChwRai09, Dietzel08]. Here their results are not presented further, and can be looked up in
the named documents.

1.2.1 The Compression Model

The dictionary based coder approach named above is then pursued in the following way: Having
in mind the construction of a minimal dictionary or codebook for a compact representation of
minutiae information, the naturally contained structures and redundancies in minutiae data led
to the development of a graph based encoding model as a basis for the compression mechanism.
Out of this graph model the compression algorithm extracts the dictionary in form of so called
template vectors and afterward expresses the minutiae from the input data by a reference to
the appropriate codebook entry. The codebook or dictionary is schematized in figure 1.2. The
authors of [ChwRai09] emphasize that “our approach follows this general idea of using a dictionary
or codebook but its determination as well as its usage is very different to the existing methods.”

Figure 1.2: Encoding of points via a
directed spanning tree using a code-
book of template arcs, correction vec-
tors are neglected. Image credits
to [ChwRai09].

Presumed we have extracted fingerprint minutiae from a fingertip scan, we take now a closer
look at these minutiae. As described in section 1.1.1 a minutia can be seen as a four dimensional
vector consisting of position as x, y coordinates, type t and orientation θ. Let us denote such
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a minutiae vector. Based on the set of all of their vector differences a minimal set of all possi-
ble dictionary entries can be derived in a preprocessing step. Compression is then achieved by
determining a minimum cardinality subset that is sufficient for encoding k points. For matching
purposes it is often sufficient to consider only 12–20 minutiae [SalAdh01], which has also been
confirmed in [Dietzel08]. Based on the dictionary entries, which we call template arcs, the points
can be encoded as a directed spanning tree (arborescence).

This arborescence is modeled in the fashion of a k-Node Minimum Label Spanning Arbores-
cence (k-MLSA), a variant of the well known Minimum Label Spanning Tree (MLST) Problem
introduced by [ChLe97]. Both concepts will be referred to in chapter 2, section 2.1.1.
With the aid of this dictionary the minutiae data points are encoded in order to express a com-
pact representation of the input: One arc id from the dictionary per point is used to express the
approximate spatial location of the point to encode, each template arc accompanied by a correc-
tion vector that codes the deviation of the actual encoded point to the template arc endpoint.
Figure 1.3 shows this concept.

Figure 1.3: Outline of correction vector

encoding. Image credits to [ChwRai09].

The complete formal description of the graph based compression model was already developed
in [ChwMIC07, RaiChw07, ChwRai09] and will be presented in the problem definition chapter 4.

1.2.2 Determining the Codebook

Various algorithmic strategies, both exact and heuristic, have been developed so far. One exact
approach is the branch-and-cut algorithm, a technique coming from the field of integer optimiza-
tion, that is able to identify the optimal solution for the dictionary. The heuristic approaches
include a memetic algorithm and a greedy randomized adaptive search procedure (GRASP). The
algorithms are summarized from [ChwRai09, Dietzel08]:

• Heuristic Approaches:

– MVCA Based Construction Heuristic. In [ChLe97], the authors present a heuris-
tic for solving minimum label spanning tree problems, called Maximum Vertex Covering
Algorithm (MVCA). Since our underlying problem is a variant of the MLST, the devel-
opment of such a MVCA based greedy construction heuristic was at hand. According
to [ChwRai09, Dietzel08], the adapted heuristic performs the following steps: The code-
book is build from scratch, by starting with an empty tree and subsequently adding new
template arcs from a candidate template arcs set in a greedy manner. The algorithm
proceeds until a feasible k-node arborescence is found. This condition has to be veri-
fied often and is done by classical Depth First Search (DFS). The presented heuristic
performs fast, but the results are moderate.

– Greedy Randomized Adaptive Search Procedure (GRASP). This approach ex-
tends the heuristic presented above with a better template arc choosing mechanism. By
starting again with an empty tree, the template arcs are now added based on a restricted
candidate list (RCL). If at some point the solution is valid, local search improves it, if
possible. The documents [ChwRai09, Dietzel08] describe approach, performance and
test results in detail, especially the crucial task of computing a meaningful RCL.
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• Memetic Algorithm (MA). These algorithms come from the field of genetic algorithms
and are a combination of evolutionary, population based algorithms and local improvement
strategies like individual learning. Like heuristics, this type of algorithms also yield ap-
proximate solutions, but tend not to get stuck in local optima. Following the concepts
presented by [XiGolWas05] a memetic algorithm for the k-MLSA was developed and pre-
sented in [ChwRai09]. According to the evolutionary background the algorithm produces an
initial population of feasible solutions, which is then modified by selection, recombination
and mutation - imitating biological evolution. An iteration produces an offspring solution
from recombined parent solutions, and performs tournament selection and local improve-
ment steps. Redundant arcs in the arborescence must be handled. After a huge, predefined
number of iterations or a fixed number of steps in which no improvement is achieved, the best
solution is chosen from the population. The document [ChwRai09] shows detailed results,
i.e. good solutions are achieved very quickly for the most of the test cases.

• Branch-and-Cut Approach. Following a very different approach from the field of combi-
natorial optimization, an optimal solution for the k-MLSA was also attempted. The authors
of [ChwRai09] modelled and formulated the problem as an integer linear program (ILP)
based on cycle elimination and connectivity inequalities. Shortly outlined, since the theo-
retical background will be presented later in chapter 3, the branch-and-cut method begins
with an incomplete model and derives the solution by iteratively adding further constraints
on demand.

Main drawback of these methods is the need for an intermediate step. All solution procedures
for the k-MLSA problem employ a preprocessing step, a precalculation of a candidate template arcs
set, out of which then the actual minimal template codebook is determined by the actual algorithm.

Having now summarized all previous work, it is now time to come to the actual main subject
of this diploma thesis. The task is now to follow on the exact problem solution of the k-MLSA
with further techniques coming from the field of integer programming.

1.3 Contributions of this Thesis

This section gives an overview of the attempted task. Some terms and concepts are used straight-
forwardly and will be explained more in detail in the theory chapters 2 and 3.

As named several times, fingerprint minutiae compression is now attempted by integer linear
programming. The main disadvantage of the presented approaches was already marked, it lies
in the preprocessing step. This step precalculates the set of candidate template arcs, called T c.
Out of this set, in all previously presented strategies, the solution to the k-MLSA, the actual
minimal template codebook is determined. This preprocessing step is imminent for all presented
solution strategies. At the present time this step is realized by restricted enumeration. As the
name implies, enumeration examines the whole multitude of possible candidate template arcs set
permutations. Although the search was restricted somewhat to promising areas, the number of
potential sets to examine is still huge. In practice, the preprocessing step consumes a relatively
big amount of processing time, particularly for large input parameters2 δ̃.

In the following this weak point shall be removed: Consequently our goal is to skip this pre-
processing step and incorporate it into the linear program part. To do so, the focus shifts from
the tree to the candidate template arcs themselves as central point. Their number in practice is
again very huge.

2This parameter will be addressed in the problem definition chapter 4.
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The idea is now not to generate all possible candidate template arcs in advance, and then
solve the resulting (large) integer linear program, but to start with a very small set of candi-
date template arcs, and then create new template arcs on demand during the solution of the
ILP. Such approaches are called column generation, as new variables (and therefore columns in
the coefficient matrix of the integer linear program) are generated continuously. Combined with
branch-and-bound we obtain an approach called branch-and-price.

To realize this, the original formulation from the branch-and-cut approach must be altered and
adapted accordingly. Since the original formulation has an exponential number of involved restric-
tions, we need a formulation consisting of a moderate amount of restrictions, but having instead
a huge amount of variables. This task is realized by formulating the integer program in terms of
a single and a multi commodity flow network. The resulting mixed integer program is then solved
by branch-and-price. In other words the creation of candidate template arcs is incorporated into
the integer program itself by creating new template arcs on demand.

So, the first step is to reformulate the original integer linear program so that it can be solved
by our chosen approach. We have to set up the mixed integer program and solve it by branch-
and-price. For the solution of huge sized integer programs there exist a lot of commercial and
non-commercial frameworks, one of which will be selected for this task. The chosen framework
will be described in the implementation chapter 8.

Branch-and-price starts with a small set of template arcs and then iteratively adds new tem-
plate arcs potentially improving the objective function value. These variables are determined
within a special step, the pricing problem. The solution of the pricing problem depends on inter-
mediate solution values of our newly formulated integer program. Also some special structures of
the input data are exploited.

In the course of the problem analysis a very promising approach to solve the pricing problem
was developed, and realized with the aid of a very common and efficient geometric algorithm, a
k-d tree. The development of efficient data structures and corresponding algorithms based on such
a k-d tree is the second important contribution of this thesis. Here, efficiency is very crucial, as
the pricing problem needs to be solved numerous times.

To solve the overall problem, the pricing problem solver is finally integrated in the branch-and-
price framework, which then is tested thoroughly for its overall performance, speed and correctness.

Outlook

The following two chapters introduce theory prerequisites for the understanding of the problem
definition and solution approach. When we look at the tasks, we identify two main theory sub-
jects: Since the underlying compression model is a graph and the MLST solution bases on graph
theoretical ideas, an overview of these graph theoretical basics as well as flow networks must
be accounted (section 2.1). Also the solution of the pricing problem requires methods from its
subarea of algorithmic geometry, the most important being the well known k-d tree, addressed
in section 2.3. Furthermore, to complete the branch-and-price part, a deeper understanding of
optimization theory is needed. Since this area is very vast, the chapter 3 concerning theory from
this field focuses on linear and integer programming basics, but emphasizes the subjects column
generation and branch-and-price, which are regarded more thoroughly in section 3.4.
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Chapter 2

Graph Theory and Algorithmic
Geometry Essentials

This chapter is dedicated to shortly outline and recapitulate the most important graph theory
details and geometric algorithms, which are needed for the problem definition and solution, sub-
ject in chapters 4 until 7. Here the basics utilized for the construction of the minimum label
spanning tree based compression model are summarized. Network flow problems are basis for the
formulation of the mixed integer program in order to be solved by branch-and-price. Moreover
the background of the solution strategy used in the arising pricing problem is regarded: The used
k-d tree has its roots in binary search trees, which have a widespread application spectrum and
come from the field of algorithmic geometry. How all these dissimilar topics are finally tied to-
gether will become clear in chapter 5.

Most graph theory concepts are summarized from the reference books [Sedgew01, CormLei07],
which are recommended for further inquiries. Reference for multi-dimensional binary search trees
(commonly known as k-d trees) is [Bentley75]. Sources for minimum label spanning trees are
[ChLe97], [XiGolWas05] and [Kru98].

2.1 Graph Theory Basics

A graph is a tuple G = (V,E) and consists of a set of vertices or nodes V = {v1, v2, . . . , vn}, n ∈ N
and a set of edges E = {e1, e2, . . . , em}, m ∈ N, which are elements from V × V . An edge eij
connects two nodes vi and vj . An edge is directed if a direction is endowed, the set of edges then
is called A = {aij | aij = (vi, vj), vi, vj ∈ V }. Here aij 6= aji, with aij = (vi, vj) and aji = (vj , vi).
The set of edges in an undirected graph is E = {eij | eij = {vi, vj}, vi, vj ∈ V ∧ vi 6= vj}. Here
follows eij = eji. Undirected graphs contain no directed edges. Directed graphs (digraphs) contain
only directed edges. Mixed graphs contain both. Edges eij in undirected graphs are called inci-
dent with the nodes vi and vj , the nodes vi and vj themselves are called adjacent. In directed
graphs adjacency of vj to vi is only implied when an edge aij exists. A loop is an edge eii that
connects the same vertex at its endpoints. Multi-edged graphs contain multiple edges connecting
the same endpoints, a simple graph contains no multi-edges. Complete undirected graphs contain(|V |

2

)
edges and all nodes vi 6= vj with vi, vj ∈ V are adjacent. In undirected graphs for each node

v the degree δ(v) is defined as the number of adjacent edges. In directed graphs the in-degree
δ−(v) is the number of incoming edges and the out-degree δ+(v) the number of outgoing edges.
Nodes or edges can be endowed (depending on the modeled problem) with weights and thus form
a weighted graph, with “labels” or “colours”, forming a labeled or coloured graph.

A path denotes a p-sized sequence of vertices, such that from each vertex exists an edge to
the next vertex in the sequence. Graphs are connected, if every point is reachable through a path,
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else unconnected. A cycle exists, if the starting point can be reached through a path. A graph
containing no cycles is called acyclic. A tree is a connected, undirected graph containing no cycles,
where the removal of an edge renders it unconnected. A tree contains n vertices and n− 1 edges.
Vertices in a tree with δ(v) = 1 are called leafs, nodes with greater degree are intermediate nodes.

A subgraph G′ of G has V ′ ⊆ V and E′ ⊆ E, the edges in E′ connecting only vertices in V ′. A
spanning tree is a subgraph of some graph containing all vertices, but being a tree. An arborescence
is a spanning tree on a directed graph, where exist (directed) paths from the root node to every
other node. A minimum spanning tree (MST) is a spanning tree with minimal weight edges. To
solve the MST problem Kruskal and Prim developed their eponymous algorithms which nowadays
every student learns in her first algorithmic lessons.

2.1.1 Minimum Label Spanning Tree (MLST)

The MLST problem was first introduced by [ChLe97], where the authors also showed it to be
NP -hard. Following definition was found in literature:

Definition 1 (Minimum Label Spanning Tree Problem). “Let G = (V,E) be a con-
nected undirected graph and c : E −→ N be an edge labeling/coloring function. A
K-colored spanning tree (V, T ) is a spanning tree of G such that the number of used
colors | {c(e) | e ∈ T} | does not exceed K. A minimum label spanning tree is a K-
colored spanning tree with minimum K.” [Kru98].

Figure 2.1 depicts examples for (minimum) label spanning trees. Solution approaches for the
MLST problem (MVCA heuristic, genetic algorithms, exact algorithms) are described in [ChLe97,
Kru98, XiGolWas05, Cons06, XiGolWas06].

1 1

1 1

2 24 42

3 3 3

G

LG = {1, 2, 3, 4}
(a) Original graph

2 22

3 3 3

GMLST

LMLST = { 2,3}
(b) MLST

1 1

1 1

2

3

GLST

LLST = {1, 2, 3}
(c) LST

Figure 2.1: Figure 2.1b shows an optimal MLST, determined from the labeled graph in figure 2.1a.
Figure 2.1c is a possible Label Spanning Tree (LST). Images adopted from [XiGolWas05].

2.1.2 k-Cardinality Tree (k-CT)

In [ChiKa08], the authors developed a solution strategy for the following NP -hard problem:

Definition 2 (k-Cardinality Tree Problem). “Given an undirected graph G =
(V,E) with edge weights and a positive integer number k, the k-Cardinality Tree prob-
lem consists of finding a subtree T of G with exactly k edges and the minimum possible
weight.” [ChiKa08].
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The problem was solved by an exact algorithm: After transforming the k-CT problem into a
k-cardinality arborescence problem, the formulation as an integer linear program using directed
cuts was implemented in a branch-and-cut framework.

2.1.3 k-node Minimum Label Spanning Arborescence (k-MLSA)

By combining the MLST problem and the k-cardinality tree problem, the k-node minimum label
spanning arborescence problem was introduced by [RaiChw07]. The k-MLSA is a subset V ′ ⊆ V ,
which consists of a predefined number k = |V ′| of nodes (and therefore k − 1 edges), which form
a spanning tree and has a minimal label set.

2.1.4 Flow networks

A network N is a directed graph without multi edges N = (V,E, s, t, c). It has two special nodes,
the source s and the sink or target t, s, t ∈ V . Further a capacity function c defines for each edge
(u, v) ∈ E a capacity cuv ≥ 0, c ∈ R. The graph is connected, so for every vertex v ∈ V exists
a path s  v  t. An s-t-flow is a function f , that defines for every edge in the network a non
negative real flow value f(u, v). The flow in a network is constrained as follows [CormLei07]:

• Capacity Constraint : The flow over an edge is at most the capacity of the edge:

∀u, v ∈ V : f(u, v) ≤ c(u, v).

• Flow Conservation: Except source and sink, the incoming flow at each node must be equal
to the outgoing flow. For a node u, u+ is the set of nodes connected to u by an outgoing
edge, u− is the set of nodes connected to u by an incoming edge:

∀u ∈ V − {s, t} :
∑
v∈u+ f(u, v) =

∑
v∈u− f(v, u).

• Skew Symmetry : ∀u, v ∈ V : f(u, v) = −f(v, u).

Single Commodity Flow Problem (SCF)

This flow network has a single commodity flowing through it. A source s and a target t are defined.
The commodity f(u, v) flows along edge (u, v) and has a constraining capacity ci. The flow is
conserved by

∑
v∈V f(u, v) = 0.

Multi Commodity Flow Problem (MCF)

This flow network has multiple commodities flowing through it. These κ commodities k1, k2, . . . , kκ
can have varying sources and targets and are defined as: ki = (si, ti, di), di being some demand.
fi(u, v) is a flow of commodities along edge (u, v). The flow in the network is constrained as
follows [CormLei07]:

• Capacity Constraint :
∑k
i=1 fi(u, v) ≤ c(u, v).

• Flow Conservation:
∑
w∈V fi(u,w) = 0 when u 6= si, ti. Follows ∀v, u : fi(u, v) = −fi(v, u).

• Demand Satisfaction:
∑
w∈V fi(si, w) =

∑
w∈V fi(w, ti) = di.

If capacities or demands are not restricted, both networks become uncapacitated commodity
flow networks. For our purposes no capacity is needed. According to [Evans78] under certain con-
ditions multi commodity network flow problems can be transformed into equivalent uncapacitated
single commodity flow problems. In 4 we reformulate an integer linear program in terms of an
uncapacitated SCF problem as well as an uncapacitated MCF problem.
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2.2 Algorithmic Graph Theory Essentials

A tree is a common data structure that organizes data in a set of linked nodes. Searching and
inserting in such data structures can be done very efficiently. If the tree is balanced both operations
perform with logarithmic complexity. The hierarchical tree structure is expressed by predecessor
node (parent, supernode) and successor node (children, subnode). The number of successors and
predecessors can be arbitrary. A tree has one root node that has no predecessors. A leaf is a node
that has no successors. Intermediate nodes link the root and leafs together by having successors
and a predecessor. A subtree is a subset of the tree. The edges are directed from predecessor to
successor. The tree height denotes the length of the path from root node to the furthest leaf. The
depth of node n is the length of the path from the root node to node n. All nodes at this depth
are denoted with a level, the root node having level 0. A tree is complete if all levels, including
the leaf level are fully occupied with data. A tree is balanced if each subtree of a node has an
equal or almost equally big number of nodes. Multiple balancing schemes exist (AVL-Tree, B-Tree,
Red-Black Tree, B*-Tree and more), that differ in their definition of “equal”, number of nodes,
effort for re-balancing and construction, storage consumption.

2.3 Algorithmic Geometry

Algorithmic geometry is a subarea of computational geometry. Computational geometry concerns
all fields, where algorithmic problems are stated in geometrical terms. Algorithmic geometry is
the subarea concerning geometric problems modeled through discrete entities.

2.3.1 Binary Search Tree

In a binary search tree each node has at most two successors left and right. It is commonly used
to structure one-dimensional data for efficient search operations, based on a key. All data with a
key less than the actual node key is located in the left subtree, the other data in the right subtree.
Searching in a binary tree with n nodes has complexity O(log n). A complete binary tree has
2level − 1 nodes.

2.3.2 2-d Tree and k-d Tree

A 2-d tree is a binary tree, that operates on two-dimensional data points subdividing the plane into
subplanes with alternating x and y coordinates, which act also as keys. The subdivision is done
by means of the coordinates of the points. The alternating dimension, upon which the splitting
is based, is called discriminator (disc) and often implemented as an incrementing number. The
actual dimension where the split occurs is extracted by a modulo operation.

A k-d tree expands the 2-d tree concept to k-dimensional space Rk. The space is then subdi-
vided sequentially for every dimension d = 1, 2, . . . , k. The run time complexity of building such a
tree is limited to O (n log n), the complexity for a search is O(n1− 1

k +R). The variable R indicates
the number of points in range when searching [Bentley75]. When regarding the dimensionality k,
building has complexity O (k · n log n) and searching O(k · n1− 1

k +R).

Figures 2.2 and 2.3 illustrate 2-d trees as well as k-d trees. As the insertion of further dimen-
sions greater than 2 is simple, the pseudo code for inserting into a k-d tree (algorithm 2.1) and
searching it (algorithm 2.2) are listed in generalized form. These algorithms were originally devel-
oped by [Bentley75], but were made recursive as we will later use these versions of the algorithms.
Searching for a key works very similar to insertion, as can be seen in both listings.
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Figure 2.2: Construction of a balanced 2-d tree. The rounding median depends on the implementation.
Here the median is round-up.
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Figure 2.3: Balanced 2-d tree resulting from the construction steps in figure 2.2.

Balancing k-d Trees

We consider again the 2-dimensional case for simplification. The concept is easily extended for k
dimensions. The input data set is sorted once by means of the x-coordinates as Ax and once by
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Algorithm 2.1: Recursive-Insert-k-d-Tree(P,Q ) [Bentley75]
Data: A node P not in the tree. Node Q stores the actual position.

if (LEFT(Q) = Λ) ∧ (RIGHT(Q) = Λ) then1

if Q = ROOT then2

ROOT← P; LEFT(P )← Λ; RIGHT(P )← Λ; DISC(P )← 0;3

else4

/* Append P at the appropriate left or right son of Q. */5

SON(Q)← P; LEFT(P )← Λ; RIGHT(P )← Λ;6

DISC(P )← NEXTDISC(DISC(P ));7

else8

/* Search insert position in the left or right subtree recursively. */9

if KDISC(P ) ≤ KDISC(Q) then10

if LEFT(Q) 6= Λ then Recursive-Insert-k-d-Tree (P, LEFT(Q) );11

else12

if RIGHT(Q) 6= Λ then Recursive-Insert-k-d-Tree (P, RIGHT(Q) );13

Algorithm 2.2: Recursive-Search-k-d-Tree(P,Q ) [Bentley75]
Data: A searched node P . Node Q stores the actual position.

if (LEFT(Q) = Λ) ∧ (RIGHT(Q) = Λ) then1

if Ki(P ) = Ki(Q) for 0 ≤ i ≤ k − 1 then2

return Q;3

else4

return Λ;5

else6

/* If nodes are equal return Q, else search subtrees recursively. */7

if Ki(P ) = Ki(Q) for 0 ≤ i ≤ k − 1 then8

return Q;9

else10

if KDISC(P ) ≤ KDISC(Q) then11

if (LEFT(Q) 6= Λ) then Recursive-Search-k-d-Tree (P, LEFT(Q) );12

else13

if (RIGHT(Q) 6= Λ) then Recursive-Search-k-d-Tree (P, RIGHT(Q) );14

means of the y-coordinates as Ay. At each split the median of the set corresponding to the actual
discriminator x or y is inserted into the tree. In this manner a balanced tree is achieved. The
concept is illustrated in figure 2.2. The first subdivision is undertaken at the median of Ax, the
point E, with the discriminator disc = 0, which is x. All points with an x-coordinate x ≤ xE lie
in the left subtree of the 2-d tree and respectively the x > xE in the right subtree. The following
subdivision is then done at the y-coordinate of point pF in the “left” subarea and pI in the “right”
subarea. The left subplane is divided into y ≤ yF (left subtree) and y > yF (right subtree), and
so on. The algorithm pseudo code for building a balanced k-d tree based onto a median can be
looked up in [Bentley75].

The following chapter is dedicated to introduce linear and integer optimization theory, with
an emphasis on the methods column generation and branch-and-price.
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Chapter 3

Optimization Theory Essentials

In this chapter a brief introduction to the topic of linear and integer optimization is given. The
theoretical knowledge is needed later in chapter 4 and the following practice chapters. All topics
are explained as short as possible, since the area of optimization theory is very huge. This chapter
is divided into two main parts, i.e. linear and integer linear optimization. The first part concerning
linear optimization will serve as an introduction to optimization theory in general and present the
concepts: history and trivia, modeling linear programs and their standard form, solvability, duality
as well as some general solution methods. The passages concerning integer programming explain
what distinguishes integer from linear programming, give a classification of integer programs and
summarize some of the known solution strategies. The part concerning advanced topics covers
more in detail topics immanent for column generation. It encompasses the detailed solution process
as well as arising topics like the pricing problem and the tailing off effect.
Mainly, the more general introductory parts linear and integer optimization adhere to [Wol98]
and [Van98], which are the main reference books on this subject. Trivia are from [webDesSoum98].
[BoydVan04] is a source for nonlinear optimization. Sources for the second part concerning column
generation were mostly [DesLu05], with [Luebbe01] being the related dissertation of one of the
authors of the former work. Additional literature in this part is [VanWol96, Vanbk94, NemWol88,
GuzRal07, webTrick97, Schrij99].

3.1 History and Trivia

The first concepts of linear optimization, also called linear programming, date back to the year 1939.
The roots lie in the linear inequalities theory. First mathematical models were presented by Leonid
W. Kantorovitch. The first formalizations were given by George Dantzig in the 1940ies. At the
time of the Second World War the issue was at first held secret due to the advantage in planning war
resource allocation. Later industry and production planning became aware of the potential of these
methods and since then the field of linear optimization was ever researched. A mighty instrument
to solve linear programs proved to be the Simplex algorithm created by George B. Dantzig in 1947,
and with it many before calculation intensive problems suddenly were computable in significantly
shorter time and were proved to produce optimal results.
Many real world applications seemed to have some additional properties. Very common in real
world applications were problems of integer nature, e.g. they needed integer or binary values in
their results like the following, very frequent problems:

• Scheduling of train, aeroplane, bus timetables.
• Personnel, task and machine scheduling.
• Resource planning, raw material needs and production planning.
• Route planning, networking.

In such problems, entities like personnel and resources cannot be separated or fractionated to
rational or real values but have to be assigned entirely, e.g. one or more machines or workers to
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a specified task regardless of some “optimal” value of 0.73 or 7
8
. Some well known problem for-

mulations for the applications listed above are Scheduling Problem, Resource Allocation Problem,
Cutting Stock and Bin Packing.
Problems of these nature are subject of integer optimization, which evolved on the basis of linear
optimization. Also these problems showed not to be as easy to solve like standard linear problems,
because of a “combinatorial explosion” [Wol98], page 8, based on the optimal result to be a large
set of feasible solutions. As example the author names the Traveling Salesman Problem (TSP).
Looking at an entity with 1000 cities, the solution space has 9.33 · 10157 feasible tours.
So a multitude of techniques began to evolve around the fields of combinatorial optimization and
integer programming which will be explored further in the following.

3.2 Introduction to Linear Optimization

In order to solve a problem with linear optimization, it has first to be analysed and formulated
in a mathematical way. The according formulation is called linear program (LP) and represents a
model of a real world problem. When we analyze such problems many different goals arise:

• Minimize manufacturing costs for prescribed outputs.
• Minimize overall production cost and/or time of products depending on varying resources.
• Maximize profit for varying products, producible with a limited stock of raw materials.
• Maximize output of products, which can be assembled on production lines with predefined

time windows and resources.

These goals are limited by factors like raw materials, resources, production cost, processing time
or market limits, which also have to be embedded into the model. The formulation in the most
cases is the most intensive task in the entire solution process.

Linear programming is a subarea of convex optimization and basis for numerous solution
techniques in nonlinear as well as integer optimization. Linear programs are usually interpreted
as general polyhedra, and many ideas, concepts and proofs are based onto polyhedral theory.

3.2.1 Linear Programs

In order to formalize the concept of a linear program (LP), we introduce some terms and notions.
First we introduce the variables xi, i = 1, 2, . . . , n, which will hold the values that are yet to be
decided in an optimal way. These variables are called decision variables. For linear optimization,
their values lie in R. In the majority of cases they are endowed with some cost variables, which
we denote with ci, i = 1, 2, . . . , n, ci ∈ R.

The linear objective function is composed of these variables and has the form

max z∗ = c1x1 + c2x2 + · · ·+ cnxn, (3.1)

where z∗ is the objective value. The objective function also encodes the goal striven for: The
objective value can either be maximized (problems concerning maximal profit or workload, and
suchlike) or minimized (problems concerning minimal resources or personnel, or similar).

In addition to the objective function the requirements for a problem have to be formulated.
This is done through equality and inequality constraints. These constraints, also called restrictions,
express limitations onto a problem (e.g. disposition hours of machines, production plan change
delay, sales limits, and so on), expressed in variables aij . Explicit inequalities whose goal is to
prohibit negative numbers are called non negativity constraints.
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All constraints form a set of restrictions:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

(3.2)

By summarizing we obtain a linear program:

max
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≤ bi i = 1, 2, . . . ,m

xj ≥ 0 j = 1, 2, . . . , n.

(3.3)

The above linear program (3.3) models a problem already in standard form. In this form the
linear objective function is to be maximized and the problem constraints are in terms of ≤. Every
alternative linear program formulation (minimization problems, constraints with ≥ or = opera-
tors, negative variables constraints) can be converted into an equivalent formulation in standard
form. In few words, a linear program is concerned with optimizing an objective function subject
to linear (equality and inequality) constraints.

To render the notation more intuitive it became common to use the canonical matrix form.
The matrix A denotes the n ·m matrix of constraint parameters aij , c> the n-dimensional (row)
vector, b the m-dimensional (column) vector, x the n-dimensional column vector of variables1:

max c>x
s.t. Ax ≤ b

x ≥ 0
(3.4)

A shortened expression is common in literature, used by [Wol98], page 3: max{cx : Ax ≤ b, x ≥ 0}.

3.2.2 Duality

Each linear program in standard form, called primal problem, can be converted into a dual problem.
The according dual problem for the linear program in (3.4) is:

min b>y

s.t. A>y ≥ c
y ≥ 0

(3.5)

Here, y denotes the dual variables. The author of [Van98] formulates, that “taking the dual of the
dual returns us to the primal” problem. Another fundamental idea of duality theory is that every
feasible solution of an LP embodies also a bound on the optimal value of the objective function
of the dual. The most essential theorems of duality theory are the weak duality theorem and the
strong duality theorem [Van98], presented in the following.

1Common notation: A ∈ Rm×n, b ∈ Rm and c ∈ Rn
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Definition 3 (Weak Duality Theorem). “If (x1, x2, . . . , xn) is feasible for the pri-
mal and (y1, y2, . . . , ym) is feasible for the dual, then:∑

j cjxj ≤
∑
i biyi, or in condensed form: c>x∗ ≤ b>y∗.”[Van98].

Definition 4 (Strong Duality Theorem). “If the primal problem has an opti-
mal solution x∗ = (x∗1, x

∗
2, . . . , x

∗
n) then the dual also has an optimal solution y∗ =

(y∗1 , y
∗
2 , . . . , y

∗
m) such that:∑

j cjx
∗
j =

∑
i biy

∗
i , or in condensed form: c>x∗ = b>y∗.”[Van98].

The essence of those two theorems, is depicted in figure 3.1. If there is no duality gap between
the dual and primal objective values, the objective value is optimal. These observations are very
useful, since they provide a method to easily get upper and lower bounds as well as to verify
optimality. On page 66, [Van98] calls it a “certificate of optimality”.

Gap

No Gap

max min

max min

dual valuesprimal values

primal values dual values

z∗

Figure 3.1: Duality Gap between largest primal and smallest dual value. Image credits to [Van98].

3.2.3 Polyhedral Theory, Solvability and Degeneration

The solution x1, x2, . . . , xn to a linear program in standard form is a specific value for each of the
decision variables. In the context of the objective function they form the objective value z∗. A
solution is feasible if it satisfies all restrictions, and optimal if in addition the objective function
value is maximal.
A geometric interpretation of an LP is that its equations form a convex polyhedron2. The poly-
hedron P = {x | Ax ≥ b} defines the feasible region where the solution lies within. The linearity
of the objective function implies that the optimal solution can only be located on the boundaries
of this feasible region, and there it is located on a vertex or facet of the polyhedron, since the
solution is not stringently unique. The objective function hyperplane touches the polyhedron at
the point where the optimum lies, the orientation depending on a minimization or maximization
problem. An example of such a polyhedron is showed in figure 3.2.
Polyhedral theory makes clearer and more intuitive the nature of the solution space and solution
process for linear programs. A formulation provides the convex hull of the formulated problem.
Good formulations have tighter convex hulls. When solving a primal LP, the according polyhedron
P = {x | Ax ≥ b} is interpreted the following [Van98]:

• If P 6= ∅ and a minimum min{c>x | x ∈ P} exists, the linear program is solvable and has
the finite solution x∗ with c>x∗ = min{c>x | x ∈ P}.

• If P 6= ∅, but infimum inf{c>x | x ∈ P} does not exist, the linear program is solvable, but
no optimal solution exists. The polyhedron is unbounded in the direction of the objective
function, the values growing to infinity. Example: max{x | x ≥ 0}.

• If P = ∅, the restrictions contradict each other and there is no solution, since the feasible
region is empty. The linear program is called infeasible. Example: max{x | x ≥ 2; x ≤ 1}.
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Restriction 1

Restriction 2

Restriction 3

z∗ = Optimum

objective function

parallel shift

objective function

feasible region

x1

x2

x2 = ax1 + b

Figure 3.2: Example of a geometric interpretation.

In the latter two cases, the LP is called degenerated. Additional relations are found between primal
and dual problems [Van98]:

• If the primal problem has an optimal solution, the dual has one also. There is no duality
gap (strong duality theorem).

• If the primal problem is unbounded, the dual problem is infeasible (weak duality theorem).
• If the primal problem is infeasible, the dual problem is unbounded (weak duality theorem).
• The case exists that both, primal and dual problem are both infeasible. The duality gap

extends from −∞ to +∞.

3.2.3.1 Farkas’ Lemma

This lemma was set up by Julius Farkas in the 1900 and obtained importance for linear optimiza-
tion, since also by using this lemma the strong duality theorem could be proved. Additionally, it
may be used for giving a certificate or proof of infeasibility. Some variants exist in literature.

Lemma 1 (Farkas’ Lemma). “Either there exists x in Rn with x ≥ 0 such that
Ax ≤ b or there exists y in Rm with y ≥ 0 such that y>A ≥ 0 and y>b < 0.” [AvKa04],
page 156.

3.2.4 Solution Methods for Linear Programs

When solving linear problems, a multitude of solution methods can be applied. The approaches
outlined in the following are not exclusively used for solving linear programs, but often are incor-
porated into the integer problem solution process as well.

2A bounded polyhedron with finite diameter is called polytope. Literature refers to a convex and bounded
polytope also with the term polyhedron.
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3.2.4.1 Geometric Method

The geometric interpretation of an LP was already presented in section 3.2.3 and constitutes a
quick and easy way of getting solutions for small linear programs. But only small problems with
few variables are solved by such graphical methods. With increasing dimensions or when having
a somewhat greater quantity of restrictions and variables they become very unhandy and the
precision in the most of cases is very inaccurate.

3.2.4.2 Simplex Algorithm

Inspired by this geometric interpretation G. Dantzig created the Simplex algorithm. Fundamen-
tally, this algorithm searches the vertices of the polytope described by the problem constraints,
starting by a feasible solution. The algorithm proceeds along the edges of the polytope having
greater reduced costs, thus improving the objective function, and advances until the optimum is
found or unboundedness is asserted. The Simplex algorithm is called an edge following method
and constitutes of the following steps:

1. Check for infeasibility.
2. Convert LP into augmented form: Introduce non-negative slack variables in order to replace

inequality with equality constraints. In this manner a block matrix form is achieved which
constitutes the Simplex tableau.

3. Determine a feasible starting solution. The slack variables become basic, the main variables
become non-basic3.

4. While basis solution is not optimal do:

(a) Determine entering basic variable: Select a nonbasic variable, having maximal reduced
cost. This variable is called pivot element.

(b) Determine leaving basic variable: Select the basic variable which will be dropped in
order to obtain an improving adjacent edge. This is performed via the ratio test.

(c) Transform the Simplex tableau into canonical form by pivoting the entering variable.
The leaving variable becomes nonbasic and the entering variable becomes basic. This
operation is called pivot.

(d) Terminate if unboundedness or cycling (a previous state is revisited) is detected.

Since the Simplex algorithm considers only adjacent edges, in each iteration only one substi-
tution of basic for a non-basic variables is performed. Dantzig designated the entering variable as
the one having maximal reduced cost, but over time alternative strategies were developed.
Polyheder theory shows us that if an optimal solution exists at the edge of the polytope the Sim-
plex algorithm always brings forth this optimal solution, or the problem is infeasible or unbounded.
In special cases a degeneration in the Simplex tableau happens, in particular the occurrence of
cycles. This can be avoided through Bland’s rule, which performs the selection of pivot elements in
a special way. The worst case complexity is exponential in problem size, but almost never 2n steps
are required. In practice the Simplex algorithm turned out to be very applicable and efficient.
At the present time commercial and free software is able to solve systems with some millions of
variables and restrictions.

Variants and improvements The selection of the pivot element influences highly the number
of iterations as well as the numerical stability especially when having degenerated tableau’s. Thus
a good pivot element selection strategy is required. There exist a lot of methods for selecting
pivot elements, or pivot columns and rows: Dantzigs approach (maximal reduced cost) resulted
to be relatively calculation intensive. One prevalent selection strategy is steepest edge pricing,
which selects column and row that together yield greatest overall improvement for the objective.
It is computation intensive, but the number of iterations is significantly decreased. Devex pricing
is an approximation of steepest edge pricing in combination with a normalization of the values

3Besides this approach, other more sophisticated methods exist
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for greater expressiveness. All strategies are standard in most modern solver software. Also very
common are the Harris quotient and the already named Bland’s rule.

The classical Simplex algorithm proceeds until any further addition diminishes the objective
value again and all slack variables are removed from the basis. Simplex steps can be performed
for the primal and the dual problem as well, this leads to variants employing both primal and/or
dual Simplex (primal-dual-Simplex ). Other variants are two-phase-Simplex, M -method.

3.2.4.3 Nonlinear Optimization Techniques

Very fast algorithms for solving linear problems come from the area of nonlinear optimization.
In contrast to the method presented above, these methods are path following. Foundation for all
nonlinear techniques is the ellipsoid method, which “encircles” the problem solution by ellipsoids
of decreasing sizes. Its importance lies in the evidence for polynomial time solvability of LP’s, but
it showed to be to slow to be of practical interest. The approach inspired many new ideas which
disembogued in the development of interior point methods, which nowadays provide the basis for
most nonlinear approach implementations.
As depicted in figure 3.3, the optimum is found by moving iteratively along a path through the
interior of the polytope. Roughly outlined the problem is redesigned in terms of logarithmic
barriers4, which depend on a carefully selected value for pace µ, a step direction and a decreasing
step width, calculated in each iteration. The central path converges to the optimal point as t→∞.
Again, primal-dual symmetry is exploited as optimality criterion. This class of LP solving methods
are characterized by polynomial complexity and fast convergence towards optimality. In practice
interior point methods afford O (log n), and are competitive to the Simplex algorithm. Modern
solver software employ such methods for quick calculation of bounds and preliminary solutions.

(a) µ =∞ (b) µ = 1 (c) µ = 0.01 (d) central path

Figure 3.3: Figures 3.3a - 3.3c show contour lines of a logarithmic barrier function for three values for
the pace parameter µ. The maximum value lies inside the innermost level set. Figure 3.3d depicts the
central path. Image credits to [Van98].

3.3 Integer Optimization

At the present time Simplex-based and interior point methods are considered to be of similar
efficiency and performance for routine applications in industry. But also there exists a huge
amount of problems of vast complexity or size for which a careful analyzing, planning and use of
tricks is necessary for solving them in an acceptable amount of time.

3.3.1 Introduction

As anticipated in section 3.1, a multitude of real world application are (in contrast to the LP
solutions that lie in R) of integer nature, e.g. their solution consists of integer or binary values or
are of mixed nature. Integer problems are classified by [Wol98] as follows:

4Hence the synonym barrier methods.
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Integer Program (IP) or Integer Linear Program (ILP)

max c>x
Ax ≤ b
x ∈ Z0

+ (x ≥ 0 and integer)

Binary Integer Program (BIP)

max c>x
Ax ≤ b
x ∈ {0, 1}n

Mixed Integer Program (MIP)

max c>x+ h>y
Ax+Gy ≤ b
x ≥ 0, y ∈ Z0

+

In this context we name the combinatorial optimization problem (COP), a problem that often
can be formulated as an integer or binary integer program. Again the polyhedron formed by the
problem constraints defines the feasible region for the solution. But in contrast to problems in R
the optimal solution for IP’s are not necessary located on the border, but can lie at a discrete point
within the bounds of the feasible region. As illustrated in figure 3.4, one can be tempted to round
a linear programming solution, but in the most of cases this procedure would be inadequate, since
rounded values may lie far away from the optimal values.

x1

x2

objective function

integer values

feasible integer solutions

IP Solution

rounded solution
invalid roundings

LP Optimum

Figure 3.4: Rounding is not always a
good idea in IP’s and BIP’s: The IP solu-
tion is far away from the rounded values.
Image credits to [Wol98], page 4.

