
On Fixed-Parameter Tractable

Parameterizations of SAT

Stefan Szeider?

Department of Computer Science, University of Toronto,
M5S 3G4 Toronto, Ontario, Canada

szeider@cs.toronto.edu

Abstract. We survey and compare parameterizations of the propo-
sitional satisfiability problem (SAT) in the framework of Parameter-
ized Complexity (Downey and Fellows, 1999). In particular, we consider
(a) parameters based on structural graph decompositions (tree-width,
branch-width, and clique-width), (b) a parameter emerging from match-
ing theory (maximum deficiency), and (c) a parameter defined by trans-
lating clause-sets into certain implicational formulas (falsum number).

1 Introduction

The framework of Parameterized Complexity, introduced by Downey and Fellows
[12], provides a means for coping with computational hard problems: It turned
out that many intractable (and even undecidable) problems can be solved effi-
ciently “by the slice”, that is, in time O(f(k) · nα) where f is any function of
some parameter k, n is the size of the instance, and α is a constant independent
from k. In this case the problem is called fixed-parameter tractable (FPT). If a
problem is FPT, then instances of large size can be solved efficiently.

The objective of this paper is to survey and compare known results for fixed-
parameter tractable SAT decision. Although the SAT problem has been con-
sidered in more general works on parameterized complexity (e.g., [9]) and FPT
results have been obtained focusing on a single parameterization of SAT (e.g.,
[2,18]), it appears that no broader approach has been devoted to this subject.

We suggest the following concept of fixed-parameter tractability for SAT.
Consider a parameter π for clause-sets; i.e., π is a function which assigns some
non-negative integer π(F) to any given clause-set F . We say that “satisfiability of
clause-sets with bounded π is fixed-parameter tractable” if there is an algorithm
which answers correctly for given clause-sets F and k ≥ 0

“F is satisfiable” or “F is unsatisfiable” or “π(F) > k”

in time O(f(k) · lα); here l denotes the length (i.e., sum of clause widths) of F , f
is any function, and α is a constant independent from k. (Being aware of the phe-
nomenon of so-called “robust algorithms” [27,13], we do not require (i) that the

? Supported by the Austrian Science Fund (FWF) projects J2111 and J2295.

algorithm actually computes π(F), nor (ii) that the algorithm actually decides
whether π(F) ≤ k.)

A trivial example for such parameter can be obtained by defining π(F) as
the length of the clause-set F ′ which results in applying some of the usual
polynomial-time simplifications to a given clause-set F , say elimination of unit
and binary clauses, and of clauses which contain pure literals.

1.1 New contributions of this paper

Besides a review of known results (FPT algorithms for clause-sets with bounded
primal tree-width and branch-width), we obtain the following new results.

We introduce the notion of incidence tree-width of clause-sets, and we show
the following.

• Satisfiability of clause-sets with bounded incidence tree-width is FPT.
• Incidence tree-width is more general than primal tree-width; i.e., bounded

primal tree-width implies bounded incidence tree-width, but there are clause-
sets of bounded incidence tree-width and arbitrarily high primal tree-width.

Recently it could be shown that clause-sets of bounded maximum deficiency,
a parameter defined via matchings in incidence graphs, allow fixed-parameter
tractable SAT decision [29]. We compare tree-width with maximum deficiency,
and we obtain the following result.

• Incidence/primal tree-width and maximum deficiency are incomparable; i.e.,
there are clause sets of bounded primal tree-width (and so of bounded in-
cidence tree-width) with arbitrarily high maximum deficiency; on the other
hand, there are clause-sets of arbitrarily high incidence tree-with (and so of
arbitrarily high primal tree-width) with bounded maximum deficiency. (Ac-
tually we show incomparability of maximum deficiency and clique-width; the
latter is a more general parameter than tree-width; see, e.g., [10].)

Finally, we consider a known FPT result on satisfiability for a certain class of
non-CNF formulas [15], and we formulate a transformation scheme which makes
this result applicable to clause-sets. This transformation enables us to define the
parameter falsum number for clause-sets. Our results for this parameter are as
follows.

• Satisfiability of clause-sets with bounded falsum number is FPT.
• Maximum deficiency is more general than falsum number ; i.e., the falsum

number of a clause-set without pure literals is at least as large as its maxi-
mum deficiency.

