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Binary Decision Diagrams (BDDs)

Introduced by Lee in 1959 as compact representation of boolean functions
and further elaborated on by Akers in eponymous “Binary decision
diagrams” (1978) as rooted, directed, acyclic, multigraphs.

Figure: adapted from “Binary decision diagrams” by Akers, page 2
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BDDs in Combinatorial Optimization

Introduced into the field of combinatorial optimization by Hadzic and
Hooker (2006), for post-optimality analysis.

Representation of solution space where paths represent solutions with
associated objective value and longest paths correspond to maxima.
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Top-Down Construction of BDDs

(from Hooker (2016))
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Relaxed BDDs

• Provides new means for relaxation, besides for example Linear
Programming based or Lagrangian.

• Relaxed BDD represents superset of all feasible solutions.

• BDD kept compact by merging also nodes for which states are not
the same → longest paths then usually correspond to upper bound for
represented problem instance.

Decision of which nodes to merge is job of merging heuristic.
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Top-Down Construction of Relaxed BDDs

(from Hooker (2016))
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Classical minimum longest path (minLP) Selection

r1

{5, 6} {4} {4, 5} {5} {6, 7} {7, 8}

Order nodes in given layer by longest path (LP) length from root (r1).

States of nodes are represented by sets of elements that can still be
selected.
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Classical minLP Merging

r1

{5, 6} {4} {4, 5} {5, 6, 7, 8}

Merges nodes from the back into one node.

May result into nodes with large states, yielding higher upper bounds for
the resulting nodes, since more infeasible paths are likely to be
introduced.
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Similarity Based Merging

• We introduced minLP and state similarity based hybrid merging
heuristic that improved bounds for small width BDDs for the
Maximum Independent Set Problem (MISP) and the Set Cover
Problem (SCP) (see our LION 13 paper) via tie breaking.

• Issue for weighted MISP instances, where ties are less likely to occur.
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Merging Quality

Idea: do not always (i.e., in each layer) apply the same merging heuristic,
instead go for the “locally best” one out of a set of merging heuristics.

We define the locally best as: For which the completition of the decision
diagram using minLP merging would result in the tightest bound.
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Perfect Lookahead

Given the nodes of a layer that needs to be reduced in width:

• Apply all available merging heuristics, including minLP, on shallow
BDD copy and finish construction using minLP.

• Finally, apply the merging heuristic that yielded best bound.
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k-layers Lookahead

Lookahead used by Bergman et al. (2012) for dynamic variable ordering,
we use it in the context of merging.

Perfect lookahead too expensive but gives us ground truth:

f (H,H ′) = 1, if H yields a strictly tighter bound than H ′, otherwise 0.
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k-layers Lookahead

Only look k-layers ahead and gather p features by layer Y for two merging
heuristics and estimate which one will result in a better final bound.

Binary classification function:

h̃ : Rp×k × Rp×k → [0, 1].

hα(Y,Y′) =

{
0, h̃(Y,Y′) < α

1, h̃(Y,Y′) ≥ α
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Possible Features

• min/mean/max of longest path values of nodes in layer

• min/mean/max of problem specific upper bound values of nodes in
layer

• layer progress l/lmax
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Linear Approximation of Bound Growth

Noisy, linear growth of bounds (maximum longest path values) over layers.
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Classifiers

• Linear regression considering differences ∆Y = YminLP − YH .

• max-maxLP: compare the maximum of the maximum of the longest
path values over all looked-ahead layers.

• Wilcoxon signed rank sum test on paired features YminLP,YH .

• Neural network based classifier.
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LR Examples

• Left a true positive (minLP worse than H).

• Right a true negative (minLP not worse than H).
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Train & Test Data

• Take random layer in random graph and apply hybrid merging with
random parameters.

• Finish construction of BDD to see which one performs better, yielding
the features and ground truth.

• Created 21000 training & test samples, approximately balanced, from
1000 random weighted graphs.
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Neural Network Classifier

Use more features

• max of the longest path values z lp(u)

• max of the upper bound values zubMISP(u)

• layer progress l/lmax

resulting in input dimension of 2k + 1

NN outputs value between 0.0 and 1.0.
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Classifier Comparison

Precision-recall comparison on training data.
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Classifiers on Weighted DIMACS

Baseline merging heuristic is minLP with tie breaking and the competing
algorithm uses the raced parameter set (0.185, 0.043), evaluated by
k = 50 layers lookahead with Wilcoxon classifier.
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Results on Weighted DIMACS1

Weighted MISP relative bound improvements for different classifiers,
parameters, and compared to different baseline approaches.
∆̃,∆: median/mean improvement of relative bounds.

comparing approach PLA k max LR WC NN

∆̃ ∆ ∆̃ ∆ ∆̃ ∆ ∆̃ ∆ ∆̃ ∆

pure minLP 0.16 0.17
30

0.09 0.11 0.07 0.08 0.09 0.11 0.11 0.11

minLP with state similarity 0.09 0.11 0.04 0.06 0.02 0.03 0.04 0.06 0.04 0.06

pure minLP 0.16 0.17
50

0.09 0.11 0.09 0.11 0.12 0.13 0.12 0.13

minLP with state similarity 0.09 0.11 0.03 0.06 0.03 0.06 0.05 0.08 0.08 0.08

pure minLP 0.16 0.17
70

0.10 0.12 0.10 0.12 0.12 0.14 0.15 0.16

minLP with state similarity 0.09 0.11 0.04 0.06 0.03 0.07 0.05 0.09 0.08 0.11

1
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS
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Conclusion & Future Work

We could improve relaxed BDD bounds of weighted MISP instances using
lookahead mechanism as compared to pure classic minLP merging
heuristic.

• Main issue: computationally very expensive.

• Search for stronger features to identity “locally best” merging
heuristic with less effort.

• Improve classification to reduce lookahead length.

• Test with reduced BDD width for lookahead.

• Test on other problems, weighted set cover problem as next goal.
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