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Abstract. We survey and compare parameterizations of the propo-
sitional satisfiability problem (SAT) in the framework of Parameter-
ized Complexity (Downey and Fellows, 1999). In particular, we consider
(a) parameters based on structural graph decompositions (tree-width,
branch-width, and clique-width), (b) a parameter emerging from match-
ing theory (maximum deficiency), and (c) a parameter defined by trans-
lating clause-sets into certain implicational formulas (falsum number).

1 Introduction

The framework of Parameterized Complexity, introduced by Downey and Fellows
[12], provides a means for coping with computational hard problems: It turned
out that many intractable (and even undecidable) problems can be solved effi-
ciently “by the slice”, that is, in time O(f(k) · nα) where f is any function of
some parameter k, n is the size of the instance, and α is a constant independent
from k. In this case the problem is called fixed-parameter tractable (FPT). If a
problem is FPT, then instances of large size can be solved efficiently.

The objective of this paper is to survey and compare known results for fixed-
parameter tractable SAT decision. Although the SAT problem has been con-
sidered in more general works on parameterized complexity (e.g., [9]) and FPT
results have been obtained focusing on a single parameterization of SAT (e.g.,
[2,18]), it appears that no broader approach has been devoted to this subject.

We suggest the following concept of fixed-parameter tractability for SAT.
Consider a parameter π for clause-sets; i.e., π is a function which assigns some
non-negative integer π(F ) to any given clause-set F . We say that “satisfiability of
clause-sets with bounded π is fixed-parameter tractable” if there is an algorithm
which answers correctly for given clause-sets F and k ≥ 0

“F is satisfiable” or “F is unsatisfiable” or “π(F ) > k”

in time O(f(k) · lα); here l denotes the length (i.e., sum of clause widths) of F , f
is any function, and α is a constant independent from k. (Being aware of the phe-
nomenon of so-called “robust algorithms” [27,13], we do not require (i) that the

? Supported by the Austrian Science Fund (FWF) projects J2111 and J2295.



algorithm actually computes π(F ), nor (ii) that the algorithm actually decides
whether π(F ) ≤ k.)

A trivial example for such parameter can be obtained by defining π(F ) as
the length of the clause-set F ′ which results in applying some of the usual
polynomial-time simplifications to a given clause-set F , say elimination of unit
and binary clauses, and of clauses which contain pure literals.

1.1 New contributions of this paper

Besides a review of known results (FPT algorithms for clause-sets with bounded
primal tree-width and branch-width), we obtain the following new results.

We introduce the notion of incidence tree-width of clause-sets, and we show
the following.

• Satisfiability of clause-sets with bounded incidence tree-width is FPT.
• Incidence tree-width is more general than primal tree-width; i.e., bounded

primal tree-width implies bounded incidence tree-width, but there are clause-
sets of bounded incidence tree-width and arbitrarily high primal tree-width.

Recently it could be shown that clause-sets of bounded maximum deficiency,
a parameter defined via matchings in incidence graphs, allow fixed-parameter
tractable SAT decision [29]. We compare tree-width with maximum deficiency,
and we obtain the following result.

• Incidence/primal tree-width and maximum deficiency are incomparable; i.e.,
there are clause sets of bounded primal tree-width (and so of bounded in-
cidence tree-width) with arbitrarily high maximum deficiency; on the other
hand, there are clause-sets of arbitrarily high incidence tree-with (and so of
arbitrarily high primal tree-width) with bounded maximum deficiency. (Ac-
tually we show incomparability of maximum deficiency and clique-width; the
latter is a more general parameter than tree-width; see, e.g., [10].)

Finally, we consider a known FPT result on satisfiability for a certain class of
non-CNF formulas [15], and we formulate a transformation scheme which makes
this result applicable to clause-sets. This transformation enables us to define the
parameter falsum number for clause-sets. Our results for this parameter are as
follows.

• Satisfiability of clause-sets with bounded falsum number is FPT.
• Maximum deficiency is more general than falsum number ; i.e., the falsum

number of a clause-set without pure literals is at least as large as its maxi-
mum deficiency.

