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ABSTRACT 
In this paper a new method for defining a transformation between a source color space and a more 
perceptual uniform color space will be presented. The main idea is to use a three dimensional Free-
Form Deformation to deform a source color space in such a way, that the new distances between 
chosen color samples match psychophysicall y estimated data as close as possible. This deformation of 
space is controlled via a set of control points being placed on a three dimensional grid. The essential 
task of finding suitable control point coordinates in the destination color space has been solved with 
an Evolution Strategy. 

Keywords: color space transformation, perceptual uniform color spaces, evolution strategies, free-form 
deformations 

 
1.  INTRODUCTION 

For the definition of a perceptual uniform color space two main problems have to be solved. The first 
one is the quantification of perceived color distances and the second one is to find a transformation 
from a well known color space e.g. 1976 CIELUV to a new one which matches the psychophysicall y 
estimated distance values as close as possible.  

Measuring color distances can range from measuring distances, which are close to just noticeable 
differences up to quantifying distances between e.g. samples evenly distributed over the gamut of a 
monitor. Furthermore, there are a great variety of psychophysical methods which can be used for the 
respective purpose. The data, which we used for this work will briefly be described in section 1.2, but 
the applicabilit y of this work is not restricted to this kind of data. What we need is information about 
ideal distances between a discrete number of samples, but it does neither matter if the samples are 
close to each other or not  nor if they are evenly distributed or not. Moreover the ideal distance values 
can come form psychophysical experiments or from other sources. Examples will be given in Section 
4. 

Section 1.2 will describe one possible way of  finding a transformation from a source color space to a 
new one based on psychophysicall y estimated data. 

Considering the drawbacks of the first approach a new method for defining such a transformation has 
been developed. The main idea is to use a three dimensional Free-Form Deformation (FFD) to deform 
a source color space in such a way, that the new distances between the chosen color samples match 
the psychophysicall y gained distance values as close as possible. This deformation of space is 
controlled via a set of control points which are placed on a regular grid in the source color space.  

The essential problem of finding suitable control point coordinates in the destination color space 
under consideration of the above mentioned goals is a very complex optimization task. We have 
solved it with the help of an Evolution Strategy (ES).  

Implementation detail s and results for an artificial data set as well as for data from psychophysicall y 
experiments will be presented in section 4 and 5.   



 
1.1 MEASURING PERCEIVED COLOR DISTANCES  

Various methods for examining human color perception and measuring perceived distances between a 
set of color samples are discussed in e.g.5,9,13,23,25. In particular23 describes our recent work in this 
field. Two psychophysical methods which we have used shall briefly be summarized:  

For both cases 35 colors evenly distributed in an extended version of the CIELUV color space15 were 
chosen as representatives of the actual monitor gamut. 

Direct Magnitude Estimation (DME): Using a calibrated monitor and a well defined environment all 
possible combinations of two out of 35 given color samples (=595 pairs) were shown. Test candidates 
had to assign distance values to each color pair according to the perceived color distances. The results 
of the DME method are ratio scale values. Detail s to this standard method can be found in5, 9, 23. 

Method of Triads (MT): Color triples were shown, and test candidates had to decide which two colors 
were most similar and which two colors were most different. Ordinal scale values can be derived from 
these data by counting total numbers of similarity and dissimilarity decisions for each possible color 
pair, see5, 9, 23. Because of the high number of possible color triples (6545) and the missing 
uncertainties concerning the decision of the candidates, only the more criti cal half of them were 
evaluated by test candidates. The other triples, for which the decisions of the candidates were 
“known” in advance, were evaluated by comparing distances according to the extended CIELUV color 
space, see 23. 

While DME seems to be better for determining global trends, MT gives more accurate results for local 
tendencies. Therefore a combination of these data seems to be appropriate. 

1.2 FINDING A TRANSFORMATION 

One method used for defining a transformation from a known source color space S to a new more 
uniform color space works as follows 23, 24:  

The first step is to arrange all color samples in N in such a way that the empiricall y measured 
distances between the samples are matched as closely as possible. In statistical data analysis, 
Multidimensional Scaling 5, 8, 24 is a well known term for this kind of optimization problems. After 
finding an arrangement of the color samples, a general transformation from the known color space S 
to the new space N is possible with the help of a tri-linear interpolation. 