1.2 Notation

A literal is a variable x or a negated variable ¬x; we write x = ¬x and ¬x = x. A
finite set of literals without a complementary pair x,¬x is a clause. A clause-set

is a finite set of clauses. A variable x occurs in a clause C if either x ∈ C (x occurs
positively) or ¬x ∈ C (x occurs negatively); var(C) denotes the set of variables
occurring in a clause C; for a clause-set F we put var(F) =

⋃
C∈F var(C). A

literal x is a pure literal of F if {x, x}∩
⋃

C∈F C = {x}. The width of a clause is
its cardinality; the width w(F) of a clause-set F is the width of a largest clause
of F (or 0 if F = ∅). The length of F is

∑
C∈F |C|. Semantically, a clause-set

F is considered as a propositional formula in conjunctive normal form (CNF):
an assignment τ : var(F) → {0, 1} satisfies F if it evaluates to 1 in the usual
sense for CNFs. A clause-set F is satisfiable if it has a satisfying assignment;
otherwise it is unsatisfiable. F is minimal unsatisfiable if it is unsatisfiable and
every proper subset F ′ (F is satisfiable.

2 From Clause-Sets to Graphs and Hypergraphs

Several parameters originally defined for graphs and hypergraphs can be applied
to clause-sets via transformations of clause-sets to (hyper)graphs.

Some of the following definitions are illustrated in Figure 1.

P (F) =

u

v

y

z

x

w

H(F) =

u

v

y

z

x

w

I(F) =

u v w x y z

{u,¬v,¬y} {¬u, z} {v,¬w} {w,¬x} {x, y,¬z}

Fig. 1. (Hyper)graphs associated to the clause-set F = {{u,¬v,¬y}, {¬u, z},
{v,¬w}, {w,¬x}, {x, y,¬z}}; the primal graph P (F), the hypergraph H(F),
and the incidence graph I(F).

The primal graph P (F) of a clause-set F is the graph whose vertices are the
variables of F , and where two variables are joined by an edge if both variables
occur together in a clause. The incidence graph I(F) is a bipartite graph: one
vertex class consists of the variables of F , the other vertex class consists of the
clauses of F ; a variable x and a clause C are joined by an edge if x occurs in C.

The directed incidence graph Id(F) arises from I(F) by orienting edges from C
to x if x ∈ C, and from x to C if ¬x ∈ C.

A clause-set F gives rise to a hypergraph H(F), the hypergraph of F , in a
natural way: the vertices of H(F) are the variables of F , and to every clause
C ∈ F there is a hyperedge which is incident to exactly the variables in var(C).
Note that H(F) may contain “parallel” hyperedges, i.e., different clauses C,C ′

always yield different hyperedges E,E ′, even if var(C) = var(C ′).

3 Tree-Width of Primal Graphs and Branch-Width

Tree-width, a popular parameter for graphs, was introduced by Robertson and
Seymour in their series of papers on graph minors; see, e.g., [6] for references.
Let G be a graph, T = (V,E) a tree, and χ a labeling of the vertices of T by sets
vertices of G. Then (T, χ) is a tree decomposition of G if the following conditions
hold:

(T1) Every vertex of G belongs to χ(t) for some vertex t of T ;
(T2) for every edge (v, w) of G there is some vertex t of T such that v, w ∈ χ(t);
(T3) for any vertices t1, t2, t3 of T , if t2 lies on a path from t1 to t3, then

χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a tree decomposition (T, χ) is the maximum |χ(t)| − 1 over all
vertices t of T . The tree-width tw(G) of G is the minimum width over all its
tree-decompositions.

Note that trees have tree-width 1 (the only purpose of “−1” in the definition
of tree-width is to make this statement true).

For fixed k ≥ 1, deciding whether a given graph has tree-width at most k (and
computing a tree-decomposition of width ≤ k, if it exists) can be done efficiently
(in quadratic time by Robertson and Seymour [24], and even in linear time by
Bodlaender [5]; the latter algorithm, however, imposes large hidden constants
and is not well-suited for practical applications). Computing the tree-width of a
given graph, however, is an NP-hard problem [3].

In order to consider clause-sets of bounded tree-width, one can either bound
the tree-width of the corresponding primal graphs or the tree-width of the cor-
responding incidence graphs: for a clause-set F we call tw(P (F)) the primal
tree-width of F , and tw(I(F)) the incidence tree-width of F .

Theorem 1 (Gottlob, et al. [18]) Satisfiability of clause-sets with bounded
primal tree-width is fixed-parameter tractable.

The proof of this result relies on the fact that clause-sets of bounded primal tree-
width can be transformed into equivalent acyclic constraint satisfaction problems
(CSPs) which in turn can be solved efficiently by a classical algorithm due to
Yannakakis [31].

The following lemma is well-known; see, e.g., [6].

Lemma 1 Let (T, χ) be a tree-decomposition of a graph G and let K ⊆ V (G) be
a set of vertices which induces a complete subgraph in G. Then K ⊆ χ(t) holds
for some vertex t of T .

The next lemma follows directly from Lemma 1 (recall from Section 1.2 that
w(F) denotes the width of F).