1.2 Notation

A literal is a variable x or a negated variable ¬x; we write x = ¬x and ¬x = x. A
finite set of literals without a complementary pair x,¬x is a clause. A clause-set



is a finite set of clauses. A variable x occurs in a clause C if either x ∈ C (x occurs
positively) or ¬x ∈ C (x occurs negatively); var(C) denotes the set of variables
occurring in a clause C; for a clause-set F we put var(F ) =

⋃
C∈F var(C). A

literal x is a pure literal of F if {x, x}∩
⋃

C∈F C = {x}. The width of a clause is
its cardinality; the width w(F ) of a clause-set F is the width of a largest clause
of F (or 0 if F = ∅). The length of F is

∑
C∈F |C|. Semantically, a clause-set

F is considered as a propositional formula in conjunctive normal form (CNF):
an assignment τ : var(F ) → {0, 1} satisfies F if it evaluates to 1 in the usual
sense for CNFs. A clause-set F is satisfiable if it has a satisfying assignment;
otherwise it is unsatisfiable. F is minimal unsatisfiable if it is unsatisfiable and
every proper subset F ′ ( F is satisfiable.

2 From Clause-Sets to Graphs and Hypergraphs

Several parameters originally defined for graphs and hypergraphs can be applied
to clause-sets via transformations of clause-sets to (hyper)graphs.

Some of the following definitions are illustrated in Figure 1.
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Fig. 1. (Hyper)graphs associated to the clause-set F = {{u,¬v,¬y}, {¬u, z},
{v,¬w}, {w,¬x}, {x, y,¬z}}; the primal graph P (F ), the hypergraph H(F ),
and the incidence graph I(F ).

The primal graph P (F ) of a clause-set F is the graph whose vertices are the
variables of F , and where two variables are joined by an edge if both variables
occur together in a clause. The incidence graph I(F ) is a bipartite graph: one
vertex class consists of the variables of F , the other vertex class consists of the
clauses of F ; a variable x and a clause C are joined by an edge if x occurs in C.



The directed incidence graph Id(F ) arises from I(F ) by orienting edges from C
to x if x ∈ C, and from x to C if ¬x ∈ C.

A clause-set F gives rise to a hypergraph H(F ), the hypergraph of F , in a
natural way: the vertices of H(F ) are the variables of F , and to every clause
C ∈ F there is a hyperedge which is incident to exactly the variables in var(C).
Note that H(F ) may contain “parallel” hyperedges, i.e., different clauses C,C ′

always yield different hyperedges E,E ′, even if var(C) = var(C ′).

3 Tree-Width of Primal Graphs and Branch-Width

Tree-width, a popular parameter for graphs, was introduced by Robertson and
Seymour in their series of papers on graph minors; see, e.g., [6] for references.
Let G be a graph, T = (V,E) a tree, and χ a labeling of the vertices of T by sets
vertices of G. Then (T, χ) is a tree decomposition of G if the following conditions
hold:

(T1) Every vertex of G belongs to χ(t) for some vertex t of T ;
(T2) for every edge (v, w) of G there is some vertex t of T such that v, w ∈ χ(t);
(T3) for any vertices t1, t2, t3 of T , if t2 lies on a path from t1 to t3, then

χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a tree decomposition (T, χ) is the maximum |χ(t)| − 1 over all
vertices t of T . The tree-width tw(G) of G is the minimum width over all its
tree-decompositions.

Note that trees have tree-width 1 (the only purpose of “−1” in the definition
of tree-width is to make this statement true).

For fixed k ≥ 1, deciding whether a given graph has tree-width at most k (and
computing a tree-decomposition of width ≤ k, if it exists) can be done efficiently
(in quadratic time by Robertson and Seymour [24], and even in linear time by
Bodlaender [5]; the latter algorithm, however, imposes large hidden constants
and is not well-suited for practical applications). Computing the tree-width of a
given graph, however, is an NP-hard problem [3].

In order to consider clause-sets of bounded tree-width, one can either bound
the tree-width of the corresponding primal graphs or the tree-width of the cor-
responding incidence graphs: for a clause-set F we call tw(P (F )) the primal
tree-width of F , and tw(I(F )) the incidence tree-width of F .

