
Homomorphisms of

Conjunctive Normal Forms

Stefan Szeider 1

Institute of Discrete Mathematics, Austrian Academy of Sciences,
Sonnenfelsgasse 19, A–1010 Vienna, Austria

Abstract

We study homomorphisms of propositional formulas in CNF generalizing symme-
tries considered by Krishnamurthy. If ϕ : H → F is a homomorphism, then unsat-
isfiability of H implies unsatisfiability of F . Homomorphisms from F to a subset
F ′ of F (endomorphisms) are of special interest, since in such case F and F ′ are
satisfiability-equivalent. We show that smallest subsets F ′ of a formula F for which
an endomorphism F → F ′ exists are mutually isomorphic. Furthermore, we study
connections between homomorphisms and autark assignments.

We introduce the concept of “proof by homomorphism” which is based on the
observation that there exist sets Γ of unsatisfiable formulas such that (i) formulas in
Γ can be recognized in polynomial time, and (ii) for every unsatisfiable formula F

there exist some H ∈ Γ and a homomorphism ϕ : H → F . We identify several sets
Γ of unsatisfiable formulas satisfying (i) and (ii) for which proofs by homomorphism
w.r.t. Γ and tree resolution proofs can be simulated by each other in polynomial
time.

Key words: CNF formula, satisfiability problem, homomorphism, retraction, proof
system, tree resolution, autark assignment, minimally unsatisfiable, p-simulation,
category

1 Introduction

We consider propositional formulas in conjunctive normal form represented
as sets of clauses. Let H and F be formulas and ϕ a map from the literals
of H to the literals of F . We call ϕ a homomorphism from H to F if it
preserves complements and clauses, i.e., ϕ(`) = ϕ(`) for every literal ` of H,

1 This work has been supported by the Austrian Science Fund, P13417-MAT

28 March 2002

and {ϕ(`) : ` ∈ C } ∈ F for every clause C of H. It can be shown that
homomorphisms preserve unsatisfiability (see Corollary 3):

(*) if there is a homomorphism from H to F , then unsatisfiability of H
implies unsatisfiability of F .

Homomorphisms of formulas can be considered as a generalization of “sym-
metries with complementations” studied in [2,3,13,25].

1.1 Reducing formulas by homomorphisms

Consider a formula F and some subset F ′ of F ; in general, it is hard to decide
whether F and F ′ are equivalent w.r.t. satisfiability (take, for example, F ′ = ∅;
then F is satisfiable if and only if F and F ′ are satisfiability-equivalent).
In certain cases, however, we can give a “certificate” for equivalence—if the
certificate is known, then equivalence can be checked efficiently; for example,
autark assignments of F which satisfy all clauses in F \F ′ can be used as such
certificate (see [14,17]).

Endomorphisms (i.e., homomorphisms from a formula to itself) can be used in
a similar way. If ϕ is an endomorphism of F , then ϕ(F) := {ϕ(C) : C ∈ F }
is—by definition of homomorphisms—a subset of F . If ϕ is an isomorphism,
then ϕ(F) = F . Otherwise, ϕ(F) is a proper subset of F ; in this case we
can reduce F to ϕ(F), since F is satisfiable if and only if ϕ(F) is satisfiable
(one direction follows by (*), the other direction follows trivially from ϕ(F) ⊆
F). In Section 4 we study such reductions in a more general framework; in
particular, we consider subsets F ′ of F such that (i) F ′ = ϕ(F) for some
endomorphism ϕ of F , and (ii) ϕ′(F ′) = F ′ for any endomorphism ϕ′ of F ′

(i.e., F ′ is a minimal subset (w.r.t. set inclusion) of F to which F can be
reduced by some endomorphism). In this case we call F ′ a core of F . Our
main results about cores (see Section 4) are as follows.

• Cores of a formula are isomorphic; hence cores can be used as a normal
form.

• To decide whether a formula F can be reduced by some endomorphism to
a proper subset F ′ of F (i.e., F is not a core of itself) is NP-complete.

1.2 Proof by homomorphism

Assume that H is an unsatisfiable formula and, based on the specific nature
of H, its unsatisfiability can be established in polynomial time. Given a ho-
momorphism ϕ from H to some formula F , then, in view of (*), for showing

2

unsatisfiability of F it suffices to verify that ϕ is in fact a homomorphism from
H to F ; evidently, the latter can be performed in polynomial time. Hence, the
triple (H,ϕ, F) can be considered as a proof of the unsatisfiability of F .

Thus one might try to identify sets Γ of unsatisfiable formulas such that

• for every unsatisfiable formula F there exist H ∈ Γ and a homomorphism
ϕ from H to F (i.e., Γ is homomorphically complete);

• Γ can be recognized in polynomial time (i.e., Γ is tractable).

If Γ is a homomorphically complete and tractable set of unsatisfiable formulas,
then ΠΓ := { (H,ϕ, F) : H ∈ Γ and ϕ is a homomorphism from H to F } can
be considered as a proof system.