3.3.2 Relaxation

To solve IP’s it sounds suggesting to resort to linear programming theory. Imagine an IP:

z∗ = max c>x

Ax ≤ b
Dx ≤ d
x ∈ Zn+

(3.6)

where the IP with one part of the constraints Ax ≤ b is “easy” to solve, but including Dx ≤ d
extremely difficult. The idea is now to drop the “complicating constraints” ([Wol98], page 167)
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Dx ≤ d and solve the IP without them. The resulting solution may be weak and non integer.
This procedure is called relaxation. A relaxation of program P is commonly denoted as P ′. Their
respective optimal solutions are labelled z∗P and z∗P ′ .
A relaxation would also be the omission of the integer and/or binary requirements and solve the
problem in R, or the substitution of the complicating constraints with easier ones. Then, based
on the interim solution from the relaxed program P ′, the optimal solution of the IP is searched.
As previously stated, rounding is insufficient. The following sections cover alternative strategies.
Another use for primal and dual relaxations is the calculation of upper and lower bounds. In this
context we can state:

Proposition 1. “(i) If a relaxation P ′ is infeasible, the original problem IP is infea-
sible.
(ii) Let z∗P ′ be an optimal solution of P’. If z∗P ′ ∈ X ⊆ Zn and f(z∗P ′) = c(z∗P ′) then
z∗P ′ is an optimal solution of IP.” Proof see [Wol98], page 265.

3.3.3 Exact Solution Methods for Integer Programs

In the following sections various solution strategies for integer programs are presented.

3.3.3.1 Branch-and-Bound

Branch-and-bound (BB) constitutes a popular meta technique for solving problems of all possible
kinds and is no exclusive concept of integer programming. The idea comes from the old concept
of divide & conquer. First applications to linear optimization were made by A.H. Land and A.G.
Doig in the 1960. Shortly outlined, BB enumerates systematically all candidate solutions. This
is done by dividing a problem into subproblems (branch) and associating possibly good upper
and lower limits (bounds) for the solution space in order to narrow the search regions. In this
manner, an enumeration tree is constructed. Subtrees exceeding the bounds are pruned, since they
never would produce an optimum. In [Wol98], page 94, the author presents the following pruning
strategies, St denotes subtrees:

• Pruning by optimality: zt = {max c>x : x ∈ St} has been solved.
• Pruning by bound: zt ≤ z, with zt the upper and z the lower bound.
• Pruning by infeasibility: St = ∅.
The goal is to cut away most unnecessary iterations in the enumeration tree for performance

gain and thus avoiding the worst case of searching the complete enumeration tree, which can be
huge. Upper bounds are derived by relaxation, lower bounds through heuristics, trivial problem
instances, interim solutions, and suchlike. Performance depends on the used branching scheme
which should be carefully selected. Some branching strategies are depicted in figure 3.5. Suggesting
branching strategies for integer programming are: If S is the set of all feasible solutions, it can be
split into S0 = S ∩ {x : xκj = 0} and S1 = S ∩ {x : xκj = 1}.

(a) 0-1 branching (b) column variables
branching

(c) range division
branching

Figure 3.5: Branching Strategies for IP’s. Image credits to [Wol98], page 193.

Modern IP solver software makes excessive use of BB, and the strategies branch-and-cut,
branch-and-price are based on this method.

5the terms were adjusted to the used notation: RP to P’, x∗ to z∗
P ′
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3.3.3.2 Cutting Planes

These technique dates back to work from D.R. Fulkerson, G. Dantzig, R. Gomory in the 1950
and until now it is subject to actual research work. Cutting plane methods exploit the fact that
frequently not all restrictions are needed to solve an integer linear program. Often a small number
of constraints suffice to find the solution, and it is tried to observe only the problem constraints
that configure the relevant facets of the polytope, by dropping irrelevant ones. Also there exist
many problems comprised of an very huge number of constraints for which it is hard to even write
down the complete ILP itself6.
A cutting plane algorithm hence starts with a small amount of restrictions, the restricted problem
(RP), which was derived by relaxation. The algorithm computes a solution z′ for the RP and
determines if it is already optimal or not. If z′ is not optimal the algorithm successively adds
additional restrictions from the original problem. In order to select “good” restrictions for the
next iteration and favor promising ones a Separation Problem (SEP) is constructed. Its solution
is a valid inequality constraint that violates the optimality criterion in the previous step, which
is called cut. The cut is added to our restricted problem. With the additional restriction the
program produces a new solution that hopefully lies nearer to the optimal solution z∗. If this new
solution is again not optimal the process begins anew until no restrictions can be added anymore.
By adding cuts, we cut off the non integer solution space in our polytope, and thus narrowing it.
A pseudo code outline for the cutting plane algorithm is presented in listing 3.1.

Algorithm 3.1: Cutting Plane Algorithm
Data: An integer linear program P
Result: Optimal solution z∗

P ′ ← relaxation(P );1

z∗P ′ ← solve(P ′);2

while (z∗P ′) is not optimal do3

solve-separation-problem SEP;4

/* Add solution constraint from SEP to the restricted problem. */5

P ′′ ← P ′ ∪ (πx ≤ π0)SEP;6

z∗P ′′ ← solve(P ′′);7

return z∗;8

When considering the combinatorial optimization problem (COP) max{cx : x ∈ X ⊆ Rn}, the
separation problem embodies the difficulty of the task and is defined as follows:

Definition 5 (Separation Problem). “The Separation Problem associated with
COP is the problem: Given x∗ ∈ Rn, is x∗ ∈ conv(X)? If not, find an inequality
πx ≤ π0 satisfied by all points in X, but violated by the point x∗.” [Wol98], page 37.

In this context, the author names the polynomial equivalence of optimization and separation
problem: A linear objective function over a polytope can be solved in polynomial time, if the
corresponding separation problem is polynomially solvable [Wol98], page 88 ff.

3.3.3.3 Branch-and-Cut

Branch-and-cut is a hybridization of cutting plane methods and the branch-and-bound meta-
algorithm. The integer program version of the algorithm starts as the cutting plane algorithm:
after relaxing the master problem to a restricted master problem, the restricted problem is solved.
If the solution is not optimal, e.g. there exist non-integer variables supposed to be integer, the
algorithms searches again for an addable cut by solving the separation problem. At this point

6For example the the Traveling Salesman Problem can be constructed as an Acyclic Subgraph Problem having
exponential many restrictions.

24



3.3. Integer Optimization Chapter 3. Optimization Theory Essentials

the problem is split into two subproblems: The standard approach effects branching based onto
variable values. For example if an integer constrained variable xi was found to be fractional, the
two new subproblems divide the solution space into disjoint parts by setting in the first subproblem
x′i ≤ bvaluec and in the second subproblem x′′i ≥ dvaluee. Each feasible solution must suffice one
of the subproblem constraints. In this manner we can systematically search the solution space by
building a decision tree.
Branch-and-cut usually heavily depends on good relaxations and fast separation problem solving,
but has the advantage of exerting small decision trees. Separating and optimality checking heavily
influence execution time. Variants are known which limit run time to a predefined value or until
the solution has reached a sufficiently small deviation from the optimum (duality gap). Branch-
and-cut is a generic approach that is able to solve a wide variety of optimization problems.

3.3.3.4 Column Generation

Inspired by the dual nature of optimization theory the “dual” to cutting plane methods found
also an application. G. Dantzig and P. Wolfe were the first to explore the special structures of
problems with many variables and their ideas were continued by P.C. Gilmore and R.E. Gomory,
who developed the first column generation algorithm. Column generation and branch-and-price
are a promising research area, where many insights can be expected in the future. In the follow-
ing column generation is presented straightforward, advanced topics are summarized in section 3.4.

Column generation in practice is applied for solving huge integer and linear problems, which
consist of a very large amount of variables embodied in a less critical set of “linking” restrictions.
In the most of cases a big part of variables in the optimal solution will assume zero values, so it is
tried only to consider the promising ones. These variables or columns7 in the restrictions depict
“incidence8 vectors of certain subsets of a set, that is tours, client subsets and so on.” [Wol98],
page 186. Also a typical sparseness in the constraint matrices of huge integer linear problems
attracts attention.

The basic idea of the algorithm itself is similar to the cutting plane method: The column
generation algorithm starts with a narrow set of columns in the restrictions and tries to advance
towards the optimal solution by subsequently adding new columns to the current problem.

Problems with a large amount of variables sometimes arise naturally, but more often they
arise through decomposition or reformulation. The purpose of the latter practices is to extend a
Compact Formulation (CF) to an Extensive Formulation (EF) which has some positive properties
in the subsequent solution process. The extended problem formulation represents9 the master
problem (MP) and provides the starting point for the algorithm, λ denotes the variables:

z∗ = min
∑
j∈J

cjλj

s.t.
∑
j∈J

ajλj ≥ b (MP )

λj ≥ 0 j ∈ J

(3.7)

Basically the column generation algorithm is a Simplex algorithm that in each iteration identi-
fies a non basic variable to enter the basis. In this step, we search for the variable having maximal
reduced costs [DesLu05] arg min{c̄j = cj − u>aj | j ∈ J}, with u ≥ 0 being the dual variables.

7Plenty of literature refers to “columns” and “variables” as the same in the field of column generation. A column
is formed by one variable vector of the same index.

8Remark: Maybe the notion characteristic vector describes the intended meaning more precisely
9[Wol98] names the integer programming original and master problem integer program (IP), as well as integer

programming master (IPM). The linear programming original, master and restricted problem are called linear
program (LP), linear programming master (LPM) and restricted linear programming master (RLPM).
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Since |J | can be extremely large, an explicit search may not be possible in all cases. To circum-
vent this, out of the master problem an appropriate small set of non-negative columns J ′ ⊆ J
is chosen, which form the restricted master problem (RMP). Thus we get a smaller, computable
linear program. Its dual equivalent is the dual restricted master problem (DRMP).

The RMP is solved by a Simplex algorithm and returns a feasible primal solution λ as well
as a feasible dual solution u. An optimality check is performed by comparing primal and dual
solution. If there is a duality gap, the present solution is not optimal, and the actual RMP has to
be extended, since not all vital variables are yet part of the actual solution.

In the following step, the algorithm decides which variable to add next. In order to enhance
the current solution a column with associated greatest negative reduced costs (in the case of the
minimization problem) is in search [DesLu05]:

c̄∗ = min{c(a)− u>a | a ∈ A}, (3.8)

with aj , j ∈ J being the columns implicitly given as elements of set A 6= ∅. The problem of
finding such columns is commonly called pricing problem (PP) or column generator. If c̄∗ < 0 we
extend the RMP with the column deduced from our pricing problem result and start again the
RMP solution process. Otherwise, if no column is found, or when c∗ ≥ 0, there exists no negative
reduced cost coefficient c̄j and the primal solution λ is an optimal solution for the master problem.
Column generation is outlined in figure 3.6. The pseudo code outline is listed in algorithm 3.2.

Algorithm 3.2: Column Generation (LP version)
Data: Master problem MP
Result: Optimal solution z∗

/* Determine a feasible starting solution */1

RMP ← Select-starting-subset-of-columnsj∈J(MP );2

z∗RMP ← solve(RMP );3

while ∃ a variable with reduced cost cj < 0 do4

Determine variable j with cj < 0;5

RMP ′ ← RMP ∪ j;6

z∗RMP ′ ← solve(RMP ′);7

return z∗;8

If the MP and thus the RMP are integer programs, the respective relaxation10 is solved by the
Simplex algorithm instead. Further precautions have to be taken to ensure the integrality of the
final solution, see the following sections 3.3.3.5 and 3.4.

The pricing problem can be established in various ways: It may be possible to build a sub-
problem which maximizes or minimizes the reduced costs depending on the optimization sense.
Approaches using enumeration, dynamic programming11 or branch-and-bound were implemented,
as well as heuristics and approximation algorithms. Methods and pricing schemes are listed in
section 3.4.6.

The formulation of such pricing subproblems is a complex task and requires careful considera-
tion. To find an appropriate method we need to keep in mind the structure of the columns and the
“interpretation of cost are naturally defined on these structures” [DesLu05]. This means that the
columns express structural properties for the modelled objects (sets, permutations, paths) they
encode and by using this knowledge problem specific pricing problem solutions are possible.

10The integrality condition is dropped.
11As for example in the Cutting Stock Problem solved by Column Generation.
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Figure 3.6: Column generation flowchart.

3.3.3.5 Branch-and-Price

Branch-and-price works similar to branch-and-cut. Accordingly, branch-and-price is a combination
of column generation and branch-and-bound and mainly used for solving huge integer programs.

The algorithm derives again a restricted master problem, and generates new columns, if the
interim solution is fractional, or until an optimal integer solution is achieved. While having frac-
tional intermediate solutions, these values are used as bounds and the actual problem is split into
two subproblems with some branching schema dividing the solution space into two complementary
subspaces. Various branching schemes exist, for example rounding of some fractional variable up
in one subproblem and down in the second one, or setting binary variables to 0, respective 1 in
the corresponding subproblems. Thus for all variables found in the meantime, a decision tree is
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built systematically, indicating if some variable is part of the actual subproblem or not. If subtrees
are found to have upper bounds lower than the actual lower bound, they will be pruned in BB
fashion, since for sure no optimal solution is found there. The optimal solution in the end is found
at some leaf. The topics are presented more in detail in section 3.4.8.1.

3.3.3.6 Branch-and-Cut-and-Price

Finally, a fusion of all mentioned methods is named: Branch-and-cut-and-price (BCP) combines
cutting plane separation, column generation and branch-and-bound techniques to a powerful tool.
Starting from a very restricted master problem, new cuts and columns are dynamically created
continuously during the branching and pricing process.

Target of this method is the solution of large scale problems, and the entire procedure has to
be carefully planned and prepared. In [Luebbe01], the author annotates, that literature covers
mostly “well behaving” examples and that the “process is not very well understood, but nonetheless
successful applications of this elaborate technique are reported.”

3.4 Advanced Topics in Column Generation

The principles presented in section 3.3.3.4 are now described more in detail. The distinct steps of
the algorithm are presented separately.

3.4.1 Problem Formulation and Block Diagonal Structure

Problems with many variables have a special structure that can be taken advantage of. It orig-
inates from the underlying real world problems logical and hierarchical structure. It has been
observed that such large problem matrices contain a relatively big amount of zero variables and a
small amount of nonzero variables, and are therefore called sparse.

(a) linking constraints (b) linking variables (c) linking constraints and vari-
ables

Figure 3.7: Example schemes of block diagonal matrices, shaded areas indicate nonzero ele-
ments [Luebbe01].

Also most variables occur only in subsets of restrictions, plus all different variables together
appear, if ever, only in very few restrictions. All of them are linked together by the constraints,
and/or by being in the same column. The non zero variables form a sort of angular block diagonal
structure, depicted in figure 3.7. This block diagonal structure forms the basis to the decomposition
approach, superscripts indicate the column affiliation:

D =

0BBB@
D1

D2

. . .

Dκ

1CCCA d =

0BBB@
d1

d2

...
dκ

1CCCA (3.9)
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“The general idea behind the decomposition paradigm is to treat the linking structure
at a superior, coordinating, level and to independently address the subsystem(s) at an
subordinated level, exploiting their special structure algorithmically” [DesLu05].

If a compact problem formulation does non exhibit such a structure, it is transformed in a way
to apply structure that can be weighed easily through some formula or quality calculation process.
The derived extensive formulation and the original compact formulation correlate in the following
way, a thesis addressed by Adler and Ülkücü (1973), Nazareth (1987), here cited from [DesLu05]:

“Although the compact and the extensive formulation are equivalent in that they
give the same optimal objective function value z∗, the respective polyhedra are not
combinatorially equivalent”.

Extensive formulations (EF) arise fairly often naturally or from the decomposition process and
possess advantages over compact formulations (CF). Occasionally EF have increased memory or
storage demands, whereas the CF tend to be quite compact. Motivations for extended formulations
include [Luebbe01]:

• Decomposition may provide a very natural interpretation in terms of the original compact
formulation, and allow the incorporation of complicated constraints.

• It is often noticed that extensive formulations are usually stronger than compact formulations
and its LP relaxation approximates more tightly the convex hull of the problem.

• Compact formulations may have a symmetric structure that affects the branch-and-bound
performance. Decomposition reduces or eliminates these difficulties, but influences the LP
relaxation and solution process.

3.4.2 Decomposition, Reformulation, Convexification, Discretization

Various approaches exist for reformulating a compact formulation (CF) as an extensive formula-
tion (EF). Further methods for strengthening the solution space exist, namely convexification and
discretization. Since this area is wide and the topics are not immediately needed, only a short
introduction is given.

Dantzig Wolfe Decomposition, first introduced by G. Dantzig and P. Wolfe in 1960, is a stan-
dard method for decomposing compact formulations into extended formulations having a large
number of variables but possibly a lot fewer rows than the CF. The principle can be applied
to linear and integer programs as well. Dantzig Wolfe Decomposition of an LP is referred to
in [Luebbe01, DesLu05], the reformulation of an IP is presented in [Wol98], page 187 ff.

Lagrangian Relaxation is an extension to relaxation. It is a popular approach for dealing with
weak bounds obtained by classical relaxations. The main concept is the penalization of the m
complicating constraints Dx ≤ d in the objective function. Again, this principle can be applied
to LP’s and IP’s and is described in [Wol98], page 28.

Convexification bases on the strong relation of Dantzig Wolfe decomposition and Lagrangian
relaxation and is an approach for integer programming decomposition presented by [Vanbk94].
Goal is to restrict a formulation to its convex hull conv(S). The occurrence of fractional multipliers
led Vanderbeck to the development of Discretization, a true integer analogue to the decomposition
principle. Basis principles and differences of discretization an convexification are depicted in
table 3.1.

3.4.3 Set Covering, Set Partitioning and Set Packing Principles

Three kinds of structure are often found in integer optimization. Constraints often depict such
structures, but there exist entire problem formulations as well. Concepts and descriptions are
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Table 3.1: Survey to discretization an convexification. Image credits to [Luebbe01]

Example of a feasible region S of a compact formulation:
S = {x ∈ Z | Dx ≤ d, x ≥ 0}

Effect of reformulation of an LP. Dantzig Wolfe decomposition is ap-
plied to the CF’s relaxation and merely the polyhedral representation
of the linear relaxation of S is altered. The shape does not change and
the quality of the lower bound provided by the LP relaxation does not
improve.

Convexification of S: “If conv(X) is not already a integral polyhedron,
the bound provided by the linear programming relaxation of the refor-
mulation is stronger than the one obtained from the original formula-
tion” [Luebbe01]. We convex combine the extreme points of conv(S)
in order to obtain interior integral points.

Convexification may lead to fractional multipliers and extra arrange-
ments to enforce integrality of the resulting integer program. This
leads to direct reformulation of the integral points, i.e. S itself, called
Discretization. Both convexification and discretization give the same
bound obtained from the respective linear relaxation.

In contrast: Effects of the addition of cutting planes to S.

from [Vanbk94], [webTrick97] and [Luebbe01]. The first author presents a general set partitioning
problem. Basis is a ground set R of m elements 1, ...,m:

• Set Partitioning can be described as finding a set S being the minimum cost selection out of
the power set R, but in a way that each element of the ground set R appears in exactly one
subset S. The problem itself is formulated with equality constraints having a right hand side
of 1. For the underlying application, not every set of R will be feasible. Problems with this
kind of structure are found in flight scheduling, voting district allocation, crew scheduling,
and is best characterized by: Every customer is served by exactly one server.

• Set Covering is an assignment (at minimum cost) of each element from the ground set R to at
least one of the subsets S, i.e. the elements from the ground set must be covered at minimum
once. Constraints of this type consist of sums of binary variables, a “greater than, or equal”
relation and the right hand side 1. Problems of this type are Routing, Location allocation,
Scheduling. One can say, each customer is served by some location/person/device/vehicle.

• Set Packing is given when every set element has to appear in at most one subset. In other
words, it is tried to satisfy as much demand as possible avoiding conflicts. Constraints are
of the form “less than, or equal”, and are characteristic to certain scheduling problems.
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3.4.4 The Restricted Master Problem (RMP)

As already stated, the Restricted Master Problem (RMP) consists of a manageable subset of
columns selected from the master problem, where the size of the latter would exceed either time
or memory at disposal when explicitly searching through the huge number of candidates. The
RMP serves as starting point for the subsequent pricing problem iteration process, where RMP
itself is consecutively expanded by adding the improving columns from the pricing subproblem
outcomes. Any master program narrowed by omitting columns is called restricted. In the corre-
sponding dual therefore the according rows are omitted.
The actual purpose of the RMP is to make available the dual variables needed in the pricing
process and for the algorithm termination control, since the stopping criterion would be equaling
dual and primal objective values. The additional task of the RMP is to combine the subproblems
solutions in order to get primal feasible solutions. At all times, in the RMP is gathered all relevant
information from already solved subproblems, which consists in a column subset, that was found
to improve the objective value. Figure 3.8 outlines the information flow between MP and RMP(s).

Figure 3.8: “Information flow
between master program and
subproblem(s).” Image credits
to [Luebbe01].

In [DesLu05], the authors describe column generation as a method that works toward dual
feasibility by maintaining primal feasibility. It is important to keep in mind that dual values
influence the selection of new variables and therefore must be monitored and analyzed carefully.
However, since an initial set of columns for a RMP does not come up by itself, it has to be deduced
somehow.

3.4.4.1 Deducing an Initial Basis for the RMP

Independently from the used solution method, the RMP has to be initialized. The most common
methods for solving the RMP, the Simplex algorithm, requires a good initial basis, since it is of
crucial importance for the whole procedure. The author of [Luebbe01] names following approaches
for deriving a starting basis:

• The traditional approach is to employ preprocessed values from a two-phase-Simplex.
• When performing an artificial start, a set of artificial variables is introduced, as many as

constraints in the RMP. They are combined with some large penalty constant, in order to be
eliminated in the latter solution process. The artificial columns form a feasible basis matrix
which variables one by one exit the basis until all artificial variables are swapped out and a
feasible solution is yielded.

• Often primal heuristics are applied, but in most cases they are problem specific.
• Sometimes, a warm start from primal solutions obtained in earlier, similar runs, is performed.
• A trivial initialization with a set of 0, the unit basis is often encountered.

In the most of the cases software solvers utilize general methods, since they will not know
beforehand or even detect the particular problem structure. Good starting sets reduce the heading
in effect, meaning that they produce little irrelevant columns for the latter solution process, as
for example the artificial start. Bad ones may “lead the algorithm astray” [DesLu05]. The author
concludes that best results are obtained with estimates of primal and dual solutions.
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3.4.5 Solution Methods for the RMP

Although the Simplex algorithm is the dominant solution method for column generation problems,
other approaches can be employed as well. Alongside primal-, dual-, and primal-dual-Simplex also
specifically tailored algorithms for particular characteristics of the underlying linear program come
to use. Nonlinear approaches like the barrier/interior point method (see section 3.2.4.3) as well
as approximating approaches are very popular. Some of them are shortly outlined in the fol-
lowing [Luebbe01]: The sprint method divides the linear program into working sets, which are
solved independently from each other. By combining the best results for each working set a so-
lution to the main problem is approximated. The related sifting method combines interior point
methods with a Simplex algorithm, the latter making a great progress for column selection in the
beginning, whereas the interior point method then calculates or approximates the few remaining
columns. When no exact solution is needed, the volume algorithm deduces quickly primal and
dual solution approximates. Another approximating algorithm is dual coordinate search, which is
especially designed for solving binary integer programs. It tries solving a RMP without relaxation
and incorporates cost function information in combination with Lagrangian methods. The ana-
lytic center cutting plane method uses “central prices” and is based onto logarithmic barriers.

Generally the methods may perform very differently in varying problem types and the best
practice has to be carefully selected, since there exists no formula that indicates the quality of a
solution method. Additionally all kinds of heuristics for improving dual variables can be employed
throughout the entire process.
Traditionally Simplex, sprint/sifting and interior point method perform very well in the most cases.
If the aim is maximal efficiency the adaption of specialized methods should be considered. Main
decision parameters for method choice are: efficiency, performance and speed of the algorithm,
needed accuracy of the solution, problem peculiarities, available analytic and implementation
skills, available industrial solver software.

3.4.6 The Pricing Problem - Pricing Strategies

The purpose of the pricing step is, as presented in 3.3.3.4, either to determine a column to be added
to the restricted master problem, i.e. to select a new variable to enter the basis or to bring the
evidence that no such one exists. The author of [Luebbe01] distinguishes between pricing scheme
and pricing rules, the former representing the “(sub)set of non-basic variables to consider”, and
the latter being a “criterion according to which a column is selected from the chosen (sub)set”.
The most known such scheme-rule pair is the Dantzig approach: Choose among all the columns
the one with the most negative reduced cost coefficient c̄∗ = min{ckq − u>akq − vk | k ∈ K, q ∈ Qk},
(u, v)> being dual solutions for the RMP [Luebbe01], u being the dual variables for the so called
linking or joint constraints.

Depending, if all variables, a subset of variables, or multiple considering of variables occurs,
the according pricing schemes are called full, partial and multiple pricing.

For the pricing of linear programs following schemes exist: For (small) problems with some
special structural properties, it is possible to determine the pricing variables by enumeration or
dynamic programming12. In the majority of cases such methods are problem specific and poorly
generalizable. An option would be to encode the pricing problem into an optimization problem as
above. The formulation of a single pricing subproblem is

c̄∗ = min{(c> − u>A)x | Dx ≤ d, x ≥ 0} [Luebbe01]. (3.10)

When selecting columns there has to be taken into account that some columns could be re-
dundant or dominated by other ones: The concepts dominance and redundance state a condition
(in this case of the dual constraints) called strength.

12As in the parade example cutting stock problem.
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Definition 6 (Dominance). “A column k of model [M] is dominated if there ex-
ists another column l ∈ Q, such that the reduced cost of k, c̄k is greater or equal to
that of l, c̄l, for all dual values (π, µ, ν) ∈ Rn+ × R1

− × R1
+. On the other hand a col-

umn k is undominated if for all columns q ∈ Q, there exists a set of dual values
(π, µ, ν) ∈ Rn+ × R1

− × R1
+ for which c̄k < c̄q.” [Vanbk94], page 80.

Definition 7 (Redundance). “A column as is called redundant if the correspond-
ing constraint is redundant for the dual problem. That is: as =

∑
r⊂s arλr and cs ≥∑

r⊂r crλr. A column is strictly redundant if (above) holds with strict inequality.” [Vanbk94]

A strategy to handle dominated columns is: If a dominated column is discovered after the pric-
ing step, replace this column by the dominant one in a post-processing step. Remove redundant
constraints in the dual problem.

On page 56 in [Luebbe01] are summarized a variety of alternative pricing rules for LP’s:

• Steepest-edge pricing eliminates the greedy character of the Dantzig pricing (choose a di-
rection of steepest gradient) by taking into account in the pricing process all the edges and
their directions.

• Deepest-cut pricing tries to cut away as much as possible from the dual solution space.
• Lambda pricing selects columns by normalizing the reduced cost.
• Lagrangian pricing exploits the original formulation by taking into account variable interac-

tions, then falls back to the local reduced cost criterion. The method is mostly not applicable
in complex programs but may perform well in problems with certain structures, for example
vehicle routing.

Some additional pricing problem considerations are annotated: Whenever pricing is utilized, it
has to be considered that every column with negative reduced costs improves the objective function,
and therefore not all pricing problem solutions are finally required in the optimal problem solution.
Also a pricing problem can be approached by approximation, since except for the final value no
exact values are needed in the RMP. According to a many reports in literature (see [Vanbk94]
and [Luebbe01] for references) the column generation algorithm may spend more than 90% of
CPU time in pricing problems. Thus, this bottleneck has to be taken into account with careful
planning since a slow pricing problem increases the execution time significantly.

3.4.6.1 Pricing Integer Programs

In integer problems, pricing is a little bit trickier. In fact, if the original compact formulation
is an IP, the resulting pricing problem is one too, which has to be taken into account. Possible
arrangements would be:

• Get lower and upper bounds through approximations and relaxations with a small duality
gap between them. Use branch-and-price and divide and conquer solution space.

• Penalize the violation of integrality constraints, i.e. try to construct columns with integral
coefficients, for example the penalty function method.

• Divide the problem into smaller subproblems, that are solved integrally and independent
from each other, and adjoin the partial solutions together to form an ultimate integral
solution. This strategy may involve structural characteristics of the problem itself.

3.4.7 The Tailing Off Effect

The convergence in IP column generation was also observed. Despite the algorithm is considered
to be finite13, sometimes it exhibits a very poor convergence behaviour, depicted in figure 3.9.

13Presupposed it does not cycle.
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Figure 3.9: “The depicted development of the objective function value is typical for the tailing off effect.”
Image credits to [Luebbe01].

The algorithm comes close to a near optimal solution relatively fast, but thereafter only little
advance is made and the progression in the distinct iterations is only very small. The dual vari-
ables have been observed to oscillate irregularly, rather than smoothly converge to an optimum.
Also a time consuming proof of optimality (of a degenerate optimal solution) could occur. This
behaviour in literature is often described as “exhibiting a long tail” and hence tailing off effect.
According to [Luebbe01] at this point in time the entire process is only intuitively assessed and
theoretically understood only in part and the absence of this oscillation as “(possibly the) desir-
able property” [DesLu05]. Main question is why an algorithm derived from the effective Simplex
method, which only in exceptional situations produces long tails, can get so slow? Numerical in-
stability and inaccuracy are discussed as causes as well as the big number of near optimal solutions
in huge integer programs.

Generally outlined, remedies should aim for an early termination, e.g. the termination before
the long tail occurs with a solution of assured quality. Also Devex pricing, introduced in 3.2.4.2,
was observed to outperform the classical Dantzig pricing scheme. Another strategy would be to
reformulate the problem and thus narrowing the set of considered columns. A simple idea is to
apply quickly derived upper and lower bounds as well as valid inequalities and observe attentively
the duality gap.

Following this last strategy, a stabilized column generation was developed, called Boxstep algo-
rithm. It follows the bounding strategy and bounds the dual variables with an upper and a lower
bound, that form a sort of box around the variables itself. The optimal solution is obtained in
the interior of this boundary. Else, if an intermediate solution lies at the box boundary, the box
is shifted towards its position while re-optimizing. Extensions to the Boxstep algorithm like the
Trust Region Method generalize the box idea, parameters and use additional box constraints or
penalize “bad” columns, as the Weighted Dantzig Wolfe Decomposition. The author of [Vanbk94]
is confident that stabilized column generation produces large performance gains.

3.4.8 Integer Solutions

The explicit way to yield integer solution remains to be discussed, since until now we described
only methods for maintaining the integer nature in the solution processes. Naturally, we do not
want to depend on luck for integer value solutions for a RMP and avoid unsystematic rounding
of some fractional values. The only approach for a systematical search in the solution space
is branch-and-price, essentially presented in section 3.3.3.5 as well as branch-and-cut-and-price,
section 3.3.3.6.
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3.4.8.1 Branch-and-Price and Branching Schemes

The method was introduced by [NemWol88]. In [VanWol96], the author refers to it as integer
programming column generation. Further literature is [Wol98] and [Vanbk94].

As already mentioned in subsection 3.3.3.5, branch-and-price builds a BB decision tree, where
at each node the relaxation of the examined problem is solved. At each node the algorithm
subdivides the solution space in a treelike fashion and excludes from search the subtrees where
no optimal solution will be obtained for certain. This is done by means of bounds: If subtree S1

has an upper bound inferior to a lower bound of another subtree S2, it will for certain not yield a
solution better than S2 and can be pruned.
One crucial point in context of IP is how the problem is divided into subproblems, e.g. the used
branching scheme. When having fractional intermediate solutions the subproblems can be built
as follows:

• A standard branching schema is to split the solution space into two complementary sub-
spaces, one having x′i ≤ bvaluec and the other x′′i ≥ dvaluee.

• A very common branching scheme in binary integer programs (0-1 column generation) is:
When having a fractional binary variable, the subproblems are constructed by dividing the
solution space into one containing the respective variable x′i ≥ 1 and one not containing it
x′i ≤ 0. Here it has to be ensured, that variables already set to 0 are not branched on again
in the subsequent process. Unfortunately such a strategy branches very asymmetrically.
Moreover, since constraints have to be added to the original problem, the original problem
structure could be altered or become unsolvable. In [Vanbk94] this scheme is presented as
variable fixing branching scheme.

• Both, [VanWol96], page 157 and [DesLu05] present the branching scheme developed by Ryan
and Foster in 1981. If λ is a fractional solution, there exists a pair of rows r, s ∈ {1, . . . ,m}
such that 0 <

∑
j∈J′ arjasjλj < 1. We branch by setting once

∑
j∈J′ arjasjλj = 0 and

remove all columns with ar = as = 1 by adding a subproblem constraint xr + xs ≤ 1. The
other branch is formed

∑
j∈J′ arjasjλj = 1 and remove all columns with ar + as = 1 by

adding a subproblem constraint xr = xs.

Good and valid branching schemes partition the solution space in a way so that the current
fractional solution is excluded. It leaves integer solutions intact and ensures the finiteness of the
algorithm [DesLu05]. A general advice is to branch on meaningful sets of variables and make
important decisions in the beginning of the branching process. Also a somewhat balanced tree
should result from branching process, which is achieved by subdividing into branches of possibly
similar sizes. The algorithm should be prevented to branch on variables already branched upon
before. Note that bad branching and poor planning can lead to highly unbalanced trees and a
multiplication of the tailing off effect.

We shift again to branch-and-price in general: Into its procedures, a rich reservoir of fine tuning
can still be embedded:

“All strategies from standard branch-and-bound apply, including depth first search for
early integer solutions, heuristic fathoming of nodes, rounding and (temporary) fixing
of variables, pre- and post processing, and many more.” [DesLu05].

One big difference between IP and LP is that LP can be solved mostly in polynomial time (in P)
whereas IP are mostlyNP-hard. Since fast solution methods exist to deal even with comparatively
vast problems, column generation for LP is deployed chiefly in especially huge problems, where
solvability by use of the Simplex algorithm is not possible anymore. Column generation has the
advantage of being especially designed for and applicable to big problems.
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Chapter 4

Formal Problem Definition

Having summarized all theoretical prerequisites in the previous chapters, we proceed with the
actual problem. Starting from the fingerprint minutiae data points, the process of encoding this
data into a tree-like structure is described more in detail now. The goal is to compress this set.
The result must be calculated efficiently in a reasonable amount of time. Further data processing
of the compressed data should be possible.
First the tree based compression model is formally presented, including the central concept of
the codebook and a description of the solution. It follows the formulation as a k-node mini-
mum label spanning arborescence (k-MLSA), out of which the actual codebook is determined.
Since we discuss optimal solution strategies, we present an integer linear program for k-MLSA,
that [ChwRai09] solves by branch-and-cut. This ILP is the basis for the flow network formulation
that will be solved by branch-and-price. All definitions adhere to [ChwRai09], who established
the model solved by branch-and-cut.

4.1 Compression Model

In [ChwRai09], the authors define the n raw minutiae as d-dimensional points, forming a set V =
{v1, . . . , vn}. These points lie in a discrete domain D = {0, . . . , ṽ1−1}×· · ·×{0, . . . , ṽd−1},D ⊆ Nd,
whose limits, denoted by ṽ1, . . . , ṽd ∈ N, encode the individual sizes of each of the d dimensions1.

As further input, a small parameter δ̃ ∈ D′ is specified, with D′ = {0, . . . , δ̃1 − 1} × · · · ×
{0, . . . , δ̃d − 1}, and D′ ⊆ D. This is the domain of the correction vector, defined later. In our
scenario, we constrain δ̃ to δ̃ < ṽ

2 .

Onto the points V we define a complete directed graph G = (V,A), V being the node set and
A being the arc set A = {(i, j) | i, j ∈ V, i 6= j}. Each arc in this graph represents the relative
geometric positions of the n points, meaning that each arcs end point encodes the relative position
to the start point. As described in section 1.2.1 and in [ChwRai09], we extract out of this graph k
of the n points, and k−1 specially selected arcs, which form an outgoing arborescence. Again, each
arc in the arborescence encodes the relative positions of the points. The compression correlates
with k in the following way: If k = n = |V |, a lossless compression is achieved. For any lower
value of k a lossy compression is obtained.

Here a small set of specially selected template arcs comes into play. In order to achieve com-
pression, we express each arc from the arborescence with an appropriate template arc ID, instead
of storing each tree arc vector in full length for all d dimensions. We select for each tree arc one
template arc, which resembles the tree arc the most and replace in the encoding the tree arc with
a reference to the template arc. Since a small deviation from the tree arcs end point can occur we

1In our case the data is 4-dimensional, and hence d = 4.
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further need a correction vector from the small domain D′, to encode this deviation. Correction
vectors were already introduced in section 1.2.1, figure 1.3.

In the end, all k nodes from the arborescence are connected to the root node by k − 1 arcs,
where each of these arcs is represented by its most similar template arc and an additional cor-
rection vector. The set of involved template arcs is called codebook or dictionary, depicted in
figure 1.2. Compression is achieved either by minimizing the size of the codebook of template
arcs, or by minimizing the correction vector domain, or by a combination of both alternatives.
In this thesis, we concentrate on the first strategy, and enable compression by a small codebook,
which size we consequently are going to minimize. An alternative would be to fix the size of the
codebook to some prespecified value and minimize the domain of the correction vector.

In [ChwRai09], the solution to our problem is defined more formally. It consists of:

• A codebook of template arcs T = (t1, . . . , tm) ∈ Dm of arbitrary, but minimal size m.
• A rooted, outgoing tree GT = (VT , AT ) with VT ⊆ V and AT ⊆ A, connecting |VT | = k

nodes, in which each tree arc (i, j) ∈ AT has an associated template arc index κi,j ∈
{1, . . . ,m} and a correction vector δi,j ∈ D′.

For two points vi and vj , connected by a tree arc (i, j) ∈ AT , the following condition must hold:

vj =
(
vi + tκi,j + δi,j

)
mod ṽ ∀ (i, j) ∈ AT . [ChwRai09] (4.1)

The points to be encoded are transformed into the finite domain by a modulo operation in order
to eliminate negative values and gain a finite ring, where domain borders must not be explicitly
considered. The point vj is calculated by adding to vi the corresponding template arc and correc-
tion vector.

Having finally a codebook and a k-node tree, we store this tree and the template arc set as
compressed information. We traverse the tree by depth first search and save our path as a bit
sequence. Each time a new arc is traversed to reach an unvisited node we add 1 to our bit sequence.
When following such a new arc, we save a reference to its representing template arc and associate a
correction vector. In the case we have to backtrack along one arc, we write 0. Thus, our encoding
finally contains the number of nodes k, the size of the codebook m, the domain limits ṽ, the
position of the root node where the path begins, a bit sequence that encodes the tree structure,
the codebook of template arcs, and finally the remaining tree information. This tree information
is a list of arcs, encoded by an index representing a template arc, the respective correction vector
and the values of dimension values that were not considered for compression. Thus, we enable
a good compression of the input data. Our goal is to calculate a minimal codebook, containing
m template arcs, which is able to feasibly encode the input data set w.r.t. the correction vector
domain. In the following we describe the steps for obtaining this smallest possible codebook. These
steps will be improved in the further process, since branch-and-price needs not to precalculate the
set of specially selected template arcs anymore.

4.2 Previous Approach: Selection of Candidate Template
Arcs and Solving the k-MLSA Problem

In order to find a minimal codebook, the branch-and-cut approach requires an intermediate step.
We mentioned the need for a set of specially chosen template arcs. This set is the set of candidate
template arcs T c, actually determined by preprocessing. Most part of this section was adopted
from [ChwRai09], who formally introduced all terms and definitions.
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4.2.1 Standard Template Arcs and Dominance

Basis for the preprocessing is the set of difference vectors of the input data points, calculated by:

B = {vij = (vj − vi) mod ṽ | (i, j) ∈ A } = {b1, . . . , b|B|}
When considering the restricted domain D′ for correction vectors, the template arcs t ∈ D define
a subspace, where the vectors lie, that t represents: D(t) = {t1, . . . , (t1 + δ̃1 − 1) mod ṽ1} × · · · ×
{dd, . . . , (td+ δ̃d−1) mod ṽd}, D(t) ⊆ D. Thus for each template arc t ∈ D a subset B(t) of vectors
from B, B(t) ⊆ B, of represented vectors is established: B(t) = {b ∈ B| b ∈ D(t)}.

So, with respect to the δ̃ constrained domain D′, for each template arc a set of represented
vectors B′ ⊆ B, B′ 6= ∅ can be derived. The vectors in B′ are labeled bl1 ≤ bl2 ≤ · · · ≤ bl|B′| for
dimension l = 1, . . . , d. Based on this set B′, the standard template arc τ is defined as:

Definition 8. “The standard template arc for B′ is τ (B′) =
(
τ1(B′), . . . , τd(B′)

)
where τ l (B′) = bli∗l

with i∗l = arg maxi=1,...,|B′| bli − bli−1 ∀ l = 1, . . . , d.” [ChwRai09]

B′ spans a smallest bounding box BB(B′). It is a subspace of B′ and includes all vectors from B′,
respecting the ring structure: BB(B′) = {b1i∗1 , . . . , b1i∗1−1 mod ṽ1}× · · ·×{bdi∗d , . . . , b

d
i∗d−1 mod ṽd}.

This expression is shortened by: τ̂(B′) = (b1i∗1−1, . . . , b
d
i∗d−1).

The standard template arc τ(B′), illustrated in figure 4.1, is the corner point with the biggest
coordinates of the smallest bounding box of all vectors in B′. τ̂(B′) is the corner point of the
bounding box opposite to τ(B′). In other words, the points from B′ define a small region where
all possible template arcs that express the same points B′ lie. The standard template arc τ(B′)
lies at the “upper- and rightmost” corner, whereby τ̂(B′) is positioned at the opposite “lower- and
leftmost” position of this bounding box.