Theorem 1 (Gottlob, et al. [18]) Satisfiability of clause-sets with bounded
primal tree-width is fixed-parameter tractable.

The proof of this result relies on the fact that clause-sets of bounded primal tree-
width can be transformed into equivalent acyclic constraint satisfaction problems
(CSPs) which in turn can be solved efficiently by a classical algorithm due to
Yannakakis [31].

The following lemma is well-known; see, e.g., [6].



Lemma 1 Let (T, χ) be a tree-decomposition of a graph G and let K ⊆ V (G) be
a set of vertices which induces a complete subgraph in G. Then K ⊆ χ(t) holds
for some vertex t of T .

The next lemma follows directly from Lemma 1 (recall from Section 1.2 that
w(F ) denotes the width of F ).

Lemma 2 w(F ) ≤ tw(P (F )) + 1 ≤ |var(F )| holds for every clause-set F .

Hence Theorem 1 is impractical for clause-sets of large width. For example,
the simple minimal unsatisfiable clause-set {{x1, . . . , xn}, {¬x1}, . . . , {¬xn}} has
primal tree-width n − 1; however, its incidence tree-width is 1. Thus, it would
be desirable to extend Theorem 1 to incidence graphs. We will accomplish this
in the next section applying general results on clique-width.

The notion of “branch-width” for (hyper)graphs has been introduced by
Robertson and Seymour; it is based on the following decomposition scheme:
Let H be a hypergraph, T = (V,E) a ternary tree (i.e., all vertices of T have
either degree 0 or 3), and τ a bijection from the set of leaves of T to the set
of hyperedges of H; (T, τ) is called a branch decomposition of H. The order of
an edge e of T is the number of vertices of H which are incident to hyperedges
τ(t1), τ(t2) such that t1 and t2 belong to different components of T − e. The
width of a branch decomposition (T, τ) is the maximum order of all edges of
T ; the branch-width bw(H) of a hypergraph H is the smallest width over all its
branch decompositions.

The branch-width of a clause-set F is the branch-width of its hypergraph,
bw(F ) := bw(H(F )). In [2] Alekhnovich and Razborov show the following.

Theorem 2 (Alekhnovich and Razborov [2]) Satisfiability of clause-sets
with bounded branch-width is fixed-parameter tractable.

This result is obtained via a modification of Robertson and Seymour’s algorithm
for computing branch-decompositions [26]; from a branch-decomposition of H(F )
one can extract efficiently either a satisfying assignment (if F is satisfiable)
or a regular resolution refutation (if F is unsatisfiable). Further results and
algorithms for SAT and #SAT with bounded branch-width can be found in [4].

Note that if every vertex of a hypergraph H is incident with at least two
hyperedges of H, and if some hyperedge of H contains k vertices, then k ≤ bw(H).
However, if a vertex of the hypergraph H(F ) of a clause-set F is incident with
exactly one hyperedge, then v is necessarily a pure literal of F . Hence w(F ) ≤
bw(F ) holds for clause-sets without pure literals. In particular, the simple clause-
set {{x1, . . . , xn}, {¬x1}, . . . , {¬xn}} as considered above has branch-width n.
We can state state [25, Lemma 5.1] as follows.

Lemma 3 For clause-sets F without pure literals we have

bw(F ) ≤ tw(P (F )) + 1 ≤
3

2
bw(F ).

Hence a class of clause-sets without pure literals has bounded primal tree-width
if and only if it has bounded branch-width.



4 Tree-Width and Clique-Width of Incidence Graphs

The next result (which seems to be known, [17]) indicates that incidence tree-
width is the more general parameter than primal tree-width.

Lemma 4 For every clause-set F we have

tw(I(F )) ≤ max(tw(P (F )), w(F )) ≤ tw(P (F )) + 1.

