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Binary Decision Diagrams – Basics

• A BDD encodes a function:

(from Akers (1978))

• Comparable to branching tree, but

• redundant nodes may be removed

• identical subtrees may be superimposed

N. Frohner and G.R. Raidl BDD Merging Heuristics May 30, 2019 2 / 30



BDDs for Combinatorial Optimization
Representation of solution space by directed acyclic multigraph with
weighted and labeled arcs.

X = {x1, . . . , xn} ⇔

{0, 1, 2, 3, 4}

{1, 2, 3, 4}

0/0

{3, 4}

1/0

{2, 3, 4}

0/12/1

set()

4/3{4}

0/3

0/2

3/2

0/45/4

N. Frohner and G.R. Raidl BDD Merging Heuristics May 30, 2019 3 / 30



Previous Work

• Lee 1959: BDDs as compact representation for boolean functions.
• Hadzic and Hooker 2006: For post-optimality analysis.
• Bergman et al. 2013: Dual bounds from BDDs for the maximum
independent set problem.

• For a compilation of resources:
http://www.andrew.cmu.edu/user/vanhoeve/mdd/
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Paths

• (Partial) solutions for a given problem.
• Carry length via arc costs.
• Define decisions via arc labels.

Longest (shortest) path ⇔ Maximal (minimal) solution.
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Variable Ordering

Decompose solution into parts i and impose an ordering π.

Assign to each subpart πi of the solution a binary decision variable xi .

Each subpart can be assigned costs cπi .
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States

Given an i-partial assignment, the corresponding state si determines its
feasible completions.

States are assigned to nodes in the BDD and determine the completing
paths.

Allows superposition of nodes with same state, resulting into a reduced
BDD.
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Top-Down Construction of DD

(from Hooker (2016))
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Relaxed BDDs

Keep BDDs polynomial in size → longest paths then correspond to dual
bounds.

Have to merge also nodes for which states are not the same.

Research goal: Improve BDD construction mechanisms so that tighter
bounds can be achieved with the same BDD size.
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Top-Down Construction of Relaxed DD

(from Hooker (2016))
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Considered BDD Construction

We consider
• top-down
• layerwise
• zero-suppressing long-arcs

construction of relaxed BDDs (Bergman et al. 2013) with max width β for
the
• Maximum (Weighted) Independent Set Problem (MISP)
• Set Cover Problem (SCP)
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Merging Strategies

Merging: Superimpose nodes in BDD while not losing feasible solutions.

Different merging strategies to keep layer within maximum width:

• Bulk Merging
• Iterative Merging
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Minimum Longest Path (minLP) Value Bulk Merging

Bergman et al. (2013)

• Sort nodes in a layer descending by longest path length to them z lp(u).
• Merge the tail into one node so that the maximum width is not
exceeded.

Rationale: Merge nodes that are unlikely to be part of longest path.
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Classical minLP Selection

r1

u1 u2 u3 u4 u5 u6
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Classical minLP Merging

r1

u1 u2 u3 u7
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minLP Ties

Example with β = 10.

rank(u) 1 1 3 4 4 4 7 7 7 7 7 12 13 14 15

z lp(u) 9 9 8 7 7 7 6 6 6 6 6 5 4 3 1

T B
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State Similarity

• Recall: State of nodes determines feasible completions.
• Define an informal merging distance function for pairwise merging
of nodes u and v .

• Smaller distance between nodes should less likely increase the lengths
of paths going through u ⊕ v .

Initial motivation: Hamming distance between states.
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Upper Bound from State

Idea: use upper bound directly from state s(u) to estimate remaining
longest path length starting from given node u.

For example, coarse upper bound in the MISP: cardinality of the set
representing the state.
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Merging Distance Functions

Given two nodes u, v in a layer with corresponding states s(u), s(v).

1. Hamming: dH(u, v) = |s(u)4s(v)|.
2. Increase in upper bound:

dub(u, v) = max{zub(w)− zub(u), zub(w)− zub(v)}.
3. Upper bound: d̃ub(u, v) = zub(w).
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minLP/State Similarity Hybrid Merging Heuristic

minLP gives strong results. Issue: does not take similarity of states into
account → introduce iterative pairwise state similarity merging gently.

rank(u) 1 1 3 4 4 4 7 7 7 7 7 12 13 14 15

z̃ lp(u) 1. 1. .875 .75 .75 .75 .625 .625 .625 .625 .625 .5 0.375 .25 0.

T B

Region T extensible to the left by parameter δl and to the right by
parameter δr . If δl = δr = 0 we only consider ties.
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minLP/State Similarity Hybrid Selection

r2

u1 u2 u3 u4 u5 u6
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minLP/State Similarity Hybrid Merging

r2

u1 u7 u4 u8
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Combine Bulk and Iterative Merging

1. Bulk merge ⊕B = w .
2. Pairwise iterative merging over nodes T ∪ {w} choosing always the

pair with minimum distance d(u, v).
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Pure Tie Breaking MISP

Strong results for small-width BDDs with pure tie breaking δl = δr = 0 for
unweighted MISP on 180 random graphs by Bergman and DIMACS
instance set:
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DIMACS Results

Table: Relative upper bounds of relaxed BDDs obtained with different merging
heuristics and widths β ∈ {10, 100} for selected DIMACS instances.

β = 10 β = 100
inst minLP dH dub d̃ub minLP dH dub d̃ub

brock200_1 2.29 2.14 2.14 1.90 1.81 1.62 1.67 1.67
C500.9 3.05 3.00 2.81 2.47 2.61 2.46 2.40 2.28

gen400_p0.9_55 2.25 2.13 2.04 1.82 1.91 1.82 1.80 1.73
keller4 1.91 1.55 1.64 1.55 1.45 1.18 1.18 1.18

MANN_a45 1.34 1.34 1.21 1.30 1.08 1.32 1.27 1.19
p_hat300-3 2.19 2.11 2.08 1.86 1.86 1.75 1.81 1.69
p_hat700-2 2.59 2.45 2.32 2.18 2.14 1.98 1.95 1.93
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Pure Tie Breaking SCP

Median increase in the lower bound value of 0.08.
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Weighted Problems
For weighted problems, ties are less likely to occur and δl = δr = 0
degenerates to minLP. Raced parameters (0.185, 0.043) using irace on
weighted DIMACS dataset, significant improvement but not so strong as
before.
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Conclusion

• Results for MISP and SCP indiciate that state similarity based merging
works well together with minLP when ties occur naturally.

• Work needs to be done for weighted problems, where we have virtually
no ties, to achieve a larger effect.
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N. Frohner and G.R. Raidl BDD Merging Heuristics May 30, 2019 30 / 30