Unfortunately, this approach has several drawbacks: 1) To make a tri-linear interpolation possible , 
the samples must lie on a uniform tree-dimensional cuboid grid in S. 2) In general, this 
transformation is not continuous in its first derivative between cuboids. 3) Piecewise linear 
interpolation is only a poor interpolation technique. More color samples with much more empiricall y 
measured data would be necessary to increase accuracy. 4) Colors from any color space other than S 
must first be transformed to S before the transformation to N can take place.  

 
2.  USING A FREE-FORM DEFORMATION (FFD) FOR THE TRANSFORMATION 
About a decade ago an eff icient and intuiti ve method for designing three dimensional objects called 
Free-Form Deformation (FFD)  was introduced by Barr4 and has been improved ever since 21, 11, 6, 7, 16. 
Originall y it was thought of a method for sculpturing solid models and for representing them. The 
general idea behind this approach is to embed an initial model into a deformable region of space 
specified by a regular lattice with a discrete number of control points. Each point of the model has a 
unique parameterization which defines its position within the lattice. By deforming the 3D lattice the 
original model is deformed as well , see Fig.1. The new position of points of the model can be 
recalculated with the help of the original parameters and the new positions of the control points, see 
Eq.1. Thus all kinds of rather complex shaped models can be generated in an easy, elegant, and 
intuiti ve way.  

 



        

Fig. 1 Free-Form Deformation: (a) control points of the initial lattice  and (b) displaced control 
points of the final lattice. 

 

From the mathematical point of view, the FFD involves a transformation from R3 to R3 defined e.g. in 
terms of a trivariate tensor product Bernstein polynomial, which can be seen as a natural extension of 
Bezier curves to three dimensions 21. 

Based on the new control point positions 
�

Ci j k, ,  (i = 0..u, j = 0..v, k = 0.. w), an arbitrary point 

p=(r,s,t) (r,s,t ∈ [0,1] ) will be transformed as follows: 
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The advantages of FFDs are that they can be applied to CSG based solid models as well as to models 
bounded by different analytical surfaces. Furthermore, the can either be used for the whole model or 
only for a certain part of it without losing derivative continuity to any degree. Moreover two or more 
FFDs can be applied in a piecewise manner resulting in more complex deformations than could be 
achieved with a single FFD. The Bezier curves‘ convex hull property and the variation diminishing 
property, which signalize high qualit y (smoothness, numerical stabilit y, ..), can also be applied to the 
FFD. The disadvantage of the FFD is that it is a global deformation method which is not suitable for 
complex, subtle local deformations necessary e.g. for modeling facial expressions. 

Since 1990 the range of possible applications of FFDs has further been increased. Griessmair and 
Purgathofer11 e.g. use a trivariate B-Spline representation and Coquill art6 introduced Extended Free-
Form Deformations (EFFD) which use combinations of lattices instead of one originall y proposed 
parallelepiped lattice. This extension allows a greater inventory of deformable spaces, but loses some 
of the flexibilit y and stabilit y of the approach of Sederberg and Parry 21. MacCracken 16 allows 
arbitrary shaped deformation lattices by successively refining a 3D lattice into a sequence of lattices 
that converge uniformly to a region of 3D space. This technique allows a grater variety of deformable 
regions and thus a broader range of shape deformations. Another trend is to use FFDs for soft object 
animation, see e.g. 7. 

Thus a great variety of FFDs are available and can be used for a lot of different purposes, li ke the 
design of complex objects (e.g. turbine blades or airplane wings) or animation. In any case, using 
FFDs requires the specification of new positions of control points of a 3D lattice. This can either be 
achieved by interactively moving the control points until the resulting bended, twisted, or tapered 
object fulfill s the esthetic requirements of the designer or by moving the control points with analytical 
functions where the designer only specifies certain parameters. In some cases such positions for the 
control points have to be found that certain diff icult constraints will be fulfill ed or a given qualit y 
function is maximized. Evolution Strategies (ESs), a special form of Evolutionary Algorithms, offer 



an interesting stochastical optimization approach, in particular because of the possibilit y to use 
arbitrary constraints and /or evaluation functions.  

 

3.  USING EVOLUTION STRATEGIES FOR THE SPECIFICATION OF THE FFD 
Finding suitable control point positions 

�

Ci j k, ,  of the final lattice of a FFD to match given constraints 

as good as possible or to maximize a given qualit y function is in general a very complex optimization 
task. No eff icient deterministic algorithm is known which finds the global optimum or a good 
approximation within a reasonable amount of time. 