Proof. Let (T, χ) be a width k tree-decomposition of P (F ). By Lemma 1 we can
choose for every clause C ∈ F some vertex tC of T such that var(C) ⊆ χ(tC).
We obtain a tree T ′ from T by adding for every clause C ∈ F a new vertex t′C
and the edge (tC , t

′
C). Finally, we extend the labeling χ to T ′ defining χ(t′C) =

var(C) ∪ {C}. We can verify that (T ′, χ) is a tree-decomposition of I(F ) by
checking the conditions (T1)–(T3). Since |χ(t′C)| = |C| + 1, the width of (T ′, χ)
is at most the maximum of k and w(F ). However, Lemma 1 also implies that
tw(P (F )) ≥ w(F ) − 1, hence the lemma is shown true. ut

On the other hand, as observed above, there are clause-sets whose primal
graphs have arbitrarily high tree-width and whose incidence graphs are trees.

The question rises whether Theorem 1 can be generalized to incidence tree-
width. Below we answer this question positively, deploying a strong model-
theoretic result of [9] which generalizes “Courcelle’s Theorem” (see, e.g., [12,
Chapter 6]) to graphs of bounded clique-width.

First we give some definitions taken from [10]. Let k be a positive integer.
A k-graph is a graph whose vertices are labeled by integers from {1, . . . , k}. We
consider an arbitrary graph as k-graph with all vertices labeled by 1. We call
the k-graph consisting of exactly one vertex v (say, labeled by i ∈ {1, . . . , k})
an initial k-graph and denote it by i(v). Let C(k) denote the class of k-graphs
which can be constructed from initial k-graphs by means of the following three
operations.

(C1) If G,H ∈ C(k) and V (G)∩V (H) = ∅, then the union of G and H , denoted
by G⊕H , belongs to C(k).

(C2) If G ∈ C(k) and i, j ∈ {1, . . . , k}, then the k-graph ρi→j(G) obtained from
G by changing the labels of all vertices which are labeled by i to j belongs
to C(k).

(C3) If G ∈ C(k), i, j ∈ {1, . . . , k}, and i 6= j, then the k-graph ηi,j(G) obtained
from G by connecting all vertices labeled by i with all vertices labeled by j
belongs to C(k).

The clique-width cw(G) of a graphG is the smallest integer k such that G ∈ C(k).
Constructions of a k-graph using the above steps (C1)–(C3) can be represented
by k-expressions, terms composed of i(v), G ⊕ H , ηi,j(G) and ρi→j(G). Thus,
a k-expression certifies that a graph has clique-width ≤ k. For example, the
4-expression

ρ2→1(η1,2(2(y) ⊕ ρ2→1(η1,2(2(x) ⊕ ρ2→1(η1,2(1(v) ⊕ 2(w)))))))



represents a construction of the complete graph K4 on {v, w, x, y}, hence
cw(K4) ≤ 2. In view of this example it is easy to see that any complete graph
has clique-width ≤ 2, hence a result similar to Lemma 1 does not hold for clique-
width.

The above definitions apply also to directed graphs except that in construc-
tion (C3) the added edges are directed from label i to label j. Thus, we can
consider k-expressions for a directed graph D and we can define the directed
clique-width dcw(D) of D as the smallest k such that D has a k-expression. Let
D be a directed graph and GD its underlying undirected graph (i.e., G is ob-
tained from D by “forgetting” the direction of edges and by identifying possible
parallel edges); since every k-expression for D is also a k-expression for GD ,
cw(GD) ≤ dcw(D) follows.

The next result is due to Courcelle and Olariu [10] (see also [9]).

Theorem 3 (Courcelle and Olariu [10]) Let D be a directed graph and (T, χ)
a width k′ tree-decomposition of GD. Then we can obtain in polynomial time a
k-expression for D with k ≤ 22k′+1 + 1. Thus dcw(D) ≤ 22tw(GD)+1 + 1.

Courcelle, Makowsky and Rotics [9] show the following (recall from Section 2
that Id(F ) denotes the directed incidence graph of F ).

Theorem 4 (Courcelle, et al. [9]) Given a clause-set F of length l and a
k-expression for Id(F ) (thus dcw(Id(G)) ≤ k). Then the number of satisfying
total truth assignments of F can be counted in time O(f(k) · l) where f is some
function which does not depend on F .