We show that a well known tractable subclass of minimally unsatisfiable for-
mulas is homomorphically complete. A formula F is minimally unsatisfiable,
if it is unsatisfiable, and removing any clause from F makes it satisfiable. It
is known that every minimally unsatisfiable formula has strictly more clauses
than variables [1,5]. MU(k) denotes the set of minimally unsatisfiable formulas
for which the number of clauses exceeds the number of variables exactly by k.
Though recognition of minimally unsatisfiable formulas is a computationally
hard problem ([20]), formulas in MU(k) can be recognized in polynomial time
for every fixed k ≥ 1 ([6,16]).

A main result of this paper is the homomorphic completeness of MU(1).
We pinpoint exactly the efficiency of ΠMU(1) by showing that every proof
(H,ϕ, F) ∈ ΠMU(1) can be transformed into a tree resolution proof of F in
polynomial time, and vice versa. Hence, ΠMU(1) and tree resolution are p-equiv-
alent (c.f. [4,24]). Clearly, for fixed k ≥ 1, the set MU(≤ k) :=

⋃

k

i=1 MU(i) is
homomorphically complete, since MU(1) ⊆ MU(≤ k); it is conceivable that for
k ≥ 2 the proof system ΠMU(≤k) is stronger than ΠMU(1). We show, however,
that ΠMU(≤k) and ΠMU(1) are p-equivalent. Further we show that for every
fixed k ≥ 1, the set MU′(k) := MU(k)∪ {{�}} is homomorphically complete,
and that the corresponding proof system ΠMU′(k) is p-equivalent with ΠMU(1).
This result is due to Kleine Büning and Zhao [12].

2 Basic Concepts and Notation

2.1 Formulas and Assignments

We think of literals as propositional variables with an assigned parity 0 or 1;
a literal is called positive (negative) if its parity is 0 (1, respectively). Positive

3

literals are called variables. For a literal ` we denote the literal with the oppo-
site parity by `. A set of literals is tautological if it contains literals ` and `. A
clause is a finite non-tautological set of literals. The empty clause is denoted
by �.

For a clause C, we denote the set of variables x such that x or x is in C by
var(C), and we put lit(C) := { x, x : x ∈ var(C) }. Similarly, for a formula
F , we put var(F) :=

⋃

C∈F var(C) and lit(F) :=
⋃

C∈F lit(C). Following [7] we
define δ(F) := |F |−|var(F)| to be the deficiency of F . The length of a formula
F is defined as

∑

C∈F |C|.

A partial assignment (or assignment, for short) of a formula F is a map t :
Xt → {0, 1} defined on a subset Xt ⊆ var(F). If x ∈ Xt then we put t(x) :=
1−t(x). An assignment t of F is total if Xt = var(F). An assignment t satisfies
a clause C if C contains a literal ` such that t(`) = 1; t satisfies a formula
F if it satisfies all clauses of F . A formula F is satisfiable if it is satisfied by
some partial assignment; otherwise, F is called unsatisfiable. A formula F is
minimally unsatisfiable if F is unsatisfiable but every proper subset of F is
satisfiable. The set of all minimally unsatisfiable formulas is denoted by MU;
for an integer k we define

MU(k) := {F ∈ MU : δ(F) = k },

MU(≤ k) := {F ∈ MU : δ(F) ≤ k }.

Note that MU(k) = MU(≤ k) = ∅ for k ≤ 0, see [1,5].

Let t be an assignment of a formula F . We say that t touches a clause C ∈
F if var(C) ∩ Xt 6= ∅. The assignment t is autark if t satisfies all clauses
which it touches. Following [17] we call a formula lean if it has no autark
assignment t such that Xt 6= ∅. Note that if t is an autark assignment of
F , then {C ∈ F : var(C) ∩ Xt = ∅ } and F are satisfiability-equivalent; it
follows that minimally unsatisfiable formulas are lean. Autark assignments
were introduced by Monien and Speckenmeyer [19] and have been studied in
depth by Kullmann [14,17].

2.2 Proof Systems

Cook and Reckhow [4] introduced a general concept of propositional proof
systems in terms of functions on sets of strings. We use a more informal concept
based on the discussion in [24].

A proof of a formula F is a finite object x which certifies unsatisfiability of F
in the sense that, if x is given, then unsatisfiability of F can be verified in

4

polynomial time (proofs of unsatisfiability are also called refutations). A proof
system Π is a set of proofs such that (i) elements of Π can be recognized in
polynomial time, and (ii) a formula F is unsatisfiable if and only if Π contains
a proof of F .

Let Π, Π′ be proof systems. We say that Π′ p-simulates Π if every proof x ∈ Π
can be transformed into a proof x′ ∈ Π′ in polynomial time such that x and x′

prove the same formula. If Π and Π′ p-simulate each other, then we say that
they are p-equivalent.

The efficiency of (propositional) proof systems is closely related to the NP =
co-NP question; this relationship is a main motivation for a systematic study
of proof systems and their relative strength in terms of p-simulation ([4,24]).