Figure 4.1: “The big gray dots are three of the possible representants for the tree arcs b1, . . . , b7, but
the standard template arc τ is the lower left point of the shaded rectangle. The rectangles depict the δ̃
domain.” Image credits to [ChwRai09].

In [ChwRai09], the authors establish the following lemmas including the proof:

Lemma 2. “If a subset B′ ⊆ B of vectors can be represented by a single template arc,
then the standard template arc τ(B′) is always such a template arc.”

Lemma 3. “A set B′ ⊆ B can be represented by a single template arc, particularly by
τ(B′), if: ṽl − (bli∗l − b

l
i∗l−1) < δ̃l, ∀l = 1, . . . , d.”

Based onto these lemmas, the set of standard template arcs T is restricted to the set induced
by all nonempty subsets of vectors that can be represented by a single template arc: T = {τ(B′) |
B′ ⊆ B,B′ 6= ∅ ∧B′ ⊆ D(τ(B′))}.
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Definition 9 (Domination of Template Arcs). “Let t′ = τ (B′) and t′′ = τ (B′′),
B′ ⊆ B, B′′ ⊆ B. The standard template arc t′ dominates t′′ if and only if B′′ ⊂ B′.”
[ChwRai09].

By introducing this concept of domination, the set T is restricted further by discarding all
dominated vectors. The resulting set of all non-dominated template arcs is the set of candidate
template arcs T c. It is determined in the next step, the preprocessing.

4.2.2 Preprocessing

So, the aim of the preprocessing is to provide this set of candidate template arcs T c. This set T c

is derived out of the set of difference vectors B, from which all possible subsets B′ are derived. A
candidate template arc depends on the correction vector domain δ̃, which induces the set BB(B′)
for each tested vector. So, the check b ∈ BB(B′), with b ∈ B, is performed. The standard tem-
plate arc τ(B′) is derived from the bounding box BB(B′).

The algorithm partitions B into three disjoint index sets. The first set contains difference
vectors b which are part of the currently considered bounding box BB(B′). The second holds all
vectors that until now were actively excluded from being part of BB(B′). The third consists of all
vectors to be yet considered. When regarding a current vector and no further addable represented
vectors can be found, it is added to the solution set T c. If there exist still representable vectors,
branching occurs and by recursive calls these further vectors are identified. For each vector it has
to be determined if it is dominated by another vector, or if in turn dominates others, by constantly
updating the set of currently found T c. In this manner a restricted enumeration is performed.
This algorithm has the complexity O(d · |B|3d) [ChwRai09] and in practice turns out to be the
bottleneck of the codebook determination.

The set T c is smaller than the set of all possible template arcs and generated to contain the
vectors of the optimal solution. A lower bound for the size of T c is 1, which means, that only
one single template arc suffices to represent all vectors b ∈ B. As upper bound [ChwRai09]
give O(|B|d), and construct a worst case example consisting of a regular grid of non-dominated
template arcs, which in practice should never occur. The authors expect that |T c| � Θ(|B|d).

4.2.3 Solving the k-Node Minimum Label Arborescence Problem

Having now T c available, we proceed by determining the actual minimal codebook subset. For
this, the graph G is extended by assigning to each arc (i, j) ∈ A all template arcs T c(ai,j) ⊆ T c

that are able to represent it w.r.t. equation (4.1). The next step is to extract a minimal subset
T ⊆ T c, where T must enable a feasible minimal tree encoding.

This problem of finding the minimal codebook is modeled as a variant of the Minimum La-
bel Spanning Tree Problem, presented in section 2.1.1. With the use of a MLST we search for
a minimum set of labels describing a spanning tree out of an undirected graph. Consequently,
we define the arcs from T c as labels. In contrast to the MLST problem we have to consider a
complete directed graph, and allow multiple labels for the arcs. Further we only need a subset of
k nodes to form our spanning tree. For matching purposes, a k of 12–20 minutiae is considered
as sufficient by [SalAdh01]. For modeling k, additionally we use a k-cardinality tree (see section
2.1.2), whereby we need only k − 1 edges. The resulting problem is the k-node Minimum Label
Spanning Arborescence Problem (k-MLSA).

Existing algorithms to the k-MLSA problem include heuristics, a memetic algorithm and an
exact branch-and-cut approach. Focusing on the latter method, a few details from the entire
process are summarized straightforwardly. First a directed cut formulation is established. This
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model correlates to the k-cardinality tree problem formulation, solved by [ChiKa08] with branch-
and-cut. The resulting directed cut formulation will be presented in the subsequent section 4.2.4.
The ILP has an exponential number of inequalities and may not be directly solvable for big
instances. Thus, branch-and-cut is applied, by starting with a restricted set of inequalities and
subsequently adding newly separated inequalities in order solve it optimally. The cutting plane
separations are organized in a branch-and-bound tree. The directed cut ILP is the basis for our
branch-and-price approach.

4.2.4 Directed Cut Formulation for Branch-and-Cut

An integer linear programming formulation to the k-MLSA, based on directed connectivity cuts
is presented in [ChwRai09]. In order to establish the model, the set of nodes V is altered to
V +, which contains an artificial root node with index 0. This is done in order to determine
a root for the spanning tree, since we are interested in an outgoing arborescence. Additional
outgoing arcs from this artificial root (0, i),∀i ∈ V are added to the set of edges A, which becomes
A+. Each template arc t ∈ T c represents a set of tree arcs, which we call A(t) ⊂ A. Further,
T (a) = {t ∈ T c | a ∈ A(t)} is the set of template arcs that may represent a tree arc a ∈ A.
Following variables have been defined:

• yt ∈ {0, 1} encodes the candidate template arcs t ∈ T c, the boolean value indicating t to be
part of the codebook T or not.

• zi ∈ {0, 1},∀i ∈ V encode the covered tree nodes. The boolean value indicates which nodes
belong to the tree.

• xij ∈ {0, 1},∀(i, j) ∈ A+ encode the covered tree arcs. The boolean value indicates which
arcs belong to the tree.

The complete ILP formulation for the k-MLSA is [ChwRai09]:

min
X
t∈Tc

yt (4.2)

s.t.
X
t∈T (a)

yt ≥ xa ∀a ∈ A (4.3)

X
i∈V

zi = k (4.4)

X
a∈A

xa = k − 1 (4.5)

X
i∈V

x(0,i) = 1 (4.6)

X
(j,i)∈A+

xji = zi ∀i ∈ V (4.7)

xij ≤ zi ∀(i, j) ∈ A (4.8)

xij + xji ≤ 1 ∀(i, j) ∈ A (4.9)X
a∈C

xa ≤ |C| − 1 ∀ cycles C in G, |C| > 2 (4.10)

X
a∈δ−(S)

xa ≥ zi ∀i ∈ V, ∀S ⊆ V, i ∈ S, 0 /∈ S (4.11)

The objective function is given by equation (4.2) and states the number of template arcs,
selected out of T c to be minimized. Constraints (4.3) - (4.9) model the basis of the ILP: Inequal-
ities (4.3) associate tree arcs with template arcs and enforce that for each selected tree arc xa
at minimum one template arc t is selected. With constraint (4.4) the number of required tree
nodes is set to exactly k. Likewise, (4.5) constrains the number of required arcs to k − 1. We
need these constraints (4.4) and (4.5) to make the selected edges and nodes form a minimum
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spanning tree2. Next, we integrate the artificial root into the spanning tree, but again setting by
equation (4.6) the number of outgoing arcs from this root node to some arbitrary tree node to
one. Equation (4.7) defines for each node v ∈ V , that selected nodes can only have indegree 1, or
else 0, if they are not selected. Further we must associate selected arcs and involved nodes: By
constraints (4.8) we select only arcs, when their source node is selected.

Inequalities (4.9) are part of the cycle elimination constraints: These inequalities forbid any
cycle of length 2. In order to also forbid cycles of greater length (|C| > 2), the inequalities (4.10)
are added. The number of these cycle elimination inequalities is exponential, and therefore re-
quires to be separated by cutting planes.

The directed connectivity constraints in (4.11) were introduced for strengthening reasons and
are not immediately necessary: The constraints model a path from the artificial root node to any
of the selected nodes in V . The node set S has the ingoing cut δ−(S). Their number is also
exponential.

The branch-and-cut algorithm starts with restrictions (4.2)–(4.9) and then successively sepa-
rates and adds cycle elimination constraints as well as connectivity constraints.

Outlook

Having now defined all terms and prerequisites, the task is now to attempt the optimal problem
solution with the aid of column generation techniques. Starting from this directed cut formulation,
we proceed by formulating this ILP in such a way that it can be solved by branch-and-price. The
following chapter 5 describes how this formulation is done.

2A spanning tree has n nodes and n− 1 edges, in our case k = n.
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Chapter 5

Branch-and-Price

Based on the directed cut formulation from [ChwRai09] in section 4.2.4, we restate this model in
terms of a flow network, so that it can be solved by branch-and-price. We describe more closely
the branching and pricing process as well as the arising pricing problem. Section 5.5 outlines,
how the solution to this pricing problem is defined. The actual solution approach to the pricing
problem employing the k-d tree like structure is described in the following chapter 6.

5.1 Formulating the k-MLSA for Branch-and-Price

The branch-and-cut solution approach, presented in section 4.2.3, has one weak point that in the
following shall be removed. The preprocessing step in practice consumes a relatively big amount
of processing time, particularly for large input parameters δ̃, which is due to the fact that the
template arcs are able to express a huge number of tree arcs. Consequently our goal is to skip this
preprocessing step and incorporate it into the linear programming part, which needs to be altered
for this purpose. We model the k-MLSA by means of a flow network. Spanning tree formulations
an corresponding polyhedra have been studied in detail in [MagWol94]. Also, in [MacPlLi03],
flow formulations are discussed. Flow formulations usually have an polynomial number of flow
variables and are therefore considered to be opportune. Figure 5.1 introduces the concept. It
shows a flow network and a spanning tree induced by a single commodity flow network.

v1

v2

v3

v0

v4

x01 x02

x03

x04

x12, x21

x23, x32

x34, x43

x13, x31 x24, x42

x14, x41

(a) Underlying arborescence

v1

v2

v3

v0

f01 = 4

f12 = 1

f14 = 2

v4

f43 = 1

(b) Single commodity flow spanning tree

Figure 5.1: Single commodity flow network in an arborescence.

In contrast to the MST problem no formulations corresponding to the convex hull of the
incidence vectors of the solution are currently known for our problem. Although formulations
based on directed connectivity cuts are known to provide tighter polyhedrons, we utilize a flow
formulation to avoid the more complex handling of the exponential number of constraints of the
former one.

43



5.2. Single Commodity Flow Formulation (SCF) for k-MLSA Chapter 5. Branch-and-Price

5.2 Single Commodity Flow Formulation (SCF) for k-MLSA

The k-MLSA problem is now formulated in terms of a single commodity flow network. The number
of flow variables as of constraints in this formulation is polynomial. Again we need an artificial
root node to model the source of our flow network, since we do not know in advance which ones of
the nodes will be selected to be part of the solution. We name this artificial root node r. The set
of nodes V + again is V with an additional artificial root node r. The root node implies additional
edges (r, i),∀i ∈ V to be added to the set of edges A, which becomes A+. The variables xij , zi
remain as in the directed cut model:

• The boolean variables xij ∈ {0, 1},∀(i, j) ∈ A+ encode the covered tree arcs, its value
indicating which arcs belong to the tree.

• The covered tree nodes are zi ∈ {0, 1},∀i ∈ V , respective.
• Further, since the set T c is not any longer computed in a preprocessing step, we substitute

it with T , the set of all possible template arcs. The variables yt ∈ {0, 1}, t ∈ T encode in
binary format the template arcs, that were selected for being part of the codebook.

• Additional flow variables are introduced. A variable fij indicates a real valued commodity
flowing from node i to node j. Thus, fij ∈ R0

+,∀(i, j) ∈ A+.

min
X
t∈T (a)

yt (5.1)

s.t.
X
t∈T (a)

yt ≥ xa ∀a ∈ A (5.2)

X
i∈V

zi = k (5.3)

X
a∈A

xa = k − 1 (5.4)

X
i∈V

xri = 1 (5.5)

X
(j,i)∈A+

xji = zi ∀i ∈ V (5.6)

xij ≤ zi ∀(i, j) ∈ A (5.7)

xij + xji ≤ 1 ∀(i, j) ∈ A (5.8)X
(r,j)∈Γ+(r)

frj −
X

(i,r)∈Γ−(r)

fir = k (5.9)

X
(i,l)∈Γ−(l)

fil −
X

(l,j)∈Γ+(l)

flj = zl ∀l ∈ V + \ {r} (5.10)

fij ≤ (k − 1) · xij ∀(i, j) ∈ A (5.11)

frj ≤ k · xrj ∀(r, j) ∈ A+ (5.12)

fij ≥ 0 ∀(i, j) ∈ A+ (5.13)X
t∈T (Γ−(vi))

yt ≥ zi − xri ∀i ∈ V (5.14)

The constraints (5.1) - (5.8) remain as in the directed cut formulation from subsection 4.2.4, but
we replace T c with the set T . The new constraints (5.9) - (5.13) substitute the cycle elimination
and connectivity constraints and model a connected spanning tree by means of a single commodity
flow. Inequalities (5.2) encode the tree arcs and the template arcs which can represent them. We
denominate these constraints (5.2) as arc-label constraints and these are the constraints, that we
are going to expand with variables by pricing.
The constraint (5.9) regulates the outflow from the artificial root node: Since there exist V outgoing
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arcs from the root, but we defined only one of these arcs to be selected, a flow of exactly k must
go out from this source. The following constraints (5.10) model “flow conservation” for each other
node. The inflow must equal the outflow, but taking into account that at each node the flow of
value 1 leaves the network.
Inequalities (5.11) link flow variables with tree arcs (linking constraints). The flow variables hold
at maximum the value k − 1. The variables xij for the solution are selected according to the flow
variables. The only exception is the flow from the artificial root node. Going out from the root,
we need a flow of exactly k, since we want to reach k nodes in our flow network, but defined only
one arc xrj ∈ A+ to be selected. The situation is modeled by inequality (5.12). By additionally
using inequalities (5.13) we constrain a flow to be 0 ≤ fij ≤ k. Constraints (5.14), described
subsequently, tighten our formulation in the primal.
In [CaClPa09] the authors show, that x ∈ R is sufficient to obtain a valid integer solution for the
labels. Although likely, it is not clear if this property does also hold for the k-MLSA. We therefore
restrict the x variables to a boolean domain. Computational tests support our assumption of
real edge-variables already yielding valid label solutions also for the k-MLSA, however without a
definite gain according to obtained run times.

5.2.1 Node-Label Constraints

Not all template arc are equally “good”. Each template arc can represent a set of tree arcs
ti = {aj |aj ∈ A(ti)} which may be of the same size and seem equally suited. When we look at
the template arcs and how they contribute to form a spanning tree, we see that not all template
arcs come into question. So we embed information about the spanning tree. Figure 5.2 illustrates
the concept. As we can see, some template arcs may certainly not contribute to form a spanning
tree, e.g. by forming cycles, as t3 in the figure.

r

v1

v2

v3

a12

a21

a13

a31

a32

a23

t0 = {a12, a13}
{t0}

{t4}

{t2}

{t3}

{t0, t1, t2}

{t1, t3, t4} t1 = {a13, a31}
t2 = {a13, a32}
t3 = {a21, a31}
t4 = {a23, a31}

Figure 5.2: Correlation of tree arcs a and template arcs t (labels). When taking one of the template arcs
t0, t2 or t4, we get a spanning tree, whereby t1 forms a cycle and hence no spanning tree. Also t3 forms
no spanning tree.

So, when selecting new template arc variables, we try to favor template arcs that enable
spanning trees and penalize impossible template arcs. We introduce the constraints (5.14) for the
template arcs variable yt and denominate them as node-label constraints. With these constraints,
the LP relaxation of our model is tighter. These constraints encode that the number of all template
arcs that are incoming at node vi must be greater equal one if the actual node zi is part of the
solution. Furthermore, since our k-MLSA is rooted, we have to take into account that one arc
from the artificial root is always selected and therefore incoming at some node. At this node we
have to subtract that incoming arc.
With these node-label constraints we provide additional dual variables, and use them in addition
to the dual variables for arc-label inequalities (5.2), in order to favor good template arcs that
contribute to form spanning trees and enhance thus the pricing strategy. In the branch-and-
price process these constraints will be also expanded with new variables. This will be subject in
section 5.5.
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5.3 Multi Commodity Flow Formulation (MCF) for k-MLSA

The k-MLSA can also be formulated in terms of a multi commodity flow network. Hereby we
have |V | commodities 0 ≤ f cij ≤ 1 flowing through the network. The advantage of an MCF
formulation is a better LP relaxation because of a tighter coupling of f cij and xij when using
multiple commodities. The disadvantage is the greater amount of variables and constraints.

min
X
t∈T (a)

yt (5.15)

s.t.
X
t∈T (a)

yt ≥ xa ∀a ∈ A (5.16)

X
i∈V

zi = k (5.17)

X
a∈A

xa = k − 1 (5.18)

X
i∈V

xri = 1 (5.19)

X
(j,i)∈A+

xji = zi ∀i ∈ V (5.20)

xij ≤ zi ∀(i, j) ∈ A (5.21)

xij + xji ≤ 1 ∀(i, j) ∈ A (5.22)X
j∈Γ+(r)

fcrj = zc ∀c ∈ V (5.23)

X
j∈Γ+(i)

fcij −
X

j∈Γ−(i)

fcji = 0 ∀i ∈ V \ {c}, c ∈ V (5.24)

X
j∈Γ−(c)

fcjc −
X

j∈Γ+(c)

fccj = zc ∀c ∈ V \ {r} (5.25)

fcij ≤ xij ∀(i, j) ∈ A+, c ∈ V (5.26)

fcij ≥ 0 ∀(i, j) ∈ A+, c ∈ V (5.27)X
t∈T (Γ−(vi))

yt ≥ zi − xri ∀i ∈ V (5.28)

Again we have to restrict the flow from the artificial root node, but unlike the SCF formulation
this has to be modelled for each commodity. We defined, that only one arc from the artificial root
node r to some arbitrary node zi can be selected. All c commodities must flow over this selected arc,
by having the value one. We model this with the constraints (5.23). The following conditions (5.24)
model flow conservation, but this time for each particular commodity. They state, that at each
node, the inflow must be equal to the outflow for each commodity. Constraints (5.25) have been
introduced to model the individual targets for each flow: A commodity c for flow f cjc has as target
the node zc, where again the commodity of value one leaves the network. Inequalities (5.26)
associate a flow f cij with an arc xij by determining it to be either selected when having a value of
one, or deselected when having a value of zero. Finally, each of the c commodities is restricted by
inequalities (5.27) to be ≥ 0. Again we can tighten the multi commodity flow formulation with
node-label constraints (5.28).

5.4 Branch-and-Price

We formulated the problem as a single commodity flow network (section 5.2), and a multi com-
modity network (section 5.3). Both models have a polynomial number of flow variables. These
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formulations are our master problem.

Both presented formulations can be solved entirely, without employing column generation. For
this we substitute T with T c, the set of non-dominated template arcs. The arc-label constraints
(and node-label constraints) are build in advance by inserting all yt, t ∈ T c. This procedure is
useful for determining if the models are correct. Usually, pricing is done when having an expo-
nential number of variables, we nonetheless speed up the solution procedure of such a complete
model by enabling pricing.

As already stated, the creation of candidate template arcs shall be interwoven into the inte-
ger program by only creating new template arcs on demand. As we perform column generation
we start with a restricted master problem, which consists of a very small subset of variables or
columns. Two alternatives for the construction of a RMP exist, which will be described subse-
quently.
The first option is to start with the MIP containing only a feasible small set of template arc
variables, the starting set. This RMP forms a valid starting basis for the branching and pricing
process. The feasibility is determined by solving the RMP and its relaxation. The feasibility con-
dition is ensured by the starting template arcs which should enable to cover a sufficient number of
nodes. The determination of this starting set will be described in section 5.6. The second option
is to start with the MIP containing no template arc variables at all. The resulting MIP is infeasible.

One of the purposes of the RMP is to make available the dual problem variables. The solution
of the LP relaxation of the RMP provides actual values for these dual variables. These values
are then used to determine a column, which when added to the RMP, can improve its objective
value. This is done via the pricing problem, which selects a variable that has minimal reduced
cost, calculated out of the dual values. After having determined such a variable we add it to our
RMP. Then, in the next iteration, the solution process is started anew by relaxing the new RMP,
which in turn gives new values to the dual variables. Based on these new dual values we price
again a new column and the process continues as long as new variables having negative reduced
costs are found. In the case of an infeasible RMP the pricing algorithm must select columns in a
fashion that the RMP becomes feasible.
The branch-and-price algorithm builds a decision tree and prices new columns at its nodes. Each
tree node consists of a “configuration” of variable values. At each node the algorithm additionally
determines upper and lower bounds for the number of selected template arcs and evaluates the
gap between primal and dual solution values. With the help of these bounds the algorithm prunes
subtrees in the decision tree, which exceed these bounds. In this manner the algorithm searches
the tree efficiently for the optimal solution. If the gap between primal and dual values is zero, an
optimal solution was found.
Implementation details will be presented in section 8. Before coming to this, we have to solve the
pricing problem efficiently. The template arcs in k-MLSA have special geometric properties that
will be exploited for this purpose.

5.5 Pricing Problem

As branch-and-price starts with the RMP, we have dual variables uij available. These variables
are extracted based on the constraints (5.2),(5.16) which hold xij from the dual solution of the
RMP in each branch-and-price iteration. The set A(t) is the set of arcs (i, j) that are covered
by a template arc t. If the according model employs node-label constraints (5.14) and (5.28),
introduced in the previous subsections, we get additional dual variables µj . For each t the reduced
cost is defined as:

c̄t = 1−
(∑

(i,j)∈A(t) uij +
∑
j∈{v|(u,v)∈A(t)} µj

)
. (5.29)
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The solution to the pricing problem is the template arc t∗ having the maximum sum of dual values.
We add to the RMP the column that has maximal negative reduced cost.

t∗ = arg mint∈T
{

1−
(∑

(i,j)∈A(t) uij +
∑
j∈{v|(u,v)∈A(t)} µj

)}
. (5.30)

If node-label constraints are not used, the corresponding variables µj are zero. Only variables
with negative reduced costs can improve the objective function, as discussed in sections 3.3.3.4
and 3.4.6.
Now we need to determine values for each template arc variable, by regarding the values of the
dual variables corresponding to a template arc. The idea is to build a search tree, successively
named segmentation tree, wherein the template arcs and the points they represent, are encoded
w.r.t. their geometrical information. This is done by means of a k-d tree, where in advance or
dynamically we construct all branches or at least the branches needed for solving the pricing
problem. By traversing the tree efficiently by appropriate bounding techniques we finally identify
the solution to the pricing problem. All details for this step are described in chapter 6. As the
pricing problem will be solved very frequently, the procedure must be very efficient. The dual
variables are not needed for the construction of the segmentation tree, but are used only in the
pricing process, where we determine the maximal negative reduced cost.

5.6 Determining a Starting Solution

There exist two alternatives for starting the branch-and-price process:

5.6.1 Trivial Starting Solution

If we want our initial RMP to be feasible, we must determine a valid starting solution first. Such
a starting solution consists of a small amount of columns, that are a spanning tree or a path.
Such a starting solution must contain k nodes in order to be feasible. It may be quickly derived,
since it is only a helping starting solution for the actual minimization process. We use the star
shaped spanning tree resulting when enabling the arcs x0j , j = 1, . . . , k and xr0 and the nodes
v0, . . . , vk. We assign some big values to the dual variables u0j , j = 1, . . . , k and determine the
needed template arcs with the pricing algorithm. Thus we get a starting solution consisting of
non-dominated template arcs.

5.6.2 Farkas Pricing

If we start with an infeasible RMP, without any template arc variables, we first have to make it
feasible in order to begin the pricing process. With Farkas’ lemma (subsection 3.2.3.1) we have a
proof of infeasibility and we can extract the Farkas coefficients. These Farkas coefficients are then
used in the same manner as the dual variables by performing Farkas pricing. With the pricing
algorithm, a generic procedure that uses either dual or Farkas values depending on which pricing
problem (standard reduced cost pricing or Farkas pricing) we want to solve, we determine the
new template arc to be added to the RMP as the one having the maximal positive sum of Farkas
values. As an RMP relaxation is determined to be infeasible, the algorithm, before starting the
branch-and-price process, calls the Farkas pricing method. This method determines new columns
and adds them to the actual RMP, until the RMP becomes feasible. Then, when finally having a
feasible LP relaxation, the branch-and-price algorithm provides the dual variables for the current
subproblem, the algorithm proceeds with the reduced cost pricing.

5.7 Pricing Methods

Once the data structures and algorithms that solve the pricing problem are implemented, the same
procedure can be used for both the single and the multi commodity flow model to determine the
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variable that is added to the RMP. The same algorithm enables Farkas pricing and determines
columns that make some previously infeasible LP feasible. Subsequently we summarize some
topics, which adhere to the branch-and-price process.

5.7.1 Standard and Multiple Pricing

We have two alternatives when adding columns. When performing standard pricing we determine
in each pricing iteration the column having maximal reduced cost and add it to our RMP. After
resolving the RMP relaxation we proceed in the same manner in the next pricing iteration until
no further variable having negative reduced cost can be found. At the next branch-and-bound
node, the algorithm proceeds in the same manner.

When doing multiple pricing, we determine all columns with negative reduced cost in one
pricing iteration, and add them all to our RMP in one step. Only after all these variables were
added, the RMP is relaxed and solved anew, before proceeding with the next pricing iteration.
This is done in each branch-and-bound node, until no variables having reduced costs are found
anymore.

5.7.2 Allowing Variable Duplicates

In the course of the branching and pricing process it may happen that some variables are found
twice, or even more times in subsequent pricing iterations. When enabling such variable dupli-
cates the algorithm may spend a lot of time with finding the same variable again and again. Such
situations may occur due to the fact that the solution of the dual problem is not unique.

Adding duplicates each time they are found, makes the number of variables and thus the MIP
very huge. The algorithm may spend much time with the pricing of plenty of duplicates. Although
the problem is still solvable prevented this behaviour. Accordingly, each time we search for a new
variable, we check if we already have found this variable and add another variable, if existing, with
inferior reduced cost instead. This topic is also covered in chapter 9.

5.7.3 Algorithms

The overall branch-and-price algorithm is described by listing 5.1. This algorithm only outlines
the procedure, which we will perform with the aid of a branch-and-price framework. We embed the
parts for loading the model and implement the routines relevant to the pricing problem. Further
we influence the solution process by selecting traversing strategy and according branching rules.

At line 1 the algorithm initializes the branch-and-bound tree and codebook. The variable z∗

will save the best solution. At line 2, the algorithm loads the desired formulation, either the SCF or
MCF model, determines a starting solution and adds it to the RMP. Naturally, when employing
a Farkas pricer, the step for determining a starting solution is omitted. Line 3 generates new
subproblems for the branch-and-bound process, and adds them to the branch-and-bound tree as
nodes. Then, after having selected the next node and thus the subproblem to process (line 5), the
pricer adds new variables tnew to the RMP as long as it finds some and relaxes/solves anew the
RMP. While processing the nodes the algorithm descends into the tree by a traversing strategy
(DFS or BFS) and selects the node to be processed next with the aid of a branching rule. While
doing so, the algorithm determines the optimal solution by evaluating at each subproblem node
the objective value, upper and lower bounds and dual gap. The solution strategy of the pricer is
presented in the next chapter 6. In section 6.6, the instances for the abstract pricer algorithms
are described.
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Algorithm 5.1: Branch-and-Price(f , δ̃, d, k)

Data: Input data file f , bounding box δ̃, dimensionality d, nodes to connect k.
Result: Returns the optimal codebook for the input parameters.

bbtree ← ∅; codebook ← ∅; z∗ ← k;1

RMP ← SCFModel and startingsolution; /* or MCFModel */2

bbtree ← generate subproblem nodes n;3

while bbtree has unprocessed nodes n do4

Select next n ∈ bbtree with traversing strategy and branch rule;5

/* Solve LP relaxation of RMPn and determine dual values. */6

uij , [µj ]← solve (RMPn);7

/* Based on uij , [µj ] determine one or multiple new column(s) tnew. */8

/* The algorithms for PricerAlgorithm are presented in section 6.6. */9

for tnew ← PricerAlgorithm (uij , [µj ]), where tnew 6= ∅ do10

if tnew has reduced cost c̄(tnew) < 0 then RMPn ← RMPn ∪ tnew;11

z∗n ← solve (RMPn);12

if z∗n < z∗ AND z∗n valid for RMPn then z∗ ← z∗n;13

Prune nodes having znLB > z∗;14

bbtree ← generate new subproblem nodes n;15

codebook ← extract template vectors for z∗;16

return codebook;17
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Chapter 6

Solving the Pricing Problem

This chapter describes the solution approach for the pricing problem in detail. First, we present
the overall principle and proceed with defining a region abstraction, upon which the k-d-tree like
structure is based on. In the following, we denominate this tree as segmentation tree. This chapter
describes construction and management of this data structure and how we extract data from it.
By traversing the segmentation tree systematically, we search for a node corresponding to the
solution to the pricing problem.

6.1 Basic Ideas

The role of the pricing problem can be illustrated as follows. Imagine a rectangle of size δ̃ defined
by each point b ∈ B in a finite 2-dimensional domain. This bounding box, with the point b at its
upper, rightmost corner, defines an area in which a template arc, able to express this point, can
lie. So by having such a rectangle for each bi, these rectangles overlap. This results in areas where
multiple rectangles overlap each other. These overlapping areas define template arcs, where more
than one element b can be expressed and therefore corresponds to a template arc, which is able to
express all points bi associated with each one of the rectangles out of which the area was formed.
In the two-dimensional case, the pricing problem can be illustrated as follows. If the bounding
boxes are considered as transparent grey-shaded rectangles with a grey-tone corresponding to the
value of the associated dual variable, overlapping regions imply darker areas. Our goal is to find
the darkest areas.

6.1.1 Segmenting the Area by Means of a k-d Tree

Input to the k-d tree are the difference vectors bi ∈ B. In order to retain the meaning of k in the
(usually so called) k-d tree naming, it must be annotated that we denote the dimensionality by
d. As we defined k being the size of the subset of nodes from V forming the k-MLSA we must
pay attention to not confuse both terms. Further input is the correction vector domain (δ̃1, . . . , δ̃d).

The basic idea for the solution of the pricing problem is to segment the finite domain D into
subspaces in the fashion of a k-d tree. The division into subspaces is done by means of the points
bi and the corner points of the δ̃ sized bounding box defined by each bi:

(b1i , b
2
i , . . . , b

d
i ), (b

1
i − δ̃1, b2i , . . . , b

d
i ), (b

1
i , b

2
i − δ̃2, . . . , bdi ), . . . , (b

1
i − δ̃1, b2i − δ̃2, . . . , bdi − δ̃d).

The segmentation is done along the (d − 1)-hyperplanes of the bounding boxes. Each point bi
implicitly defines 2d corner points that represent the limits of the bounding box for each bi. All
relevant coordinate information is contained in the two points (b1i , b

2
i , . . . , b

d
i ) and (b1i − δ̃1, b2i −

δ̃2, . . . , bdi − δ̃d). Having such bi, where each one defines a bounding box, we want to identify the
areas where more bounding boxes overlap. We want to divide the finite domain D in a fashion,
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so that its segments represent these areas. This we do by creating a splitting hyperplane succes-
sively for each relevant facet of each bounding box defined by a bi. The required coordinates can
be extracted from the two corner point vectors which uniquely define the bounding box. While
dividing a segment into subsegments by inserting such a splitting hyperplane, we build the tree
that encodes the structure. Having at some node a segment and a splitting hyperplane we get two
subspaces, one that lies left or below (<) the actual splitting hyperplane, and one that lies right or
above (>) the splitting hyperplane. We encode this into the tree by associating the left subspace
with the left successor and the right subspace with the right successor. When performing the
segmentation in such a way and process each bi in random order, then the entire d-dimensional
domain containing the points from B is structured into a tree. The general principle is depicted in
figures 6.1, 6.2 and 6.3, where the nodes in the segmentation tree are labeled by ri to emphasize
the point where segmenting occurs. The images anticipate the bounding concept presented sub-
sequently in section 6.1.2. At each node the first set is the upper bound set UB, the second set
the lower bound set LB. The values ui indicate some sample dual values for bi and the bounding
box defined by it. For overlapping areas we have a sum of dual values, derived from the according
LB. The dual values may differ in each pricing iteration.
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(a) Segmented area after insertion of b1, b2.
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(b) Segmented area after insertion of point b7.

Figure 6.1: Segmentation of a sequence of points bi. Figures 6.2 and 6.3 show the corresponding trees.

Let now n denote the nodes of the segmentation tree. Further we denote the subspace corre-
sponding to node n with R(n). The subspace R(n) is the area enclosed by the splitting hyperplane,
which we denote by (c, dim). We can distinguish between two types of nodes:

• The intermediate nodes contain a splitting hyperplane and divide the subspace defined by
R(n) into two subspaces, positioned respectively in the left subtree nleft and right subtree
nright depending on their position to be left or right of the actual (c, dim).

• The leaf nodes hold and express atomic subspaces, which are not further divided.

These atomic subspaces are what we are actually interested in. When we segment the domain
with the segmentation tree, then the leafs in the tree encode atomic subspaces where all template
arcs contained in this area represent exactly the same points. That means that all template arcs
that can express the same points correspond to vectors within this subspace. Every template
arc within this subspace is equally suited and we only consider the corresponding standard tem-
plate arc τ .

The solution to our pricing problem is the atomic subspace having the biggest sum of values of
corresponding dual variables. Once such a subspace was found, we derive the appropriate standard
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Figure 6.2: Segmentation tree after inserting b1, b2. A left son ∼= left, below; right son ∼= right, above.
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Figure 6.3: Segmentation tree after insertion of b7. A left son ∼= left, below; right son ∼= right, above.

template arc τ from it. As we do not want to process all nodes in the tree in order to find the
optimal solution, the search is restricted with bounding techniques, in a way that only interesting
subtrees are traversed and the irrelevant ones are omitted.

6.1.2 Extracting Template Vectors by Bounding

In section 5.5 we defined the variable, that will be added to our actual RMP, as the one having
the maximal sum of dual values, and thus maximal negative reduced cost c̄t. The dual values
have now to be integrated into our segmentation tree. This is achieved by defining two sets for
each node in the tree, each node representing a subspace R(n) in which some points lie. Each set
encodes the expressed points for the respective segment in the following manner:

Definition 10 (Upper Bound Set UB(n)). The set of points that could maximally be represented
by the template arcs positioned in the respective subspace defined by the actual node:

UB(n) = {b ∈ B | ∃ t ∈ R(n) ∧ b ∈ B(t)}.

Definition 11 (Lower Bound Set LB(n)). The minimal set of points that can be represented by
all template arcs positioned in the respective subspace defined by the actual node:

LB(n) = {b ∈ B | ∀ t ∈ R(n) ∧ b ∈ B(t)}.
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As each point bi has an associated dual variable ui in the actual RMP, and there exist subspaces
that can express more than one point1, a numerical value for each segment can be calculated by
computing ub(n) =

∑
i∈UB(n) ui and lb(n) =

∑
i∈LB(n) ui. We use these bounds to restrict the

search in our tree by bounding techniques, since we do not want to traverse the entire tree to find
the variable that is the solution to the pricing problem. Let lb∗ denote the global lower bound,
i.e. the maximum c̄t found so far. If ub(n) < lb∗ for some node n we do not have to follow this
branch. The lower bounds lb(n) are used to drive the search towards promising sections of the
search tree. Also subtrees with an UB ⊂ UB∗ can be pruned.

Figures 6.2 and 6.3 contain already for each node n the upper bound set UB and lower bound
set LB associated with the subspace R(n). At each node UB is the first set, LB the second one.
The optimum lb∗ in 6.3 is the leaf R16 holding UB = LB = {1, 7} with the dual value ub = lb = 23.

With the outlined procedure, the k-d tree like structure holds a segmentation for the finite
domain D and with it the relations of the dual variables. Our segmentation tree encodes the
relations of the node differences bi in an upper and lower bound set at each node. For each node
difference we can derive a dual value based on the current LP solution in each branch-and-price
iteration. Special interest lies in the atomic subspaces at the leafs of the tree, where the upper
and the lower bound are equal. The standard template arc τ at such a leaf is implicitly defined
and calculated on the basis based on the set of node differences, as described in section 4.2.1 and
depicted in figure 6.4. In the end, by traversing the tree in search for the leaf having the maximum
maximal sum of corresponding dual values in its lower bound set, we identify the solution to the
pricing problem, which is the standard template arc τ∗, that has maximal negative reduced cost.
Summarizing, we can extract from the segmentation tree two types of results:

• The solution to the pricing problem: The standard template arc τ∗ having maximal negative
reduced costs. We obtain this result by searching in the segmentation tree for the leaf
encoding an atomic subspace, having the maximal sum of dual values calculated out of its
lower bound set.

• The solution to the preprocessing : The upper and lower bound sets may be used for a second
purpose as well. The approach is an alternative to the existing preprocessing, and extracts
the set of non-dominated template arcs T c.

u2 = 7

u1 = 8

u7 = 15

7

8

15

τ

23

τ̂

b2

b1

b7

Figure 6.4: A standard tem-
plate arc τ for the segmentation
in figure 6.1b.

6.1.3 Using the Segmentation as an Alternative to Preprocessing

So, besides the solution to the pricing problem τ∗ we can extract from this segmentation tree the
entire set of non-dominated template arcs T c. The idea is to build a segmentation tree in advance

1Except when having very small δ̃.
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or dynamically and to traverse it accordingly in order to identify all non-dominated template arcs,
which form T c. In this case, the traversal is not guided by the dual variables, since they represent
an explicit state of the branch-and-price process. The focus shifts to the upper bound set UB
and lower bound set LB. Both sets are now employed to identify dominated subtrees in order to
prune unappealing subtrees. The procedures and algorithms will be explained in chapter 7.

6.2 Segmentation Trees

The segmentation tree can be constructed in two different ways:

• Static tree: Here we build the entire segmentation tree in advance. After the construction
was concluded, we search for the solution to the pricing problem. The two operations build
and search are executed sequentially. As all node differences bi are already included in this
segmentation tree, no further expansion needs to be performed in the search phase. This
tree is presented in section 6.4.

• Dynamic tree: The segmentation tree is built while searching for solutions to the pricing
problem. This method only expands branches of the search tree which might be needed
due to the values of the dual variables. The resulting tree is incomplete and the number of
nodes depends on the node differences bi that are part of the solution to the actual pricing
problem. This tree is described in section 6.5.

We first present the static approach, and describe the build and search procedures. There-
after we present the dynamic approach which is basically an intertwined application of these two
procedures. The algorithms and concepts are described in 2- and 3-dimensional space for better
understanding, but work for all dimensions d ≥ 2.

6.3 Region Abstraction

In the following we treat the discrete domain D as a continuous one as the algorithms have been
designed and implemented for the general continuous case. In this manner, the algorithms may
be used also for other applications, both continuous and discrete, and not only for this particular
problem. Thus we have to operate with an enlarged domain ranging from 0 to ṽ. This is neces-
sary as ṽ = 0 mod ṽ and therefore regions crossing the domain border would otherwise not be
connected within the continuous domain. This is, however, a property of this particular imple-
mentation and is no requirement for the segmentation tree to work correctly.

In order to make the construction of the segmentation tree recursive, flexible and easy to
understand, we introduce a region abstraction. We defined the bounding box for bi as the 2d

corner points p(i), d being the dimensionality:

(b1i , b
2
i , . . . , b

d
i ), (b

1
i − δ̃1, b2i , . . . , b

d
i ), (b

1
i , b

2
i − δ̃2, . . . , bdi ), . . . , (b

1
i − δ̃1, b2i − δ̃2, . . . , bdi − δ̃d).

A region Ri, defined by a bi, is a tuple of points 〈p(i)
0 , p

(i)

2d−1
〉 that encodes two corner points

from the bounding box. The points are p(i)
0 = (b1i , b

2
i , . . . , b

d
i ) = bi and p

(i)

2d−1
= (b1i − δ̃1, b2i −

δ̃2, . . . , bdi − δ̃d). For the implementation only these two points are important, since all relevant
data can be derived from them. Based on this definition, regions may not be part of our finite
domain D since they are not yet transformed into the domain by a modulo transformation. The
modulo transformation will be merged into the tree construction process.

If for a region Ri the condition (p(i)
0 )d ≥ (p(i)

2d−1
)d holds for all dimensions d, the region is

regular. If subtracting δ̃ from a bi leads to negative values, e.g. the resulting corner point p(i)

2d−1
is

negative at one or more dimensions, we have a (partially) negative region, which lies outside do-
main D. Such regions must be transformed into D and the respective negative corner point p(i)

2d−1
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specially handled.
In the following we use the term 〈p(i)

0 , p
(i)

2d−1
〉 for regions Ri derived from a node difference bi and

the parameter δ̃. The term 〈p0, p2d−1〉 is used for regions in the general case. If 〈p0, p2d−1〉 is reg-
ular and lies in the finite domain D, we use the term subspace. The term was already introduced
to denominate a segment encoded by a node n in the segmentation tree. Tree segments lie always
in domain D.