In [9] it is shown that if a k-expression for a directed graph D is given (k is
some constant), then statements formulated in a certain fragment of monadic
second-order logic (MS1) can be evaluated on D in linear time. Satisfiability of
F can be formulated as an MS1 statement on Id(F ): F is satisfiable if and only
if there exists a set of variables V0 such that for every clause C ∈ F , Id(F )
contains either an edge directed from C to some variable in V0, or it contains an
edge directed from some variable in var(F ) \ V0 to C.

Before we can apply Theorem 4 to a given clause-set we have to find a
k-expression for its directed incidence graph; though, it is not known whether
k-expressions can be found in polynomial time for constants k ≥ 4 (see, e.g.,
[9]). Anyway, in view of Theorem 3, we can use the previous result to improve
on Theorem 1 by considering incidence graphs instead of primal graphs.

Corollary 1 Satisfiability of clause-sets with bounded incidence tree-width is
fixed-parameter tractable.

Note, however, that a practical use of Theorem 4 is very limited because of
large hidden constants and high space requirements; cf. the discussion in [9].
Nevertheless, it seems to be feasible to develop algorithms which decide satisfi-
ability directly by examining a given tree-decomposition of the incidence graph,
without calling on the general model-theoretic results of [9].



Even for the case that it turns out that recognition of graphs with bounded
clique-width is NP-complete, it remains possible that satisfiability of clause-sets
with bounded clique-width is fixed-parameter tractable (by means of a “robust
algorithm”, see the discussion in Section 1).

5 Maximum Deficiency

The deficiency of a clause-set F on n variables and m clauses is δ(F ) := m− n;
its maximum deficiency is

δ∗(F ) = max
F ′⊆F

δ(F ′),

i.e., the maximum deficiency over the subsets of F . Since δ(∅) = 0, the maximum
deficiency of a clause-set is always positive. This parameter is strongly connected
with matchings in bipartite graphs, see, e.g., [14].

Lemma 5 A maximum matching of the incidence graph of a clause-set F ex-
poses exactly δ∗(F ) clauses.

Since maximum matchings can be found efficiently, δ∗(F ) can be calculated
efficiently as well. Note also that δ∗(F ) = δ(F ) holds for minimal unsatisfiable
clause-sets [22,14].

In [22,14], algorithms are presented which decide satisfiability of clause-sets
F in time nO(δ∗(F )); this time complexity does not constitute fixed-parameter
tractability. However, in [29] the author of the present paper develops a DLL-
type1 algorithm which decides satisfiability of clause-sets with n variables in
time O(2δ∗(F )n3); hence we have:

Theorem 5 (Szeider [29]) Satisfiability of clause-sets with bounded maximum
deficiency is fixed-parameter tractable.

The key to the new result of [29] is an efficient procedure for reducing any
clause-set F into an equisatisfiable clause-set F ′ with the property that setting
any variable of F ′ to true or false decreases its maximum deficiency (“F ′ is
δ∗-critical”). Applying this reduction at every node of the binary search tree
traversed by the DLL-type algorithm ensures that the height of the search tree
does not exceed the maximum deficiency of the input clause-set.

Next we construct clause-sets with small maximum deficiency and large pri-
mal tree-width.

Theorem 6 For every k ≥ 1 there are minimal unsatisfiable clause-sets F such
that δ∗(F ) = 1 and tw(P (F )) = k.

1 Davis, Logemann, and Loveland [11].



Proof. We consider clause-sets used by Cook ([8], see also [30]) for deriving
exponential lower bounds for the size of tableaux refutations. Let k be any
positive integer and consider the complete binary tree T of height k+1, directed
from the root to the leaves. Let v1, . . . , vm, m = 2k+1, denote the leaves of T .
For each non-leaf v of T we take a new variable xv , and we label the outgoing
edges of v by xv and xv , respectively. For each leaf vi of T we obtain the clause
Ci consisting of all labels occurring on the path from the root to vi. Consider
F = {C1, . . . , Cm}. It is not difficult to see that F is minimal unsatisfiable (in
fact, it is “strongly minimal unsatisfiable” in the sense of [1]). Moreover, since
|var(F )| = 2k+1−1, we have δ∗(F ) = δ(F ) = 1. Since |Ci| = k+1, tw(P (F )) ≥ k
follows from Lemma 2. On the other hand, tw(P (F )) ≤ k, since we can define a
tree-decomposition (T, χ) of width k for F as follows (T is the binary tree used
above to define F ). For each leaf vi of T we put χ(v) = var(Ci); for each non-leaf
w we define χ(w) as the set of variables xv such that v lies on the path from the
root of T to w (in particular, xw ∈ χ(w)). ut

Conversely, there are clause-sets with small primary tree-width and large
maximum deficiency:

Theorem 7 For every k ≥ 1 there are minimal unsatisfiable clause-sets H such
that δ∗(H) = k and tw(P (H)) ≤ 2.