Lemma 2 w(F) ≤ tw(P (F)) + 1 ≤ |var(F)| holds for every clause-set F .

Hence Theorem 1 is impractical for clause-sets of large width. For example,
the simple minimal unsatisfiable clause-set {{x1, . . . , xn}, {¬x1}, . . . , {¬xn}} has
primal tree-width n − 1; however, its incidence tree-width is 1. Thus, it would
be desirable to extend Theorem 1 to incidence graphs. We will accomplish this
in the next section applying general results on clique-width.

The notion of “branch-width” for (hyper)graphs has been introduced by
Robertson and Seymour; it is based on the following decomposition scheme:
Let H be a hypergraph, T = (V,E) a ternary tree (i.e., all vertices of T have
either degree 0 or 3), and τ a bijection from the set of leaves of T to the set
of hyperedges of H; (T, τ) is called a branch decomposition of H. The order of
an edge e of T is the number of vertices of H which are incident to hyperedges
τ(t1), τ(t2) such that t1 and t2 belong to different components of T − e. The
width of a branch decomposition (T, τ) is the maximum order of all edges of
T ; the branch-width bw(H) of a hypergraph H is the smallest width over all its
branch decompositions.

The branch-width of a clause-set F is the branch-width of its hypergraph,
bw(F) := bw(H(F)). In [2] Alekhnovich and Razborov show the following.

Theorem 2 (Alekhnovich and Razborov [2]) Satisfiability of clause-sets
with bounded branch-width is fixed-parameter tractable.

This result is obtained via a modification of Robertson and Seymour’s algorithm
for computing branch-decompositions [26]; from a branch-decomposition of H(F)
one can extract efficiently either a satisfying assignment (if F is satisfiable)
or a regular resolution refutation (if F is unsatisfiable). Further results and
algorithms for SAT and #SAT with bounded branch-width can be found in [4].

Note that if every vertex of a hypergraph H is incident with at least two
hyperedges of H, and if some hyperedge of H contains k vertices, then k ≤ bw(H).
However, if a vertex of the hypergraph H(F) of a clause-set F is incident with
exactly one hyperedge, then v is necessarily a pure literal of F . Hence w(F) ≤
bw(F) holds for clause-sets without pure literals. In particular, the simple clause-
set {{x1, . . . , xn}, {¬x1}, . . . , {¬xn}} as considered above has branch-width n.
We can state state [25, Lemma 5.1] as follows.

Lemma 3 For clause-sets F without pure literals we have

bw(F) ≤ tw(P (F)) + 1 ≤
3

2
bw(F).

Hence a class of clause-sets without pure literals has bounded primal tree-width
if and only if it has bounded branch-width.

4 Tree-Width and Clique-Width of Incidence Graphs

The next result (which seems to be known, [17]) indicates that incidence tree-
width is the more general parameter than primal tree-width.

Lemma 4 For every clause-set F we have

tw(I(F)) ≤ max(tw(P (F)), w(F)) ≤ tw(P (F)) + 1.

Proof. Let (T, χ) be a width k tree-decomposition of P (F). By Lemma 1 we can
choose for every clause C ∈ F some vertex tC of T such that var(C) ⊆ χ(tC).
We obtain a tree T ′ from T by adding for every clause C ∈ F a new vertex t′C
and the edge (tC , t

′
C). Finally, we extend the labeling χ to T ′ defining χ(t′C) =

var(C) ∪ {C}. We can verify that (T ′, χ) is a tree-decomposition of I(F) by
checking the conditions (T1)–(T3). Since |χ(t′C)| = |C| + 1, the width of (T ′, χ)
is at most the maximum of k and w(F). However, Lemma 1 also implies that
tw(P (F)) ≥ w(F) − 1, hence the lemma is shown true. ut

On the other hand, as observed above, there are clause-sets whose primal
graphs have arbitrarily high tree-width and whose incidence graphs are trees.

The question rises whether Theorem 1 can be generalized to incidence tree-
width. Below we answer this question positively, deploying a strong model-
theoretic result of [9] which generalizes “Courcelle’s Theorem” (see, e.g., [12,
Chapter 6]) to graphs of bounded clique-width.

First we give some definitions taken from [10]. Let k be a positive integer.
A k-graph is a graph whose vertices are labeled by integers from {1, . . . , k}. We
consider an arbitrary graph as k-graph with all vertices labeled by 1. We call
the k-graph consisting of exactly one vertex v (say, labeled by i ∈ {1, . . . , k})
an initial k-graph and denote it by i(v). Let C(k) denote the class of k-graphs
which can be constructed from initial k-graphs by means of the following three
operations.

(C1) If G,H ∈ C(k) and V (G)∩V (H) = ∅, then the union of G and H , denoted
by G⊕H , belongs to C(k).