In the following we define abstract operations on general regions, some of them illustrated in
figure 6.5. These operations have been consequently implemented as class operators, so that the
code is not obfuscated by lots of flags and loops for iterating through dimensions.

Equality: Two regions are completely equal R1 = R2, if the respective corner points 〈p0, p2d−1〉
for both R1 and R2 are equal. The encoded subspace have the same size.

Inside Test: If R2 ⊂ R1, region R2 is located completely inside R1, and there is no overlap at
the edges. We check if p(R2)

0 < p
(R1)
0 and p(R2)

2d−1
< p

(R1)

2d−1
. If R2 ⊆ R1, then R2 lies inside R1,

some edges may overlap. Here, p(R2)
0 ≤ p(R1)

0 and p(R2)

2d−1
≤ p(R1)

2d−1
. If region R2 only partially

overlaps R1, then R2 6⊂ R1.
Greater, Less: Comparison of a region against a coordinate and dimension pair (c, dim), called

splitting hyperplane: The check R > (c, dim), R ≥ (c, dim) determines if an entire region,
e.g. its two corner points are >, ≥ than the splitting hyperplane (c, dim) for the respective
dimension d, or <, ≤ than (c, dim). In case of ≤,≥, the points may lie upon the splitting
plane, in the other case not.

Split: Divide a region R at a specified coordinate and dimension (c, dim). The result are two
regions R1 and R2. The region R1 = 〈p′0, p2d−1〉 has a new corner point p′0 with the value c
at dim, and R2 = 〈p0, p

′
2d−1〉, where p′2d−1 has c at dim.

Size: Size of a region, product of the facet length in each dimension.

(a) R2 ⊂ R1 (b) R2 ⊆ R1 (c) R < (c, d1) (d) R ≤ (c, d1) (e) split(R, (c, d1))

Figure 6.5: The operations ⊂, ⊆, <, ≤ and split.

6.4 The Static Segmentation Tree

We proceed with building the segmentation tree. As we are now considering the static variant,
the entire tree is constructed at once by inserting all bi in a random order. In the end, the tree
contains a segmentation of all node differences bi. When the construction is complete, in the
following step we traverse it in search of our desired result.

Each node n in our segmentation tree contains the following information:

• The splitting coordinate nc and the splitting discriminator ndisc. The discriminator is incre-
mented in each tree level. The actual dimension value is extracted by dim = disc mod d.
Together c and dim form the splitting hyperplane (c, dim) of the actual node.

• The subspace nR enclosing the splitting hyperplane, with R = 〈p0, p2d−1〉.
• The upper bound set nUB and the lower bound set nLB , as introduced in section 6.1.2.
• Each node n has the successors nleft, nright, as well as the predecessor nparent. The terms
nleftR , nleftUB , nleftLB and so on, denominate successor data.
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6.4.1 Construction Main Algorithm

The main construction algorithm is outlined in pseudo code 6.1. Input to the algorithm are the
set of fingerprint minutiae data points vi ∈ V and the parameter δ̃. For the input parameter δ̃ ≤ ṽ

2
must hold, checked at line 1. At line 2, the algorithm calculates out of the input data points the
set of node differences bi by bi = (vj − vi) mod ṽ | vi, vj ∈ V, i 6= j.

The node differences bi define our working domain D = {0, . . . , ṽ1 − 1} × · · · × {0, . . . , ṽd − 1}
with the resolution ṽ1, . . . , ṽd ∈ N. We encode this domain into the tree root and generate
a root node nroot, containing the regular subspace Rroot defined by p

(root)
0 = (0, . . . , 0) and

p
(root)

2d−1
= (ṽ1, . . . , ṽd). Further, for this root node, we set disc to the value for the first dimension

to be segmented dstart, which normally is d1. Yet, at this point we neither set the actual splitting
coordinate, left and right successor nor the bound sets UB and LB. The root node has no parent.
These initialization steps are encoded in listing 6.1 at lines 2-6. The dimension where we start
segmenting, assigned in line 6, may be customized by adding an additional input parameter.

The following steps are performed for each bi ∈ B: We create out of each bi a region Ri
with size δ̃ (line 9) which may be negative, since it is not yet modulo calculated. We insert
them into the tree in random order by calling algorithm StaticInsert(Ri, nroot) at line 10. The
parameter n is a pointer to the node, where we insert Ri, in this case the root node. StaticInsert
segments the domain sequentially for each bi in a recursive way and is described in the following
subsection 6.4.2. When the segmentation of the finite domain was finished, the algorithm searches
for τ∗ with algorithm StaticTreeSearch-τ∗ (line 11). This algorithm is subject of section 6.4.3.

Algorithm 6.1: StaticSegmentation(V , δ̃).

Data: A set of normalized data points V , delta domain δ̃.

if δ̃ ≤ ṽ
2 then1

B = {(vj − vi) mod ṽ | vi, vj ∈ V, i 6= j};2

/* Initialize static segmentation tree t. */3

Rroot ← 〈(0, . . . , 0), (ṽ1, . . . , ṽd)〉;4

nroot ← Rroot ;5

dstart ← d1;6

/* Build the static segmentation tree. */7

forall bi ∈ B do8

Ri ← (bi, δ̃);9

StaticInsert (Ri, nroot);10

Extract τ∗ with the algorithm StaticTreeSearch-τ∗ in section 6.4.3;11

6.4.2 Static Insert Algorithm

Input to the algorithm StaticInsert is a region Ri derived from a bi and the pointer to the
actual node position n. In the first iteration call this node position pointer is the tree root nroot.
At this first call, the tree contains only the root node, which encodes the region encompassed at
this point, namely the entire domain defined by the input data points.

First, we compare the new region Ri to be inserted to this root node subspace Rroot. As we
merge the modulo transformation into the tree construction process, we designed a region Ri to
be constructed from a node difference bi by subtracting δ̃. Thus, it may happen that the cor-
responding δ̃-sized bounding box is negative and reaches outside Rroot and thus lies outside our
domain. When this happens bdi − δ̃d < 0 for one or more dimensions. For identifying such cases we
perform an inside/outside test and thus determine if the new region Ri lies inside or (partially)
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outside our root node subspace Rroot.
When inserting such regions into the segmentation tree, parts lying outside Rroot have to be iden-
tified and modulo transformed into our domain, so that in the and a correct segmentation of the
finite domain with ring structure is achieved. A region Ri lies outside the domain, if Ri ⊂ Rroot
is false or Rroot∩Ri = ∅. If Ri bases on a node difference bi having one or more coordinates equal
zero, the respective bounding box lies outside Rroot with exception of the (d−1)-hyperplane lying
at 0. This hyperplane is irrelevant for our purposes. Having such a region, we transform this
region entirely into Rroot by a modulo operation of its defining corner points. Thus all coordinates
equal to 0 become ṽd. We re-insert the transformed region recursively into our tree.
If the region is only partially negative, as example R1 in figure 6.6, and has one or more coordinates
< 0 and Rroot ∩Ri 6= ∅. Our region is partially located inside and outside our root node subspace
Rroot. We split Ri it into two subregions with the splitting hyperplane (0, dimneg) where dimneg

is the first negative dimension found. So we get two regions, one lying inside our domain, and
one lying outside. The region Rright is regular and we insert it normally by calling recursively
StaticInsert(Rright, nroot). Region Rleft has to be transformed into our domain Rroot by a mod-
ulo transformation w.r.t. dimneg and then recursively re-inserted. Further negative coordinates
(as would be the case for R2 in figure 6.6) are handled in the same manner after the re-insertion
in the next iteration, as long there exist negative dimension coordinates. Parts representing ir-
relevant subspaces are omitted. By subsequently splitting away all negative parts of regions and
transforming them into the domain at one dimension coordinate by one, we make them all regular.
The example region R2 in figure 6.6 would be first split at coordinate 0, dimension 0 and we get
the regions R2A∪R2D and R2B ∪R2C , which in the next recursion are split to R2A and R2D, R2B

and R2C respectively.

Figure 6.6: Partially negative
regions and their transformation
to the working domain. Re-
gions R1A and R2A are regular,
the other are modulo transformed
into domain D.

We proceed with the static insertion process and proceed with the case of having Ri ⊂ Rroot.
If Ri lies inside the domain borders and is regular, we determine: If the actual node position n is
no leaf and has successors, we recursively descend into the tree by determining the appropriate
successor. If our region to be inserted is Ri ≤ (c, dim), ı.e. less2 than the splitting hyperplane
(c, dim) of the actual node position n, the new region lies for certain left of (c, dim) and thus in the
left subtree. We save the actual index i from Ri into the actual node upper bound set UB, since
the area encompassed at this node contains Ri for sure3. The set UB encodes all node difference
ids, that lie in the subspace nR defined by the actual node. Then we make a recursive call to
StaticInsert(Ri, nleft), where nleft is the left son of the actual node position n. In this manner
we descend into the left subtree and update the bound sets at the tree nodes on the way down.
If Ri ≥ (c, dim), we save again the index i at the actual node and descend into the right subtree
with a recursive call to StaticInsert(Ri, nright).

2“left” or “below” in 2-dimensional case.
3The inside test before was positive.
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If the actual node pointer n is a leaf and has no successors, we proceed with segmenting the
subspace, defined by node n, by means of the corner points of the new region to be inserted.

Simple Segmentation

As we intend to segment the actual subspace along the facets of Ri, we perform a series of splits
ς with alternating dimensions. The actual node n encodes the discriminator for the split, and we
get the splitting dimension by dim = ndisc mod d. We begin with point p(i)

0 defined by the new
region Ri and make d splits, one for each dimension, followed by d splits for point p(i)

2d−1
. In the

special case, when having overlapping points for a region with the actual subspace defined by a
node, we can leave out the splits at this point.
By continuing the example, we split the actual domain at c = (p(i)

0 )dim and save at node n the
resulting splitting hyperplane (c, dim) = ((p(i)

0 )dim, dim). Two successors nleft and nright are
generated and appended to the tree at the actual node n. As at the actual node encodes the
subspace R = 〈p0, p2d−1〉, the left son now defines the subspace Rleft = 〈p′0, p2d−1〉, where point
p′0 has the new value c at dim. The right son has Rright = 〈p0, p

′
2d−1〉, where p′2d−1 has c at dim.

Figure 6.7 illustrates the working principle of a simple segmentation, e.g. a simple split sequence.
The resulting segmentation tree is depicted in figure 6.8.
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Figure 6.7: Simple segmentation of
node difference b1. The figure shows
four splits ς, two at p

(1)
0 and two at

p
(1)

2d−1
. The resulting segmentation

tree is depicted in figure 6.8.
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Figure 6.8: Segmentation tree after insertion of b1.

The actual node upper bound set is again updated by saving index i, thus denoting that the
subspace encompassed at the actual node includes Ri. Each time we append new nodes we also
have to carefully inherit upper and lower bound sets, in order not to loose some previously inserted
Ri. As the elements for LB are for sure in this subtree, they are simply propagated. Only the
elements in UB must be checked against being part of the new subnodes.

59



6.4. The Static Segmentation Tree Chapter 6. Solving the Pricing Problem

By performing such a split, the subspace encoded by node n is split into two subspaces,
one containing our region to be inserted Ri and one not containing it. This is easily checked
by Ri ≤ (c, dim) and Ri ≥ (c, dim). Having completed the split, the StaticInsert algo-
rithm descends into the tree by determining the successor containing our Ri by deciding whether
Ri ≤ (c, dim) or Ri ≥ (c, dim).
The splits for the remaining dimensions are performed in the same manner. By executing the
last split, either Rleft or Rright are equal to the actual region Ri. At this point, we save the
index i additionally to lower bound set. Furthermore, we carefully propagate the sets UB and LB
from the predecessor node to the successor nodes. The lower bound set LB then holds all node
difference indices that are expressed by the subspace encompassed at the actual point.

The algorithm performs 2 · d splits, d splits at corner point p(i)
0 and d splits at p(i)

2d−1
. This

procedure can be tuned by leaving out overlapping or redundant corner points, but we must pay
attention to not destroy the dimension sequence in the tree levels. We reduced these 2 · d splits
by leaving out equals corner points:

• If a new region Ri equals the subspace at the actual node nR, we perform no splits at all,
since both corner points are equal for Ri and nR. We simply add the index i of bi to UB
and LB at n. We omit all 2 · d splits.

• If one of the corner points for Ri is coincident to the respective corner point of nR, omit
these point, thus leaving out d splits.

We can safely omit these splits without disturbing the dimension sequence in the tree levels. Fur-
ther optimizations require a more sophisticated handling.

On the other side we have to absolutely maintain the dimension sequence in the tree levels.
The difference between a conventional k-d-tree and the segmentation tree is depicted in figure 6.9.
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(a) Conventional k-d-tree
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(c) Correct segmentation.

Figure 6.9: The reason, why null subspaces have to be inserted. How, in figure 6.9b, should ς6′ , ς6′′ be
segmented and the dimension sequence retained? Figure 6.9c shows the correct segmentation by inserting
a null subspace ς5NULL .

Maintaining the dimension sequence means, that the sequence d0, d1, . . . , dd always has to
remain intact when descending into the tree levels. Since the segmentation tree is not a conven-
tional k-d tree, situations arise, where a special split has to be performed, that divides nR into a
subregion containing nR itself and an “empty” subspace RNULL with size 0. We call such empty
subspaces null subspace. Such a null subspace lies exactly onto the actual splitting hyperplane and
is trivially performed by the split operation automatically. Such a split is depicted in figure 6.10b.
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Normal Segmentation

Until now we do not take into account overlapping regions, which is the trickier part. When insert-
ing more and more regions, the chance increases that somewhere an overlap of regions takes place.
In such a case (and there are probably many such cases) at some node n none of the two conditions
Ri ≤ (c, dim) and Ri ≥ (c, dim) is true, since the new region has parts on both sides of the split-
ting hyperplane. Having such a case, we split up Ri at the actual splitting hyperplane into Rileft
and Riright and insert the “left” (if Ri ≤ (c, d)) part into the left subtree by invoking recursively
StaticInsert(Rileft, nleft) . The “right” part is inserted by StaticInsert(Riright , nright) into
the right subtree. At the actual node we save again the index of bi to UB.

In each subtree, Rileft and Riright are handled recursively in the same manner. Thus, an ac-
curate segmentation of the domain is constructed. The figures 6.10a and 6.10b illustrate these
steps, by continuing the example in figure 6.7. The resulting segmentation tree is depicted in
figure 6.11. Both figures show also the handling of a null split ς7NULL . The corresponding seg-
mentation tree has a null subspace at the right successor of the node corresponding to split ς7NULL .
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Figure 6.10: Figure 6.10a) shows the insertion of b2, overlaps at splits ς1 and ς4 take place. Figure 6.10b)
shows the segmentation of b2: Since R2 is located on both sides of ς1, the algorithm splits R2 into two
subregions R′2 = 〈p′0, p(2)

3 〉 and R′′2 = 〈p(2)
0 , p′3〉, and inserts them recursively into the left and right subtree

respectively. First, the algorithm descends left with R′2 and encounters an overlap again at ς4. Again R′2
is split up into 〈p′′0 , p(2)

3 〉 and 〈p′0, p′3〉, which are re-inserted recursively. These two subregions as well as
R′′2 are further simply segmented. Figure 6.11) shows the resulting segmentation tree with bounds after
insertion of b2.

6.4.2.1 Algorithms

We describe now in detail the algorithm outlined in the preceding paragraphs. For simplicity
reasons, the described method was split up into two procedures. Pseudo code 6.2 lists the algo-
rithm StaticInsert(Ri, n). This algorithm basically manages the tree descending process and
the segmentation at the region corner points.

Input parameters for StaticInsert are the region Ri, generated from a bi, and the actual
node position n. In the first iteration n = nroot, and the algorithm decides first of all, if Ri lies
inside or (partially) outside the subspace defined by nroot, e.g. our working domain. This is done
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Figure 6.11: Segmentation tree with bounds after insertion of b2.

at line 2 by performing the appropriate inside check. If the region to be inserted is partially neg-
ative (p(i)

2d−1
is negative for some dimensions), this region is split up the first negative dimension

found (lines 40-43) and coordinate 0 and Rleft transformed into our domain (lines 48, 49, 50).
Then, Rleft and Rright are re-inserted recursively (lines 46, 51). Parts representing null subspaces
(determined at line 45) are omitted.

If the region to be inserted is regular and inside Rroot, the algorithm proceeds normally. In
the next step (line 4), the algorithm determines, it the actual node n is a leaf or an intermediate
node. When n is a leaf the algorithm proceeds with segmenting the subspace encompassed by nR
(line block 6-24). If n is no leaf, the algorithm expands the UB set at n (line 25), and decides
if one or both successors contain Ri. If Ri lies left of the actual splitting hyperplane at n, the
algorithm descends recursively into the left subtree (lines 27-28), else if Ri lies right of the splitting
hyperplane it descends into the right subtree (lines 29-30). If Ri lies on both sides of the splitting
hyperplane, the algorithm performs a split and divides Ri at the splitting hyperplane (line 33).
After this, it inserts the resulting subregions recursively into their respective subtree at the actual
node position n (line 34 and 35). Next, if n is a leaf, the algorithm determines, if segmentation
occurs. If both corner points for Ri and nR are equal (line 6), the algorithm updates only the
bound sets at n. It simply adds the index i of bi to the actual nodes upper and lower bound set
(line 7) and performs no segmentation. In the other case the algorithm determines the splits that
must be made by constructing the set of split coordinates P : If the corner points p0 are equal
for nR and Ri, only the splits at coordinates P = (p1

2d−1, p
2
2d−1, . . . , p

d
2d−1) of Ri are performed

(lines 13-14 ). If p2d−1 are equal for nR and Ri, the splits are performed at P = (p1
0, p

2
0, . . . , p

d
0)

for Ri (lines 15-16). If no corner points are equal, all 2 · d splits are performed and set P holds
all coordinates (line 18). With the loop at line 19, all splits are made sequentially by calling the
algorithm StaticAppendNodes at line 20, which handles all the segmentation steps and adds each
time it is called two new successors encoding the actual split. Since the segmentation is performed
based on a Ri, which divides nR into one subspace containing Ri and into one not containing it,
the appropriate successor for descending into the tree for performing the next split is selected by
identifying this successor (lines 22-23). Thus, the algorithm determines the correct successor by
checking if Ri ≤ (nc, nd) (line 22), or Ri ≥ (nc, nd) (line 23) respectively and descends into the
appropriate subtree by setting the node pointer n to the newly determined successor.
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Algorithm 6.2: StaticInsert(Ri, n)
Data: The region to be inserted Ri, a pointer n to the actual tree node position.

/* Check if the region Ri lies inside the actual subspace nR of node n. */1

if Ri ⊆ nR then2

/* If n is a leaf, segment and append new nodes. */3

if nleft = ∅ AND nright = ∅ then4

/* If subspace nR equals our inserted region Ri, only add bounds. */5

if Ri = nR then6

nUB ← nUB ∪ i; nLB ← nLB ∪ i;7

else8

/* If Ri 6= nR, segment. Before descending, add i to nUB. */9

nUB ← nUB ∪ i;10

Let P = (p1
0, p

2
0, . . . , p

d
0, p

1
2d−1, p

2
2d−1, . . . , p

d
2d−1) denote the set of coordinates11

belonging to the points 〈p(i)
0 , p

(i)

2d−1
〉 of region Ri;

/* If for Ri and nR a p0 or p2d−1 overlaps, leave it out. */12

if p
(nR)
0 = p

(Ri)
0 then13

P ← (p1
2d−1, p

2
2d−1, . . . , p

d
2d−1);14

else if p
(nR)

2d−1
= p

(Ri)

2d−1
then15

P ← (p1
0, p

2
0, . . . , p

d
0);16

else17

P ← (p1
0, p

2
0, . . . , p

d
0, p

1
2d−1, p

2
2d−1, . . . , p

d
2d−1);18

for p ∈ P do19

StaticAppendNodes (Ri, n, p); /* Algorithm 6.3 */20

/* After appending, descend for next append. */21

if Ri ≤ (nc, nd) then n← nleft;22

else if Ri ≥ (nc, nd) then n← nright;23

else24

nUB ← nUB ∪ i; /* If n no leaf, save i to nUB */25

/* If Ri lies left or right of (c, dim), descend recursively. */26

if Ri ≤ (nc, nd) AND (nleft 6= ∅) then27

StaticInsert (Ri, nleft);28

else if Ri ≥ (nc, nd) AND (nright 6= ∅) then29

StaticInsert (Ri, nright);30

else31

/* If Ri on both sides of (c, dim), split, insert parts into respective subtrees */32

Rileft , Riright ← split(Ri, nc, nd);33

StaticInsert (Rileft , n);34

StaticInsert (Riright , n);35

else36

/* This occurs if Ri 6⊆ Rroot: Ri lies partially outside Rroot */37

for all dimensions dim do38

/* Test if (p
(Ri)

2d−1
)dim from Ri reaches outside domain. */39

c← (p
(Ri)

2d−1
)dim;40

if c ≤ 0 then41

/* If this point is negative, split the region at coordinate 0. */42

Rileft , Riright ← split(Ri, 0, dim);43

for r ∈ {Rileft , Riright} do44

if size(r) > 0 then45

if r ≥ (0, dim) then StaticInsert (r, n);46

else47

/* Transform into D, then insert. (p
(r)
0 )d < 0 does not occur. */48

if (p
(r)
0 )dim = 0 then (p

(r)
0 )dim ← ṽdim;49

if (p
(r)

2d−1
)dim ≤ 0 then (p

(r)

2d−1
)dim ← ṽdim + (p

(r)

2d−1
)dim;50

StaticInsert (r, n);51
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Listing 6.3 outlines the algorithm StaticAppendNodes(Ri, n, p). This algorithm manages
division of a node subspace at a splitting hyperplane, appends new nodes and organizes the bound
sets in each node. This procedure is called at most 2 · d times in StaticInsert, after the algo-
rithm has determined the region corner point coordinates p where to perform segmentation. The
algorithm StaticAppendNodes receives the actual p as parameter. Having determined coordinate
and dimension for the splitting hyperplane at lines 2-3, the split is performed by dividing nR at
(c, dim) (line 4). The algorithm updates the splitting hyperplane data at node n (line 6), and
generates both new successor nodes nleft (line 7-8) and nright (line 9-10). The upper and lower
bound sets from n are inherited accordingly to nleft (line 8) and nright (line 10). By performing
the last split from P for Ri, the index i for the actual bi is additionally saved to the respective
successors LB set, which contains finally Ri or some final part of Ri (line 11-15).

Algorithm 6.3: StaticAppendNodes(Ri, n, p)
Data: Region Ri, actual node position n, coordinate for next splitting hyperplane p.

/* The new split coordinate c lies at coordinate p and dimension dim, which1

is derived from the actual n. The coordinate p was derived either from
point p0 or p2d−1 of Ri. */

dim← ndisc mod d;2

c← (p, dim);3

Rleft, Rright ← split(nR, c, dim);4

/* Actualize the split at the actual node position n. */5

nc ← c; nd ← dim;6

nleftR ← Rleft; /* Generate the new left node and inherit bounds. */7

nleftUB ← nUB; nleftLB ← nLB;8

nrightR ← Rright; /* Generate the new right node and inherit bounds. */9

nrightUB ← nUB; nrightLB ← nLB;10

if last split for Ri then11

if Ri ≤ (nc, nd) then12

nleftLB ← nleftLB ∪ i;13

else if Ri ≥ (nc, nd) then14

nrightLB ← nrightLB ∪ i;15

6.4.3 Traversing the Static Segmentation Tree (Searching τ ∗)

Having now built the static segmentation tree, we traverse it in search for τ∗, the solution to our
pricing problem. The tree already encodes the node differences bi as upper and lower bounds
UB and LB. For each lower bound set a standard template arc can be derived. The solution to
the pricing problem is τ∗, the standard template arc having maximal negative reduced cost. The
reduced cost is negative, since we calculate 1−∑(i,j)∈A(t) uij . So, we have to find in our segmen-
tation tree the leaf with the bound set having the maximal dual value sum and a negative reduced
cost, derive the standard template arc τ∗ from it, integrate this τ∗ as a new variable into our
actual LP and continue the branch-and-price process. This traversing process is executed multiple
times, while pricing in each branch-and-bound node as long as there exist c̄t having reduced cost
less 0. Actually we have to search only branches that have sums of dual values greater than 1,
since all other branches will produce a reduced cost greater equal 0.
So, at the beginning of each search, we determine the actual dual value ui for each bi from the
current branch-and-price iteration, since these values vary from iteration to iteration. Now at each
node we can compute a numerical value, upon which we base the search process. As traversing
strategy we use standard best first search, in order to quickly find a good result in combination
with bounding techniques for omitting irrelevant subtrees.
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The algorithm StaticTreeSearch-τ∗ proceeds in the following way: We begin at the root node
and determine lb(n) =

∑
i∈LB(n) ui for both successor nodes. Then we descend first recursively

into the branch having the greater lb(n) and leaving the remaining branch to later recursions. At
this new node, we determine again lb(n) for each successor and proceed likewise. If we encounter
equal lb(n) for both successors, it is a matter of implementation, which node we visit first. So,
at some point we reach a leaf and save lb∗ as actual best found bound, if its lb(n) is greater than
1. Now, all the remaining recursions, that were stalled until now, are resolved, but by taking into
account our actual solution. At the parent of the node containing lb∗ the remaining successor is vis-
ited, but only if it has an upper bound value ub(n) ≥ lb∗ and ub(n) > 1. If such a branch is found,
it is again visited in the same best first search manner. If ub(n) < lb∗ and ub(n) ≥ 1, the subtree
is pruned. By unwinding all recursions, we again ascend in the tree, but by visiting only branches
that may improve our actual result. If an improvement for lb∗ is found in the procedure, we save
this new solution as lb′∗ and continue the BFS process based on this new value. When we want
to find only non-dominated bound sets when having equal sums of dual values, we have to insert
a check for domination, if the actual LB at some leaf dominates LB∗, and in this case replace LB∗.

The algorithm StaticTreeSearch-τ∗ is outlined in listing 6.4. The algorithm decides, if the
actual node position n is a leaf or an intermediate node (line 3). If n is a leaf, the algorithm
determines whether to save the actual nLB (lines 6-11) to the global variable for the best found
bound LB∗ and lb∗, or not to save it. If n is no leaf, the algorithm determines which subtree to
visit first at line 14. Each subtree is checked if its upper bounds sum of dual values is greater
equal our actual lb∗ and greater than 1. If so, the subtree is visited (lines 16-17 and 19-20), else
it is omitted.

Algorithm 6.4: StaticTreeSearch-τ ∗(n)
Data: A node position n.
Result: Sets LB∗ and lb∗ to the highest value found during the traversing process.

if n 6= ∅ then1

/* If there are currently no children, n is a leaf. */2

if nleft = ∅ AND nright = ∅ then3

/* The actual node is a leaf node. */4

if nUB = nLB then5

if lb(nLB) > lb∗ then6

/* Save the best found bounds and its random value sum. */7

lb∗ ← lb(nLB); LB∗ ← nLB;8

else if lb(nLB) = lb∗ then9

/* Check if the new bound set dominates the best bound set. */10

if LB∗ ⊂ nLB then LB∗ ← nLB;11

else12

/* If n is no leaf, first follow the branch with higher bound. */13

if ub(nleftUB ) ≥ ub(nrightUB ) then14

/* If upper bound of the left subtree < the actual best lower15

bound, do not follow this branch, else follow it. */
if ub(nleftUB ) ≥ lb∗ AND ub(nleftUB ) > 1 then StaticTreeSearch-τ∗ (nleft);16

if ub(nrightUB ) ≥ lb∗ AND ub(nrightUB ) > 1 then StaticTreeSearch-τ∗ (nright);17

else18

if ub(nrightUB ) ≥ lb∗ AND ub(nrightUB ) > 1 then StaticTreeSearch-τ∗ (nright);19

if ub(nleftUB ) ≥ lb∗ AND ub(nleftUB ) > 1 then StaticTreeSearch-τ∗ (nleft);20
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6.4.3.1 Determining the Standard Template Arc

Once we have determined LB∗, we have to compute τ∗. The standard template arc τ is determined
out of the bound set LB∗ as described in section 4.2.1. For bound sets with size 1, the bi is the
standard template arc. For |LB∗| > 1, we save the first element from this set as reference and
determine separately for each dimension dim, if the remaining bi have an according dimension
coordinate less than the first element. Here we have to take into account the ring structure.
This means that if we have a bound set that encodes bi crossing the domain border, which reach
again into the domain D at the opposite side of the domain border, we save the greater coordinate.
From these domain crossing coordinates, in turn we want the smallest value. The correct procedure
for this is important. The segmentation tree does not encode information about template arcs
encoding areas crossing domain borders. Although a τ may have two “parts” in the tree by crossing
the domain border, both having the same bound set LB. The tree segments these two parts in
two separate subtrees, one positioned somewhere wide left in the tree, the other wide right. It
is irrelevant, which one of these two parts is finally found by StaticTreeSearch-τ∗, since the
correct standard template arc will be derived out of it.

6.4.4 Upper Bounds for the Static Segmentation Tree

Since the segmentation tree bases on a k-d-tree, building has complexity O (k · n log n). Searching
one element has complexity O(k · n1− 1

k + R). The worst case for the number of nodes in the
segmentation tree would be a segmentation of D into ṽ subspaces of size 1. Such a case would
require O (ṽ2

)
nodes and thus at most a storage requirement quadratic in ṽ. In our scenario such

a case should never occur and thus the effective number of nodes is significantly lower.

6.4.5 Simulating StaticTreeSearch-τ ∗

We verify the algorithm StaticTreeSearch-τ∗ by simulating 1000 test iterations, based on ran-
dom values. For this test we additionally need the set of non-dominated template arcs T c. First
we construct the entire static tree. Then, we start the simulation iterations, and in each iteration
we assign new random values in [1, 100] to each bi. We determine from T c the template arc τ∗T c
having maximal sum of random values. Then we traverse the static tree and get the template
arc τ∗seg. Then we determine, if τ∗T c = τ∗seg and also their random value sums are equal. By an
extensive series of computation tests we showed the method to work correctly.

6.5 The Dynamic Segmentation Tree

Basically, the dynamic segmentation tree works similar to the static version, but in the dynamic
version we build the segmentation tree gradually, and enlarge it only when coming to a leaf that is
“incomplete” and has to be expanded further. Thus we combine the two algorithms StaticInsert
and StaticTreeSearch-τ∗ into one procedure.

We begin again by creating a root node, but this time we initialize UB with all node differences
bi. The next step is to start the recursive search process. Since there are no successor nodes for
the root node, the algorithm proceeds with the first segmentation. For this we have to select an
element from UB, that has not yet been segmented. So we regard only elements from UB \ LB,
which are the elements not segmented until yet. In the first insert iteration, this non symmetric
difference set is naturally UB, since LB is empty. As soon we we segment some bi, the sets LB
are filled gradually. Since the sole elements bi in this set allow no selection based on a numerical
value, at this point we already need the current dual values uij or uij+µj respectively, which were
previously derived from the current subproblem. Then we select the node difference bi having the
highest dual value, since this is the node difference that most likely leads fast to the greatest sum
of dual values for the lower bound set lb∗. We continue by segmenting the respective Ri for this bi.
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As our actual node in the dynamic segmentation tree encodes a subspace nR in our discrete
domain D (with exception the root node, which holds the entire domain), the generated Ri may lie
partially outside nR or even Rroot. In the first case, we have to crop the region to the subsegment
which is contained in our node subspace by performing R′i = nR ∩Ri. In the second case, we have
to pay attention to regions reaching outside our domain borders. For this we already transform a
negative region into the domain Rroot and then crop it to the subspace nR. By doing so, we do not
need lines 37–51 from algorithm StaticInsert, listing 6.2 anymore. This proceeding performs
fast for the static segmentation and is only executed at the beginning of some insertion by re-
specting nroot, whereas in the dynamic version of the tree, this would lead to additional overhead.
Thus, we incorporate the handling for negative regions directly into the tree by performing such a
domain respecting crop operation nR ∩Ri for negative regions. By doing so, the overhead of ever
beginning an insertion at nroot again is circumvented. Figure 6.12 shows this concept.

So, in the simple case, we segment Ri entirely in the first insert iteration at the root node and
in situations, were the Ri lies completely inside the subspace defined by the actual tree node n.
In the other case we only segment R′i, a small part of Ri contained in nR. This cropped R′i has
adjusted corner points and lies always in Rroot.

RA

RB

RC

RD

RE

b1

b2

R1

R2

R′
2

Figure 6.12: Rectangles show the re-
gions that the node differences b1 and
b2 define. If we arrive at node en-
coding subspace RD and determine a
part of R2 to be inserted here, we crop
the bounding box to the subspace by
R′2 = RD ∩ R2. The resulting R′2 is
marked by two red dots. At node con-
tainingRD, we insert only this partR′2.

The segmentation works similar to the static counter part. For some part R′i or an entire Ri,
we first split at all d facets at point p(i)

0 , followed by d splits for point p(i)

2d−1
. Again we leave out

the d splits, if the two corner points overlap. The only difference is that at each split we must
now regard the entire bounds set UB and LB at once for each successor node instead of simply
adding the index of the bi we currently insert. In each splitting iteration, where a node subspace
nR is divided into two subspaces Rleft and Rright, we process the actual upper bound set nUB and
determine, if its elements lie again in the left subspace nleftR and/or the right subspace nrightR .
For this, we create the regions Rj , j ∈ UB, already transform them into D, and check if an overlap
with the new successors tree node subspaces nleftR and nrightR occurs. If nleftR ∩ Rj 6= ∅, we
save the index j to the respective left subnodes upper bound set, else not. The same we do with
the right successor upper bound set. The lower bound set is simply propagated/inherited, since a
subspace expressing at least LB is always split into two subspaces expressing again at least LB.
Thus StaticAppendNodes is altered to DynamicAppendNodes, outlined in listing 6.7. The over-
lap check and crop operation are somewhat tricky because of the finite ring structure of the domain.

Having executed such a split sequence4, the algorithm continues at the node, where we began

4We perform a full split sequence, so that complicate checks and additional data about already segmented corner
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the splitting. Here new successors have taken their place, including a fully processed upper and
lower bound set. So, we can descend into the tree, but in direction of the greatest sum of dual
values, which must not necessarily be the subtree where bi was just segmented. As example: n
is a leaf and has UB = {b1, b2, b3}, LB = ∅. Here, b1, b2, b3 have to be segmented. Dual values
are u1 = 9, u2 = 6, u3 = 5. The algorithm segments b1, since u1 is greatest and produces for n
the successors nleftUB = {b1} and nrightUB = {b2, b3}. In the left subtree at some point there is
a LB = {b1}. The right subtree is yet empty. As the dual value sum for the left subtree is less
than in the right subtree, the algorithm chooses nright for descending and finds a leaf, which is
consequently segmented again.

As we employ the best first search strategy, at some point, we reach a leaf where UB = LB.
Here no more bi have to be segmented, since UB ∩ LB = ∅. We save the actual LB and lb∗, and
the algorithms proceeds with unwrapping the recursions. Hopefully, a lot of subtrees have now
a sum of upper bound dual values less lb∗ and less 1 and are omitted. If UB has a sum of dual
values greater equal lb∗, this subtree must be searched. Maybe, there will be found some better
lb∗, which we save and take as new global bound. If non-dominated bound sets are preferred, we
add again a domination check. By proceeding thus, the procedure omits irrelevant subtrees by
leaving them unconstructed. It expands new nodes only at the points determined to be relevant
for the pricing problem. In the end, LB∗ contains the optimum bound set out of which the stan-
dard template arc τ∗ is determined. Its dual sum is lb∗. This is the solution to our pricing problem.

6.5.0.1 Algorithms

The pseudo code of DynamicInsertAndSearch-τ∗ is outlined in listing 6.5. Algorithm 6.6 shows
DynamicInsertNode. The altered DynamicAppendNodes is outlined in listing 6.7.

The algorithm DynamicInsertAndSearch-τ∗, listing 6.5, is divided again into two main blocks,
one concerning the case for the actual node position n being a leaf (lines 2-28), the other performing
the recursive BFS search (line 29-40). If n is a leaf and has empty UB and LB, this leaf is irrelevant
(lines 4-5). If UB > 0 and LB empty, the algorithm determines at line 8 the element that must be
segmented next, generates the according Ri (line 9), transforms and crops Ri to R′i (line 11) and
inserts it (line 12). The search is continued by a recursive call to DynamicInsertAndSearch-τ∗ at
line 13. If at n, the UB and LB are equal and not empty, the actual nlb is evaluated against lb∗

and 1 and saved, if greater (line 15-18). If upper and lower bound set are not equal the algorithm
calculates the symmetric difference set Φ (line 23), and determines from this set Φ the region Ri
to be segmented next (lines 24-26). Follow the calls to the algorithms for segmenting (line 27) and
descending further (line 28).

The algorithm DynamicInsertNode, listing 6.6 takes as parameters the region Ri to be inserted
and an actual node position n. First of all, the algorithm performs at line 1 the check if Ri lies in
our actual node subspace nR. Again, the algorithm differentiates between n being a leaf node and
and n being an intermediate node. In case n is no leaf, the algorithm recursively descends into the
tree and determines the appropriate position for segmenting Ri with lines 19-25. Having found
this position, the upper bound set is expanded by i and the segmenting process is performed as in
StaticInsert with lines 3-17. The algorithm DynamicAppendNodes at line 15 appends to n the
new nodes nleft and nright containing the newly segmented subspaces for Ri.

The algorithm DynamicAppendNodes, listing 6.7, is basically similar to the static version. First,
the algorithm determines the next splitting hyperplane (lines 1-2), splits up nR at this splitting
hyperplane (line 3), and generates the new nodes nleft and nright (lines 6-7). In the dynamic
version, the actual bound set nUB has to be specially handled: With lines 9-14, the algorithm

points/dimensions can be omitted. We exclude from segmentation only overlapping corner points and equal regions.
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Algorithm 6.5: DynamicInsertAndSearch-τ ∗(n)
Data: A node position n. LB∗, lb∗ are global and initialized with 0.
Result: Sets LB∗ and lb∗ to the highest value found during the traversing process.

if n 6= ∅ then1

if (nleft = ∅) AND (nright = ∅) then2

/* If n is a leaf, determine whether to save bi or expand the tree. */3

if (|nUB | = 0) AND (|nLB | = 0) then4

/* Don’t save this bound, since it is empty. */5

else if (|nUB | > 0) AND (|nLB | = 0) then6

/* At n, the LB is empty, expand this branch with max(UB). */7

bimax ← max(UB); /* max(uij) or max(uij + µj) */8

Rimax ← (bimax , δ̃);9

/* nR includes Rimax for sure. Crop/transform negative Ri into D. */10

R′imax ← Rimax ∩Rn;11

DynamicInsertNode (R′imax, n);12

DynamicInsertAndSearch-τ∗ (n);13

else if (|nUB | > 0) AND (|nLB | > 0) then14

if nUB = nLB then15

/* Do not expand n anymore. Save lb∗, if > old value. */16

if nlb > lb∗ then17

lb∗ ← nlb; LB∗ ← nLB;18

else if lb(nLB) = lb∗ then19

if LB∗ ⊂ nLB then LB∗ ← nLB;20

else21

/* If UB 6= LB determine the bi to insert. */22

Φ = UB \ LB;23

bimax = max(Φ); /* max(uij) or max(uij + µj) */24

Rimax ← (bimax , δ̃);25

R′imax ← Rimax ∩Rn;26

DynamicInsertNode (R′imax, n);27

DynamicInsertAndSearch-τ∗ (n);28

else29

/* If n no leaf, descend with BFS. */30

if ub(nleftUB ) ≥ ub(nrightUB ) then31

if ub(nleftUB ) ≥ lb∗ AND ub(nleftUB ) > 1 then32

DynamicInsertAndSearch-τ∗ (nleft);33

if ub(nrightUB ) ≥ lb∗ AND ub(nrightUB ) > 1 then34

DynamicInsertAndSearch-τ∗ (nright);35

else36

if ub(nrightUB ) ≥ lb∗ AND ub(nrightUB ) > 1 then37

DynamicInsertAndSearch-τ∗ (nright);38

if ub(nleftUB ) ≥ lb∗ AND ub(nleftUB ) > 1 then39

DynamicInsertAndSearch-τ∗ (nleft);40

/* After finishing, calculate τ∗ for LB∗. */41

iterates through the elements of nUB and determines for each element if it is part of nleftUB and
nrightUB , by determining if an overlap of Rj with nleftR and nrightR respectively occurs. Thus it
builds the definite upper bound sets for both successor nodes. When performing the last split, the
algorithm adds i of Ri to the appropriate left or right successors lower bound set (lines 15-17).
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Algorithm 6.6: DynamicInsertNode(Ri, n)
Data: The region to be inserted Ri, a pointer n to the actual tree node position.

if Ri ⊆ nR then1

if nleft = ∅ AND nright = ∅ then2

if Ri = nR then nUB ← nUB ∪ i; nLB ← nLB ∪ i;3

else4

nUB ← nUB ∪ i;5

Let P = (p1
0, p

2
0, . . . , p

d
0, p

1
2d−1, p

2
2d−1, . . . , p

d
2d−1) denote the set of coordinates6

belonging to the points 〈p(i)
0 , p

(i)

2d−1
〉 of region Ri;

/* If for Ri and nR a p0 or p2d−1 overlaps, leave it out. */7

if p
(nR)
0 = p

(Ri)
0 then8

P ← (p1
2d−1, p

2
2d−1, . . . , p

d
2d−1);9

else if p
(nR)

2d−1
= p

(Ri)

2d−1
then10

P ← (p1
0, p

2
0, . . . , p

d
0);11

else12

P ← (p1
0, p

2
0, . . . , p

d
0, p

1
2d−1, p

2
2d−1, . . . , p

d
2d−1);13

for p ∈ P in all dimensions do14

DynamicAppendNodes (Ri, n, p); /* Algorithm 6.7 */15

if Ri ≤ (nc, nd) then n← nleft;16

else if Ri ≥ (nc, nd) then n← nright;17

else18

nUB ← nUB ∪ i;19

if Ri ≤ (nc, nd) AND (nleft 6= ∅) then DynamicInsertNode (Ri, nleft);20

else if Ri ≥ (nc, nd) AND (nright 6= ∅) then DynamicInsertNode (Ri, nright);21

else22

Rileft , Riright ← split(Ri, nc, nd);23

DynamicInsertNode (Rileft , n);24

DynamicInsertNode (Riright , n);25

Algorithm 6.7: DynamicAppendNodes(Region Ri, Node n, coordinate p)
Data: Region Ri, actual node position n, coordinate for next splitting hyperplane p.

dim← ndisc mod d;1

c← (p, dim);2

Rleft, Rright ← split(nR, c, dim);3

nc ← c; nd ← dim;4

/* Generate the new left and right nodes. */5

nleftR ← Rleft;6

nrightR ← Rright;7

/* Generate entire bound set for both nodes left and right. */8

forall j ∈ UB do9

if Rj ∩ nleftR 6= ∅ then nleftUB ← nleftUB ∪ j;10

if Rj ∩ nrightR 6= ∅ then nrightUB ← nrightUB ∪ j;11

/* Propagate actual known lower bounds to the successors. */12

nleftLB ← nleftLB ∪ nLB;13

nrightLB ← nrightLB ∪ nLB;14

if last split for Ri then15

if Ri ≤ (nc, nd) then nleftLB ← nleftLB ∪ i;16

else if Ri ≥ (nc, nd) then nrightLB ← nrightLB ∪ i;17

6.5.1 Checking for Overlaps

At this point only the determination, if regions overlap, remains. This we need in algorithm
DynamicAppendNodes, at lines 10 and 11. The hard part derives from the fact that regions may
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overlap across the domain D.
If in DynamicAppendNodes at node n we split up nR into the subregions nleftR and nrightR by (c, d),
both these subregions have to be tested if they contain the elements from the upper bound set of n.
We check this by generating a region Rj for each element from nUB , transform it into our domain
and crop it to R′j against the subspace enclosed by the respective subnode with R′j = Rj ∩ nleftR
and R′j = Rj ∩nrightR respectively. Then, we check if R′j ∩nleftR 6= ∅ and Rj ∩nrightR 6= ∅. If the
intersection is not empty for the left subnode, we add j to the left nodes upper bound set, the right
bound set likewise. If Rj overlaps both left and right successors region, j is added to both up-
per bound sets. We have to decide this only the elements of UB, and not for all node differences bi.