Proof. We consider the clause-set H :=
⋃k

i=0 Hi where H0 = {{z0}}, Hk =
{{zk−1}}, and for i = 1, . . . , k − 1,

Hi := {{zi−1, xi, yi}, {xi, yi}, {xi, yi}, {xi, yi, zi}}.

It follows by induction on k that δ(H) = k and that H is minimal unsatis-
fiable. Hence δ∗(H) = k. We define a tree-decomposition (T, χ) of H taking
the path v0, . . . , vk for T and setting χ(vi) = var(Hi). The width of this tree-
decomposition is at most 2, hence tw(H) ≤ 2 follows. ut

Next we show a result similar to Theorem 6.

Theorem 8 For every k ≥ 1 there are clause-sets F such that δ∗(F ) = 1 and
dcw(Id(F )) ≥ cw(I(F )) ≥ k.

Proof. Let k be a positive integer and let q be the smallest odd integer with
q ≥ max(3, k− 1). We consider the q × q grid Gq (see Figure 2 for an example).
We denote by vi,j the vertex of row i and column j. Evidently, Gq is bipartite;
let V1, V2 be the bipartition with v1,1 ∈ V2 (in Figure 2, vertices in V1 are drawn
black, vertices in V2 are drawn white). Since q is odd, we have |V1| = (q2+1)/2−1
and |V2| = (q2 + 1)/2. Next we obtain a clause-set Fq with I(Fq) = Gq : We
consider vertices in V1 as variables, and we associate to every vertex vi,j ∈ V2

the clause {vi,j−1, vi,j+1, vi−1,j , vi+1,j} ∩ (V1 ∪ V1). As shown in [16], any q × q
grid, q ≥ 3, has exactly clique-width q + 1; hence dcw(Id(Fq)) ≥ cw(I(Fq)) =
cw(Gq) ≥ k.



Fig. 2. The grid G7; bold edges indicate the maximum matching M7.

Consider the matching Mq of Gq consisting of all the edges (vi,2j , vi,2j+1)
for i = 1, . . . , q and j = 1, . . . , (q − 1)/2, and the edges (v2i,1, v2i+1,1) for i =
1, . . . , (q − 1)/2 (in Figure 2, edges of Mq are indicated by bold lines). Since
|Mq| = |V1|, Mq is a maximum matching and Fq is 0-expanding. By Lemma 5
δ∗(Fq) = δ(Fq) = 1 follows. ut

It can be shown that every clause-set whose incidence graph is a square grid
is satisfiable (i.e., such clause-sets are “var-satisfiable” [28]); hence the clause-
sets Fq constructed in the preceding proof are satisfiable. Since for a directed
graph D the directed clique-width of any induced subgraph of D does not exceed
the directed clique-width of D, it is not difficult to obtain from Fq unsatisfiable
clause-sets of high directed clique-width and constant maximum deficiency. How-
ever, it would be interesting to find minimal unsatisfiable clause-sets with such
a property.

6 Falsum Number

A propositional formula α is called f -implicational if → (implication) is the only
connective of α; however, α may contain the constant f (falsum).

Theorem 9 (Franco, et al. [15]) Satisfiability of f -implicational formulas of
length l with at most two occurrences of each variable and k occurrences of f can
be decided in time O(kkl2). Hence satisfiability of such formulas is fixed-param-
eter tractable.

This result has been recently improved to O(3kl2), k ≥ 4, using dynamic pro-
gramming techniques [20].