(C2) If G ∈ C(k) and i, j ∈ {1, . . . , k}, then the k-graph ρi→j(G) obtained from
G by changing the labels of all vertices which are labeled by i to j belongs
to C(k).

(C3) If G ∈ C(k), i, j ∈ {1, . . . , k}, and i 6= j, then the k-graph ηi,j(G) obtained
from G by connecting all vertices labeled by i with all vertices labeled by j
belongs to C(k).

The clique-width cw(G) of a graphG is the smallest integer k such that G ∈ C(k).
Constructions of a k-graph using the above steps (C1)–(C3) can be represented
by k-expressions, terms composed of i(v), G ⊕ H , ηi,j(G) and ρi→j(G). Thus,
a k-expression certifies that a graph has clique-width ≤ k. For example, the
4-expression

ρ2→1(η1,2(2(y) ⊕ ρ2→1(η1,2(2(x) ⊕ ρ2→1(η1,2(1(v) ⊕ 2(w)))))))

represents a construction of the complete graph K4 on {v, w, x, y}, hence
cw(K4) ≤ 2. In view of this example it is easy to see that any complete graph
has clique-width ≤ 2, hence a result similar to Lemma 1 does not hold for clique-
width.

The above definitions apply also to directed graphs except that in construc-
tion (C3) the added edges are directed from label i to label j. Thus, we can
consider k-expressions for a directed graph D and we can define the directed
clique-width dcw(D) of D as the smallest k such that D has a k-expression. Let
D be a directed graph and GD its underlying undirected graph (i.e., G is ob-
tained from D by “forgetting” the direction of edges and by identifying possible
parallel edges); since every k-expression for D is also a k-expression for GD ,
cw(GD) ≤ dcw(D) follows.

The next result is due to Courcelle and Olariu [10] (see also [9]).

Theorem 3 (Courcelle and Olariu [10]) Let D be a directed graph and (T, χ)
a width k′ tree-decomposition of GD. Then we can obtain in polynomial time a
k-expression for D with k ≤ 22k′+1 + 1. Thus dcw(D) ≤ 22tw(GD)+1 + 1.

Courcelle, Makowsky and Rotics [9] show the following (recall from Section 2
that Id(F) denotes the directed incidence graph of F).

Theorem 4 (Courcelle, et al. [9]) Given a clause-set F of length l and a
k-expression for Id(F) (thus dcw(Id(G)) ≤ k). Then the number of satisfying
total truth assignments of F can be counted in time O(f(k) · l) where f is some
function which does not depend on F .

In [9] it is shown that if a k-expression for a directed graph D is given (k is
some constant), then statements formulated in a certain fragment of monadic
second-order logic (MS1) can be evaluated on D in linear time. Satisfiability of
F can be formulated as an MS1 statement on Id(F): F is satisfiable if and only
if there exists a set of variables V0 such that for every clause C ∈ F , Id(F)
contains either an edge directed from C to some variable in V0, or it contains an
edge directed from some variable in var(F) \ V0 to C.

Before we can apply Theorem 4 to a given clause-set we have to find a
k-expression for its directed incidence graph; though, it is not known whether
k-expressions can be found in polynomial time for constants k ≥ 4 (see, e.g.,
[9]). Anyway, in view of Theorem 3, we can use the previous result to improve
on Theorem 1 by considering incidence graphs instead of primal graphs.

Corollary 1 Satisfiability of clause-sets with bounded incidence tree-width is
fixed-parameter tractable.

Note, however, that a practical use of Theorem 4 is very limited because of
large hidden constants and high space requirements; cf. the discussion in [9].
Nevertheless, it seems to be feasible to develop algorithms which decide satisfi-
ability directly by examining a given tree-decomposition of the incidence graph,
without calling on the general model-theoretic results of [9].

Even for the case that it turns out that recognition of graphs with bounded
clique-width is NP-complete, it remains possible that satisfiability of clause-sets
with bounded clique-width is fixed-parameter tractable (by means of a “robust
algorithm”, see the discussion in Section 1).

5 Maximum Deficiency

The deficiency of a clause-set F on n variables and m clauses is δ(F) := m− n;
its maximum deficiency is

δ∗(F) = max
F ′⊆F

δ(F ′),

i.e., the maximum deficiency over the subsets of F . Since δ(∅) = 0, the maximum
deficiency of a clause-set is always positive. This parameter is strongly connected
with matchings in bipartite graphs, see, e.g., [14].

Lemma 5 A maximum matching of the incidence graph of a clause-set F ex-
poses exactly δ∗(F) clauses.

Since maximum matchings can be found efficiently, δ∗(F) can be calculated
efficiently as well. Note also that δ∗(F) = δ(F) holds for minimal unsatisfiable
clause-sets [22,14].