In the static tree, we always know exactly, where our bi has to be inserted and expand the
upper bound sets in the passing. In the dynamic version, we have to explicitly determine if an
overlap occurs for each element in UB. As the subspaces defined by nR are always regular, but
we newly generate regions Rj , j ∈ UB at each such bound set determination, the Rj may be
negative. Thus we have to take into account negative parts of Rj , transform Rj into our domain
and perform the overlap check on the transformed part.

We speed up the procedure by leaving out the crop part, and perform the check with adjusted
intervals, w.r.t. the modulo transformation into D. The check is performed for each dimension.
We simply check for a dimension d, if the interval [R(j)

min, R
(j)
max] (adjusted for negative regions)

lies in the interval defined by the actual node subspace [nRmin , nRmax ].
For regions crossing the domain border, two interval checks are performed separately for the di-
mensions having the value < 0. We perform one interval check for the regular part normally and
one for the interval of the transformed negative part. Likewise, if Rj crosses the domain border
in more dimensions. If no overlap occurs in one dimension, no overlap occurs for Rj and nR at
all, and we can just break the loop which iterates the dimensions d.

Figure 6.13a shows some example segmentation encoding the node subspaces RA, RB , RC ,
RD, RE . We list now the overlaps for regions R1, R2, R3, R4, R5, derived from b1, b2, b3, b4, b5.
The overlaps for node subspaces and regions for bi found in this figure are:

• Node subspace RA: The elements that overlap the subspace defined through this branch are
the regions for b4, b5. The regions R4, R5 reach into subspace RA across the domain border.
The left branch counterpart node holds the subspace RB ∪ RC ∪ RD ∪ RE which overlaps
with all Rj . The upper bound at this node contains all bi.

• Node subspace RB : The subspace defined by this branch overlaps with regions for node
differences b2, b3, b4, b5. The left branch counterpart node hold subspace RC ∪RD ∪RE and
overlaps with regions for b1, b2, b3, b5.

• Node subspace RC : The subspace defined by this branch overlaps with regions for b2, b3, b5.
Its right branch counterpart node holds subspace RD ∪RE , which overlaps with b1, b5. The
remaining segments work likewise.

Figure 6.13b shows an example of a possible next split. In the iteration before, b1 was inserted,
the bounds were generated for each node. The green node is an atomic leaf and needs not to be
expanded further. Next element to be inserted is b3, determined to have the greatest dual value.
The region R2 is divided by the splitting hyperplane (red line) into R6 and R7. We regard the
upper bound set at R2 which is b2, b3, b4, b5, For each element we decide if it overlaps R6 respective
R7. The new upper bounds are then: R6UB = {b2, b3, b4, b5} since b3, b5 “look into” R6 across the
domain border. R7UB = {b2, b4, b5}. Figure 6.14 illustrates the resulting segmentation tree.
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Figure 6.13: Some cases of overlaps. In figure 6.13a, the case for b4 is interesting since it reaches into
the node subspace R2 again across the domain border. Parts of subspace b5 reach into even more node
subspaces. When having big δ̃ such overlaps occur very often. All other cases are trivial. Figure 6.13b
shows a specific example of a possible next split. The figure shows the segmentation after insertion of b1.
The region for b3 will be inserted next. The next split is drawn in red.
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Figure 6.14: Dynamic segmentation tree resulting from 6.13b.

6.5.2 Simulating DynamicInsertAndSearch-τ ∗

The dynamic segmentation tree is again verified by simulating 1000 random value based iterations.
This test works the same as described in subsection 6.4.5 and uses random values to simulate pric-
ing based on the set T c. The only difference is that we do not build the segmentation tree in
advance, but gradually in each simulated pricing/search iteration. We can reset the dynamic tree
before each pricing simulation iteration, or let it grow gradually. In our tests, all simulation iter-
ations succeeded, we found each time τ∗T c = τ∗dynseg and the pricing in the dynamic segmentation
tree thus was showed to work correctly.
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6.6 Pricing Algorithms

Since the pricing procedure is generic, both the single and multi commodity commodity flow
employ the same pricing algorithm. The algorithm StaticTreeSearch-τ∗, which determines τ∗

in a previously constructed static tree was presented in section 6.4.3 and is the basis for the
static tree pricer. The dynamic tree pricer employs the algorithms DynamicInsertAndSearch-τ∗,
DynamicInsertNode and DynamicAppendNodes from section 6.5. Additionally, we use both pric-
ing algorithms to determine variables with negative Farkas coefficients.
Either algorithm StaticPricer or algorithm DynamicPricer is called as PricerAlgorithm in algo-
rithm 5.1 from the previous chapter at line 10.

A pseudo code overview for the StaticPricer is listed in algorithm 6.8. The set of minutiae
data points V and δ̃ are assumed to be available as global variables. Input for each pricing itera-
tion are the actual dual values uij for the template constraints and µj for node-label constraints,
if these are employed by the model. The entire segmentation tree is built only at the first call
(lines 1-2). After this, the pricer determines the lower bound set defining τ∗ with the according
procedure (line 3) and generates the new variable tnew (line 5), which is added in the end to the
current LP after having returned it to the branch-and-price framework (line 6).
If we allow no variable duplicates, the algorithm marks the newly priced variable tnew, so that
he pricer does not find the same variable again (line 4). When doing so, the algorithm Static
TreeSearch-τ∗ has to be altered, so that it finds only unmarked result values.

Algorithm 6.8: StaticPricer(uij, [µj])
Data: Dual variables for arc-label constraints uij , optional node-label constraints duals µj .

At this point, the input minutiae data set V and δ̃ are given.
Result: Returns the new column(s) tnew with arg max{c̄t}.
if segtree = ∅ then1

segtree ← StaticSegmentation(V , δ̃);2

LB∗ ← StaticTreeSearch-τ∗(nroot);3

mark node for LB∗ as found; /* optional */4

tnew ← generate variable for the standard template arc from LB∗;5

return tnew;6

The algorithm DynamicPricer is listed in pseudo code 6.9. Again, V and δ̃ are given. Input
are again the actual dual values uij and, if employed, µj . While searching for the lower bound set
defining τ∗, the algorithm builds the dynamic tree (line 1). The result is again the variable to be
added to our current LP (lines 4-5).

Algorithm 6.9: DynamicPricer(uij, [µj])
Data: Dual variables for arc-label constraints uij , optional node-label constraints duals µj .
Result: Returns the new column(s) tnew with arg max{c̄t}.
LB∗ ← DynamicTreeSearch-τ∗(nroot);1

dyntree = ∅; /* optional */2

mark node for LB∗ as found; /* optional */3

tnew ← generate variable for the standard template arc from LB∗;4

return tnew;5

For the dynamic tree pricer, two alternatives exist. Either we let it expand the segmentation
tree in each pricing iteration, thus leaving out the step in line 2, or we clean up the entire tree before

73



6.6. Pricing Algorithms Chapter 6. Solving the Pricing Problem

each pricing iteration (line 2) and let it build in each such pricing iteration only the tree segments
that are needed to solve the actual pricing problem. Again, variable duplicates may be excluded
from search by marking found tnew. The according parts in DynamicInsertAndSearch-τ∗ have
to be altered.

6.6.0.1 Outlook

The following chapter 7 describes how to extract the set of candidate template arcs T c out of the
presented segmentation tree, and regards the static as well es dynamic version. Thus, we create
an alternative to the preprocessing method from [ChwRai09]. The framework, where branch-and-
price is implemented, as well as implementation details, will be subject in chapter 8.
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Chapter 7

Extracting T c from the
Segmentation Tree

As already hinted at in chapter 6, besides τ∗ another result can be extracted from the segmentation
tree. This option arose with the need for some test or verification algorithm in order to determine
if the segmentation tree is correct. So we extracted all non empty template arcs from the tree and
noted, that by omitting dominated ones, we actually get the set of non-dominated template arcs T c,
a set until now determined by the preprocessing method from [ChwRai09], in the following named
preprocessing. All k-MLSA solution strategies presented in 1.2.2 need this set, the only exception
is branch-and-price. By implementing a strategy that intelligently traverses the segmentation tree
and extracts the set T c, we obtain an efficient alternative to the existing the preprocessing step.

7.1 Overview

This chapter describes, how to extract the set T c from an already constructed static or dynamic
segmentation tree. Basically we traverse the tree by means of the bound sets UB and LB, which
at each node encode information about the node differences bi. At a leaf, the bound sets UB = LB
represent the set of bi, that encodes a template arc. Thus we denote such a leafs LB or UB as
bound set l. In the traversing process, we use a multiset L to save the non-dominated bound sets
l. This set L in the end holds all bound sets where for each such bound set we can extract1 the
standard template arc forming T c. When searching T c, we do not have and require dual values,
but the bound sets themselves are of interest. At each leaf, that encodes an atomic region, the
upper bound set equals the lower bound set UB = LB. As we search for template arcs, the
leafs containing UB = LB = ∅ are irrelevant, since these leafs encode areas, where no bi lie and
therefore lead to no template arc. Now, the concept of domination arises for varying purposes,
e.g. we must determine for such a bound set, if it is dominated or not.

The domination concept arises for multiple applications. One use is, that we want to decide,
which bound set LB from some leaf is added to the multiset L of non-dominated bound sets.
For this, we use the domination concept, defined in the following as domination of template arcs.
As the name implies, we compare bound sets representing some template arcs, and determine
dominated and dominating bound sets.

Further, we want to identify at each visited node, which one of the successors to visit and
if one or both branches may be omitted. For this we need a more specific domination concept.
Each node in the segmentation tree holds an upper bound set UB. Based on this UB, we want
to decide, if the respective subtree having UB must be visited or can be omitted. We want to

1Described in sections 4.2.1 and 6.4.3.1.
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visit only non-dominated subtrees. For this, we look again at the multiset L and extend our
domination concept to domination of subtrees. By using this extended domination concept, we
determine if such a subtree is dominated or not, by comparing the elements from L with our
actual subtrees UB. Dominated subtrees are excluded from the traversing process. Further, at
a node n, we can deduce some further information: If we additionally compare the left subnodes
upper bound nleftUB with the right subnodes upper bound nrightUB , we can identify additional
dominated branches and leave them out in the search phase. In the following, we define and
describe in detail the presented concepts.

7.1.0.2 Domination of Template Arc defining Bound Sets

We need this concept, when constructing the multiset L of non-dominated template arc defining
bound sets. As we traverse the segmentation tree, we encounter leafs having UB = LB 6= ∅, with
LB being a bound set, out of which a standard template arc is extracted. Having some leaf with
a LB, we have to decide, if we add it to our multiset L or not. This we do by determining if LB
is dominated by some element in L or if in turn LB dominates one or more element from L. As
the elements of L are nothing other than LB from previously found leafs, we define domination
of template arc defining bound sets, or domination of template arcs as follows. This definition
adheres to definition 9, chapter 4, for convenience we rephrase it in terms of UB and LB.

Definition 12 (Domination of Template Arcs). Given two leafs having UB = LB 6= ∅. A
template arc defining bound set LBA dominates another template arc defining bound set LBB, if
LBB ⊆ LBA. Sets LB = ∅ are always dominated.

Thus, at each found leaf, we can decide, if our leafs LB is dominated by some element in L or
not, or if we have to remove some l ∈ L because they are dominated by LB.

For example, we have some intermediate multiset L that holds l1 = {b1, b2, b3} and l2 = {b3, b4}.
In the traversing process we find an LB = {b1, b2}. This template arc defining bound set is not
added to L, since LB ⊆ l1. The same would be for an LB = {b1, b2, b3}. If instead we find a leaf
having LB = {b1, b2, b3, b4}, all elements in L that are dominated by this LB are removed, and
LB added to L instead of l1, l2. If we find a leaf having LB = {b1, b2, b5}, we add it to L, since it
is not dominated by any l.

7.1.0.3 Domination of Subtrees

By looking at the upper bound sets of the nodes in the segmentation tree, we use the enhanced
domination concept for identifying dominated branches, it acts thus as bounding strategy.

Definition 13 (Domination of Subtrees). Given a node n, with two successors having non-
empty upper bound sets UBA and UBB. The branch having UBA dominates the branch UBB,
if UBB ⊆ UBA, but only if there are no domain crossing elements in both sets that may lead to
differing template arcs somewhere in the subtree. In order to determine this, we partition each UB
into two disjoint sets UB = UB′ ∪ UB′′, where UB′′ contains all elements representable across
the domain border regarding the ring structure, whereas UB′ = UB \UB′′. Then, UBA dominates
UBB, iff UBB ⊆ UBA ∧ UB′′B ⊆ UB′′A. A branch having UB = ∅ is always dominated.

If at node n, the two successors result in UBA ⊆ UBB and none of the elements from both
bounds cross the domain border, we can omit the subtree having UBA, since it is dominated.
Thus we omit subtrees that are dominated, but only if no elements from both UB do not cross the
domain border. No matter what template arcs we finally will find in a dominated subtree, they
are always dominated by the template arcs found in the other subtree (or by some element in L).
If some elements cross the domain border with respect to the ring structure, no information about
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Figure 7.1: Illustration for example 1a and 1b depicting some bound sets in the segmentation tree.

domination can be extracted. The following examples clarify the concept.

Example 1a. The segmentation for example 1a is depicted in figure 7.1a, the discussed segmen-
tation subtree in figure 7.1c. We are at some intermediate node n with UB = {b1, b2, b3} and
the splitting hyperplane (c, dim). The elements in UB may be < and/or > than (c, dim) at n.
Let’s assume that (c, dim) splits the area defined by n into two parts producing UBleft = {b1, b2}
and UBright = {b1, b2, b3}, the lower bounds are empty. All elements b1, b2, b3 are regular regions
and do not cross the domain border. Both upper bounds encode the points that maximal can be
represented by a template arc lying in the respective subspace defined by this subnode, the lower
bound indicates all template arcs that can be represented by a template arc lying in the respective
subspace defined by this node. Thus, the subtree nleft may produce the template arcs {b1}, {b2}
or {b1, b2}, since LBleft is empty and we do not yet know anything about the definitive template
arcs. A template arc {b1, b2} would only be given if additionally LBleft = {b1, b2}. The right
counterpart subtree works similarly. In subtree nright the following template arcs are possible:
{b1}, {b2}, {b3}, {b1, b2}, {b1, b3}, {b2, b3} or {b1, b2, b3}.
A relation exists between both subtrees: If in the left subtree b1 overlaps b2, such an overlap exists
also in the right subtree for sure and vice versa. In the right subtree we have additionally b3. At
this point it does not matter, if it overlaps b1 and/or b2, but it is immanent, that in the right
subtree, also the correct template arc for b1, b2 is formed.
In this example 1a, b1 overlaps b2, but b3 overlaps none of these two, the according left subtree is
UBleft = {b1, b2}. Somewhere in this left subtree, the template arc {b1, b2} lies. The right subtree
has UBright = {b1, b2, b3}, the template arcs will result somewhere in this subtree as {b1, b2} and
{b3}. Thus UBright dominates UBleft.

Example 1b. The segmentation for example 1b is depicted in figure 7.1b, the resulting segmentation
subtree part is again figure 7.1c. In this case b1 overlaps b2, and b3 overlaps both sets, but only in
the right subtree. The left subtree will produce the template arc {b1, b2}, which is dominated by
the template arc produced in the right subtree {b1, b2, b3}.

Now we combine both domination concepts and enhance our bounding strategy. By comparing
an upper bound set UB for some subtree with the elements from multiset L, we can prune subtrees
that would lead to template arcs dominated by the elements in L. If ∀l ∈ L : UB ⊆ l we can
safely omit this subtree.

For example, if at node n, the upper bound is UB = {b1, b2}, and we have an l ∈ L consisting
of {b1, b2, b3}, then UB ⊆ l and we omit this branch, since no permutation better than the already
found l can be found in this subtree. Thus we check at each node n if one or both nleft and nright
are dominated by some l ∈ L.
Example 2. This example is depicted in figure 7.2. The upper bound set at n is UB = {b1, b2, b3, b4}
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Figure 7.2: Illustration for example 2 depicting some domain crossing regions in 7.2a and corresponding
segmentation tree in 7.2b.

and L =. The left subtree has UBleft = {b1, b2, b3, b4}, whereas the right subtree has UBright =
{b1, b2, b4}. In b1 and b2 are irregular regions crossing the domain border w.r.t. the ring structure.
Although the left UB set dominates the right UB set, we must search both subtrees, since there
are two elements crossing the domain border, namely b1, b2. At this point we know not for sure,
if the left subtree will produce a {b1, b2, b3, b4} that would dominate the bound set of the right
subtree. In the example it turns out, that in the left subtree we find the template arc {b3, b4} and
in the right subtree, we find {b1, b2, b4}. All other possible bound set representing a template arc
are dominated by these two template arcs.
When anticipating the traversing process, it results as follows. Since L = and we have at n ele-
ments that cross the domain border we search both subtrees. We first descend left, and find the
bound set {b1, b2} and add it to L. Next, the bound set {b3, b4} is found and added to L. The
recursions unwind, and we are again at n, where we descend right. Here, we find first {b1, b2, b4},
since the algorithm will search in branches having a greater bound set |UB|. This template arc
dominates {b1, b2} ∈ L, so we remove this template arc from L and insert {b1, b2, b4} instead. The
other branches containing {b1, b4} and {b2, b4} are then pruned, since they will result in no better
template arcs.

All the relations of the template arc defining bound sets are already encoded into the seg-
mentation tree. We utilize now both domination concepts, when searching for the non-dominated
bounds sets that define them and omit the irrelevant branches containing dominated bound sets.
In the end of the traversing process, we extract the standard template arcs from the non-dominated
bound sets in L and get T c.

In the following we describe three variants for the bounding strategy. All three strategies base on
best first search.

• Best first search for determining T c,
• UB-driven traversing, using a simple bounding strategy for determining T c,
• Advanced bounding traversal for determining T c. This traversing strategy prunes all branches

that can be identified as dominated.

All strategies work for the static segmentation tree as well for the dynamic segmentation tree.
For convenience, we explain all developed algorithms for the static tree. All algorithms are easily
adapted for the dynamic segmentation tree. In the following, we shortly describe all strategies.
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7.2 Traversing the Static Segmentation Tree

The three traversing strategies are ordered by complexity of the adopted bounding technique.
They differ in the used domination concepts as well as the number of checked l ∈ L. Basis is
standard best first search. When using a good bounding strategy as advanced bounding traversal,
presented in the following, the algorithm checks entire bound sets at many tree leafs. So, the
algorithm is estimated to get slower the more accurate bounding is, but in contrast to this, the
number of visited nodes should decrease by a big factor the better the bounding strategy.

7.2.1 Best First Search for Determining T c

This strategy uses only domination of template arc defining bound sets. We traverse the segmen-
tation tree recursively by best first search and observe the cardinality of the upper bound at each
node. Found lower bound sets are saved in multiset L. Thus, the algorithm finds big bound sets
first. Hopefully, a lot of dominated leafs are then pruned on the basis of these big bound sets. At
each recursion we decide for the actual node the successors processing order. We always follow the
branch with the greater bound size |UB| first, thus finding the leafs having large bound sets first.
If we reach a leaf n with UB = LB 6= ∅, we check if we have to save the LB set by comparing
it to the set of lower bounds L found until now. If no element from L dominates LB, we insert
LB to L. If the set LB is dominated by some element from L, we do not save it to L. If LB
dominates one or more elements in L, we remove all dominated elements and insert LB. After
having completed the traversing process and filled L, in the end we determine for each element
l ∈ L the standard template arc τ .

By recalling StaticAppendNodes, at an intermediate node we have always two successors, since
StaticAppendNodes appends exactly two successors, never one.

Naturally, in practice this strategy consumes a lot of processing time, since we do not prune
any subtrees except empty ones. As we have to compare many LBs, this is the main bottleneck,
especially if the bound sets are big. The result set was proved to be always equal to T c. Pseudo
code for TraverseBFS is listed in algorithm 7.1. At line 2 we decide again if we are at a leaf or not.
We save the actual bound set LB to L if it is not dominated by some l ∈ L, or remove dominated
l from L and insert LB (lines 3-7). Lines 9-14 select the branch having a greater |UB| to visit
first performing thus best first search.

Algorithm 7.1: TraverseBFS(Node n)
Data: Found non-dominated bound sets are saved to the multiset L.
Result: Fills L with the set of non-dominated bound sets. Out of L we extract the

non-dominated template arcs set T c.

if n 6= ∅ then1

if nUB = nLB then2

save ← true;3

for l ∈ L do4

if nLB ⊆ l then save ← false; break; /* Do not save nLB */5

else if l ⊂ nLB then L← L \ l;6

if save then L← L ∪ nLB;7

else8

if |nleftUB | ≥ |nrightUB | then9

/* Follow the left subtree first. */10

if |nleftUB | 6= 0 then TraverseBFS (nleft);11

if |nrightUB | 6= 0 then TraverseBFS (nright);12

else13

As lines 10-12, reverse order. First right, then left branch.14
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7.2.2 UB-Driven Traversing for Determining T c

Again we traverse the segmentation tree with a best first search, and drive the search toward
promising regions with the aid of the cardinality of the upper bound. If we arrive at a leaf, we
proceed as in TraverseBFS, subsection 7.2.1. We save dominating LB to L and do not save and/or
remove dominated LBs. At intermediate nodes, we use the following bounding strategy:

• If a left or right successor has an upper bound size |UB| = 0, we do not follow this branch,
thus pruning it.

• If the left successors upper bound set is a subset of the right successors upper bound set
nleftUB ⊆ nrightUB , we additionally check if in the elements contained in both sets have
bounding boxes that cross the domain border. Such elements have parts on both sides
of the actual splitting hyperplane and we check, if the intersection set is not empty by
nleftUB ∩ nrightUB 6= ∅. So, we have to determine only for the elements in this intersection
set if they cross the domain border. If no crossing elements exist in the intersection set,
we prune the left branch since it is dominated. If such elements exist, we have to visit this
branch. We do the same for nrightUB ⊆ nleftUB .

• If nleftUB 6⊂ nrightUB we check if nleftUB was already found in L. If nleftUB ∈ L, we do not
follow this branch, else we follow it. The case nrightUB 6⊂ nleftUB works the same.

The pseudo code for UB-DrivenTraversing is listed in algorithm 7.2. The differing lines are 6-
19, where an additional check was inserted, if a subnodes UB dominates its counterpart node (line
11, 15). A recursive call to UB-DrivenTraversing is only executed, if a subnodes UB contains
elements crossing the domain border (lines 12, 16) or if the actual UB is not part of L (lines 13, 17).

Algorithm 7.2: UB-DrivenTraversing(Node n)
Data: Found non-dominated bound sets are saved to the multiset L.
Result: Fills L with the set of non-dominated bound sets. Out of L we extract the

non-dominated template arcs set T c.

if n 6= ∅ then1

if nUB = nLB then2

Lines 3-7 from algorithm TraverseBFS, listing 7.1.3

else4

/* If left or right branch are empty, prune. */5

if |nleftUB | = ∅ then UB-DrivenTraversing (nright);6

else if |nrightUB | = ∅ then UB-DrivenTraversing (nleft);7

else8

if |nleftUB | ≥ |nrightUB | then9

/* Check, if we have to visit the left subtree */10

if nleftUB ⊆ nrightUB then11

if in nleftUB∃ elements crossing D then UB-DrivenTraversing (nleft);12

else if nleftUB /∈ L then UB-DrivenTraversing (nleft);13

/* Check, if we have to visit the right subtree */14

if nrightUB ⊆ nleftUB then15

if in nrightUB∃ elements crossing D then UB-DrivenTraversing (nright);16

else if nrightUB /∈ L then UB-DrivenTraversing (nright);17

else18

As lines 10-17, reverse order. First right, then left branch.19

After having completed the traversing process, we determine again for each l ∈ L the standard
template arc τ . The result set was again shown to be equal to T c by computational experiments.
This bounding strategy is not “complete”, since we only determine for a subtree’s upper bound
set if it is exactly contained in the multiset L. This check is efficient, when L is implemented
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as a binary tree using the smallest element as discriminator, where finding a specific element
takes logarithmic time. The present bounding strategy is a “structural property exploit”, it takes
advantage of the fact, that similar bound sets are located in the same subtrees.

7.2.3 Advanced Bounding Traversal for Determining T c

This algorithm differs from listing 7.2 only in the bounding strategy. The lines 10-17 from 7.2
become 10-26 in listing 7.3. We enhance the bounding strategy as follows: Here, when deciding
if to visit a branch or not, instead of checking only if nleftUB ∈ L, we check the entire multiset
L, if there exists a bound that dominates nleftUB . If we find such a dominating element in L
we do not have to follow the actual branch, else we follow it. We call this bounding approach
“complete”, since we cut away all dominated branches, by processing all the bound sets found
until now. But, it may happen that in the process first some dominated bound sets are found (as
in UB-DrivenTraversing), which later are replaced by the dominating bound set.

Again, from L we finally extract T c. This was confirmed by our tests to work correctly. As
for the bounding strategy, in the worst case we search at each node through the entire multiset
L, which can be huge. This behaviour is estimated to be inferior to UB-DrivenTraversing,
especially when having big bound sets. Only visiting 2 − 10 millions of tree nodes with depth
first search was measured to perform more or less in a very small time. The UB-driven traversing
has the advantage of performing only a simple check, if the actual UB ∈ L, at each node. It
may visit more irrelevant branches, but we have a lot fewer overall comparisons of bound sets
to each other. Advanced bounding traversal performs the expensive test, if UB ∈ L and thus
searches at every node in the multiset L. Consequently, for each node (and therefore a branch)
we can determine if it is dominated by the actual L or not, thus pruning more branches and leafs
as the UB-DrivenTraversing. So, the amount of visited nodes for advanced bounding traversal
is significantly smaller. But we have to perform much more comparisons of elements in L and
actual UB for determining this. In chapter 9, where we present computational experiments, it
will be evaluated, if it is better to visit less branches, or to use a cheaper bounding strategy. We
estimate advanced bounding traversal to be advantageous when having small bound sets and big
segmentation trees, whereas the cheaper pricing strategy is estimated to be better when having
big bound sets.

Pseudo code AdvBoundingTraversal is listed in algorithm 7.3. The new flag found, initialized
to false in lines 10 and 19, is used for iterating through L (lines 14, 23) and determining if an
actual UB is not dominated by any l ∈ L (lines 15, 24). We visit a branch only if its UB was
determined to eventually bring forth a non-dominated bound set (lines 12, 17, 21 and 26).

7.3 Traversing the Dynamic Segmentation Tree

All presented strategies also work for the dynamic tree. Since the dynamic tree merges traversing
and building, we now have to incorporate the relevant bounding parts. We present only UB-driven
traversing for dynamic segmentation tree, the remaining two traversing strategies are constructed
accordingly.

7.3.1 UB-Driven Traversing for the Dynamic Segmentation Tree

Basis is the algorithm DynamicInsertAndSearch-τ∗, listing (6.5). We replace the tree traversing
part of algorithm (6.5), lines 30-40, and get the algorithm DynamicSearch-T c, having the bound-
ing strategy from UB-DrivenTraversing at lines 30-41. Further we must alter the part where
unconstructed subtrees are expanded such that at leafs we save the non-dominated LB to L. The
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Algorithm 7.3: AdvBoundingTraversal(Node n)
Data: Found non-dominated bound sets are saved to the multiset L.
Result: Fills L with the set of non-dominated bound sets. Out of L we extract T c.

if n 6= ∅ then1

if nUB = nLB then2

Lines 3-7 from algorithm TraverseBFS, listing 7.1.3

else4

if |nleftUB | = ∅ then AdvBoundingTraversal (nright);5

else if |nrightUB | = ∅ then AdvBoundingTraversal (nleft);6

else7

if |nleftUB | ≥ |nrightUB | then8

/* Check if we have to follow the left subtree */9

found ← false;10

if nleftUB ⊆ nrightUB then11

if in nleftUB∃ elements crossing D then AdvBoundingTraversal (nleft);12

else13

forall ∀l ∈ L do14

if nleftUB ⊆ l then found ← true; break;15

/* nleftUB was already found, prune this branch. */16

if ¬ found then AdvBoundingTraversal (nleft);17

/* Check if we have to follow the right subtree */18

found ← false;19

if nrightUB ⊆ nleftUB then20

if in nrightUB∃ elem. crossing D then AdvBoundingTraversal (nright);21

else22

forall ∀l ∈ L do23

if nrightUB ⊆ l then found ← true; break;24

/* nrightUB was already found, prune this branch. */25

if ¬ found then AdvBoundingTraversal (nleft);26

else27

As lines 9-26, reverse order. First right, then left branch.28

according new lines are 15-20 in DynamicSearch-T c replacing lines 15-20 from DynamicInsert-
AndSearch-τ∗. Additionally, at incomplete nodes having UB 6= LB, we replace the lines 8 and 24
from DynamicInsertAndSearch-τ∗, where we select the best bi from the set Φ = UB \ LB, that
were not yet segmented. Since we have no dual values and each bi must be segmented anyway
(since we search T c), in DynamicSearch-T c at lines 8 and 23 we simply segment the first element
from Φ. The resulting algorithm DynamicSearch-T c is listed in pseudo code 7.4. The algorithms
DynamicAppendNodes (listing 6.7) and DynamicInsertNode (listing 6.6) remain unchanged.

7.4 A Non-Dominated Segmentation Tree

At this point the question, if a segmentation tree containing only non-dominated branches can be
built, remains as future work. The non-dominated segmentation tree would be built by inserting
all bi sequentially into an empty tree. But at the moment it is unclear, if for each inserted bi can
be decided based on the incomplete construction status, if a subtree containing bi can be definitely
identified as as dominated a priori (and thus must be built) or not.

An algorithm sketch mainly based on checking overlaps of bi at the nodes n was developed.
We only outline the algorithm, since the work was not yet finished. Basis is again the algorithm
StaticInsert, listing (6.2). By inserting bi ∈ B one by one, we construct only non-dominated
branches, and mark the dominated ones with a flag. If a bi generates no new non-dominated

82



7.4. A Non-Dominated Segmentation Tree Chapter 7. Extracting T c from the Segmentation Tree

Algorithm 7.4: DynamicSearch-T c(Node n)
Data: Found bound sets are saved to the set L.
Result: Fills L with the set of non-dominated bound sets. Out of L we extract T c.

if n 6= NULL then1

if (nleft = ∅) AND (nright = ∅) then2

/* Leaf, determine whether to save nLB or if to expand the tree. */3

if (|nUB | = 0) AND (|nLB | = 0) then4

/* Don’t save this bound, since it is empty. */5

else if (|nUB | > 0) AND (|nLB | = 0) then6

/* nLB is empty, expand this branch with first unsegmented bi. */7

bi ← UB1; Ri ← (bi, δ̃);8

/* Crop and transform negative regions Ri into D. */9

R′i ← Ri ∩Rn;10

DynamicInsertNode (R′i, n);11

DynamicSearch-T c (n);12

else if (|nUB | > 0) AND (|nLB | > 0) then13

if nUB = nLB then14

/* Do not expand n. Save nLB to L if not dominated. */15

save ← true;16

for l ∈ L do17

if nLB ⊆ l then save ← false; break; /* Do not save nLB */18

else if l ⊂ nLB then L = L \ l;19

if save then L = L ∪ nLB;20

else21

/* If nUB 6= nLB, expand branch. Get bi 6∈ LB. */22

Φ = UB \ LB; bi = Φ1;23

Ri ← (bi, δ̃);24

R′i ← Ri ∩Rn;25

DynamicInsertNode (R′i, n);26

DynamicSearch-T c (n);27

else28

/* If node n is no leaf, descend with UB-driven traversing strategy.29

*/
if |nleftUB | = 0 then DynamicSearch-T c (nright);30

else if |nrightUB | = 0 then DynamicSearch-T c (nleft);31

else32

if |nleftUB | ≥ |nrightUB | then33

if nleftUB ⊆ nrightUB then34

if in nleftUB∃ el. crossing D then DynamicSearch-T c (nleft);35

else if nleftUB /∈ L then DynamicSearch-T c (nleft);36

if nrightUB ⊆ nleftUB then37

if in nrightUB∃ el. crossing D then DynamicSearch-T c (nright);38

else if nrightUB /∈ L then DynamicSearch-T c (nright);39

else40

As lines 33-39, reverse order. First right, then left branch.41

83



7.4. A Non-Dominated Segmentation Tree Chapter 7. Extracting T c from the Segmentation Tree

template arc at some dominated branch, we only add its index to the actual upper bound set.
A dominated branch is unmarked and expanded, if a new bi comes across, that generates a new
template arc somewhere in this subtree. Having such a case, elements from the dominated branch,
that were not yet segmented, must be re-segmented.

If such a tree can be built, it is an improvement for both the search for T c and the pricing
problem. In both cases, performance may be improved by only creating the (hopefully much
smaller) non-dominated branches instead of a full segmentation tree.
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Chapter 8

Implementation

This chapter summarizes all implementation specific details. Basis for our implementation is the
framework where [ChwRai09] and [Dietzel08] implemented all previous solution strategies. All
algorithms have been integrated into this existing framework.

The algorithms have been implemented in C++, compiled and linked with g++-4.1. The ex-
isting code makes use of the following libraries: The Standard Template Library (STL) from
Silicon Graphics (SGI), the Library of Efficient Data types and Algorithms (LEDA) from
Algorithmic Solutions GmbH 1 which collects a variety of algorithms for graph theory and compu-
tational geometry, the library Boost which extends C++, and ILOG CPLEX c© 11.2, an optimization
software package for solving (among other) linear and integer programs. CPLEX is a state of the
art commercial solver software that is able to solve linear and integer programs with millions of
variables by using linear and non-linear methods.

8.1 Branch-and-Price Framework

A specialized branch-and-price framework has been integrated into the existing code. Our choice
fell upon Solving Constraint Integer Programs (SCIP) [SCIP] developed by the Division Sci-
entific Computing, Department Optimization at the Konrad-Zuse-Zentrum für Informationstech-
nik Berlin in cooperation with TU Braunschweig, TU Darmstadt and Siemens AG. We used
SCIP 1.2.0.
This framework implements and provides most algorithms, tools and diagnostics that we need
for branch-and-price. SCIP is highly flexible, implemented in C and provides C++ wrapper classes
which we used for integrating it into the existing code. Most of its features are realized with
easily extensible plugins, and include all sorts of constraint handlers, presolvers, branching rules,
relaxators and primal heuristics. Interfaces for implementing variable pricers and cut separators
exist. SCIP provides facility for constraint integer programming and branch-and-cut-and-price.
The authors note that “SCIP is currently one of the fastest non-commercial mixed integer pro-
gramming solvers on the market”.

An introduction to SCIP is [Schwa08]. A detailed description to the framework is [AcBeKoWo08]
and [Achter07], who developed the original framework. The used documentation [Pfe07, Ber07,
Ach07, Wolt07, Ach07-2] as well as implementation examples can be found at the website [SCIP].
SCIP also includes the open LP solver SoPlex which is, compared to other freeware solvers, very
fast, but unfortunately not competitive enough for our purposes. As SCIP integrates support and
interfaces for other solvers, we chose ILOG CPLEX c© 11.2 as LP solver.

1Originally by Max Planck Institute for Informatics Saarbrücken.
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8.2 Implementing SCF and MCF formulation in SCIP

SCIP saves variables and constraints by the data types SCIP VAR* and SCIP CONS*, managed in an
arbitrary container. The SCF and MCF formulations are loaded into the framework with provided
interface functions. Each problem was initialized with SCIPcreateProb, the objective sense set
by SCIPsetObjsense to SCIP OBJSENSE MINIMIZE. Our solution was constrained to be integral
by SCIPsetObjIntegral and to be less than k by SCIPsetObjlimit.

All variables were created by SCIPcreateVar (where we can specify name, variable type, limits,
coefficients and so on) and added to the problem by SCIPaddVar. The variables were assembled
into constraints by using SCIPcreateConsLinear and SCIPaddCons. For each constraint a lot of
parameters can be specified: We defined all constraints to be part of the initial LP and disabled
separating in the solving process. Enforcing of constraint was enabled, since we have no redundant
constraints. Feasibility checking for each constraint in each branch-and-bound node was enabled.
Additionally we defined constraints to be valid globally, rather than locally at some node. The arc-
label constraints and node-label constraints2 were set to be modifiable, this is needed for pricing.
The option for dynamic constraints (needed when cuts are separated as constraints) was disabled.
The flags for a constraint to be removable from the relaxation was disabled and the option, if
constraints may stick at the BB node where they were added, was enabled.

Our pricer classes inherit from the C++ wrapper object interface scip::ObjPricer, and thus
implement the virtual functions scip init, scip redcost and scip farkas. By providing these
functions, SCIP is able to call back the according user implemented methods from an arbitrary
branch-and-bound node or state. SCIP is notified about own pricers by SCIPincludeObjPricer
and SCIPactivatePricer, after having constructed the pricer object.

We started the solution process by SCIPsolve. SCIP uses presolvers and relaxators for each
node to determine feasibility and objective function values, saves actual bounds and in the pro-
cess calls our functions scip redcost and scip farkas respectively. Dual variables are provided
by the framework through the constraint handler by using SCIPgetDualsolLinear. Farkas co-
efficients are extracted by SCIPgetDualfarkasLinear. Finally, we added the determined col-
umn to the according constraints in the global model by first doing SCIPcreateVar and then
SCIPaddPricedVar.

8.2.1 SCIP Plugins

The solution process depends heavily on the plugins, that were defined3 before loading the model.
In the following we only name the plugins that have been used. A detailed plugin description would
get to long and can be looked up in the SCIP documentation, or in [Achter07, AcBeKoWo08].

Constraint handlers influence the way the constraints are relaxed and checked for validity. We
used SCIPincludeConshdlrLinear. The framework is able to transform constraints into a tighter
form. In our case some constraints were tightened automatically by enabling ConshdlrIntegral,
ConshdlrVarbound and ConshdlrSetppc. Many more constraint handlers exist.
As we perform branch-and-price, [SCIP] recommends to deactivate some presolver plugins, mainly
PresolDualfix. We deactivated all presolvers, including PresolBoundshift, PresolImplics,
PresolInttobinary, PresolProbing and PresolTrivial.