Our objective is to apply Theorem 9 to clause-sets by means of a procedure
that translates any given clause-set F into an equisatisfiable f -implicational for-
mula F→. In Fig. 3 we state a slight generalization of the procedure used by
Heusch [19] (Heusch considers only clause-sets where every variable occurs at
most three times). We call the resulting f -implicational formula F→ a standard
translation of the given clause-set F .



Step 1. We recursively eliminate clauses containing pure literals.
Step 2. If a variable x occurs in exactly one clause negatively and in more

than one clause positively, we perform a renaming; i.e., we replace each
occurrence of x by ¬x and vice versa. We repeat this step as often as
possible.

Step 3. If a variable x occurs in more than one clause positively, say in
clauses C1, . . . , Cr, we take a new variable x′ and replace the clause Ci

by (Ci \ {x}) ∪ {¬x′}, i = 1, . . . , r, and we add the clause {x, x′}. We
repeat this step as often as possible.
Now each variable occurs exactly once positively.

Step 4. If a variable x occurs in more than one clause negatively, say in
clauses C1, . . . , Cr, we take new variables x1, . . . , xr, and replace the
clause Ci by (Ci \ {¬x}) ∪ {¬xi}, i = 1, . . . , r. Moreover, we intro-
duce the formula x → (x1 ∧ · · · ∧ xr). We repeat this step as often as
necessary.
We end up with a set F ′ of clauses and a set S of formulas of the shape
x → (x1 ∧ · · · ∧ xr).

Step 5. For each clause C ∈ F ′, choose an ordering L1, . . . , Ls of its
literals and replace C by the formula L1 ∨ · · · ∨ Ls.
Step 5 yields a set S′ of disjunctions (originating from the clauses of
F ′).

Step 6. We apply to formulas of S and S ′ the equivalences
(E1) ¬x = x → f (E3) ϕ ∧ ψ = (ϕ → (ψ → f)) → f
(E2) ϕ ∨ ψ = (ϕ → f) → ψ (E4) (ϕ → f) → f = ϕ
and obtain a set of f -implicational formulas T and T ′, respectively.

Step 7. We choose an ordering α1, . . . , αp of the formulas in T ′ ∪ T and
obtain the f -implicational formula F→ := (α1 → . . .→ αp → f) → f .
Note that Step 5 can be performed by applying (E3) to α1 ∧ · · · ∧ αp.

Fig. 3. Transformation of a clause-set F into an f -implicational formula F→.

We state some properties of this construction which can be easily verified.

1. F and F→ are equisatisfiable.
2. Every variable of F→ occurs at most twice.
3. The length of F→ is polynomially bounded by the length of F .

Since the translation procedure contains some nondeterministic steps, a clause-
set may have several standard translations. We define the falsum number #f (F )
of a clause-set F as the smallest number of f -occurrences over all its standard
translations.

Lemma 6 Let C = {L1, . . . , Ln} be a clause with r negative literals, π a per-
mutation of {1, . . . , n}, and let C→ be an f -implicational formula obtained from
Lπ(1) ∨ · · · ∨Lπ(r) by the equivalences (E2) and (E4). Then C→ contains at least
|n−r−1| occurrences of f . Such C→ which contains exactly |n−r−1| occurrences
of f can be found in polynomial time.



Proof. We proceed by induction on n. For n ≤ 1 the statement holds by trivial
reasons. Assume n ≥ 2 and consider Lπ(1)∨· · ·∨Lπ(r). We put C0 = C \{Lπ(1)}.

First assume that Lπ(1) is a negative literal. By induction hypothesis, C→
0

contains at least |(n−1)−(r−1)−1| = |n−r−1| occurrences of f . We cannot do
better than setting C→ = Lπ(1) → C→

0 . Hence the first part of the lemma holds if
Lπ(1) is a negative literal. Now assume that Lπ(1) is positive literal. By induction
hypothesis, C→

0 contains at least |n − r − 2| occurrences of f . Since r ≤ n − 1,
n−r−2 is negative if and only if r = n−1. We obtain C→ = (Lπ(1) → f) → C→

0

by equivalence (E2) (equivalence (E4) cannot be applied, since neither Lπ(1) nor
C→

0 has the form β → f). Thus C→ contains at least |n− r− 2|+1 = |n− r− 1|
occurrences of f . Hence the first part of the lemma holds in any case.