In the past Evolutionary Algorithms, which mimic the search process of natural evolution in a 
simpli fied way, have shown their suitabilit y to solve various diff icult optimization problems. These 
algorithms are based on the collective learning process within a population of individuals, each of 
which represents a search point in the space of potential solutions to a given problem. For a general 
introduction, see 1, 2, 3, 10, 17. Especiall y Evolution Strategies (ESS) have proven to be a very robust and 
eff icient method for optimizing complex multimodal numerical functions, see 1,2,3,10,18. 

procedure (µ,λ) - ES 
t ←  0; 
initialize (P0); 
evaluate (P0); 
while not terminate (Pt) do 
  /* use µ parents to create λ children * / 
 Rt ←  recombine (Pt); 
 Mt ←  mutate (Rt); 
 evaluate (Mt); 
 Pt+1 ←  select (Mt); 
 t ←  t+1; 
done 

 
Fig. 2. Pseudo code of a (µ,λ) - ES.. 

 

In Fig. 2 the pseudo code of a ( )µ λ, -ES which we propose for optimizing the FFD’s control point 

positions is shown. An individual is represented by a vector 
�

I consisting of n scalar values, namely 

all coordinates of the control points 
�

Ci j k, , . In total, there are therefore n = 3(u+1)(v+1)(w+1) 

coordinate values subject to optimization.  

In contrast to the traditional random initiali zation of the starting population (as described in 1, 2, 3), a 
starting population P0 consisting of µ individuals is generated by mutating the original control point 
coordinates of the undeformed state. This gives more or less meaningful starting solutions, improving 
convergence speed and reducing problems with the recombination of nearly equivalent but mirrored 
or rotated solutions substantiall y. Each newly generated individual is then evaluated by a problem 

specific fitness function ( )f I
�

 which gives in general higher values for better solutions. The initial 

population P0 evolves over generations towards better and better regions of the search space by means 
of randomized processes of recombination, mutation, and selection. A discrete recombination is used 
to generate λ new individuals inheriting values from parental solutions randomly chosen by Pt. This 
newly generated individuals will t hen be mutated. 

After mutation the best µ individuals are selected out of the λ new offsprings to be the parents Pt+1 for 
the next generation. This process is continued until a certain termination condition is fulfill ed, e.g. an 



individual with satisfactory fitness is found or the individuals do not improve within a given number 
of generations. 

The fitness functions, which we used to deform a source color space in such a way, that the new 
distances between the chosen color samples match the psychophysicall y gained distance values as 
close as possible are the following: 

Let ∆a,b be the mean values of the pschyphysicall y gained distance values between the chosen color 
samples, δa,b the Euclidean distance between these samples transformed according to solution I, and g 
the number of color samples used. The following function f1(I), which should be minimized, is 
particularly useful for finding a solution for the DME test data: 
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In different DME data series, distances between two color samples will generall y not be the same. 
Some values will vary more, others less. Therefore it seems necessary to consider standard deviations 
of mean distances ∆a,b for multiple DME data series to get a more meaningful function. We refer to 
this extended objective function by f1,κ. Details are given in 19. 

For MT data the following function f2(I) is more appropriate: 
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The number of MT data mismatches is counted for all possible color triples of samples. A “mismatch” 
means that the two nearest (or most distant) samples of each triple of the individual I are not the same 
as in the answers from the MT test. To consider differences between more than one MT measurement 
series, only mismatches against a color pair which was selected in at least a given percentage (e.g. 
75%) of all measurement series as nearest or most distant pair should be counted. We refer to this 
extended objective function by f2,η. 

 

4.  IMPLEMENTATION AND RESULTS FOR AN ARTIFICIAL DATA SET 
Our implementation is based on a modified version of ESCAaPaDE 12 1.2, which is a freely available 
software environment for doing experiments with ES. A 4x4x4 FFD control point grid proved to be 
the best choice when our DME and MT data based on g = 35 color samples were used. In this case the 
number of control points (43 = 64) is just higher than the number of color samples, which means that 
the FFD is potentiall y flexible enough to independently transform each color sample to any position. 
Using a 4x4x4 grid results in n = 192 parameters which have to be optimized. 

Real, psychophysicall y determined DME and MT data contain variances, errors and inconsistencies. 
The best possible values for f1 and f2 are therefore not known and it cannot be estimated in a 
quantitative way how good a resulting solution is. Solutions can only be compared to each other and 
checked on colorimetric plausibilit y. To measure the abiliti es and accuracy of the new approach 
without having to struggle with these problems, we determined FFD based transformations form RGB 
space to the CIELUV space for the actuall y used monitor. For this purpose artificial DME and 
artificial MT test data were calculated from CIELUV ∆E values between the 35 color samples. When 
using these exact test data a globally optimal solution is known to have objective function values f1opt 
= f2opt = 0. 