In [22,14], algorithms are presented which decide satisfiability of clause-sets
F in time nO(δ∗(F)); this time complexity does not constitute fixed-parameter
tractability. However, in [29] the author of the present paper develops a DLL-
type1 algorithm which decides satisfiability of clause-sets with n variables in
time O(2δ∗(F)n3); hence we have:

Theorem 5 (Szeider [29]) Satisfiability of clause-sets with bounded maximum
deficiency is fixed-parameter tractable.

The key to the new result of [29] is an efficient procedure for reducing any
clause-set F into an equisatisfiable clause-set F ′ with the property that setting
any variable of F ′ to true or false decreases its maximum deficiency (“F ′ is
δ∗-critical”). Applying this reduction at every node of the binary search tree
traversed by the DLL-type algorithm ensures that the height of the search tree
does not exceed the maximum deficiency of the input clause-set.

Next we construct clause-sets with small maximum deficiency and large pri-
mal tree-width.

Theorem 6 For every k ≥ 1 there are minimal unsatisfiable clause-sets F such
that δ∗(F) = 1 and tw(P (F)) = k.

1 Davis, Logemann, and Loveland [11].

Proof. We consider clause-sets used by Cook ([8], see also [30]) for deriving
exponential lower bounds for the size of tableaux refutations. Let k be any
positive integer and consider the complete binary tree T of height k+1, directed
from the root to the leaves. Let v1, . . . , vm, m = 2k+1, denote the leaves of T .
For each non-leaf v of T we take a new variable xv , and we label the outgoing
edges of v by xv and xv , respectively. For each leaf vi of T we obtain the clause
Ci consisting of all labels occurring on the path from the root to vi. Consider
F = {C1, . . . , Cm}. It is not difficult to see that F is minimal unsatisfiable (in
fact, it is “strongly minimal unsatisfiable” in the sense of [1]). Moreover, since
|var(F)| = 2k+1−1, we have δ∗(F) = δ(F) = 1. Since |Ci| = k+1, tw(P (F)) ≥ k
follows from Lemma 2. On the other hand, tw(P (F)) ≤ k, since we can define a
tree-decomposition (T, χ) of width k for F as follows (T is the binary tree used
above to define F). For each leaf vi of T we put χ(v) = var(Ci); for each non-leaf
w we define χ(w) as the set of variables xv such that v lies on the path from the
root of T to w (in particular, xw ∈ χ(w)). ut

Conversely, there are clause-sets with small primary tree-width and large
maximum deficiency:

Theorem 7 For every k ≥ 1 there are minimal unsatisfiable clause-sets H such
that δ∗(H) = k and tw(P (H)) ≤ 2.

Proof. We consider the clause-set H :=
⋃k

i=0 Hi where H0 = {{z0}}, Hk =
{{zk−1}}, and for i = 1, . . . , k − 1,

Hi := {{zi−1, xi, yi}, {xi, yi}, {xi, yi}, {xi, yi, zi}}.

It follows by induction on k that δ(H) = k and that H is minimal unsatis-
fiable. Hence δ∗(H) = k. We define a tree-decomposition (T, χ) of H taking
the path v0, . . . , vk for T and setting χ(vi) = var(Hi). The width of this tree-
decomposition is at most 2, hence tw(H) ≤ 2 follows. ut

Next we show a result similar to Theorem 6.

Theorem 8 For every k ≥ 1 there are clause-sets F such that δ∗(F) = 1 and
dcw(Id(F)) ≥ cw(I(F)) ≥ k.

Proof. Let k be a positive integer and let q be the smallest odd integer with
q ≥ max(3, k− 1). We consider the q × q grid Gq (see Figure 2 for an example).
We denote by vi,j the vertex of row i and column j. Evidently, Gq is bipartite;
let V1, V2 be the bipartition with v1,1 ∈ V2 (in Figure 2, vertices in V1 are drawn
black, vertices in V2 are drawn white). Since q is odd, we have |V1| = (q2+1)/2−1
and |V2| = (q2 + 1)/2. Next we obtain a clause-set Fq with I(Fq) = Gq : We
consider vertices in V1 as variables, and we associate to every vertex vi,j ∈ V2

the clause {vi,j−1, vi,j+1, vi−1,j , vi+1,j} ∩ (V1 ∪ V1). As shown in [16], any q × q
grid, q ≥ 3, has exactly clique-width q + 1; hence dcw(Id(Fq)) ≥ cw(I(Fq)) =
cw(Gq) ≥ k.

Fig. 2. The grid G7; bold edges indicate the maximum matching M7.