The branch-and-bound traversing mode is selected by NodeselBfs or NodeselDfs, whereby
BFS needs a good node selection strategy as well as good branching strategy, which are the

2Constraints (5.2) and (5.14) in the SCF model 5.2, constraints (5.16) and (5.28) in MCF model 5.3.
3All the plugins described in the following are enabled by using the function SCIPincludeXXX, with XXX the

plugin name. If plugins are not included such, they are not used by SCIP.
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main bottleneck. DFS produces a much greater amount of BB nodes, but in our tests no sig-
nificant run time difference were evaluated. Branch-and-bound nodes are selected automatically
by the plugins NodeselEstimate, NodeselHybridestim and NodeselRestartdfs. Provided
branch rules are BranchruleAllfullstrong, BranchruleFullstrong, BranchruleInference,
BranchruleMostinf, BranchruleLeastinf, BranchrulePscost, BranchruleRandom and
BranchruleRelpscost, which heavily impact on the running time. The document [Ach07]
describes these plugins and their working principle. We let SCIP determine by its own an
appropriate branching rule.

We do not separate any constraints, in this case [SCIP] recommends to not include any sep-
arator plugins. Furthermore, many heuristics plugins are at disposal, which we do not list here,
since they were not included.

8.2.2 Module Structure

Figures 8.2 and 8.1 outline all implemented modules and how they work together. The remaining
framework is described in [Dietzel08].

Figure 8.1 shows all classes relevant to segmentation and traversing. Basically we distinguish
a static segmentation, implemented in Segmentation, and a dynamic segmentation, implemented
in SegmentationDyn.

The static algorithms presented in chapters 6 and 7 have been implemented as functions in
the class SegTree, which manages nodes of the type SegNode. Basically, each node contains the
actual upper and a lower bound set, the splitting coordinate, the split discriminator and a flag
if the actual node contains a null subspace. The tree may may be traversed by TraverseBFS,
UB-Driven Traversing or AdvBoundingTraversal, when determining T c. All such traversing
algorithms implement an interface Traverser. The τ∗ is determined by PricingTraverser (algo-
rithm 6.4). The according StaticTreePricer from figure 8.2 uses this class in combination with
SegTree.

The dynamic version is realized by the classes DynTree and DynNode. Here the traversing and
generation of new nodes is done by PreprocExpander (for getting T c) and PricingExpander, all
implementing the abstract class Expander. The according DynamicTreePricer from figure 8.2
uses PricingExpander, which searches in a DynTree.

The classes SimulatePricingTraverser and SimulPricingExpander simulate the pricing
problem based on random values as described in sections 6.4.5 and 6.5.2. The Comparer de-
termines if single template arcs or entire sets T c equal, by comparing coordinates, expressed node
differences and sums of dual/random values for equality. The remaining classes are containers for
T c, result set of template arcs and node differences and implement some conversion functionality,
as well es template arc determination. Further classes draw 2-dimensional segmentation trees
either as bitmap (BMP) or scalable vector graphic (SVG).

Figure 8.2 shows the classes used to realize branch-and-price. The class BranchPrice loads
the appropriate model, each one implementing the abstract class Model. Both, the SCF and
MCF model may be solved entirely with CompleteSCFModel and CompleteMCFModel. In the
classes SCFModel and MCFModel we load only an RMP, including either a starting solution or
Farkas priced values, and expand the RMP by performing branch-and-price. In the SCF case, the
SCFPricer prices a new variable by using either StaticTreePricer, DynamicTreePricer or the
testing pricer TcPricer. Pricing for MCF works accordingly.
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Figure 8.1: Class diagram for the parts concerning segmentation and traversing.
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Figure 8.2: Class diagram for the parts concerning branch-and-price.
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Chapter 9

Experimental Results

In this chapter we present the computational results for the algorithms presented in the previous
chapters. Here, input data for the computational experiments is described. First, we evaluate
run times and visited nodes for the algorithms that replace the preprocessing by [ChwRai09].
Then, computational results for the algorithms that solve the pricing problem are presented. The
SCF and MCF formulation are compared, as well as pricer alternatives (static versus dynamic).
Additionally, we evaluate how the run times differ when using node-label constraints and when
not using them, as well as runs employing starting solutions versus Farkas pricer runs. All test
runs have been executed on the following machines running Linux:

• G1: Grid of Dual Core AMDTMOpteronTM270, 1.993 GHz processor, 8 GB RAM, amd64.
• L1: IntelTMPentiumTMM processor 1.73GHz, 1 GB RAM, ix86.
• O1: AMDTMOpteronTM2.4 GHz processor, 4 GB RAM, amd64.

9.1 Input Data Files

Test data are 20 files provided by the Fraunhofer Institute [Fraun] in binary format (‘fhg’),
and selected 15 files from the U.S. National Institute of Standards and Technology (NIST) data
set [NIST]. Table 9.1 lists files and amount of contained minutiae data points |V |, as well as the
number of implied node differences is |B|. We name the Fraunhofer test set ‘fhg’, the second test
set ‘nist’.

All fhg and nist data is 4-dimensional and have varying numbers of minutiae data points.
The files are multiple scans of four different fingers of two persons, indicated in the name by
P (person), F (finger), R (release). The used forensic algorithm extracted a different number
of minutiae in the different scans. In the Fraunhofer templates the minimum number of data
points is min(|V |) = 15, the maximum max(|V |) = 40. These sets have an average number of
avg(|V |) = 30.75 data points. Here, the domain has an average of ṽavg = (286, 383, 358, 2)>, the
smallest domain ṽmin = (129, 191, 252, 2)> and the maximal ṽmax = (224, 287, 312, 2)>.
The NIST templates data points are a subset of a large test set. We selected 5 instances from
the templates classified as good, bad and ugly. The NIST data points range from min(|V |) = 72
to max(|V |) = 120, with an average of avg(|V |) = 96.47 data points. The average domain is
ṽavg = (3993, 3368, 359, 2)>, the minimal domain is ṽmin = (2936, 2281, 359, 2)>, the maximum
ṽmax = (3293, 2788, 353, 2)>.

Table 9.2 shows for which of the selected δ̃ the set T c is already available by the application
of the preprocessing method from [ChwRai09]. We used these files to verify our segmentation
tree results and for simulating the pricing problem. We point out that when counting nodes in
a big segmentation tree (2–10 millions of nodes) the run time is always very small and the runs
take 0.02–3.00 seconds. When running the actual tests, deviations of some milliseconds occur,
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Table 9.1: Fraunhofer Institute and NIST sample minutiae data files. Column ‘|V |’ shows the number of
contained minutiae data points, ‘|B|‘ the number of resulting node differences.

short name file name file type |V | |B|
ft-01 P0001_F00_R00_L01_S00_C.fpt fhg 31 930
ft-02 P0001_F00_R01_L01_S00_C.fpt fhg 28 756
ft-03 P0001_F00_R02_L01_S00_C.fpt fhg 35 1190
ft-04 P0001_F00_R03_L01_S00_C.fpt fhg 20 380
ft-05 P0001_F00_R04_L01_S00_C.fpt fhg 39 1482
ft-06 P0001_F01_R00_L01_S00_C.fpt fhg 15 210
ft-07 P0001_F01_R01_L01_S00_C.fpt fhg 28 756
ft-08 P0001_F01_R02_L01_S00_C.fpt fhg 27 702
ft-09 P0001_F01_R03_L01_S00_C.fpt fhg 27 702
ft-10 P0001_F01_R04_L01_S00_C.fpt fhg 31 930
ft-11 P0001_F03_R00_L01_S00_C.fpt fhg 28 1406
ft-12 P0001_F03_R01_L01_S00_C.fpt fhg 38 756
ft-13 P0001_F03_R02_L01_S00_C.fpt fhg 25 600
ft-14 P0001_F03_R03_L01_S00_C.fpt fhg 33 1056
ft-15 P0001_F03_R04_L01_S00_C.fpt fhg 29 812
ft-16 P0014_F00_R00_L01_S00_C.fpt fhg 37 1332
ft-17 P0014_F00_R01_L01_S00_C.fpt fhg 31 930
ft-18 P0014_F00_R02_L01_S00_C.fpt fhg 40 1560
ft-19 P0014_F00_R03_L01_S00_C.fpt fhg 35 1190
ft-20 P0014_F00_R04_L01_S00_C.fpt fhg 28 756

nist-g-01 g001t2i.txt txt 99 9702
nist-g-02 g002t3i.txt txt 101 10100
nist-g-03 g003t8i.txt txt 102 10302
nist-g-04 g004t8i.txt txt 120 14280
nist-g-05 g005t8i.txt txt 80 6320

nist-b-01 b101t9i.txt txt 106 11130
nist-b-02 b102t0i.txt txt 94 8742
nist-b-03 b104t8i.txt txt 107 11342
nist-b-04 b105t2i.txt txt 81 6480
nist-b-05 b106t8i.txt txt 93 8556

nist-u-01 u201t6i.txt txt 99 9702
nist-u-02 u202t8i.txt txt 93 8556
nist-u-03 u204t2i.txt txt 100 9900
nist-u-04 u205t4i.txt txt 84 6972
nist-u-05 u206t3i.txt txt 73 5256

in very big instances up to some seconds. This is due to memory fetching, swapping and other
computational factors. We selected following delta values for tests:

• 2D: δ̃ =
(
(10, 10)>, (20, 20)>, (30, 30)>, (40, 40)>, (80, 80)>, (120, 120)>

)
.

• 3D: δ̃ =
(
(10, 10, 10)>, (20, 20, 20)>, (30, 30, 30)>, (40, 40, 40)>, (80, 80, 80)>

)
.

Table 9.2: Precomputed files, containing candidate template arcs (T c) determined by the preprocessing
from [ChwRai09].

2D δ̃ (10, 10) (20, 20) (30, 30) (40, 40) (80, 80) (120, 120)

fhg files
√ √ √ √

nist files
√ √ √ √

3D δ̃ (10, 10, 10) (20, 20, 20) (40, 40, 40) (80, 80, 80)

fhg files
√ √ √

nist files
√ √
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9.2. Static and Dynamic Segmentation Chapter 9. Experimental Results

9.2 Static and Dynamic Segmentation

The verification of the correctness of the segmentation tree has been done by performing the
following steps:

• We compared the running times of the static segmentation build procedure, presented in
section 6.4.1 and 6.4.2 and tested its correctness by extracting T c, which then was compared
to the set T c from the preprocessing by [ChwRai09].

• We compared the running times of the strategies that determine T c from chapter 7, namely
UB-driven traversing (section 7.2.2), advanced bounding traversal (section 7.2.3), and best
first search (section 7.2.1), in order to determine the quickest way for getting T c. Also, we
examined the overall number of created nodes as well as the percentage of visited nodes for
each traversing strategy. The conclusion is that UB-driven traversing performs best.

• We checked the dynamic segmentation, presented in 6.5, for correctness by extracting again
T c with the algorithm UB-driven traversing for dynamic trees, namely DynamicSearch-T c

(section 7.3.1), and compared the set to the set T c extracted by the previous preprocessing.
• We simulated the pricing problem for both the static and dynamic variant in order to de-

termine, if both strategies to find τ∗, presented in section 6.4.3 and 6.5, find the correct τ∗

in each simulated pricing iteration, and if they are quick enough for being used in the pricer
routine.

This data is summarized in the following tables. The tests have been run on grid G1. Ta-
bles 9.3, 9.4 and 9.5, 9.6 show the run times of the static and dynamic segmentation in compar-
ison to the run times of the preprocessing from [ChwRai09], once for 2-dimensional and once for
3-dimensional parameters δ̃. For each δ̃ the number of found candidate template arcs is listed
(column ‘|T c|’), followed by static tree building time in seconds (column ‘b[s]’). As during the
tests UB-driven traversing was found to be the quickest variant for determining T c, in these ta-
bles we compare its traversing time and total time for building and traversing with the dynamic
version total run time. The super-column ‘static/UBD’ lists static segmentation tree data, and
column ‘dyn’ dynamic segmentation tree data. The columns ‘t[s]’ list run times in seconds needed
for traversing the static tree with UBD, the columns ‘tot[s]’ list total run time in seconds for
determining T c with UBD. The last column ‘PP’ in each δ̃ block is the run time in seconds of
the preprocessing by [ChwRai09]. Note that these run times have been determined on machine O1
and we used them, since a new series of tests would take too long.

Tables 1, 2 (2-dimensional δ̃) and 3, 4 (3-dimensional δ̃) in the appendix list the run times of
all three strategies that find T c as well as the amount of visited nodes in the static tree, or created
nodes for the dynamic tree. Examined strategies are:
• UB-driven traversing for determining T c in a static tree. Column ‘UBD’ lists run times.
• Advanced bounding traversal for determining T c in a static tree. Column ‘ABT’.
• Best first search for determining T c in a static tree. Column ‘BFS’ lists run times.

These tests have been run on grid G1. We compare this data again to the dynamic segmentation.
The respective columns are again entitled ‘static’ for the static tree and ‘dyn’ for the dynamic
tree. For ‘static’, the column ‘|n|’ lists the total amount of nodes contained in the static tree.
This tree size is later used as basis for the computation of the percentage of visited nodes. The
columns ‘UBD’, ‘ABT’ and ‘BFS’ list the run times of each traversing strategy in seconds. For
each traversing strategy the respective amount of visited nodes is listed in the columns called
‘%n’. For the dynamic version ‘dyn’ we listed in column ‘|n|’ the overall amount of produced
nodes when searching for T c, and how they correlate with the number of nodes in a static tree.
The column ‘%n’ indicates the percentage, which the dynamic tree is smaller than the static tree.
The amount of nodes in the dynamic tree is the smallest number of nodes needed for finding
T c. When searching only for τ∗ in the dynamic tree, the number of nodes decreases massively,
especially when emptying the tree before each pricing iteration. In contrast, when searching τ∗ in
the static tree, the number of nodes remains equal, since this tree is always built completely. In
the following we aggregate the gained insights, subdivided into the main topics.
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9.2. Static and Dynamic Segmentation Chapter 9. Experimental Results

Table 9.3: Two dimensional δ̃ = (10, 10)>, (20, 20)>, (30, 30)>: The building (‘b[s]’), traversing (‘t[s]’) and
total (‘tot[s]’) run times (on G1) of the best static tree traversing strategy UBD (UB-driven Traversing)
compared to the total run times of the dynamic segmentation (‘dyn/tot[s]’). The run times (on O1) of the
preprocessing from [ChwRai09] is listed in column ‘PP’. Column ‘|T c|’ shows the extracted (and correct)
number of candidate template arcs by all three strategies.
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9.2. Static and Dynamic Segmentation Chapter 9. Experimental Results

Table 9.4: Two dimensional δ̃ = (40, 40)>, (80, 80)>, (120, 120)>: The building (‘b[s]’), traversing (‘t[s]’)
and total (‘tot[s]’) run times (on G1) of the best static tree traversing strategy UBD (UB-Driven Traversing)
compared to the total run times of the dynamic segmentation (‘dyn/tot[s]’). The run times (on O1) of the
preprocessing from [ChwRai09] is listed in column ‘PP’. Column ‘|T c|’ shows the extracted (and correct)
number of candidate template arcs by all three strategies.

2d/fhg δ̃ = (40, 40)> δ̃ = (80, 80)>

static/UBD dyn PP static/UBD dyn PP
file |T c| b[s] t[s] tot[s] tot[s] tot[s] |T c| b[s] t[s] tot[s] tot[s] tot[s]

ft-01 5802 1.75 1.88 3.63 6.27 2810 16873 11.81 21.80 33.61 124.33 -
ft-02 4374 1.07 1.28 2.35 3.66 911 11954 8.99 13.54 22.53 91.75 -
ft-03 7786 2.27 4.36 6.63 10.95 4799 22686 16.83 68.17 85.00 271.14 -
ft-04 31582 0.36 0.26 0.62 0.91 101 4045 3.01 2.32 5.33 14.68 -
ft-05 11276 3.25 6.20 9.45 20.71 12144 29516 22.78 103.74 126.52 419.99 -
ft-06 574 0.12 0.06 0.18 0.24 11 δ̃ > ṽ/2

ft-07 3280 0.88 1.12 2.00 2.57 426 11186 7.98 18.04 26.02 59.13 -
ft-08 3402 0.90 0.87 1.77 2.41 463 11452 7.92 11.06 18.98 67.54 -
ft-09 3429 0.80 0.84 1.64 2.22 382 11404 6.84 10.98 17.82 55.95 -
ft-10 5365 1.44 1.94 3.38 4.78 1334 18162 11.58 37.96 49.54 151.41 -
ft-11 11542 3.74 7.07 10.81 23.52 15580 32418 24.90 123.44 148.34 567.63 -
ft-12 5064 1.54 1.86 3.40 5.47 1836 16012 11.29 30.88 42.17 169.66 -
ft-13 3980 0.88 1.03 1.91 3.01 617 10950 7.38 8.64 16.02 71.05 -
ft-14 7130 2.23 3.12 5.35 8.21 3468 23253 15.81 64.27 80.08 243.10 -
ft-15 5720 1.72 2.22 3.94 6.33 2549 17756 12.36 38.17 50.53 171.39 -
ft-16 7330 2.43 3.85 6.28 9.81 4431 26221 18.00 91.64 109.64 336.23 -
ft-17 5585 1.38 2.10 3.48 4.87 1365 18549 11.73 36.85 48.58 177.10 -
ft-18 8950 2.75 5.22 7.97 13.21 6106 29762 21.37 122.68 144.05 396.29 -
ft-19 6247 1.86 2.70 4.56 6.50 2515 19188 14.39 47.32 61.71 190.01 -
ft-20 3022 0.77 0.80 1.57 2.21 395 9417 7.19 7.83 15.02 53.35 -

AVG 7072 1.6 2.4 4.0 6.9 3112.2 17937 12.7 45.2 58.0 191.1
stdev 1.0 2.0 2.9 6.2 4091.9 5.9 39.6 45.4 148.9

2d/nist δ̃ = (40, 40)> δ̃ = (80, 80)>

static/UBD dyn PP static/UBD dyn PP
file |T c| b[s] t[s] tot[s] tot[s] tot[s] |T c| b[s] t[s] tot[s] tot[s] tot[s]

nist-g-01 10386 1.46 8.31 9.77 23.90 - 28375 8.21 79.34 87.55 234.06 -
nist-g-02 9845 1.15 6.92 8.07 21.64 - 26316 6.43 57.49 63.92 262.14 -
nist-g-03 13804 1.84 12.62 14.46 31.37 - 36329 12.75 185.15 197.90 523.29 -
nist-g-04 18215 2.60 24.37 26.97 66.01 - 49874 16.92 488.56 505.48 1012.72 -
nist-g-05 5834 0.66 2.61 3.27 3.24 - 14158 3.34 14.30 17.64 38.31 -
nist-b-01 13674 1.97 14.18 16.15 30.05 - 37124 12.62 225.14 237.76 705.72 -
nist-b-02 12517 1.72 10.94 12.66 20.61 - 33910 12.23 173.32 185.55 347.06 -
nist-b-03 14764 2.08 14.90 16.98 34.22 - 39073 14.14 237.95 252.09 481.17 -
nist-b-04 5895 0.71 2.73 3.44 4.05 - 14243 3.42 14.67 18.09 68.22 -
nist-b-05 10040 1.49 7.59 9.08 22.07 - 27118 8.49 96.94 105.43 297.27 -
nist-u-01 10310 1.42 7.79 9.21 12.22 - 25990 7.13 87.67 94.80 201.67 -
nist-u-02 9667 1.29 6.89 8.18 10.54 - 26398 7.69 78.18 85.87 283.43 -
nist-u-03 13656 2.08 13.16 15.24 49.12 - 37326 14.78 333.14 347.92 466.92 -
nist-u-04 6405 0.82 3.15 3.97 5.25 - 16098 4.46 31.59 36.05 103.35 -
nist-u-05 4692 0.58 1.71 2.29 2.49 - 11075 2.98 10.19 13.17 19.66 -

AVG 10646 1.5 9.2 10.6 22.5 28227 9.0 140.9 149.9 336.3
stdev 0.6 6.0 6.6 18.0 4.6 135.7 140.0 270.0

2d/nist δ̃ = (120, 120)>

static/UBD dyn PP
file |T c| b[s] t[s] tot[s] tot[s] tot[s]

nist-g-01 52880 30.25 601.33 631.58 1177.04 -
nist-g-02 50035 23.41 465.29 488.70 1316.57 -
nist-g-03 65499 50.06 1036.14 1086.20 1615.35 -
nist-g-04 90508 memory overflow 2816.71 -
nist-g-05 26763 11.28 98.28 109.56 396.21 -
nist-b-01 68219 46.90 1198.02 1244.92 1867.14 -
nist-b-02 58296 48.09 966.37 1014.46 1253.60 -
nist-b-03 71028 84.30∗ 1330.78∗ 1415.08∗ 1710.77 -
nist-b-04 27264 11.89 179.48 191.37 289.93 -
nist-b-05 50953 32.93 757.66 790.59 1209.40 -
nist-u-01 49754 28.04 578.95 606.99 1017.48 -
nist-b-02 50033 29.34 778.36 807.70 1173.88 -
nist-b-03 65888 86.34∗ 1736.33∗ 1822.67∗ 1604.14 -
nist-b-04 30482 14.62 190.28 204.90 428.79 -
nist-b-05 20791 9.56 57.79 67.35 250.44 -

AVG 51892 28.0 575.7 603.7 1208.5
stdev 14.6 386.2 400.5 690.6

∗ indicates data determined on O1 instead of G1. This machine has more
memory at disposition. The average ‘AVG’ does not include O1 data.
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9.2. Static and Dynamic Segmentation Chapter 9. Experimental Results

Table 9.5: Three dimensional δ̃ = (10, 10, 10)>, (20, 20, 20)>, (30, 30, 30)>: The building (‘b[s]’), travers-
ing (‘t[s]’) and total (‘tot[s]’) run times (on G1) of the best static tree traversing strategy UBD (UB-Driven
Traversing) compared to the total run times of the dynamic segmentation (‘dyn/tot[s]’). The run times
(on O1) of the preprocessing from [ChwRai09] are listed in column ‘PP’. Column ‘|T c|’ shows the extracted
(and correct) number of candidate template arcs by all three strategies.
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Table 9.6: Three dimensional δ̃ = (40, 40, 40)>, (80, 80, 80)>: The building (‘b[s]’), traversing (‘t[s]’) and
total (‘tot[s]’) run times (on G1) of the best static tree traversing strategy UBD (UB-Driven Traversing)
compared to the total run times of the dynamic segmentation (‘dyn/tot[s]’). The run times (on O1) of the
preprocessing from [ChwRai09] is listed in column ‘PP’. Column ‘|T c|’ shows the extracted (and correct)
number of candidate template arcs by all three strategies.

3d/fhg δ̃ = (40, 40, 40)>

static/UBD dyn PP
file |T c| b[s] t[s] tot[s] tot[s] tot[s]

ft-01 3897 3.01 5.10 8.11 8.90 272
ft-02 3353 2.75 4.28 7.03 14.06 241
ft-03 6464 5.58 13.93 19.51 49.82 1019
ft-04 1223 1.31 0.93 2.24 2.69 55
ft-05 8669 8.04 26.91 34.95 41.04 2578
ft-06 439 0.21 0.08 0.29 0.40 2
ft-07 2237 1.74 2.10 3.84 3.54 63
ft-08 2164 1.60 1.55 3.15 5.95 57
ft-09 2091 1.50 1.45 2.95 3.02 58
ft-10 2930 2.58 3.06 5.64 5.36 165
ft-11 11497 12.04 39.93 51.97 86.04 3748
ft-12 4224 3.72 5.25 8.97 21.28 341
ft-13 2573 2.17 2.23 4.40 8.51 143
ft-14 5150 4.33 7.83 12.16 34.57 522
ft-15 3980 3.63 5.04 8.67 20.77 333
ft-16 6095 7.07 12.97 20.04 24.96 2858
ft-17 3847 3.06 5.10 8.16 16.61 273
ft-18 8889 9.87 22.27 32.14 122.60 3435
ft-19 4538 3.87 5.72 9.59 10.39 399
ft-20 2021 1.70 1.45 3.15 6.06 104

AVG 4314 4.0 8.4 12.3 24.3 833.3
stdev 3.1 10.3 13.3 31.1 1230.1

3d/nist δ̃ = (40, 40, 40)>

static/UBD dyn PP
file |T c| b[s] t[s] tot[s] tot[s] tot[s]

nist-g-01 7996 3.84 13.19 17.03 27.50 -
nist-g-02 7820 2.44 7.12 9.56 17.45 -
nist-g-03 9618 3.93 15.08 19.01 36.57 -
nist-g-04 12657 5.74 29.14 34.88 60.34 -
nist-g-05 4764 1.34 2.62 3.96 4.55 -
nist-b-01 9559 4.13 16.33 20.46 39.83 -
nist-b-02 8278 3.90 12.82 16.72 26.15 -
nist-b-03 10142 4.31 16.92 21.23 21.53 -
nist-b-04 4986 1.49 3.31 4.80 4.47 -
nist-b-05 7150 2.92 8.34 11.26 16.47 -
nist-u-01 7339 2.21 6.59 8.80 15.72 -
nist-u-02 6924 2.48 7.09 9.57 13.28 -
nist-u-03 9260 3.99 15.14 19.13 40.32 -
nist-u-04 5238 1.69 3.63 5.32 5.27 -
nist-u-05 4002 1.20 1.93 3.13 2.96 -

AVG 7715 3.0 10.6 13.7 22.2
stdev 1.3 7.3 8.7 16.5

3d/nist δ̃ = (80, 80, 80)>

static/UBD dyn PP
file |T c| b[s] t[s] tot[s] tot[s] tot[s]

nist-g-01 26776 memory overflow 876.04 -
nist-g-02 25548 18.62 154.3 172.92 692.06 -
nist-g-03 42035 memory overflow 2780.34 -
nist-g-04 52759 memory overflow 3267.13 -
nist-g-05 13130 9.36 47.6 56.96 193.03 -
nist-b-01 39870 memory overflow 1832.18 -
nist-b-02 38826 memory overflow 1648.16 -
nist-b-03 42600 memory overflow 2258.74 -
nist-b-04 13611 10.39 60.62 71.01 206.71 -
nist-b-05 27287 26.51 261.88 288.39 991.52 -
nist-u-01 25032 18.92 136.9 155.82 789.52 -
nist-u-02 25560 22.59 190.51 213.1 883.76 -
nist-u-03 44834 memory overflow 2642.19 -
nist-u-04 14490 12.08 64.44 76.52 216.44 -
nist-u-05 10565 7.86 30.28 38.14 83.42 -

AVG 29528 15.8 118.3 134.1 1290.7
stdev 6.8 81.5 88.2 1046.7
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9.2.1 Implications for the Pricing Algorithms

As tables 9.3, 9.4 and 9.5, 9.6 show in column ‘b[s]’, building the static segmentation tree takes
a small amount of time. The average run times increase moderately with the size of δ̃. As we
can see, the building needs an average time less than 1 second for small and medium δ̃. Big δ̃,
especially for the NIST files (which have bigger domain borders ṽ and as double data points as the
fhg files) up to 10–28 seconds. Such building times are acceptable to be basis for a static pricing
algorithm. Figure 9.1 shows the growth rate of the average run times for the static tree with 2-
and 3-dimensional δ̃ parameters.
Generally, also the run times of the dynamic tree are well suited for being used as basis for a
dynamic pricing algorithm. Since here we do not build the entire segmentation tree in advance,
but only the parts needed for the solution of the pricing problem, a significantly less amount of
time is used for building and searching in each pricing iteration.
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Figure 9.1: Growth rates of static tree building time, distinguished by dimensionality of δ̃ as well as by
data set (fhg and nist).

9.2.2 Implications for the Determination of T c

Tables 9.3, 9.4 and 9.5, 9.6 compare the strategies for determining T c. The tables list data for the
static segmentation tree (column ‘static/tot[s]’) and for the dynamic segmentation tree (column
‘dyn/tot[s]’). For this evaluation, we selected the best static approach, namely UB-driven travers-
ing. Both approaches, static and dynamic, determined the correct set T c. When we compare the
total (for static tree build and traverse, columns ‘b[s]’, ‘t[s]’) run times in seconds, for small δ̃ the
run times for the dynamic tree are nearly equal to the run times for the static tree. The dynamic
approach is outperformed, the bigger δ̃ gets. Again, the total run time increases with the size of δ̃.
The total time needed for building and traversing is decisively better than for the preprocessing
from [ChwRai09] and both approaches clearly outperform the preprocessing (column ‘PP’) and
replace it efficiently.

We examined the strategies more closely in tables 1, 2, 3 and 4, listed in the appendix. For
all three tested strategies UBD, ABT and BFS, the respective column ‘%n’ lists the percentage of
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visited nodes. The columns ‘|n|’ show that the static approach produces a much greater number
of nodes than the dynamic approach. This is due to the dynamic tree expands only branches
determined to be relevant. This ratio was embedded in the tables in columns ‘dyn/%n’ which lists
the percentage of nodes created in the dynamic tree with respect to the nodes in the static tree.
Figure 9.2 shows average percentages of visited nodes for UBD, ABT and BFS. As we can see,
UBD visits approximately 10% more nodes than ABT, but its average run times are significantly
slower. Further, as we can see, ABT comes close to the optimal path through the static tree.
This optimal path was determined by visiting with best first search only branches that contain
elements of T c, for each element of T c only one branch is visited.Sheet1_2
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Figure 9.2: Averages percentage of visited nodes for the static UBD, ABT and BFS. Created nodes
percentage (OPT) in a dynamic tree in relation to the minimal number of nodes for determining T c, when
visiting branches containing an element from T c only once.

The ABT strategy has running times inferior to UBD, since a big amount of time is consumed
by determining, if a branch is visited or not. Its run time heavily increases when having big
UB sets, which are immanent for big δ̃. Sometimes even BFS outperforms this strategy, despite
visiting 63%–73% of the overall nodes in the static tree. When comparing the run times of all
three traversing strategies, UB-driven traversing performs best. In the 2-d case it visits an average
of 42.5% of the nodes in a static segmentation tree, in the 3-d case only 26.5%. Table 9.7 lists
the average traversing times for UBD, ABT and BFS. Figures 9.3 illustrate, how the average run
times for traversing increase with the size of δ̃. For 3-dimensional δ̃, ABT performs better when
having 2-dimensional δ̃.

Another trend is visible in appendix tables 1–4. For fhg-files the number of visited nodes
increases (static and dynamic version), when δ̃ increases. This is induced by the fact, that the
minutiae in fhg instances are relatively dense. Here, with our δ̃, we approach very fast ṽ

2 , and
this results in very many big UB sets, which differ in only very few expressed template arcs and
thus produce many non-dominated template arcs, increasing the number of visited branches. In
contrast, the minutiae in the NIST files are relatively sparse. When calculating these instances,
the number of visited nodes decreases, when δ̃ increases. When having small δ̃, there are fewer
overlaps of template arcs and the tree contains many very small upper bound sets of size one or
two, which must all be visited. When δ̃ increases, more overlaps occur, and the bounding strategy
becomes effective.

When determining T c, the dynamic tree produces an average of 50% (2-d case) up to 67.5%
(3-d case) of nodes when comparing the number of created dynamic nodes to the total amount of
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Table 9.7: Average traversing times for fhg and nist files.

AVG run δ̃ (10, 10)> (20, 20)> (30, 30)> (40, 40)> (80, 80)> (120, 120)>
times trav[s] trav[s] trav[s] trav[s] trav[s]

fhg UBD 0.07 0.31 1.01 2.44 45.23

ABT 0.16 0.87 2.59 5.88 76.23 δ̃ > ṽ/2
BFS 0.15 0.68 1.78 3.74 49.77

nist UBD 1.73 2.62 5.00 9.19 140.91 575.66
ABT 4.05 6.84 16.16 35.38 795.96 1340.93
BFS 2.65 6.65 15.71 33.92 1205.75 2292.39

AVG run δ̃ (10, 10, 10)> (20, 20, 20)> (30, 30, 30)> (40, 40, 40)> (80, 80, 80)>
times trav[s] trav[s] trav[s] trav[s] trav[s]

fhg UBD 0.03 0.18 1.40 8.36 -
ABT 0.08 0.46 3.89 23.04 -
BFS 0.08 0.67 5.89 34.92 -

nist UBD 1.81 2.35 4.58 10.62 118.32
ABT 4.92 7.12 13.46 30.27 424.13
BFS 2.52 7.01 18.23 45.91 612.04

nodes in the static tree. It must be annotated, that the traversing process, that determines T c,
visits approximately 75%–107% of nodes. This is because of the nature of the algorithm, which
sometimes backtracks while segmenting because it found a more promising branch than the branch
that it just created on the basis of some dual value.

Nonetheless all three strategies clearly outperform the preprocessing. When taking into ac-
count for UBD, ABT and BFS the respective build time from the tables 9.3, 9.4 and 9.5, 9.6,
the running times for all three bounding strategies are extremely shorter that the preprocessing
from [ChwRai09]. UB-driven traversing is the strategy that performs best, despite the simple
bounding strategy.

Figure 9.3 shows the relations of the run time (including building and traverse) for UBD, ABT,
BFS and the dynamic tree algorithm DynamicSearch-T c from section 7.3.1. The figures are again
distinguished by fhg, nist, 2– and 3-dimensional δ̃. In order to bring out more clearly the differ-
ences for the run times, two scales were used. In the diagrams on the left side of the figure 9.3 the
run times are scaled linearly by run time in seconds, on the right side we used a logarithmic scale.

Table 9.8 lists the run times for the segmentation algorithms in comparison to the run times
of the preprocessing by [ChwRai09] in percent. Overall, UBD performs in 1.91% (with a standard
deviation of 1.76%) of the time needed by the preprocessing. ABT performs in 3.39% (2.96%),
BFS in 4.14% (4.1%) and the dynamic tree in 2.62% (2.37%) of time.

Table 9.8: Percentage of run time in comparison to the preprocessing by [ChwRai09].

fhg/2d (10, 10)> (20, 20)> (30, 30)> (40, 40)> AVG stdev

UBD 1.53% 0.62% 0.27% 0.13% 0.64% 0.63%
ABT 2.59% 1.24% 0.51% 0.24% 1.17% 1.10%
BFS 2.47% 1.03% 0.39% 0.17% 1.02% 1.04%
dyn 1.53% 0.68% 0.36% 0.22% 0.70% 0.59%

fhg/3d (10, 10, 10)> (20, 20, 20)> (30, 30, 30)> (40, 40, 40)> AVG stdev

UBD 2.50% 5.23% 3.49% 1.48% 3.18% 1.60%
ABT 3.89% 8.41% 9.93% 3.24% 5.62% 2.46%
BFS 3.89% 10.80% 9.67% 4.67% 7.26% 3.48%
dyn 3.61% 6.82% 4.81% 2.92% 4.54% 1.71%
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Figure 9.3: Fhg, nist instances running times for each traversing strategy, including the dynamic tree for
2– and 3-dimensional δ̃. On the left side we used a linear scale, on the right side a logarithmic scale in
order to make visible the differences for run times with small δ̃.
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9.2.2.1 Memory Usage of the Segmentation Tree

The segmentation tree has a main drawback. For some instances, when using a big δ̃, like δ̃ =
(120, 120)> or δ̃ = (80, 80, 80)> value, a memory overflow occurs. The cause of excessive memory
usage are mainly the upper and lower bound sets at each node, used to store information about
expressed template arcs. The greater δ̃, the more elements are contained in these bound sets.
When using a precision of 4 bytes for each bound set element, at the root node for a big instance,
for example nist-g-03 with |V | = 102 and thus |B| = 10302 uses already 330KB of storage.
Segmentation trees for such big NIST instances with 2–10 millions of nodes use already more
than 3.5 GB of memory. As memory on G1 is limited, some instances terminated with a memory
overflow. An improvement would be to decrease segmentation tree size. This could be done by
omitting bound sets at nodes, where no difference regarding the parent bound set occurs. Another
possibility is to save the differences for each bound set at each node.

9.2.3 Simulating the Pricing Problem

With the basis of random values that act as dual values we performed 100 and 1000 pricing
iterations, as described in subsections 6.4.5 and 6.5.2. The test have been run on machine L1,
with a clearly inferior processor as the other machines. Nonetheless, both algorithms perform
very fast. The tests were performed based on the files, preprocessed by [ChwRai09] and listed in
table 9.2. All iterations succeeded when comparing the result τ∗seg and τ∗dynseg to the τ∗T c from the
preprocessed file, for the static as well for the dynamic tree. The run time increases moderately
when δ̃ increases. So, we can assess the robustness and quickness of the pricing problem algorithms.
A comparison for average run times in seconds is listed in table 9.9. The static averages include
once the build time, 100, 1000 iterations each for traversing (to get τ∗seg and τ∗dynseg) and searching
τ∗T c , and in the end comparing the result. The dynamic averages include traversing process, as
searching τ∗T c in T c. The dynamic tree may grow slowly in each pricing iteration, and is extended
in each simulated pricing iteration by the part that is needed for completing the simulation. The
average run times for the dynamic segmentation are significantly lower than the static segmentation
tree average run times. Despite we build the static tree only once and then perform all the
simulating iterations, the dynamic tree is much more effective. When searching for τ∗, both
segmentation trees perform very well, and we derive, that the dynamic segmentation tree is better
suited for solving the pricing problem and used as pricer.

Table 9.9: Average run times (‘AVG t[s]’) for fhg, nist data when simulating the pricing problem with
random values and 100, 1000 pricing iterations (‘pit’). Tests run on a single processor mobile machine L1.

100 pit fhg AVG t[s] nist AVG t[s] 1000 pit fhg AVG t[s] nist AVG t[s]

δ̃ static dynamic static dynamic δ̃ static dynamic static dynamic

(10, 10)> 0.90 0.22 - - (10, 10)> 7.65 1.66 - -
(20, 20)> 2.05 0.46 9.19 2.13 (20, 20)> 14.67 3.40 88.09 19.20
(30, 30)> 4.22 0.89 - - (30, 30)> 26.97 6.43 - -
(40, 40)> 7.91 1.62 15.78 3.10 (40, 40)> 44.58 11.36 137.57 28.04
(80, 80)> - - 45.11 - (80, 80)> - - 281.82 -

(10, 10, 10)> 0.81 - - - (10, 10, 10)> 7.68 - - -
(20, 20, 20)> 2.06 - - - (20, 20, 20)> 16.67 - - -
(40, 40, 40)> 13.97 - 24.94 - (40, 40, 40)> 65.62 - 217.60 -

9.3 Branch-and-Price Results for Fraunhofer Data

In the following, we evaluate the branch-and-price algorithm test runs in comparison to branch-
and-cut test runs, and how node-label constraints impact on the overall performance. Basis
test set are the 20 ‘fhg’ files from the Fraunhofer institute. All test results have been run on
machines G1. For reasons of space, we list the averages over each instance data set since listing
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results on instance level would require too much space. In the following we list experimental
results separated by solution approach.

9.3.1 Tested Parameters and Limits

For branch-and-price and branch-and-cut tests we need a small, a middle and a big value for
k. As we first run tests with fhg-files, the selected values for k are k = 10, 20,max{26, . . . , 30}.
Tested values for δ̃ are δ̃ = (10, 10)>, (20, 20)>, (30, 30)>, (40, 40)>, (80, 80)>, (10, 10, 10)>,
(30, 30, 30)>, (40, 40, 40)> and (80, 80, 80)>. The small δ̃ values (10,20) generate small bound-
ing boxes, the other middle (30,40) and big (80) bounding boxes. For the instance ft-06 the
big δ̃ = (80, 80)>, (80, 80, 80)> value exceeds the guideline δ̃ < ṽ

2 . Instances ft-04, ft-06 and
ft-13 have a smaller number of data points than max{26, . . . , 30}, so they are omitted when
averaging. For parameter δ̃ = (80, 80, 80)> some sets T c are not calculable neither with prepro-
cessing by [ChwRai09] nor with a static tree pricing algorithm and become only computable with
branch-and-price using a dynamic tree pricing algorithm. The solution approaches presented in
the following in sections 9.3.2, 9.3.3 and 9.3.4 do not include this parameter value δ̃ = (80, 80, 80)>,
the averages for the approach in section 9.3.5 do include it. Tables 9.11, 9.12, 9.13, 9.14 and 9.15
summarize average data for all tested solution approaches. In the following we describe the tables
and the tested approaches in detail.
In preliminary tests we determined for fhg instances an algorithm run time limit of 14400 seconds,
which are 4 hours. For these instances, we will not let branch-and-price tests run longer than this
value. Also a limit of 26000 for pricing iterations was established and we end a test run if it exceeds
this pricing iteration limit. We needed these limits, especially when allowing variable duplicates,
to break the execution at some time point to prevent the tailing off effect (section 3.4.7).

9.3.2 Branch-and-Cut Reference Run Times

Basis for comparison are test runs with the branch-and-cut algorithm employing the directed cut
model. This algorithm has been implemented by [ChwRai09], where a profound analysis of it
can be found. We introduced the model shortly in section 4.2.4. All tests have been re-run on
machines G1 for better comparison of the run times. Parameters and time limit have been set as
described in the previous section.
Tables 9.11, 9.12, 9.13, 9.14 and 9.15 list in rows ‘BC/UBD’ and ‘BC/PP’ run time data for branch-
and-cut tests. Rows ‘BC/UBD’ lists average algorithm run time in seconds (column ‘alg[s]’).
Column ‘tot[s]’ shows average total run time in seconds when UB-driven traversing for a static
tree (the fastest algorithm for determining T c) is used for the preprocessing step. Rows ‘BC/PP’
lists average run times1 with preprocessing by [ChwRai09]. Columns ‘mi’ show the amount of in-
stances that are missing because of either exceeding the time or pricing iterations limit or because
of memory usage. Tables 6 and 7 in the appendix show the standard deviations for ‘BC/UBD’,
standard deviations for ‘BC/PP’ are much higher.