Our tests resulted in solutions near the global optimum. Table I and Fig.3. give some information 
about the final best solutions of 30 test runs using the fitness function f1 together with DME data in 



the first case and the fitness function f2 together with DME data in the second case. 3000 generations 
(=3 x 105 evaluated individuals) were performed per run. 

 

             (a) f1(I)         I                   (b) f2(I) 
   ---------------------------------------------------------------------- 

f1(I) <= 0.001:    4 (13%)      I f2(I) <= 10:   12 (40%)  
   f1(I) <= 0.01  :  26 (87%)        I f2(I) <= 20:   24 (80%) 
   f1(I) <= 0.1    :  28 (93%)        I        f2(I) <= 50:   28 (93%) 
 
Table 1:Numbers of test runs with final solutions better than given quality levels when using (a) f1(I) 

or (b) f2(I) as objective function for the ES. 

                                          

 

     

Fig. 3. Histograms of final best objective function values from 30 independent test runs when using 
(a) f1 or (b) f2 as objective functions for the ES. 

 

For test case (a) 26 runs (87%) succeeded in finding a solution with f1(I) <=0.01. Only four runs had 
much higher objective values (f1(I) > 0.001). Fig. 4a shows the average best f1-values per generation 
calculated out of the 26 runs with f1(I) <= 0.01. Our implementation needed approximately 165 
minutes of CPU time for a single run on a HP-9000/705 workstation. 

For test case (b) 24 runs out of 30 (80%) succeeded in finding a solution with f2(I) <=20. See figure 
4b for average best f2-values per generation calculated out of these 24 most successful runs. The 
implementation needed about 470 minutes of CPU time for a single run. Runs for test case (a) were 
faster because f1 can be calculated in much less time. See 19 for more details on the implementation 
and results.   

     



Fig. 4. Average best objective function values plotted over generation: (a) for the 26 runs using f1 
which converged to solutions with f1(I) <= 0.01, and (b) for the 24 runs using f2 which converged to 

solutions with f2(I) <=20.. 
 

 

5.  TRANSFORMING A SOURCE COLOR SPACE TO MATCH 
PSYCHOPHYSICALLY GAINED DISTANCES 

The previously described test cases for finding a transformation to a known color space li ke CIELUV 
using artificiall y determined DME and MT data have shown the general suitabilit y of the new 
ES/FFD approach. 

As both kinds of psychophysical experiments (especiall y MT) are very time consuming we currently 
have only a small number of data series available (DME: 5 MT:4 from three different persons). The 
differences between these runs are not very large, but there are definitely more runs needed to derive 
accurate and “objective” results. 

When using the above mentioned  DME and MT data, the best f1 and f2 values lie clearly above 0 
because of the already mentioned empirical errors and data inconsistencies. When using f1,κ, 12 of 30 
ES runs found solutions with f1,κ = 0 within 3000 generations. When using f2,η (η= 75%) the best 
observed solution was f2,η=36. In general our solutions determined by f1,κ or f2,η do not differ 
substantiall y and show distortions comparable to the ones  which occur between the original 1976  
CIELUV color space and the extended version of the CIELUV space developed by Kokoschka 15.  

The results were also compared to the results gained by multidimensional scaling. Most of the FFD 
solutions had better objective values, especiall y when f1 and f2 were used for evaluation. See 19, 23 for 
more detail s. 

 
6.  CONCLUSION 

Using a free-form deformation in combination with evolution strategies finding suitable control point 
coordinates, seems to be a very promising new approach to transform a source color space in such a 
way, that psychophysicall y estimated data or data from other sources are matched as close as possible. 
The results of our experiments are very encouraging. 

The greatest advantage of the new FFD/ES approach all i n all are the good approximation properties 
of FFD (e.g. the derivative continuity to any degree) and the large flexibilit y (e.g. fitness functions can 
be adapted to the respective psychophysical data and to the goals which shall be achieved; the color 
samples may have arbitrary positions in the source color space).   

This approach starts with a source color space and “ ideal distance values” between a discrete number 
of samples and comes up with a new color space and with a function to transform any possible color 
of the source color space into the destination space.  

The advantages and possibiliti es of the FFD/ES approach have already  also been used for other tasks 
in the field of color science, li ke the colorimetric characterization of a scanner 26.  
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