Consider the matching Mq of Gq consisting of all the edges (vi,2j , vi,2j+1)
for i = 1, . . . , q and j = 1, . . . , (q − 1)/2, and the edges (v2i,1, v2i+1,1) for i =
1, . . . , (q − 1)/2 (in Figure 2, edges of Mq are indicated by bold lines). Since
|Mq| = |V1|, Mq is a maximum matching and Fq is 0-expanding. By Lemma 5
δ∗(Fq) = δ(Fq) = 1 follows. ut

It can be shown that every clause-set whose incidence graph is a square grid
is satisfiable (i.e., such clause-sets are “var-satisfiable” [28]); hence the clause-
sets Fq constructed in the preceding proof are satisfiable. Since for a directed
graph D the directed clique-width of any induced subgraph of D does not exceed
the directed clique-width of D, it is not difficult to obtain from Fq unsatisfiable
clause-sets of high directed clique-width and constant maximum deficiency. How-
ever, it would be interesting to find minimal unsatisfiable clause-sets with such
a property.

6 Falsum Number

A propositional formula α is called f -implicational if → (implication) is the only
connective of α; however, α may contain the constant f (falsum).

Theorem 9 (Franco, et al. [15]) Satisfiability of f -implicational formulas of
length l with at most two occurrences of each variable and k occurrences of f can
be decided in time O(kkl2). Hence satisfiability of such formulas is fixed-param-
eter tractable.

This result has been recently improved to O(3kl2), k ≥ 4, using dynamic pro-
gramming techniques [20].

Our objective is to apply Theorem 9 to clause-sets by means of a procedure
that translates any given clause-set F into an equisatisfiable f -implicational for-
mula F→. In Fig. 3 we state a slight generalization of the procedure used by
Heusch [19] (Heusch considers only clause-sets where every variable occurs at
most three times). We call the resulting f -implicational formula F→ a standard
translation of the given clause-set F .

Step 1. We recursively eliminate clauses containing pure literals.
Step 2. If a variable x occurs in exactly one clause negatively and in more

than one clause positively, we perform a renaming; i.e., we replace each
occurrence of x by ¬x and vice versa. We repeat this step as often as
possible.

Step 3. If a variable x occurs in more than one clause positively, say in
clauses C1, . . . , Cr, we take a new variable x′ and replace the clause Ci

by (Ci \ {x}) ∪ {¬x′}, i = 1, . . . , r, and we add the clause {x, x′}. We
repeat this step as often as possible.
Now each variable occurs exactly once positively.

Step 4. If a variable x occurs in more than one clause negatively, say in
clauses C1, . . . , Cr, we take new variables x1, . . . , xr, and replace the
clause Ci by (Ci \ {¬x}) ∪ {¬xi}, i = 1, . . . , r. Moreover, we intro-
duce the formula x → (x1 ∧ · · · ∧ xr). We repeat this step as often as
necessary.
We end up with a set F ′ of clauses and a set S of formulas of the shape
x → (x1 ∧ · · · ∧ xr).

Step 5. For each clause C ∈ F ′, choose an ordering L1, . . . , Ls of its
literals and replace C by the formula L1 ∨ · · · ∨ Ls.
Step 5 yields a set S′ of disjunctions (originating from the clauses of
F ′).

Step 6. We apply to formulas of S and S ′ the equivalences
(E1) ¬x = x → f (E3) ϕ ∧ ψ = (ϕ → (ψ → f)) → f
(E2) ϕ ∨ ψ = (ϕ → f) → ψ (E4) (ϕ → f) → f = ϕ
and obtain a set of f -implicational formulas T and T ′, respectively.

Step 7. We choose an ordering α1, . . . , αp of the formulas in T ′ ∪ T and
obtain the f -implicational formula F→ := (α1 → . . .→ αp → f) → f .
Note that Step 5 can be performed by applying (E3) to α1 ∧ · · · ∧ αp.

Fig. 3. Transformation of a clause-set F into an f -implicational formula F→.

We state some properties of this construction which can be easily verified.

1. F and F→ are equisatisfiable.
2. Every variable of F→ occurs at most twice.
3. The length of F→ is polynomially bounded by the length of F .

Since the translation procedure contains some nondeterministic steps, a clause-
set may have several standard translations. We define the falsum number #f (F)
of a clause-set F as the smallest number of f -occurrences over all its standard
translations.

Lemma 6 Let C = {L1, . . . , Ln} be a clause with r negative literals, π a per-
mutation of {1, . . . , n}, and let C→ be an f -implicational formula obtained from
Lπ(1) ∨ · · · ∨Lπ(r) by the equivalences (E2) and (E4). Then C→ contains at least
|n−r−1| occurrences of f . Such C→ which contains exactly |n−r−1| occurrences
of f can be found in polynomial time.