The branch-and-cut algorithm failed to complete two instances with 2-dimensional δ̃ within
the time limit. For 3-dimensional δ̃ all test runs have been completed, except all δ̃ = (80, 80, 80)>

data for which no T c could be determined. As we can see in these tables, branch-and-cut using
UB-driven traversing for determining T c outperforms branch-and-cut using the preprocessing
by [ChwRai09]. Branch-and-cut works extremely good for 3-dimensional δ̃. For small δ̃ branch-
and-cut run times improve with increasing k. When δ̃ gets bigger than (30, 30)>, (30, 30, 30)>

the opposite effect is noted. When regarding the compression rate in practical application, result
sets having a small number of template arcs are favorable. This implies a big δ̃ and therefore a
big number of candidate template arcs T c. Based on experimental data, [ChwRai09] derived that
branch-and-cut works better with small sets T c and big sets T c have a disadvantageous effect.
This disadvantage is remedied by branch-and-price, since here we do not need the set T c anymore.

1Note that these preprocessing run times have been determined on machine O1.

101



9.3. Branch-and-Price Results for Fraunhofer Data Chapter 9. Experimental Results

In the following we use the ‘BC/UBD’ run times as reference. The branch-and-cut result values
for m, the minimal number of template arcs needed for encoding a template of size k, were used for
determining correctness of branch-and-price. The minimal codebook sizes for tested parameters
are summarized in table 5 in the appendix.

9.3.3 Complete SCF and MCF Formulation

As the single and multi commodity flow model presented in chapter 5 can be solved entirely with
T replaced by T c, extracted with UB-driven traversing from a static segmentation tree. Tests
have been run for determining if the models are correct. Parameters k and δ̃ have been set as
discussed in section 9.3.1.
Tables 9.11, 9.12, 9.13, 9.14 and 9.15 summarize data for a single commodity flow formulation
solved entirely. The tables list in row ‘SCF/com’ average algorithm run times in seconds (column
‘alg[s]’) and total run times including initialization step (column ‘tot[s]’) in seconds for the sin-
gle commodity flow formulation. Column ‘bbn’ shows the average amount of branch-and-bound
nodes. Averages for the multi commodity flow formulation are listed in rows ‘MCF/com’. Col-
umn ‘mi’ lists again the amount of instances that failed to be calculated within the time limit.
Tables 6 and 7 in the appendix show the standard deviations for ‘SCF/com’, standard deviation
for ‘MCF/com’ is very high and has an average of 7199.

With the SCF and MCF solved entirely, all codebooks have been determined correctly. As
with branch-and-cut here also no data could be collected for all δ̃ = (80, 80, 80)> because the
set T c is not computable (memory usage) for this parameter value. For the MCF, already with
2-dimensional δ̃ many instances surpass the time limit. For the tested parameters δ̃ = (10, 10)>,
(20, 20)>, (40, 40)>, (80, 80)>, already 36% of the instances failed to be calculated within the time
limit. With 3-dimensional δ̃ even more instances are missing and hence they are not listed. We
deduce that the SCF outperforms the MCF. Further experiments with pricing algorithms have
shown, that the multi commodity flow formulation is not competitive enough for our purposes.
The algorithms work, but run times for many instances lie wide beyond our time limit. In the
following we will concentrate on the single commodity flow formulation.
When comparing the appropriate values (rows ‘SCF/com’) with the corresponding branch-and-cut
values (columns ‘BC/UBD’), the SCF performs relatively good, despite the weaker LP relaxation.
For the SCF model, the average amount of branch-and-bound nodes (searched with BFS) is 862
(standard deviation 1218). The strength of the SCF can already be seen in these tests. As the size
of T c increases with increasing δ̃ the run times also increase with branch-and-cut. With the SCF
model the opposite effect occurs. Also, for small and middle δ̃ the amount of possible solutions
is very high and there exist many template arcs with the same size. This induces large plateaus
of equally good solutions and the algorithm spends most of the time for determining if the found
solution is optimal. When δ̃ gets bigger the amount of expressed points for each template arc
increases the optimal solution becomes unambiguous and is found very fast. Thus, the run times
for (40, 40)>, k = 10 and (80, 80)>, k = 30 are relatively small. Because of this characteristic also
very many branch-and-bound nodes (1 − 38507) are created for small and middle 2-dimensional
δ̃, whereas very few nodes (1 − 18) are needed when δ̃ is big. Further effect can be seen for 3-
dimensional and small δ̃ where the amount of branch-and-bound nodes gets tinier when compared
to 2-dimensional data.

9.3.4 Static Tree Pricing Algorithm for SCF

The static tree pricing algorithm was presented in section 6.4.3 and listed as pseudo code in
section 6.6. Limits and parameters k and δ̃ have been set as described in section 9.3.1. For
the tests a huge amount of pricing possibilities arise, the main test subject was the impact on
performance when using node-label constraints:

• We test how the static tree pricing algorithm performs when the SCF model uses only arc-
label constraints and the pricing bases on the dual variables uij . In contrast to it we test the
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performance, when the model additionally includes node-label constraints combined with the
according pricing strategy described in section 5.5 based on the dual variables uij and µj .

• How do run times differ, when either a starting solution (star shaped spanning tree) or a
Farkas pricing algorithm for determining a starting solution is used instead.

• How are run times affected, when pricing is restricted only to non-dominated template arcs
or dominated arcs are allowed as well.

• How does the algorithm perform when only one arc with negative reduced cost per pricing
step is determined, confronted to pricing all arcs with reduced cost < 0 in one pricing step.

• How does disabling or enabling variable duplicates perform. For the former, in each pricing
step we check if we already have found the actual template arc. If the actual arc was already
priced, we add another variable, if existing, with equal or inferior reduced cost instead.
When doing this the problem turns out to be efficiently solved. The counterpart is to allow
equal template arcs to be multiply priced.

• For the branch-and-bound decision tree we determine how depth first search (DFS) and best
first search (BFS) perform.

• How does using continuous values for arcs variables xij affect performance.

All the presented options may be combined. As listing each such test combination would take too
much space, we present the fastest variants. All tested variants determined the correct minimal
codebook. Test runs using DFS for the branch-and-bound tree have been showed not to be com-
petitive for our purposes. So for all presented test runs BFS has been used. Also tests with a
pricing algorithm that allows variable duplicates could not reach not in the least the run times of
the pricing algorithm that does not permit variable duplicates and marks the found variable after
each pricing iteration and hence is not listed here.

Tables 9.11, 9.12, 9.13, 9.14 and 9.15 show test data for the static tree pricing algorithm based
on a SCF model. As already described, in these tables columns ‘alg[s]’ lists average algorithm run
time in seconds as well as average total run time (columns ‘tot[s]’) in seconds. Columns ‘pit’ shows
the average amount of pricing iterations, columns ‘pvar’ the average number of priced variables.
Columns ‘bbn’ shows the average amount of nodes created in the branch-and-bound decision tree.
Rows ‘BP/static’ shows data for a static tree pricing algorithm in standard configuration that em-
ploys only arc-label constraints, uses a starting solution, determines in each pricing iteration only
one arc with maximal negative reduced cost and allows no variable duplicates. The branch-and-
bound decision tree uses BFS and we restricted the search to non-dominated template arcs. For
rows ‘BP/static/nlc’ additionally node-label constraints have been used. For rows ‘BP/static/fark’
and ‘BP/static/nlc/fark’ a starting solution determined with Farkas pricing algorithm has been
used instead of a star shaped spanning tree. Rows ‘BP/static/dom’ and ‘BP/static/nlc/dom’ show
data for static tree pricing algorithms that allow dominated template arcs to be priced. The sys-
tematic should be clear for ‘BP/static/nlc/fark/dom’. Rows ‘BP/static/allarcs’ lists run times for
a static tree pricing algorithm that prices all arcs with reduced costs < 0 in one pricing iteration.
Rows ‘BP/static/nlc/cont’ show average run times of the static tree pricing algorithm using an
SCF, where arcs variables xij have been implemented as continuous values. This approach was con-
sidered because of the following. As described in [CaClPa09] it is possible to solve the MLST formu-
lated as a flow network formulations with real valued arcs variables x. The result values for x may
be fractional, but the results for the labels are correct. We assumed that this may be the case also
for our extended variant (selected nodes, directed). Computational tests support this assumption,
and codebooks were determined correctly. Averages for the runs (rows ‘BP/static/nlc/cont’) are
presented in tables 9.11–9.15. Tables 6 and 7 in the appendix show in row ‘BP/static/[AVG]’ the
standard deviation as an average over ‘BP/static/[fark,dom,nlc,nlc/fark,nlc/dom,nlc/fark/dom]’
since values for these static tree pricing algorithm variants are very similar.

In test runs employing only arc-label constraints and 2-dimensional δ̃ one value (ft-19, δ̃ =
(20, 20)>, k = 20)) exceeds the pricing iterations limit2. The same test runs employing additionally

2When more elaborate tests are done, time and pricing iterations limit should be increased.
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node-label constraints were all computed. For 3-dimensional δ̃ = (80, 80, 80)> again the static
segmentation tree could not be build because of memory usage. This must be regarded when
comparing values. Mainly data for branch-and-cut, the SCF solved completely and static tree
pricing algorithm are easily compared.

Branch-and-Price Initialization Times The static tree pricing algorithm has to perform an
initialization step. It has to load the SCF model, generate variables and constraints, build the
entire static tree, and determine the starting solution, a star shaped spanning tree (naturally,
if Farkas pricing was not enabled). The building of such a starting solution is described in 5.6.
Average times for this step are listed in table 9.10 and correlate with the build time of a static
tree. As we can see, this step increases the run times for big δ̃ = (80, 80)> with an average of 20.0
seconds, which often is much more than the effective branch-and-price run time. For small δ̃, the
effect is almost negligible.

Table 9.10: Average initialization times in seconds for static tree pricing algorithms, 2-dimensional δ̃.

fhg/2d

k (10, 10)> (20, 20)> (30, 30)> (40, 40)> (80, 80)>

10 0.11 0.41 1.12 2.19 15.92
20 0.17 0.63 1.67 2.92 17.44
30 0.25 0.87 2.36 3.81 20.05

AVG 0.18 0.64 1.72 2.97 17.80
stdev 0.07 0.23 0.62 0.81 2.09

fhg/3d

k (10, 10, 10)> (30, 30, 30)> (40, 40, 40)>

10 0.13 1.96 6.01
20 0.22 2.79 9.06
30 0.31 3.87 12.10

AVG 0.22 2.87 9.05
stdev 0.09 0.96 3.05

9.3.4.1 Results

All variants determined a correct minimal codebook. As we can see in tables 9.11, 9.12, 9.13,
9.14 and 9.15, branch and price performs very good for big 2-dimensional δ̃ = (40, 40)>, (80, 80)>

values. The number of priced variables with these parameters is very small when compared to the
set T c (discussed in section 9.4). So is the number of branch-and-bound nodes. For smaller δ̃, and
as k increases, more pricing iterations, as well as branch-and-bound nodes are needed to solve the
problem. Accordingly, the run times are higher. For 3-dimensional δ̃ the run times can not reach
the excellent branch-and-cut run times, the best values were achieved with small δ̃ = (10, 10, 10)>.
As we can see in the tables concerning 2-dimensional data, the run time decreases when k increases
and δ̃ is small. In case δ̃ is big, the opposite effect occurs, and run times increase with the size of
k. For the amount of pricing iterations, the same effect is noted, the amount of pricing iterations
directly influence the run times. Best values for big δ̃ = (80, 80)> are result when using node-label
constraints, for big δ̃ = (40, 40)> Farkas pricing is more effective. The effects of having a better
starting set take effect the more δ̃ increases from (10, 10)> to (40, 40)>. When δ̃ is very big, the
best template arcs can be found very quickly and a starting set built by Farkas pricing or a star
shaped spanning tree makes very few difference.
In the according tables we see, that the static tree pricing algorithm test runs which include node-
label constraints as well as the according pricing strategy perform best. The algorithms using
node-label constraints are faster than the variants using only arc-label constraints. Branch-and-
bound nodes as well as pricing iterations and priced variables are significantly smaller, especially
the more k increases. If node-label constraints are used in combination with Farkas pricing, a
very good starting solution (which may be different from the one described in 5.6) is found and
results mostly in smaller run times and less priced variables. Interestingly, when allowing the
pricing of dominated template arcs the branch-and-price algorithm performs well too. Pricing all
arcs with a reduced cost < 0 in one pricing iteration (using no node-label constraints) performs
relatively good, but this approach is outperformed by the other tested variants. The smallest
average amount of branch-and-bound nodes with an average of 289 (2-dimensional δ̃) 292 (3-
dimensional δ̃) is achieved with the variant using node-label constraints. We can say that using
node-label constraints reduce significantly the amount of branch-and-bound nodes. The overall
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average of branch-and-bound nodes for the variants using node-label constraints is half of the
ones needed for solving instances using no node-label constraints, but the average is influenced
somewhat by relatively big branch-and-bound node values for k = 20, δ̃ = (20, 20)>. The variant
using Farkas pricing in combination with node-label constraints has the smallest average amount of
priced variables, which were averagely 299 with 2-dimensional δ̃ and 638 for 3-dimensional δ̃. Here,
the amount of priced variables is small, since Farkas pricing determines better starting solutions
with more template arcs that may be part of the solution. As fastest static tree pricing algorithm
was determined ‘BP/static/nlc/fark’, the approaches ‘BP/static/nlc’ and ‘BP/static/nlc/dom’ are
also relatively fast.
Figures 9.4 shows a comparison of run times for selected options. In figures 9.4a,9.4b the average
was taken over k, thus depicting the performance for each δ̃ parameter. In images 9.4c, 9.4d the
average was taken over δ̃ values, thus depicting the performance for different k. In these images
we see that approaches that use node-label constraints perform better, the more k increases. For
small δ̃, the node-label constraints are not very meaningful and the brought in information be-
comes effective, when δ̃ increases.
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Figure 9.4: Performance of selected options for the static tree pricing algorithm, figures 9.4a, 9.4b in the
first row show the average over k, figures 9.4c, 9.4d in the second row the average over δ̃.

Branch-and-price works correctly when arcs variables may hold continuous values (rows ‘BP/
static/nlc/cont’). The approach could not reach the average run times of the other approaches
that use integer arcs variables, but for some parameter values good results for the amount of
pricing iterations, priced variables and branch-and-bound nodes could be achieved. Higher run
times are consequence of the SCIP framework that strongly utilizes heuristics, which are beneficial
when having integer and binary variables.
The variant allowing variable duplicates was found to be the weakest and is not listed. For some
instances a very big amount of variables (>100000) are multiply priced and increase needlessly
the size of the LP. SCIP is able to cope with such multiple variables. All tested instances with this
option enabled have run times exceeding greatly the run times presented here.
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9.3.5 Dynamic Tree Pricing Algorithm for SCF

The dynamic tree pricing algorithm was presented in section 6.5 and listed as pseudo code in
section 6.6. Parameters, run time and pricing iterations limit have been set as in 9.3.1. All tested
variants determined a correct minimal codebook.
Again we have a huge amount of possibilities, the tested configurations were mainly the same as for
the static tree pricing algorithm. Tables 9.11, 9.12, 9.13, 9.14 and 9.15 list data (columns ‘alg[s]’,
‘tot[s]’, ‘pit’, ‘pvar’, ‘bbn’) for the best variants using a dynamic tree pricing algorithm. Rows
‘BP/dyn’ list data for the standard configuration (uses only arc-label constraints, star shaped
spanning tree as starting solution, price only non-dominated arcs, use BFS for the branch-and-
bound decision tree and allow no variable duplicates). Runs with further options are denominated
as previously: Farkas pricing (‘fark’), allow dominated template arcs (‘dom’), using additionally
node-label constraints (‘nlc’), implement arcs variables xij as continuous values (‘cont’). Tables 6
and 7 in the appendix show in row ‘BP/dyn/[AVG]’ the standard deviation as an average over
‘BP/dyn/[fark,dom,nlc,nlc/fark,nlc/dom,nlc/fark/dom]’ since the values for all dynamic tree pric-
ing algorithm are very similar.

For the dynamic tree, an additional option for saving memory arises. We may delete the
dynamic segmentation tree after each pricing operation and in each pricing iteration build anew
exclusively the parts that we need for solving the pricing problem. In this manner only a small
tree is built for each pricing step. Although there may be parts that are often built anew, but as
the tree requires much storage, this is a simple option for coping with very big δ̃. When variable
duplicates are not allowed, we have to save the found template arcs separately from the tree. Also
the pricing behaviour may be different because the tree behaviour changes. When we start in
each pricing iteration with an empty tree and build each time straightforwardly in direction of the
solution template arc, it may be a different one than a template arc found in a tree part that was
built in some previous pricing iteration. Thus the pricing order may be influenced somewhat, an
effect that also occurs when comparing the behaviour of static and dynamic tree pricing algorithm.
The row ‘BP/dyn/del/nlc/fark’ lists data for the best such run.

For almost all variants and 2-dimensional parameters δ̃, the number of completed instances was
exactly the same, this eases comparison for the dynamic tree pricer options. As in the static tree
pricing algorithm, all variants employing no node-label constraints failed to determine instance
ft-19, δ̃ = (20, 20)>, k = 20 within the time limit. The test runs using node-label constraints
finished all instances. For 3-dimensional parameters δ̃ more instances could not be computed,
mainly with δ̃ = (80, 80, 80)> because of the storage requirements for the corresponding dynamic
tree. In tables 9.11–9.15 we listed the amount of missing instances in column ‘mi’. Note that
instances for δ̃ = (80, 80, 80)> became now calculable.

9.3.5.1 Results

Regarding k and δ̃ the branch-and-price behaviour of the dynamic tree pricing algorithm is similar
to the static version. The average amount of branch-and-bound nodes and priced variables varies,
since the search for τ∗ is a little bit different. The static tree pricing algorithm adds the first
unpriced variable that is found in the tree, regardless if other template arcs may be found later
with the same sum of dual values. Whereas the dynamic tree builds in direction of the biggest
sum of dual values and thus some other template arc may be found and added first instead. In our
tests, this behaviour resulted to be beneficial, since the amount of produced branch-and-bound
nodes as well as priced variables decreases.
The initialization time for the dynamic tree pricing algorithm using node-label constraints or no
node-label constraints performs in an average time slightly smaller than in the static tree, with
exception of very big δ̃ where the initialization step may take slightly more time. First we must
regard that for the static tree pricing algorithm there is no data for δ̃ = (80, 80, 80)>, so these
times seem different because the average value includes also these values that previously could
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not be calculated. One minor cause is the dynamic tree behaviour which has a more complex
handling for the next bounding box to be segmented, and that there may be segmented some
small tree parts that hold no element from the starting solution and so increase the initialization
time. Thus, variants using Farkas pricing perform better for the dynamic tree pricing algorithm.
When a starting solution is priced based on Farkas coefficients, the initial template arcs set may
already be smaller than the star shaped spanning tree (section 5.6) and less tree nodes required to
find this starting set. With this option enabled the initialization step for fhg-data takes an average
of 0.01 seconds, regardless of the tested parameters k, δ̃. Also, finding a star shaped spanning tree
starting solution, with dominated template arcs allowed, is relatively fast and takes an average of
0.52 seconds for all k, δ̃. Farkas pricing is the better choice in the most of cases.
When regarding k and δ̃ more closely, the same trends as with the static tree pricing algorithms are
observed. For 2-dimensional parameters δ̃ the run times decrease with increasing δ̃. For big δ̃ and
small k, very good run times can be achieved. When k increases to 30 the run time decreases. For
3-dimensional δ̃ again the opposite effect occurs and the branch-and-price run times can not quite
reach the branch-and-cut run times. Like for 2-dimensional parameters δ̃ the most time intensive
runs are the ones with a medium k. Here also, using node-label constrains is beneficial and a good
option for sure. When using them, the average amount of priced variables and branch-and-bound
nodes decreases massively. The best approach for small and middle δ̃ parameters is branch-and-
cut, as tables 9.11–9.15 show. With branch-and-cut the 3-dimensional fhg-files test instances
produced excellent run times. But the advantage of branch-and-price is that the instances for
δ̃ = (80, 80, 80)> are now calculable.
Figures 9.5 show a comparison of run times of the dynamic tree pricing algorithm with selected
options. Figures 9.5a and 9.5b show the average over k, thus depicting the performance for
the δ̃ parameters. For figures 9.5c and 9.5d the average was taken over δ̃ values, showing thus
performance for different k values. As for the static tree pricing algorithm the utilization of
node-label constraints performs the better the greater k, respective δ̃.Sheet1
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Figure 9.5: Performance of selected options for the dynamic tree pricing algorithm, figures 9.5a, 9.5b in
the first row show the average over k, figures 9.5c, 9.5d in the second row the average over δ̃.
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Table 9.11: Average algorithm run time (column ‘alg[s]’), total run time (column ‘tot[s]’), pricing it-
erations (column ‘pit’), priced variables (column ‘pvar’) and branch-and-bound nodes (column ‘bbn’).
Parameter δ̃ 2-dimensional. Rows description in sections 9.3.2–9.3.5.

fhg/2d (10, 10)> (20, 20)> (30, 30)>
k options alg[s] tot[s] pit pvar bbn alg[s] tot[s] pit pvar bbn alg[s] tot[s] pit pvar bbn

10 BC/UBD 149.5 149.6 - - - 715.8 716.4 - - - 120.4 122.2 - - -
BC/PP 149.5 158.0 - - - 715.8 806.0 - - - 120.4 763.9 - - -
SCF/com 438.4 438.7 - - 1286 479.1 480.0 - - 1081 37.9 40.6 - - 23
MCF/com 10564.6 n/a - - - 9496.5 n/a - - - n/a n/a - - -
BP/sta 477.6 477.7 2057 491 1566 558.1 558.5 2704 960 1744 24.5 25.6 211 186 25
BP/sta/fark 383.7 383.7 1853 499 1357 659.9 660.2 3129 968 2163 19.2 20.0 159 138 22
BP/sta/dom 494.0 494.2 1962 539 1423 629.1 629.5 3077 1004 2072 35.4 36.5 286 257 29
BP/sta/nlc 457.7 457.8 1757 471 1286 539.9 540.3 1790 1009 781 15.2 16.3 112 99 12
BP/sta/nlc/fark 506.8 506.9 1977 548 1433 509.4 509.7 1732 915 818 16.9 17.7 124 113 12
BP/sta/nlc/dom 492.1 492.2 1926 543 1384 568.5 568.9 1953 1031 921 32.0 33.0 255 230 26
BP/sta/nlc/cont 571.0 571.1 2492 582 1910 810.3 810.7 2354 1226 1127 245.4 246.6 1136 693 442
BP/sta/allarcs 587.7 587.8 1593 2953 1565 782.3 782.8 1694 6183 1544 47.4 48.4 54 6749 35
BP/dyn 407.6 407.6 1747 508 1240 579.6 579.7 2975 1116 1859 11.8 12.0 147 131 16
BP/dyn/fark 398.7 398.7 2102 504 1602 575.6 575.6 2952 910 2044 13.4 13.4 149 129 22
BP/dyn/dom 444.5 444.5 1837 550 1288 487.5 487.5 2658 989 1669 17.3 17.3 206 182 23
BP/dyn/nlc 403.3 403.4 1547 461 1086 522.2 522.3 1847 996 851 13.8 14.0 155 139 16
BP/dyn/nlc/fark 479.4 479.4 2034 511 1526 543.5 543.5 2056 999 1058 10.6 10.6 85 76 10
BP/dyn/nlc/fark/dom 408.5 408.5 1607 496 1114 538.7 538.7 2070 1040 1031 11.1 11.1 113 100 13
BP/dyn/nlc/cont 980.3 980.3 3652 645 3007 714.4 714.5 2257 1185 1071 602.9 603.1 1881 773 1108
BP/dyn/del/nlc/fark 591.3 591.3 2008 539 1472 544.2 544.2 1658 892 767 9.7 9.7 52 47 6

20 BC/UBD 51.4 51.5 - - - 387.6 388.1 - - - 309.6 311.4 - - -
BC/PP 51.4 60.2 - - - 387.6 482.5 - - - 309.6 986.7 - - -
SCF/com 129.7 130.0 - - 334 408.7 409.7 - - 1432 681.3 684.2 - - 1854
MCF/com 7178.6 n/a - - - 3391.8 n/a - - - n/a n/a - - -
BP/sta 156.0 156.2 804 307 496 200.3 200.9 1186 645 541 511.7 513.3 2835 1217 1618
BP/sta/fark 178.3 178.4 910 299 616 90.3 90.6 766 368 401 540.4 541.2 2997 1118 1881
BP/sta/dom 161.0 161.2 914 329 585 182.2 182.8 1443 683 761 506.8 508.2 2831 1208 1622
BP/sta/nlc 154.2 154.4 679 258 421 628.3 629.0 2116 935 1180 284.4 286.1 1052 877 175
BP/sta/nlc/fark 155.5 155.6 757 274 488 574.3 574.5 2103 633 1474 259.3 260.1 1096 941 158
BP/sta/nlc/dom 158.5 158.7 720 280 440 495.4 496.0 1746 591 1156 301.6 303.0 1093 959 134
BP/sta/nlc/cont 222.7 223.0 991 353 637 258.3 259.0 1497 571 925 1088.2 1089.9 1841 1268 573
BP/sta/allarcs 258.5 258.6 646 1767 585 864.9 865.8 2119 3859 1961 879.8 881.3 1745 7527 1582
BP/dyn 162.3 162.4 862 315 547 139.4 139.5 1028 585 445 394.2 394.5 2699 1333 1366
BP/dyn/fark 188.7 188.7 1034 369 671 165.7 165.7 1123 547 579 302.3 302.3 2297 1000 1299
BP/dyn/dom 174.0 174.0 1024 329 694 113.1 113.2 1081 656 426 419.4 419.4 3450 1594 1856
BP/dyn/nlc 158.4 158.5 751 284 467 544.9 545.1 1948 806 1142 252.3 252.8 1080 930 150
BP/dyn/nlc/fark 115.3 115.3 613 235 384 226.5 226.5 1197 467 733 219.5 219.5 1002 841 163
BP/dyn/nlc/fark/dom 146.3 146.3 729 254 481 248.4 248.4 1351 571 784 183.0 183.0 906 767 142
BP/dyn/nlc/cont 168.3 168.3 842 311 531 339.8 340.0 1972 661 1311 673.7 674.2 1527 1104 423
BP/dyn/del/nlc/fark 168.6 168.6 755 291 469 477.1 477.1 1753 740 1016 134.8 134.9 644 547 99

30 BC/UBD 27.8 28.0 - - - 153.6 154.2 - - - 354.5 356.5 - - -
BC/PP 27.8 37.5 - - - 153.6 258.3 - - - 354.5 1102.8 - - -
SCF/complete 91.7 92.0 - - 208 220.9 221.9 - - 350 165.6 168.6 - - 496
MCF/com 5646.4 n/a - - - 6139.4 n/a - - - n/a n/a - - -
BP/sta 100.0 100.2 572 260 311 227.7 228.6 1178 600 577 296.2 298.4 1895 1168 727
BP/sta/fark 66.6 66.6 425 252 183 250.7 251.0 1312 654 663 226.4 227.2 1599 856 746
BP/sta/dom 61.6 61.9 381 213 167 268.3 269.0 1421 662 758 214.5 216.2 1557 821 735
BP/sta/nlc 37.7 38.0 226 143 83 107.6 108.6 611 444 167 78.8 81.2 545 391 153
BP/sta/nlc/fark 52.9 53.0 313 170 151 45.9 46.2 371 284 92 61.2 62.0 468 336 135
BP/sta/nlc/dom 43.5 43.8 275 169 106 153.0 153.8 919 520 399 71.6 73.4 517 403 113
BP/sta/nlc/cont 83.7 84.0 481 207 274 155.5 156.6 697 391 306 39.8 42.3 476 268 207
BP/sta/allarcs 98.8 98.9 251 1433 193 524.9 526.0 968 4883 832 400.6 402.7 1090 9621 958
BP/dyn 71.6 71.7 440 237 203 166.8 167.0 1138 688 450 185.7 186.2 1789 984 805
BP/dyn/fark 63.9 63.9 419 227 201 318.4 318.4 1764 628 1141 126.4 126.4 1400 661 742
BP/dyn/dom 62.3 62.3 410 227 183 237.4 237.5 1571 839 732 221.3 221.4 1706 1037 669
BP/dyn/nlc 38.6 38.7 252 162 90 73.8 74.1 487 313 174 32.7 33.6 380 278 101
BP/dyn/nlc/fark 48.6 48.6 281 156 133 113.3 113.3 792 396 402 26.4 26.4 298 182 119
BP/dyn/nlc/fark/dom 39.3 39.3 243 168 85 42.0 42.0 386 296 94 28.8 28.8 321 216 108
BP/dyn/nlc/cont 126.3 126.5 666 217 448 186.7 187.0 978 439 539 15.0 15.9 348 177 170
BP/dyn/del/nlc/fark 67.0 67.0 327 179 156 48.4 48.5 331 236 99 52.3 52.3 366 273 96
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Table 9.12: Average algorithm run time (column ‘alg[s]’), total run time (column ‘tot[s]’), pricing it-
erations (column ‘pit’), priced variables (column ‘pvar’) and branch-and-bound nodes (column ‘bbn’).
Parameter δ̃ 2-dimensional. Rows description in sections 9.3.2–9.3.5.

fhg/2d (40, 40)> (80, 80)>
k options alg[s] tot[s] pit pvar bbn alg[s] tot[s] pit pvar bbn mi

10 BC/UBD 126.9 130.9 - - - 695.6 753.5 - - - 0
BC/PP 126.9 3239.1 - - - 695.6 n/a - - - 0
SCF/com 6.8 12.8 - - 1 77.8 155.8 - - 1 0
MCF/com 723.2 n/a - - - n/a n/a - - - 15, all 30, 80
BP/static 8.3 10.5 64 60 5 3.3 19.3 4 3 1 0
BP/static/fark 5.1 6.8 35 32 4 2.3 15.9 2 2 1 0
BP/static/dom 2.0 4.1 5 4 1 2.8 17.7 3 2 1 0
BP/static/nlc 2.6 4.9 8 7 1 2.3 18.4 3 2 1 0
BP/static/nlc/fark 3.4 5.1 6 5 2 3.3 16.8 1 1 1 0
BP/static/nlc/dom 2.5 4.6 7 6 1 1.8 16.8 3 2 1 0
BP/static/nlc/cont 84.6 87.0 327 257 70 62.4 79.1 109 52 58 1
BP/static/allarcs 16.4 19.5 4 8213 2 41.0 56.9 2 10109 1 0
BP/dyn 3.2 3.6 17 15 1 2.4 15.0 4 3 1 0
BP/dyn/fark 2.7 2.7 8 7 2 2.3 2.3 2 2 1 0
BP/dyn/dom 1.7 1.7 5 4 1 2.0 2.3 3 2 1 0
BP/dyn/nlc 2.0 2.4 8 7 1 2.0 15.2 3 2 1 0
BP/dyn/nlc/fark 3.0 3.0 6 5 1 30.6 30.6 1 1 1 0
BP/dyn/nlc/fark/dom 1.9 1.9 5 5 1 0.8 0.8 1 1 1 0
BP/dyn/nlc/cont 30.0 30.4 205 158 47 151.2 164.4 957 474 482 0
BP/dyn/del/nlc/fark 3.2 3.2 6 5 1 33.0 33.0 1 1 1 0

20 BC/UBD 112.3 116.6 - - - 1020.5 1078.5 - - - 0
BC/PP 112.3 3387.7 - - - 1020.5 n/a - - - 0
SCF/com 338.6 345.2 - - 1221 67.7 145.1 - - 2 0
MCF/com 1166.9 n/a - - - n/a n/a - - - 25, all 30, 80
BP/static 176.1 179.0 1384 844 540 7.7 25.2 14 12 3 1
BP/static/fark 231.5 233.3 1513 967 548 6.3 19.7 12 8 5 1
BP/static/dom 194.7 197.4 1361 955 406 8.0 24.0 17 14 3 1
BP/static/nlc 125.2 128.4 528 473 55 1.9 19.9 3 2 1 0
BP/static/nlc/fark 36.2 38.0 181 162 20 3.5 17.1 1 1 1 0
BP/static/nlc/dom 88.1 90.8 530 492 38 1.7 17.9 3 2 1 0
BP/static/nlc/cont 366.5 369.8 673 536 137 108.0 126.5 114 98 16 3
BP/static/allarcs 505.3 509.4 726 9086 620 102.6 123.4 19 15359 14 0
BP/dyn 114.8 115.7 1488 910 578 6.1 22.3 65 51 14 0
BP/dyn/fark 106.4 106.4 1395 930 467 4.0 4.0 21 18 4 1
BP/dyn/dom 140.2 140.3 1487 1041 447 2.8 3.3 11 10 2 1
BP/dyn/nlc 65.7 66.9 621 572 48 2.4 19.6 3 2 1 0
BP/dyn/nlc/fark 41.2 41.2 271 235 38 35.8 35.8 12 9 4 0
BP/dyn/nlc/fark/dom 26.0 26.0 267 240 28 1.3 1.3 3 2 2 0
BP/dyn/nlc/cont 20.8 22.0 237 201 35 3.3 20.6 6 3 4 5
BP/dyn/del/nlc/fark 30.9 30.9 172 155 18 36.8 36.8 2 2 2 0

30 BC/UBD 556.2 561.2 - - - 2542.3 2605.8 - - - 2
BC/PP 556.2 4600.8 - - - 2542.3 n/a - - - 2
SCF/com 2201.7 2208.7 - - 4647 91.0 188.0 - - 1 0
MCF/com 5668.0 n/a - - - n/a n/a - - - 21, all 30, 80
BP/static 768.8 772.6 2905 1671 1233 175.1 195.2 290 277 13 0
BP/static/fark 647.0 648.9 2835 1369 1469 132.4 147.0 214 199 16 0
BP/static/dom 717.8 721.0 2836 1570 1265 84.7 102.3 149 137 12 0
BP/static/nlc 127.1 131.6 393 379 14 4.1 25.2 11 7 4 0
BP/static/nlc/fark 25.8 27.7 106 97 11 3.0 17.5 1 1 1 0
BP/static/nlc/dom 61.8 65.2 253 244 9 16.5 34.5 42 37 5 0
BP/static/nlc/cont 36.0 40.5 151 146 5 680.9 702.7 405 396 9 1
BP/static/allarcs 1325.3 1329.6 1067 13353 945 188.2 208.4 3 28017 1 0
BP/dyn 443.2 444.5 2850 1577 843 22.4 45.1 137 126 11 0
BP/dyn/fark 525.9 525.9 3320 1656 1667 21.5 21.5 141 132 10 0
BP/dyn/dom 529.4 529.5 3215 1926 1289 23.6 24.1 273 258 14 0
BP/dyn/nlc 20.6 22.6 219 210 8 7.7 31.7 26 21 5 0
BP/dyn/nlc/fark 13.8 13.8 128 119 11 33.2 33.2 1 1 1 0
BP/dyn/nlc/fark/dom 17.5 17.5 157 152 8 1.5 1.5 21 20 2 0
BP/dyn/nlc/cont 22.0 23.9 190 183 7 4.4 28.4 15 13 1 1
BP/dyn/del/nlc/fark 18.9 18.9 109 106 5 33.9 33.9 1 1 1 0
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Table 9.13: Average algorithm run time (column ‘alg[s]’), total run time (column ‘tot[s]’), pricing it-
erations (column ‘pit’), priced variables (column ‘pvar’) and branch-and-bound nodes (column ‘bbn’).
Parameter δ̃ 3-dimensional. Rows description in sections 9.3.2–9.3.5.

fhg/3d (10, 10, 10)> (30, 30, 30)>
k options alg[s] tot[s] pit pvar bbn alg[s] tot[s] pit pvar bbn

10 BC/UBD 11.2 11.3 - - - 32.1 34.6 - - -
BC/PP 11.2 14.8 - - - 32.1 104.7 - - -
SCF/com 12.5 12.7 - - 76 65.3 68.6 - - 132
BP/static 37.7 37.8 197 110 87 228.5 230.4 919 593 326
BP/static/fark 32.3 32.4 285 137 156 291.2 292.4 1310 720 593
BP/static/dom 32.6 32.7 204 108 96 189.6 191.5 791 521 270
BP/static/nlc 32.3 32.5 203 124 79 156.7 158.7 582 464 118
BP/static/nlc/fark 35.6 35.7 199 126 80 154.3 155.5 574 455 121
BP/static/nlc/dom 29.1 29.3 192 119 73 177.6 179.5 653 505 148
BP/static/nlc/cont 72.8 73.0 420 153 267 270.6 272.6 901 702 198
BP/static/allarcs 46.1 46.2 202 965 200 262.7 264.6 308 16804 289
BP/dyn 31.5 31.5 202 114 88 133.3 133.4 894 570 324
BP/dyn/nlc 31.9 31.9 209 128 81 95.5 95.6 627 503 123
BP/dyn/nlc/fark 34.9 34.9 188 125 70 95.5 95.5 657 524 136
BP/dyn/nlc/fark/dom 41.8 41.8 239 129 118 106.2 106.2 734 593 143
BP/dyn/nlc/cont 65.1 65.1 402 148 254 179.9 180.0 974 751 222
BP/dyn/del/nlc/fark 50.6 50.6 227 131 104 170.5 170.5 666 497 171

20 BC/UBD 4.5 4.6 - - - 92.7 95.3 - - -
BC/PP 4.5 8.1 - - - 92.7 169.1 - - -
SCF/com 14.0 14.2 - - 81 475.1 478.6 - - 1262
BP/static 27.7 27.9 242 115 127 641.7 644.4 2503 878 1626
BP/static/fark 31.8 31.8 226 122 117 624.2 625.5 2715 887 1835
BP/static/dom 31.1 31.3 191 107 84 626.1 628.9 2452 870 1582
BP/static/nlc 27.7 27.9 165 100 65 451.5 454.4 1327 830 497
BP/static/nlc/fark 31.1 31.2 179 120 72 411.7 413.0 1426 812 618
BP/static/nlc/dom 36.1 36.3 197 106 91 480.5 483.3 1515 896 619
BP/static/nlc/cont 49.4 49.7 211 105 105 810.7 813.5 2752 888 1863
BP/static/allarcs 41.1 41.3 238 708 229 1101.8 1104.6 1660 12768 1546
BP/dyn 22.5 22.5 191 102 88 511.9 512.1 2741 917 1827
BP/dyn/nlc 25.4 25.5 161 96 65 356.0 356.3 1543 918 625
BP/dyn/nlc/fark 31.4 31.4 175 115 72 288.4 288.4 1308 772 540
BP/dyn/nlc/fark/dom 33.1 33.1 195 122 84 388.3 388.3 2017 1113 908
BP/dyn/nlc/cont 41.9 42.0 203 114 88 690.4 690.7 2698 841 1856
BP/dyn/del/nlc/fark 37.4 37.4 158 108 61 491.9 491.9 1226 713 517

30 BC/UBD 5.0 5.1 - - - 82.6 85.5 - - -
BC/PP 5.0 9.0 - - - 82.6 166.6 - - -
SCF/com 7.8 8.1 - - 20 371.3 375.0 - - 1815
BP/static 10.4 10.7 111 67 45 486.8 490.6 2145 947 1198
BP/static/fark 14.6 14.7 128 90 58 446.1 447.5 2283 879 1413
BP/static/dom 11.2 11.4 114 71 43 461.1 464.8 2065 840 1224
BP/static/nlc 13.2 13.5 80 63 17 123.2 127.1 570 407 162
BP/static/nlc/fark 15.9 16.0 79 75 22 203.7 205.1 815 453 370
BP/static/nlc/dom 11.8 12.2 74 60 14 248.6 252.2 907 532 375
BP/static/nlc/cont 15.7 16.1 106 73 33 458.3 462.3 2105 724 1380
BP/static/allarcs 11.9 12.2 96 241 87 530.5 534.4 1062 11569 913
BP/dyn 10.4 10.5 110 66 45 259.7 260.0 1898 871 1027
BP/dyn/nlc 13.1 13.2 82 63 19 98.4 98.9 696 477 219
BP/dyn/nlc/fark 14.0 14.0 68 70 16 157.1 157.1 913 456 464
BP/dyn/nlc/fark/dom 16.4 16.4 96 80 34 67.4 67.5 575 397 186
BP/dyn/nlc/cont 14.5 14.6 101 70 30 150.5 151.0 1428 576 851
BP/dyn/del/nlc/fark 18.5 18.5 88 74 31 117.8 117.9 470 329 148
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Table 9.14: Average algorithm run time (column ‘alg[s]’), total run time (column ‘tot[s]’), pricing it-
erations (column ‘pit’), priced variables (column ‘pvar’) and branch-and-bound nodes (column ‘bbn’).
Parameter δ̃ 3-dimensional. Rows description in sections 9.3.2–9.3.5.

fhg/3d (40, 40, 40)> (80, 80, 80)>
k options alg[s] tot[s] pit pvar bbn alg[s] tot[s] pit pvar bbn mi

10 BC/UBD 75.1 87.5 - - - n/a 0
BC/PP 75.1 908.4 - - - n/a 0
SCF/com 183.2 197.7 - - 570 n/a 0, all 80
BP/static 442.0 448.1 1414 904 509 n/a 0, all 80
BP/static/fark 401.1 405.4 1343 774 571 n/a 0, all 80
BP/static/dom 541.5 547.6 1779 1057 723 n/a 0, all 80
BP/static/nlc 698.7 704.6 1671 1248 423 n/a 1, all 80
BP/static/nlc/fark 983.2 987.5 1898 1432 468 n/a 0, all 80
BP/static/nlc/dom 566.4 572.1 1372 1091 281 n/a 1, all 80
BP/static/nlc/cont 1008.7 1014.7 2446 1838 608 n/a 1, all 80
BP/static/allarcs 1079.9 1086.2 714 50430 629 n/a 0, all 80
BP/dyn 184.2 184.6 1551 975 575 4.8 43.6 9 8 1 0
BP/dyn/nlc 202.5 203.1 1286 1060 225 3.8 48.7 6 5 1 0
BP/dyn/nlc/fark 461.8 461.8 1966 1481 487 3.5 3.6 4 4 1 0
BP/dyn/nlc/fark/dom 255.0 255.0 1629 1248 383 4.0 4.0 13 11 3 0
BP/dyn/nlc/cont 453.5 454.0 2261 1756 505 184.0 223.1 681 496 184 2
BP/dyn/del/nlc/fark 462.1 462.1 1488 1144 346 5.4 5.4 4 4 1 1

20 BC/UBD 252.0 264.9 - - - n/a 0
BC/PP 252.0 1129.0 - - - n/a 0
SCF/com 571.3 586.8 - - 3053 n/a 0, all 80
BP/static 1393.4 1402.3 5585 1866 3720 n/a 1, all 80
BP/static/fark 954.7 959.4 4057 1352 2709 n/a 2, all 80
BP/static/dom 1661.5 1669.9 6654 2114 4541 n/a 0, all 80
BP/static/nlc 1216.2 1225.4 2408 1741 666 n/a 0, all 80
BP/static/nlc/fark 639.8 644.3 1836 1206 632 n/a 0, all 80
BP/static/nlc/dom 1289.4 1297.9 2731 1990 741 n/a 0, all 80
BP/static/nlc/cont 2807.1 2816.6 6460 2747 3712 n/a 3, all 80
BP/static/allarcs 2270.4 2279.4 3577 38867 3315 n/a 1, all 80
BP/dyn 484.8 485.6 4303 1761 2542 839.7 885.2 2520 2274 246 8
BP/dyn/nlc 744.3 745.4 3150 2245 904 280.7 331.1 802 771 31 6
BP/dyn/nlc/fark 658.8 658.8 3129 1819 1313 319.2 319.2 810 775 36 3
BP/dyn/nlc/fark/dom 431.7 431.7 2780 1855 927 17.3 17.3 149 135 16 5
BP/dyn/nlc/cont 1264.7 1265.8 7182 2318 4864 134.5 191.1 448 432 16 7
BP/dyn/del/nlc/fark 680.7 680.8 2252 1466 789 613.1 613.1 597 571 28 1

30 BC/UBD 263.4 277.5 - - - n/a 0
BC/PP 263.4 1231.9 - - - n/a 0
SCF/com 1308.9 1325.5 - - 2753 n/a 0, all 80
BP/static 1980.8 1992.5 4458 2098 2360 n/a 1, all 80
BP/static/fark 1212.3 1216.8 2889 1517 1378 n/a 2, all 80
BP/static/dom 694.6 703.5 2010 1420 590 n/a 3, all 80
BP/static/nlc 1224.3 1236.7 1841 1240 601 n/a 0, all 80
BP/static/nlc/fark 1021.6 1026.4 1511 1061 456 n/a 0, all 80
BP/static/nlc/dom 1154.3 1165.2 1718 1359 359 n/a 0, all 80
BP/static/nlc/cont 667.6 679.0 1238 859 378 n/a 1, all 80
BP/static/allarcs 1613.4 1623.9 1310 40866 1108 n/a 2, all 80
BP/dyn 908.4 909.7 4162 1974 2189 1217.5 1257.9 4776 4086 689 11
BP/dyn/nlc 458.5 460.4 1590 976 613 82.1 147.3 236 224 12 7
BP/dyn/nlc/fark 447.0 447.1 1300 985 319 727.1 727.1 964 946 21 4
BP/dyn/nlc/fark/dom 534.1 534.1 1596 1251 352 1658.5 1658.5 1266 1249 19 2
BP/dyn/nlc/cont 276.9 278.7 1427 982 444 77.5 152.6 203 194 9 6
BP/dyn/del/nlc/fark 679.7 679.7 1503 1069 441 153.9 153.9 236 228 11 5
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Table 9.15: Averages over k, δ̃ for the tested algorithms branch-and-cut (row ‘BC’), SCF and MCF
solved entirely (rows ‘SCF/com’ and ‘MCF/com’), branch-and-price using a static tree pricing algorithm
(all rows ‘BP/static’) and a dynamic tree pricing algorithm (rows ‘BP/dyn’).