Next we show by induction on n that we can actually find some C→ which
contains exactly |n− r − 1| occurrences of f . If C contains a negative literal L,
then we put C0 = C \ {L}. By induction hypothesis we find C→

0 with exactly
|(n−1)−(r−1)−1| = |n−r−1| occurrences of f . We put C→ = Lπ(1) → C→

0 as
above. However, if all literals of C are positive (i.e., r=0), then only equivalence
(E2) applies, and we obtain a translation C→ with n−1 = |n−r−1| occurrences
of f . ut

Note that the previous lemma holds even if we allow arbitrary groupings, e.g.,
(Lπ(1)∨ (Lπ(2)∨Lπ(3)))∨Lπ(4). We also note that C→ contains no f -occurrences
if and only if C is a definite Horn clause (i.e., C contains exactly one positive
literal).

Lemma 7 For a clause-set F we can find a standard translation F→ with min-
imal number of f -occurrences in polynomial time. Hence the falsum number of a
clause-set can be computed in polynomial time.

Proof. Consider the sets of f -implicational formulas T, T ′ as obtained within the
procedure of Fig. 3 (see Step 6). In view of Lemma 6, we can assume that the
total number of f -occurrences in T is minimal. We choose an ordering α1, . . . , αp

of the formulas in T ∪ T ′ and put F→ := (α1 → . . . → αp → f) → f . If
some formula α in T ∪ T ′ has the form α′ → f , then we assure that α comes
last, and we can save two f -occurrences by equivalence (E4), and F→ reduces
to (α1 → . . . → αp−1 → α′) → f . Thus, #f (F ) equals the total number of
f -occurrences in T ∪ T ′ plus j ∈ {0, 2}, where j = 0 if some formula of T ∪ T ′

has the form α → f , and j = 2 otherwise. ut

By means of this lemma, Theorem 9 immediately yields the following result.

Theorem 10 Satisfiability of clause-sets with bounded falsum number is fixed-pa-
rameter tractable.

Our next result indicates that falsum number for clause-sets is outperformed
by maximum deficiency.

Theorem 11 #f (F ) ≥ δ(F ) holds for clause-sets F without pure literals. Con-
sequently, #f (F ) ≥ δ∗(F ) for minimal unsatisfiable clause-sets.



Proof. Let F = {C1, . . . , Cm} and var(F ) = {x1, . . . , xn}. We apply the first
four steps of the translation to F , and we are left with a set of clauses F ′ =
{C ′

1, . . . , C
′
m, {x1, x

′
1}, . . . , {xr, x

′
r}}, r ≤ n, and a set S of implications. No

variable except xr+1, . . . , xn occurs positively in C ′
1, . . . , C

′
m, hence at most n−r

clauses of C ′
1, . . . , C

′
m are definite Horn (note that each variable occurs exactly

once positively in F ′). It follows now by Lemma 6 that by applying Steps 5 and
6, we introduce at least m− r ≥ m− n ≥ δ(F ) occurrences of f . ut

It remains open whether other translations yield a significantly smaller falsum
number than the standard translation.

7 Discussion and Open Questions

Parameterized complexity is a fast growing research area, and we expect that
several new FPT results for SAT will be obtained in the years to come. We
hope that this paper provides a starting point for further developments and
comparative results.

The parameters considered above depend on the chosen transformation of
clause-sets to other combinatorial objects (graphs, hypergraphs, directed graphs,
f -implicational formulas); therefore it is natural to ask (a) for new transforma-
tions which yield smaller values for the considered parameters, and (b) for trans-
formations to other known FPT problems (see, e.g., [7]) which possibly give rise
to natural parameterizations for SAT.

Furthermore, it might be interesting to study recursively defined SAT hi-
erarchies (see [23,21]) in the framework of parameterized complexity. Known
algorithms decide satisfiability of clause-sets belonging to the k’th level of these
hierarchies in time nO(k); this does not constitute fixed-parameter tractability.
However, fixed-parameter intractability results (i.e., W [1]-hardness, [12]) are
apparently not known.
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