Proof. We proceed by induction on n. For n ≤ 1 the statement holds by trivial
reasons. Assume n ≥ 2 and consider Lπ(1)∨· · ·∨Lπ(r). We put C0 = C \{Lπ(1)}.

First assume that Lπ(1) is a negative literal. By induction hypothesis, C→
0

contains at least |(n−1)−(r−1)−1| = |n−r−1| occurrences of f . We cannot do
better than setting C→ = Lπ(1) → C→

0 . Hence the first part of the lemma holds if
Lπ(1) is a negative literal. Now assume that Lπ(1) is positive literal. By induction
hypothesis, C→

0 contains at least |n − r − 2| occurrences of f . Since r ≤ n − 1,
n−r−2 is negative if and only if r = n−1. We obtain C→ = (Lπ(1) → f) → C→

0

by equivalence (E2) (equivalence (E4) cannot be applied, since neither Lπ(1) nor
C→

0 has the form β → f). Thus C→ contains at least |n− r− 2|+1 = |n− r− 1|
occurrences of f . Hence the first part of the lemma holds in any case.

Next we show by induction on n that we can actually find some C→ which
contains exactly |n− r − 1| occurrences of f . If C contains a negative literal L,
then we put C0 = C \ {L}. By induction hypothesis we find C→

0 with exactly
|(n−1)−(r−1)−1| = |n−r−1| occurrences of f . We put C→ = Lπ(1) → C→

0 as
above. However, if all literals of C are positive (i.e., r=0), then only equivalence
(E2) applies, and we obtain a translation C→ with n−1 = |n−r−1| occurrences
of f . ut

Note that the previous lemma holds even if we allow arbitrary groupings, e.g.,
(Lπ(1)∨ (Lπ(2)∨Lπ(3)))∨Lπ(4). We also note that C→ contains no f -occurrences
if and only if C is a definite Horn clause (i.e., C contains exactly one positive
literal).

Lemma 7 For a clause-set F we can find a standard translation F→ with min-
imal number of f -occurrences in polynomial time. Hence the falsum number of a
clause-set can be computed in polynomial time.

Proof. Consider the sets of f -implicational formulas T, T ′ as obtained within the
procedure of Fig. 3 (see Step 6). In view of Lemma 6, we can assume that the
total number of f -occurrences in T is minimal. We choose an ordering α1, . . . , αp

of the formulas in T ∪ T ′ and put F→ := (α1 → . . . → αp → f) → f . If
some formula α in T ∪ T ′ has the form α′ → f , then we assure that α comes
last, and we can save two f -occurrences by equivalence (E4), and F→ reduces
to (α1 → . . . → αp−1 → α′) → f . Thus, #f (F) equals the total number of
f -occurrences in T ∪ T ′ plus j ∈ {0, 2}, where j = 0 if some formula of T ∪ T ′

has the form α → f , and j = 2 otherwise. ut

By means of this lemma, Theorem 9 immediately yields the following result.

Theorem 10 Satisfiability of clause-sets with bounded falsum number is fixed-pa-
rameter tractable.

Our next result indicates that falsum number for clause-sets is outperformed
by maximum deficiency.

Theorem 11 #f (F) ≥ δ(F) holds for clause-sets F without pure literals. Con-
sequently, #f (F) ≥ δ∗(F) for minimal unsatisfiable clause-sets.

Proof. Let F = {C1, . . . , Cm} and var(F) = {x1, . . . , xn}. We apply the first
four steps of the translation to F , and we are left with a set of clauses F ′ =
{C ′

1, . . . , C
′
m, {x1, x

′
1}, . . . , {xr, x

′
r}}, r ≤ n, and a set S of implications. No

variable except xr+1, . . . , xn occurs positively in C ′
1, . . . , C

′
m, hence at most n−r

clauses of C ′
1, . . . , C

′
m are definite Horn (note that each variable occurs exactly

once positively in F ′). It follows now by Lemma 6 that by applying Steps 5 and
6, we introduce at least m− r ≥ m− n ≥ δ(F) occurrences of f . ut

It remains open whether other translations yield a significantly smaller falsum
number than the standard translation.

7 Discussion and Open Questions

Parameterized complexity is a fast growing research area, and we expect that
several new FPT results for SAT will be obtained in the years to come. We
hope that this paper provides a starting point for further developments and
comparative results.

The parameters considered above depend on the chosen transformation of
clause-sets to other combinatorial objects (graphs, hypergraphs, directed graphs,
f -implicational formulas); therefore it is natural to ask (a) for new transforma-
tions which yield smaller values for the considered parameters, and (b) for trans-
formations to other known FPT problems (see, e.g., [7]) which possibly give rise
to natural parameterizations for SAT.