AVG over k, δ̃

fhg/2d alg[s] tot[s] pit pvar bbn mi

BC/UBD 488.3 501.6 - - - 2

BC/PP 488.3 1323.6 - - - 2, PP t[s] for (80, 80)>

SCF/com 362.5 381.4 - - 862 0

MCF/com 5552.8 n/a - - - 61, all (30, 30)>, (80, 80)>

BP/static 246.1 250.7 1207 580 627 1
BP/static/fark 229.3 232.7 1184 515 672 1
BP/static/dom 237.5 241.7 1216 560 656 1
BP/static/nlc 171.1 176.0 656 366 289 0
BP/static/nlc/fark 150.5 153.9 616 299 320 0
BP/static/nlc/dom 165.9 170.2 683 367 315 0
BP/static/nlc/cont 320.9 325.9 916 470 446 5
BP/static/allarcs 441.6 446.6 799 8607 723 0
BP/dyn 180.7 184.4 1159 572 559 1
BP/dyn/fark 187.7 187.7 1209 515 697 1
BP/dyn/dom 191.8 191.9 1263 643 620 1
BP/dyn/nlc 142.7 146.7 622 346 276 0
BP/dyn/nlc/fark 129.4 129.4 585 282 306 0
BP/dyn/nlc/fark/dom 113.0 113.0 545 289 260 0
BP/dyn/nlc/cont 269.3 273.3 1049 436 612 6
BP/dyn/del/nlc/fark 150.0 150.0 546 268 281 0

fhg/3d alg[s] tot[s] pit pvar bbn mi

BC/UBD 90.9 96.2 - - - 0, all (80, 80, 80)>.

BC/PP 90.9 415.7 - - - 0, all (80, 80, 80)>.

SCF/com 334.4 340.8 - - 1085 0, all (80, 80, 80)>.

BP/static 583.2 587.2 1953 842 1111 2, all (80, 80, 80)>.

BP/static/fark 445.4 447.3 1693 720 981 4, all (80, 80, 80)>.

BP/static/dom 472.1 475.7 1807 790 1017 3, all (80, 80, 80)>.

BP/static/nlc 438.2 442.3 983 691 292 1, all (80, 80, 80)>.

BP/static/nlc/fark 388.5 390.5 946 638 315 0, all (80, 80, 80)>.

BP/static/nlc/dom 443.7 447.6 1040 740 300 1, all (80, 80, 80)>.

BP/static/nlc/cont 684.6 688.6 1849 899 949 5, all (80, 80, 80)>.

BP/static/allarcs 773.1 777.0 1018 19247 924 3, all (80, 80, 80)>.
BP/dyn 384.1 394.7 1946 1143 803 19
BP/dyn/nlc 199.3 213.1 866 622 243 13
BP/dyn/nlc/fark 269.9 269.9 957 673 290 7
BP/dyn/nlc/fark/dom 296.2 296.2 941 682 264 7
BP/dyn/nlc/cont 294.5 309.1 1501 723 777 15
BP/dyn/del/nlc/fark 290.1 290.1 743 528 221 7
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The overall average run times for branch-and-price using a dynamic tree pricing algorithm are
smaller than the ones determined with a static tree pricing algorithm, so it is the better option. We
conclude that the best pricing strategy for branch-and-price is a dynamic tree pricing algorithm
using node-label constraints and Farkas pricing. Also allowing the pricing of dominated template
arcs has good run times.

Finally, we shortly analyze the variant that deletes the dynamic tree after each pricing iteration.
Naturally, all runs that delete the tree have run times inferior the the original variants. Focus
was the applicability to the bigger data sets, for example the nist data set. As these instances
have many more data points and bigger domain sizes, building an entire segmentation tree is
extremely memory intensive, up to the extent that for very big δ̃ no segmentation tree can be
built because of a memory overflow. Thus we tested, how much slower the versions are that delete
the dynamic tree in each pricing iteration. For all such variants, the memory usage for big δ̃ is
generally very good. The overall run time average increases especially when the deletion is often
performed (many pricing iterations). When δ̃ is small this variant has good run times since the
according dynamic tree has few levels. If δ̃ gets bigger, many nodes have to be created and deleted
again for each pricing iteration, thus slowing down the algorithm. When we compare for the best
variant ‘BP/dyn/deltree/nlc/fark’ (listed in the results tables) the run times for both versions,
the one that deletes the dynamic tree and the other being standard dynamic tree pricing without
deletion process, can be said: The version that deletes the tree performs in an average 110.2%
of the time needed by the original version, needs 83.6% of the amount pricing iterations, prices
83.4% of the variables and creates 84.2% of the branch-and-bound nodes. The different pricing
behaviour (described in section 9.3.5) is beneficial. For the variant ‘BP/dyn/deltree’ that uses no
additional options, the version that deletes the tree has run times that take 239.8% of the run
time (pit: 97.0%, pvar: 102.1%, bbn: 92.7%) for the respective version that does not delete the
tree, with ‘BP/dyn/deltree/nlc’ run times need 173.4% (pit: 108.9%, pvar: 107.6%, bbn; 111.4%)
of the time needed by ‘BP/dyn/nlc’.
The best option for big instances is to use node-label constraints in combination with Farkas
pricing. If memory has to be saved starting in each pricing iteration with an empty dynamic tree
is an option.

9.3.6 Summary for Pricing Algorithms with Fraunhofer Data Tests

Table 9.15 lists total average run times for all tested variants. In tables 9.11, 9.12, 9.13, 9.14
we saw that the strength of branch-and-price are big δ̃ values. The algorithm is very fast for
2-dimensional such parameters, when run times are compared to the ones of the branch-and-cut
algorithm. When k increases, the run times for small δ̃ values diminish, and increase somewhat
for middle and big δ̃. In comparison to branch-and-cut for most middle, big and very big δ̃ a huge
improvement is achieved. For 3-dimensional δ̃ parameters, the run times can not reach branch-
and-cut run times, but are relatively good. The same characteristics for k and δ̃ are seen with
3-dimensional δ̃ parameters.

The comparison of average values for 3-dimensional data was not as easy as for 2-dimensional
data since some test instances were not calculated (mostly from (80, 80, 80)>, for smaller δ̃ almost
no instance is missing) either because of a memory overflow or because of surpassing our pricing
iterations or time limit. For a more profound analysis, these limits as well memory size have to
be increased. Another option would be to decrease the size of the segmentation trees in order to
find a solution more quickly. The variants that delete the dynamic tree after each pricing iteration
would surely need a bigger time limit to complete all test instance runs. When regarding the
amount of calculated instances the dynamic tree pricing algorithm ‘BP/dyn/nlc/fark/(dom)’ is
the best. Big 3-dimensional δ̃ were only calculable with this algorithm.

As for node-label constraints, when added to the problem, a huge run time improvement can
be noted for all δ̃ in combination with all k, except k = 20, δ̃ = (20, 20)>. The improvement
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increases with k and δ̃. Node-label constraints are advantageous with big k and δ̃ parameters,
where the amount of overall labels is very high and the constraints become effective by making
the algorithm prefer labels that contribute to form a spanning tree. A improvement in the average
amount of branch-and-bound nodes as well priced variables is achieved.
Finally, a note on the LP relaxation: If k = |V |, the LP relaxation takes the following form. All
variables zi are reduced to 1 since all nodes in the directed k-MLSA are part of the solution, thus
for corresponding k values a speedup can be noted.

Figures 9.6 show the average over all tested parameters and dimensions for two selected pricing
algorithm variants. As best pricing alternative was determined the dynamic tree pricing algorithm
that uses node-label constraints. Using additionally Farkas pricing is beneficial in most cases for
most parameter configurations. For instances with a great number of possible template arcs these
options are likely to produce good results. Allow the pricing of dominated template arcs has
relatively small run time averages. Sheet1
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Figure 9.6: Average run times, completed instances, pricing data for ‘BC’ and the best branch-and-
price variants ‘BP/static/nlc/fark’ (abbreviated by ‘BP/static*’) and ‘BP/dyn/nlc/fark’ (abbreviated by
‘BP/dyn*’). Run time averages over δ̃, k.

9.4 Percentage of Priced Variables

As branch-and-price should eliminate the issues of branch-and-cut with big sets T c, the amount
of priced variables confronted to the size of T c is of interest. Optimally, branch-and-price needs
to price less variables than the set of non-dominated template arcs T c has. Table 9.16 shows
a comparison of the average amount of candidate template arcs T c (row ‘|T c|’) compared to the
average amount of priced variables (listed in columns ‘pvar’). The columns ‘%’ display the relation
in percents. The average over each k separately are shown in column ‘AVG’, the overall averages
over all k in column ‘AVGk’.

When comparing the size of T c for 2– and 3-dimensional δ̃ we see that for 3-dimensional δ̃
the amount of non-dominated template arcs is relatively smaller than for 2-dimensional δ̃, since
in the latter case less points may lie in the δ̃-sized bounding box of a template arc. This is the
cause, why branch-and-cut performs better on 3-dimensional δ̃ than branch-and-price. The best
variant when regarding the average number of priced variables is ‘BP/dyn/deltree/nlc/fark’, but
the average run times of this version are not of the best. Fewest variables priced by a dynamic
tree pricing algorithm are result for version ‘BP/dyn/nlc/fark’, but its average amount of priced
variables is outperformed by the static version ‘BP/static/nlc/fark’.
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Table 9.16: A comparison for the average size of set T c, the set of non-dominated template arcs, with
the average amount of priced variables ‘pvar’ for each tested variant.
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9.5 Branch-and-Price Results for NIST Data

Until now, instances from the nist data set were not solvable with branch-and-cut, since the de-
termination of the set T c has very high run times. We attempted to solve the nist instances with
the dynamic tree pricing algorithm, as we determined it previously to be the fastest and because
of the lesser memory requirements. The most promising option is to use node-label constraints
with the according pricing (section 5.5) and a starting solution determined with Farkas pricing.
As these instances have a greater amount of data points and bigger sets T c, we require an adjusted
time limit of 86400 seconds (24 hours). Pricing iterations limit has been removed. For nist test
runs the δ̃ parameters have to be selected carefully. For small δ̃, at the moment no significant
parameter combinations could be found, but as the fhg tests showed, small and middle δ̃ are
solved by branch-and-price with relatively high run times. Experimental tests for the nist test set
included k = 10, 20, 40, 80 and δ̃ = (80, 80)>, (120, 120)>, (150, 150)>, (200, 200)>, (300, 300)>

values. As the average domain for nist-data is inhomogeneous (ṽavg = (3993, 3368, 359, 2)>) only
2-dimensional parameter settings have been evaluated. Many tested parameters may be unsuited
for compression and were selected in order to show which settings are solvable and which not.
Table 9.17 shows average run times (‘alg[s]’), total run times (‘tot[s]’), pricing iterations (‘pit’),
priced variables (‘pvar’) and branch-and-bound nodes (‘bbn’). Each test run included selected 15
nist instance files, as described in section 9.1. We tested branch-and-price versions ‘BP/dyn/nlc/fark’
and ‘BP/dyn/del/nlc/fark’. Averages are listed for instances where at least 26% of instances could
be computed.

Table 9.17: Branch-and-price results for nist data and varying k, δ̃. Columns ‘alg[s]’, ‘tot[s]’, ‘pit’, ‘pvar’
and ‘bbn’ list average algorithm run time and average total run time (including Farkas priced starting
solution) in seconds, average amount of pricing iterations, priced variables, branch-and-bound nodes.

(80, 80)> (120, 120)>
options k alg[s] tot[s] pit pvar bbn alg[s] tot[s] pit pvar bbn

10 13764.6 13764.7 2191 2074 119 n/a
BP/dyn/ 20 > 1 day > 1 day
nlc/fark 40 > 1 day > 1 day

80 > 1 day n/a

10 47187.4 47187.5 4712 4557 157 16204.3 16204.4 3456 3285 172
BP/dyn/del/ 20 > 1 day > 1 week
nlc/fark 40 > 1 day > 1 day

80 > 1 day n/a

(150, 150)> (200, 200)>
options k alg[s] tot[s] pit pvar bbn alg[s] tot[s] pit pvar bbn

10 1181.6 1181.6 327 315 13 710.7 710.8 74 70 5
BP/dyn/ 20 237.4 237.5 12 12 1 7698.0 7699.1 1590 1569 21
nlc/fark 40 > 1 day 366.4 366.5 12 12 1

80 > 1 day 517.5 517.6 42 40 3

10 1147.6 1147.7 481 469 14 246.1 246.1 9 9 1
BP/dyn/del 20 13789.5 13789.6 3721 3666 56 5327.9 5327.9 734 708 27
nlc/fark 40 > 1 day 382.2 382.3 11 11 1

80 > 1 day 3469.7 3469.8 981 961 21

(300, 300)>
options k alg[s] tot[s] pit pvar bbn

10 114.8 114.9 5 5 1
BP/dyn/ 20 440.0 440.1 35 29 7
nlc/fark 40 185.5 185.6 12 12 1

80 589.2 589.3 162 158 5

10 130.4 130.5 5 5 1
BP/dyn/del/ 20 371.8 371.9 10 8 3
nlc/fark 40 894.2 894.3 96 94 3

80 1286.5 1286.6 184 177 8
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9.5.1 Results

For very big δ̃ = (150, 150)>, (200, 200)>, (300, 300)> almost all instances were solved relatively
fast and are computed within some hundred seconds. Small k = 10, 20, relevant to compression,
have good results. The bigger k and the smaller δ̃, the less instances could be completed within
the time limit. Instances with very many data points are amongst the solved instances and the
size of |V | does not influence solvability.

Generally, the tailing off effect becomes extremely visible for this data set. For instances, where
after 24 hours no result could be determined, no result will be computed even after 1 week. For
k and δ̃, the behaviour of branch-and-price is very similar to the one determined with fhg-data.
For big δ̃ = (150, 150)>, (200, 200)>, (300, 300)> test parameters, the absolute compression rates
range between 91–96% because the codebook size for such parameters is one or two. Combined
with small k almost all instances could be computed. The bigger k and the smaller δ̃, the more
instances exceed the time limit.
We expect that smaller δ̃, more suited for compression, become solvable with fine tuning of the
SCIP framework, for example by enabling a setting with an emphasis on feasibility. The tested
parameters cover solution possibilities of branch-and-price with nist data and indicates the mag-
nitude of the resulting run times.

9.6 Branch-and-Price Summary

All developed static and dynamic segmentation tree algorithms UB-driven traversing, advanced
bounding traversal, best first search, are a massive improvement for the branch-and-cut prepro-
cessing strep. All variants greatly outperform the preprocessing from [ChwRai09]. The run times
for determining T c with the best variant UB-driven traversing are reduced to 1.91% of the pre-
vious preprocessing, and is considered to be very beneficial, despite a high memory usage. An
improvement for this memory usage would be not to save the upper and lower bound set at each
node, to either leave out equal bound sets for predecessor and successor nodes or to save only the
differences between predecessor and successor.

All presented run times for branch-and-price are the total time needed by SCIP for determining
the solution and determine that no better solution can be found in the branch-and-bound decision
tree. It lies in the nature of our problem, that more than one combination of template arcs may
be an optimal solution. As the possibilities for combinations are high we have as consequence
large plateaus of equally good solutions. The times needed by SCIP to find the first best solutions
may be relatively small, the most of time is needed to determine that the actual found solution is
minimal. SCIP may find many more optimal solution possibilities in the branching and bounding
process. If the result codebook size is already one, which is often the case with big δ̃, there is no
need to further determine optimality and the branch-and-price process can be terminated earlier.

The best pricing algorithm was determined to be the dynamic tree pricing algorithm. Best
run time results have been achieved with this pricing algorithm when combined with node-label
constraints and the according pricing as well with Farkas pricing. For this, the average amount of
branch-and-bound nodes was smallest as well as the average number of priced variables.
As for branch-and-cut run times, the time for searching T c must be added, we added the fast UB-
driven traversing times. Even when regarding the new, better preprocessing times for branch-and-
cut, there are parameter combinations for which branch-and-price outperforms branch-and-cut,
despite the directed cut model used by branch-and-cut has the better LP relaxation.
As the Farkas pricing algorithm showed beneficial effects when compared to the star shaped span-
ning tree starting solution, we expect that branch-and-price would receive a speed up, if an even
better starting solution determined with some heuristic performs better.
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Another characteristic for our problem is that the solution is ambiguous. Thus, much needless
pricing is done. A further consequence of this ambiguity were the template arcs duplicates, which
we reduced by not pricing same template arcs again. For branch-and-price we saw that the more
the correction vector domain δ̃ increases, the more the optimal solution becomes unambiguous and
is found very fast. For such big δ̃ values, branch-and-price greatly outperforms branch-and-cut
and the run times for big δ̃ are good and we can calculate the solution for an fhg instance in a
couple of seconds. Good results have been determined with small and big k. When δ̃ and k have
middle values, branch-and-price performs not so well.

The disadvantage when pricing non-dominated template arcs is again ambiguous optimum in
the tree, searched by regarding the sums of dual values. Many branches having sums of dual
values equal to our actual found value have to be searched, since one element in such a branch
may dominate the actual one. As one or more dual values in such a template arc defining bound
set may be 0, which is the case very often, dominated and non-dominated bound sets have often
the same sum of dual values and must be checked for dominance. This may occur also for differing
bound sets, so we find often sets with equal sums of dual values so we can not unambiguously
decide which one to price. Much time for searching would be saved if these sums of dual values
would be unambiguous. Branch-and-price would be extremely faster with an unique template
arc for each pricing iteration. The effect is the main slowing cause for small and middle δ̃: Here
many template arcs have same sums of dual values and many tree branches must be searched. If
δ̃ increases, the more the template arcs have unambiguous sums of dual values.

The NIST test set, which was not calculable with branch-and-cut, becomes now computable for
selected parameter values with branch-and-price and a dynamic tree pricing algorithm. Although
most working parameters may be inappropriate for compression, this is a strong indication that a
branch-and-cut-and-price algorithm may be able to solve these instances.

When regarding the application results, the codebooks with a small amount of template arcs
are favorable, since thus higher compression rates are result. This implies big δ̃ and thus big T c.
If |T c| is big, branch-and-cut performs not so well and is outperformed by branch-and-price, since
it effectively bypasses the need for this preprocessed set T c. Thus, with small δ̃, branch-and-price
works rather not so good as for big δ̃ it performs very well. Table 5 in the appendix lists an
overview of the minimal codebooks.
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Chapter 10

Conclusions

This thesis investigates compression of fingerprint minutiae data for watermarking. It represents
a continuation of the work of [ChwRai09] who analyzed various algorithms, both approximating
and exact, for compressing such fingerprint templates.
In general a fingerprint template is an unordered set of d-dimensional data points. All approaches
based on an encoding of k of these data points as a directed spanning tree for the modeling of
which [ChwRai09] developed the k-MLSA. By means of this arborescence, in the end a minimal
set of labels or template arcs is extracted, which are used in combination with a correction vector
to encode the data points in order to achieve compression. As exact method [ChwRai09] analyzed
branch-and-cut. The k-MLSA approach outperforms several well known compression techniques
on the tested data sets and for reasonably large values of k (k ≥ 20) (in order to keep small the false
non-match-rates) the authors achieve good average absolute compression ratios. So, this method
is suitable for watermarking fingerprint minutiae with its compressed data. Main drawback of all
developed methods was the need for a run time intensive preprocessing step for the determination
of candidate template arcs.

In this thesis we analyzed another exact algorithm and developed branch-and-price for solving
the k-MLSA. As in branch-and-price we start with a small MIP and add variables or columns
on demand. For this approach, no preprocessing is needed anymore. Yet, with branch-and-price
arises the pricing problem, the solution of which was one of the main topics. We developed a static
as well as a dynamic k-d tree based segmentation algorithm. At each node we associate an upper
and lower bound with the help of which we build and extract the solution to the pricing problem
efficiently, by searching the maximal sum of dual values for each such bound set.

By developing these segmentation algorithms an efficient alternative to the preprocessing
by [ChwRai09], which determines also the candidate template arcs set, was discovered. The bound
sets at each node are vital for this approach and with these bounds we conduct the search process
for searching T c, the set of non-dominated candidate template arcs. If an element from this set is
found, in the tree represented by a non-dominated bound set, we extract the according template
arc from it and save it. We developed three traversing strategies for the static tree (UB-driven
traversing, advanced bounding traversal, best first search) and one for the dynamic tree (dynamic
UB-driven traversing). All variants determined the correct set T c. The best variant for searching
the candidate template arcs set resulted to be a static segmentation tree and using UB-driven
traversing. This algorithm takes an average of 1.91% of the time needed by the previous prepro-
cessing step and speeds up the process with a factor of 50. As all developed variants are very fast
in comparison to the preprocessing, both static and dynamic tree, combined with an arbitrary
traversing strategy, are a great improvement for the preprocessing step. The only disadvantage
for the segmentation trees is a high memory usage for the upper and lower bound sets. Very nice
visualizations can be extracted from the segmentation trees, some are presented in the appendix.
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Next, for solving branch-and-price, the k-MLSA was modeled as a flow network. The the-
sis presents a single commodity flow and a multi commodity flow formulation. Solvability and
efficiency of these two k-MLSA formulations have been investigated. Branch-and-price has been
realized by employing a non-commercial framework for solving constraint integer problems, namely
SCIP in combination with the commercial state of the art solver ILOG CPLEX.

For both models, a static tree pricing algorithm and a dynamic tree pricing algorithm have
been developed. The behaviour of both pricing algorithms can be directed by using multiple op-
tions. All options have been tested extensively. The multi commodity flow formulation resulted
to be not competitive to the single commodity flow formulation.

When regarding the new preprocessing times for branch-and-cut, determined now with UB-
driven traversing, for many parameter configurations branch-and-price outperforms branch-and-
cut, despite for the latter a directed cut model was used which has the better LP relaxation. Our
problem has the property, that more than one combination of template arcs may be an optimal
solution. As the possibilities for combinations are high, large plateaus of equally good solutions
are consequence. Another characteristic for our problem is that the solution is ambiguous and
much pricing is done needlessly.

Generally branch-and-price performs best when the correction vector domain δ̃ is big. When
using such big δ̃ = (40, 40)>,(80, 80)> values ( 1

4 - 1
10 of domain border) the amount of optimal

solutions becomes small and branch-and-price greatly outperforms branch-and-cut. The run time
averages are very low and we can calculate the solution for a smaller fhg-instance (from [Fraun])
in a couple of seconds. Good results were determined with small and big k. When δ̃ and k have
middle values of 20, branch-and-price can not reach branch-and-cut run times. For 3-dimensional
δ̃, branch-and-cut performed extremely good and with branch-and-price run times twice as high
could be achieved.

As best pricing algorithm the dynamic tree pricing algorithm was determined. For this pricing
algorithm the average run times for tested instances were smallest. Best results were determined
with this algorithm when the corresponding single commodity flow formulation employs addition-
ally node-label constraints, and the pricing algorithm uses the according pricing strategy. Here,
the average amount of branch-and-bound nodes was smallest as well as the average number of
priced variables. When Farkas pricing is used for determining a good starting solution the run
times may improve. The main disadvantage when pricing non-dominated template arcs is again
the ambiguity for the optimum template arcs, determined based on the sums of dual values. As
one or more template arc’s dual values may be 0, which occurs very often, the according non-
dominated template arc encoding bound set may have an equal sum of dual values as a dominated
bound set sum and we have to check for dominance. This may occur also for differing bound sets.
As we may have many sets in the segmentation tree with equal sums of dual values, we may not
unambiguously decide which one to price. Branch-and-price would be extremely faster with an
unique template arc for each pricing iteration. The effect is the main slowing factor for small and
middle δ̃: Here many template arcs have same sums of dual values and many tree branches must
be searched. If δ̃ increases, the more the template arcs have unambiguous sums of dual values.
Nonetheless, when allowing dominated template arcs to be priced, branch-and-price performs well
also and computes a correct codebook.

The nist-testset (from [NIST]) was not computable with branch-and-cut because of a higher
amount of possible template arcs. Branch-and-price performs good, but only for well-chosen δ̃
values. Now, with such carefully selected parameters we can compute solutions for these instances.

For test runs, were branch-and-cut data can be computed, the following results are summarized.
When comparing the amount of priced variables to the set of non-dominated candidate template
arcs, branch-and-price performs very good and prices an amount being only 12.8% (average over all
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tested fhg-instances and parameters) of the size determined by preprocessing. When considering
the time limit set branch-and-cut completes 88.6% of the test instances, whereas with the best
dynamic tree pricing algorithm we can compute 98.6% . Branch-and-price performs very good for
most model parameters and the run time averages are smaller than with branch-and-cut.

10.1 Further Work

As future work remains branch-and-cut-and-price. It has to be evaluated, if such an approach
performs quicker and faster and more efficiently that branch-and-price.
As for the segmentation trees the memory consumption is very high, especially when using the
static variant in combination with very big δ̃, a further improvement would be to reduce the
size of the segmentation trees, by building only non-dominated branches. Another possibility for
reducing segmentation tree size would be not to save upper and lower bound set at each node, by
either interleave sets that do not change from predecessor node to successor nodes or to save only
the difference to the predecessor node.
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Appendix

Glossary, Often Used Terms and Notations

Common Terms in Optimization Theory

LP Linear program
ILP Integer linear program
IP Integer program
BIP Binary integer program
MIP Mixed integer program
COP Combinatorial optimization problem
SEP Separation problem
PP Pricing problem
CF Compact formulation
EF Extended formulation
MP Master program
RMP Restricted master program
P Problem
P ′ Relaxation of P
z∗ Optimal solution, best possible solution
z∗P ′ Optimal objective function value of P
BB Branch-and-bound
BC Branch-and-cut
BP Branch-and-price
BCP Branch-and-cut-and-price

Terms Specific to this Thesis

k-MLSA k-Node Minimum Label Spanning Tree
MLST Minimum Label Spanning Tree
MVCA Maximum Vertex Covering Algorithm
k-CT k-Cardinality
SCF Single commodity flow formulation
MCF Multi commodity flow formulation
PP Preprocessing
SEG Segmentation tree
UBD UB-driven traversing
ABT Advanced bounding traversal
BFS Best first search
DFS Depth first search

Additional Experimental Results Tables

The following pages list additional tables for the experimental results determined to be too big
for including in the chapter. The tables are described in chapter 9, sections 9.2 and 9.3.
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Appendix

Table 1: Two dimensional input parameter δ̃ = (10, 10)>, (20, 20)>, (30, 30)>. Run times on G1 and percentages
of visited nodes for the static segmentation for all three traversing variants UBD (UB-Driven Traversing), ABT
(Advanced Bounding Traversal) and BFS (Best First Search). The percentage ’%n’ indicates visited nodes w.r.t.
the number of total nodes ’|n|’ in percent. Column ’dyn’ lists number and percentage of created nodes (w.r.t. the
static variant) for the dynamic segmentation.
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Appendix

Table 2: Two dimensional input parameter δ̃ = (40, 40)>, (80, 80)>, (120, 120)>. Run times on G1 and percentages
of visited nodes for the static segmentation for all three traversing variants UBD (UB-Driven Traversing), ABT
(Advanced Bounding Traversal) and BFS (Best First Search). The percentage ’%n’ indicates visited nodes w.r.t.
the number of total nodes ’|n|’ in percent. Column ’dyn’ lists number and percentage of created nodes (w.r.t. the
static variant) for the dynamic segmentation.
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nist-g-03 2770253 1036.14 36 [t] [t] 1648553 60
nist-g-04 memory overflow 2205945
nist-g-05 1313201 98.28 35 618.99 28 1068.14 75 744473 57
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nist-b-04 1297557 179.48 35 668.84 28 1198.12 75 740957 57
nist-b-05 2253093 757.66 35 [t] [t] 1327061 59
nist-u-01 2363901 578.95 34 [t] [t] 1338369 57
nist-u-02 2139293 778.36 35 [t] 4612.82 75 1259401 59
nist-u-03 2680809 1736.33O1 35 [t] [t] 1586813 59
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AVG 712.50 34.8 1340.93 28.2 2292.39 75.0 57.9
stdev 386.20 1197.35 1835.67
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Appendix

Table 3: Three dimensional input parameter δ̃ = (10, 10, 10)>, (20, 20, 20)>, (30, 30, 30)>. Run times on G1

and percentages of visited nodes for the static segmentation for all three traversing variants UBD (UB-Driven
Traversing), ABT (Advanced Bounding Traversal) and BFS (Best First Search). The percentage ’%n’ indicates
visited nodes w.r.t. the number of total nodes ’|n|’ in percent. Column ’dyn’ lists number and percentage of created
nodes (w.r.t. the static variant) for the dynamic segmentation.
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Appendix

Table 4: Three dimensional input parameter δ̃ = (40, 40, 40)>, (80, 80, 80)>. Run times on G1 and percentages
of visited nodes for the static segmentation for all three traversing variants UBD (UB-Driven Traversing), ABT
(Advanced Bounding Traversal) and BFS (Best First Search). The percentage ’%n’ indicates visited nodes w.r.t.
the number of total nodes ’|n|’ in percent. Column ’dyn’ lists number and percentage of created nodes (w.r.t. the
static variant) for the dynamic segmentation.
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3d δ̃ = (80, 80, 80)>

static dyn
file |n| UBD %n ABT %n BFS %n |n| %n

nist-g-01 14089453 [t] [t] [t] [t] [t] [t] 5565961 40
nist-g-02 9337897 154.30 24 769.50 14 4630843 50
nist-g-03 memory overflow 7365505
nist-g-04 memory overflow [t] [t]
nist-g-05 4875211 47.60 25 147.88 14 251.51 68 2281333 47
nist-b-01 memory overflow 7018759
nist-b-02 memory overflow 6517957
nist-b-03 memory overflow 7111615
nist-b-04 5472625 60.62 25 177.49 14 300.00 67 2362807 43
nist-b-05 11648653 261.88 23 783.24 14 1468.98 68 4927951 42
nist-u-01 9335785 136.90 24 548.46 14 4136515 44
nist-u-02 10272037 190.51 24 656.35 14 1113.85 68 4412641 43
nist-u-03 memory overflow 7477975
nist-u-04 6108757 64.44 25 205.65 14 366.05 67 2509591 41
nist-u-05 4192669 30.28 24 104.46 14 171.82 67 1752499 42

AVG 118.32 24.3 424.13 14.0 612.04 67.5 43.5
stdev 81.46 293.91 541.81

127



Appendix

Minimal Codebook Sizes

Table 5: Minimal codebook sizes m for fhg-files and all tested parameters.

k = 10 k = 10
file |V | (10, 10)> (20, 20)> (30, 30)> (40, 40)> (80, 80)> (10, 10, 10)> (30, 30, 30)> (40, 40, 40)> (80, 80, 80)>

ft-01 31 2 1 1 1 1 4 2 1 1
ft-02 38 2 2 1 1 1 4 2 1 1
ft-03 35 2 1 1 1 1 4 2 1 1
ft-04 20 3 2 1 1 1 5 2 1 1
ft-05 39 2 1 1 1 1 4 2 1 1
ft-06 15 3 2 1 1 - 7 2 2 -
ft-07 28 3 2 1 1 1 5 2 2 1
ft-08 27 3 2 1 1 1 5 2 2 1
ft-09 27 3 2 1 1 1 4 2 2 1
ft-10 31 3 2 1 1 1 4 2 2 1
ft-11 38 2 1 1 1 1 4 2 1 1
ft-12 28 2 1 1 1 1 4 2 1 1
ft-13 25 2 2 1 1 1 4 2 1 1
ft-14 33 2 2 1 1 1 4 2 1 1
ft-15 29 2 1 1 1 1 4 2 1 1
ft-16 37 3 2 1 1 1 4 2 1 1
ft-17 31 3 2 1 1 1 4 2 2 1
ft-18 40 3 2 1 1 1 4 2 1 1
ft-19 35 2 2 1 1 1 4 2 2 1
ft-20 28 3 2 1 1 1 4 2 1 1

k = 20 k = 20
file |V | (10, 10)> (20, 20)> (30, 30)> (40, 40)> (80, 80)> (10, 10, 10)> (30, 30, 30)> (40, 40, 40)> (80, 80, 80)>

ft-01 31 4 2 1 1 1 9 3 3 1
ft-02 38 4 2 2 1 1 8 3 3 1
ft-03 35 4 2 2 1 1 7 3 2 1
ft-04 20 6 3 2 2 1 11 4 3 2
ft-05 39 3 2 1 1 1 7 3 2 1
ft-06 15 - - - - - - - - -
ft-07 28 4 3 2 2 1 9 4 3 1
ft-08 27 4 3 2 1 1 10 4 3 1
ft-09 27 4 3 2 2 1 8 4 3 1
ft-10 31 4 2 2 1 1 8 3 3 1
ft-11 38 4 2 1 1 1 7 3 2 1
ft-12 28 4 2 1 1 1 7 3 2 1
ft-13 25 4 3 2 1 1 9 3 3 1
ft-14 33 4 2 2 1 1 7 3 2 1
ft-15 29 4 2 2 1 1 8 3 2 1
ft-16 37 4 2 2 1 1 7 3 2 1
ft-17 31 4 2 2 1 1 9 3 2 1
ft-18 40 4 2 2 1 1 7 3 2 1
ft-19 35 4 3 2 1 1 8 3 2 1
ft-20 28 5 3 2 2 1 8 3 3 1

k = 30 k = 30
file |V | (10, 10)> (20, 20)> (30, 30)> (40, 40)> (80, 80)> (10, 10, 10)> (30, 30, 30)> (40, 40, 40)> (80, 80, 80)>

ft-01 31 6 3 2 2 1 14 6 4 2
ft-02 38 6 3 2 2 1 12 5 4 2
ft-03 35 5 3 2 2 1 11 4 3 2
ft-04 20 - - - - - - - - -
ft-05 39 5 2 2 1 1 11 4 3
ft-06 15 - - - - - - - - -
ft-07 28 7 4 3 2 1 14 5 4 2
ft-08 27 6 3 2 1 1 14 5 4 2
ft-09 27 6 4 3 2 1 12 5 4 2
ft-10 31 6 3 2 2 1 13 5 4 2
ft-11 38 5 2 2 1 1 11 4 3
ft-12 28 5 3 2 1 1 11 4 3 2
ft-13 25 - - - - - - - - -
ft-14 33 5 3 2 2 1 11 5 3 1
ft-15 29 5 3 2 2 1 11 5 3 1
ft-16 37 6 3 2 2 1 11 4 3 1
ft-17 31 6 3 3 2 1 14 5 3 2
ft-18 40 5 3 2 2 1 11 3 3 1
ft-19 35 6 3 2 2 1 12 4 3 2
ft-20 28 7 4 3 2 1 13 5 4 2
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Appendix

Standard Deviations for Branch-and-Price

Table 6: Standard deviations for 2-dimensional δ̃: Rows ‘BP/static/[AVGopt]’ (‘BP/dyn/[AVGopt]’) list the
average standard deviation for all static (dynamic) tree pricing algorithm variants since the according values were
very similar. Rows ‘AVERAGE[BP]’, ‘MIN[BP]’, ‘MAX[BP]’ list the average standard deviation for all tested
branch-and-price variants.
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Table 7: Standard deviations 3-dimensional δ̃: Rows ‘BP/static/[AVG]’ (‘BP/dyn/opt[AVG]’) list the aver-
age standard deviation over all static (dynamic) tree pricing algorithm variants, ‘AVERAGE[BP]’, ‘MIN[BP]’,
‘MAX[BP]’ list the average standard deviation for all tested branch-and-price variants.
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Appendix

Making Art with the Segmentation Tree by Visualization

Visualization of bounding boxes, 2-d static segtree, in-
stance ft-09, δ̃ = (10, 10)>

Visualization of bounding boxes, 2-d static segtree, in-
stance ft-09, δ̃ = (20, 20)>

Black and white segmentation visualization, 2-d static
tree, instance ft-03, δ̃ = (40, 40)>

Color segmentation visualization, 2-d static tree, instance
ft-09, δ̃ = (5, 5)>

Color segmentation visualization, 2-d static tree, instance
ft-09, δ̃ = (10, 10)>

Color segmentation visualization, 2-d static tree, instance
ft-09, δ̃ = (20, 20)>
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Color segmentation visualization, 2-d static tree, instance
ft-09, δ̃ = (40, 40)>

Color segmentation visualization, 2-d static tree, instance
ft-06, δ̃ = (10, 10)>

Color segmentation visualization, 2-d static tree, instance
ft-03, δ̃ = (40, 40)>

Color segmentation visualization, 2-d static tree, instance
ft-03, δ̃ = (80, 80)>

Visualization of the segmented parts of a 2-d dynamic
tree, instance ft-09, δ̃ = (5, 5)>

Visualization of the segmented parts of a 2-d dynamic
tree, instance ft-03, δ̃ = (20, 20)>
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