Furthermore, it might be interesting to study recursively defined SAT hi-
erarchies (see [23,21]) in the framework of parameterized complexity. Known
algorithms decide satisfiability of clause-sets belonging to the k’th level of these
hierarchies in time nO(k); this does not constitute fixed-parameter tractability.
However, fixed-parameter intractability results (i.e., W [1]-hardness, [12]) are
apparently not known.

Acknowledgment

The author wishes to thank Prof. J. A. Makowsky for explaining the theory
behind Theorem 4 and for many stimulating discussions during the author’s
visit in Haifa in April 2001.

References

1. R. Aharoni and N. Linial. Minimal non-two-colorable hypergraphs and minimal
unsatisfiable formulas. J. Combin. Theory Ser. A, 43:196–204, 1986.

2. M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and Tseitin
tautologies. In 43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’02), pages 593–603, 2002.

3. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, 1987.

4. F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for
#SAT and Bayesian Inference. In 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’03). To appear.

5. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

6. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci., 209(1-2):1–45, 1998.

7. M. Cesati. Compendium of parameterized problems. http://bravo.ce.uniroma2.it/
home/cesati/research/, 2001.

8. S. A. Cook. An exponential example for analytic tableaux. Manuscript, 1972.
9. B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity

of graph enumeration problems definable in monadic second-order logic. Discr.
Appl. Math., 108(1-2):23–52, 2001.

10. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discr.
Appl. Math., 101(1-3):77–114, 2000.

11. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Comm. ACM, 5:394–397, 1962.

12. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag,
1999.

13. H. Fleischner, S. Földes, and S. Szeider. Remarks on the concept of robust algo-
rithm. Technical Report RRR 26-2001, Rutgers Center for Operations Research
(RUTCOR), Apr. 2001.

14. H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of mini-
mal unsatisfiable formulas with fixed clause-variable difference. Theoret. Comput.
Sci., 289(1):503–516, 2002.

15. J. Franco, J. Goldsmith, J. Schlipf, E. Speckenmeyer, and R. P. Swaminathan.
An algorithm for the class of pure implicational formulas. Discr. Appl. Math.,
96/97:89–106, 1999.

16. M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes.
Internat. J. Found. Comput. Sci., 11(3):423–443, 2000. Selected papers from the
Workshop on Graph-Theoretical Aspects of Computer Science (WG’99), Part 1
(Ascona).

17. G. Gottlob and R. Pichler. Hypergraphs in model checking: Acyclicity and
hypertree-width versus clique-width. In F. Orejas, P. G. Spirakis, and J. van
Leeuwen, editors, 28th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’01), volume 2076 of Lecture Notes in Computer Science, pages
708–719, 2001.

18. G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86, 2002.

19. P. Heusch. The complexity of the falsifiability problem for pure implicational
formulas. Discr. Appl. Math., 96/97:127–138, 1999.

20. P. Heusch, S. Porschen, and E. Speckenmeyer. Improving a fixed parameter
tractability time bound for the shadow problem. Technical Report 2001-425, Uni-
versität zu Köln, 2001.

21. O. Kullmann. Investigating a general hierarchy of polynomially decidable classes
of CNF’s based on short tree-like resolution proofs. Technical Report TR99–041,
Electronic Colloquium on Computational Complexity (ECCC), 1999.

22. O. Kullmann. An application of matroid theory to the SAT problem. In Fifteenth
Annual IEEE Conference on Computational Complexity, pages 116–124, 2000.

23. D. Pretolani. Hierarchies of polynomially solvable satisfiability problems. Ann.
Math. Artif. Intell., 17(3-4):339–357, 1996.

24. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7(3):309–322, 1986.

25. N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B, 52(2):153–190, 1991.

26. N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Combin. Theory Ser. B, 63(1):65–110, 1995.

27. J. P. Spinrad. Representations of graphs. Book manuscript, Vanderbilt University,
1997.

28. S. Szeider. Generalizations of matched CNF formulas. Ann. Math. Artif. Intell.
Special issue with selected papers from the 5th Int. Symp. on the Theory and
Applications of Satisfiability Testing (SAT’02), to appear.

29. S. Szeider. Minimal unsatisfiable formulas with bounded clause-variable difference
are fixed-parameter tractable. In T. Warnow and B. Zhu, editors, The 9th Inter-
national Computing and Combinatorics Conference (COCOON’03), volume 2697
of Lecture Notes in Computer Science, pages 548–558. Springer Verlag, 2003.

30. A. Urquhart. The complexity of propositional proofs. Bull. of Symbolic Logic,
1(4):425–467, Dec. 1995.

31. M. Yannakakis. Algorithms for acyclic database schemes. In C. Zaniolo and C. De-
lobel, editors, Very Large Data Bases, 7th International Conference, Sep. 9–11,
1981, Cannes, France, pages 81–94. IEEE Computer Society, 1981.