2.3 Resolution

If C1 and C2 are clauses and there is exactly one variable x such that x ∈ C1,
x ∈ C2, then the clause C := (C1 ∪ C2) \ {x, x} is called the resolvent of C1

and C2. We also say that C is obtained by resolving on x. A tree resolution
proof T is a binary rooted tree where the vertices v of T are labeled by clauses
λT (v) such that (i) whenever a vertex v has two parents v1, v2, then λT (v) is
the resolvent of λT (v1) and λT (v2), and (ii) the root of T is labeled by the
empty clause. In case (i) we call the variable on which λT (v1) and λT (v2) are
resolved the resolution variable of v. A tree resolution proof T is literal-once
(cf. [22]) if distinct non-leaves v, v′ always have distinct resolution variables,
i.e., λT (v) and λT (v′) are not obtained by resolving on the same variable. If v
is a leaf of T then we call λT (v) a premise of T ; the set of all premises of T is
denoted by pre(T). We say that T is a tree resolution proof of a formula F if
pre(T) ⊆ F .

It is well-known that a formula is unsatisfiable if and only if there is a tree
resolution proof of it; thus tree resolution is a proof system in the above sense.

3 Homomorphisms

Let H,F be formulas and ϕ : lit(H) → lit(F) a map. We call ϕ a homomor-
phism from H to F if

(1) ϕ(`) = ϕ(`) for every literal ` ∈ lit(H), and
(2) ϕ(C) ∈ F for every clause C ∈ H

5

where ϕ(C) := {ϕ(`) : ` ∈ C }. We simply write ϕ : H → F if ϕ is a
homomorphism from H to F . For a homomorphism ϕ : H → F we call the
formula ϕ(H) := {ϕ(C) : C ∈ H } the homomorphic image of H under ϕ.

It is immediate that if ϕ : F1 → F2 and ψ : F2 → F3 are homomorphisms, then
their composition ψ ◦ϕ, defined by ψ(ϕ(`)) for ` ∈ lit(F1), is a homomorphism
from F1 to F3.

A homomorphism ϕ from F to itself is called an endomorphism of F . Note
that the set of endomorphisms of a formula F is a monoid under composition.
We denote the unit element of this monoid by idF .

A homomorphism ϕ from H to F is a bimorphism if the underlying map
ϕ : lit(H) → lit(F) is bijective. In contrast to group theory, the inverse map
ϕ−1 : lit(F) → lit(H) of a bimorphism is not necessarily a homomorphism
from F to H (for example, every homomorphism from H = {{x}} to F =
{{y}, {y}} is a bimorphism, but there is no homomorphism from F to H).
A bimorphism ϕ : H → F is called isomorphism if ϕ−1 is a homomorphism;
ϕ is called automorphism if it is an isomorphism and H = F . Obviously, an
endomorphism ϕ of H is an automorphism if and only if ϕ(H) = H.

Note that a renaming of a formula F (in the sense of [18]) is nothing but an
automorphism ϕ of F such that ϕ(`) ∈ {`, `} for all literals ` ∈ lit(F).

Lemma 1 Let ϕ : H → F and t an autark assignment of ϕ(H). Then t′

defined by t′(x) := t(ϕ(x)) for x ∈ Xt′ := ϕ−1(Xt) is an autark assignment
of H.

PROOF. Consider a clause C ′ ∈ H such that Xt′ ∩ var(C ′) 6= ∅. Hence
var(ϕ(C ′)) ∩ Xt 6= ∅. Since t is autark, we have t(`) = 1 for some literal
` ∈ ϕ(C ′). Choose `′ ∈ C ′ such that ϕ(`′) = `. Consequently, t′(`′) = t(ϕ(`′)) =
t(`) = 1. �

Example 2 Let H = {{x, y, z}, {x, y}} and F = {{u}, {u}, {u, v}}. We
define a homomorphism ϕ : H → F by setting ϕ(x) = ϕ(y) = ϕ(z) = u; the
values for the remaining literals x, y, z of H are determined uniquely by the
condition ϕ(`) = ϕ(`). The homomorphic image ϕ(H) of H under ϕ is {{u},
{u}}. Another homomorphism ψ : H → F can be defined by ψ(x) = ψ(y) = u,
ψ(z) = v. We have ψ(H) = {{u}, {u, v}}. The partial assignment t of ψ(H)
with Xt = {v} and t(v) = 1 satisfies the clause {u, v}. Since {u, v} is the only
clause of ϕ(H) touched by t, t is autark. Applying Lemma 1 we obtain an
autark assignment t′ of H with Xt′ = ψ−1(Xt) = {z} and t′(z) = t(v) = 1.

Corollary 3 Let ϕ : H → F be a homomorphism. If H is unsatisfiable, then
F is unsatisfiable.

6

The above result is key for our subsequent considerations. From Lemma 1 the
following is also immediate.

Corollary 4 The homomorphic image of a lean formula is lean.

4 Retracts and Cores

A homomorphism ϕ : H → F is a retraction if there exists a homomorphism
ψ : F → H such that ϕ ◦ψ = idF . In this case we call ψ a co-retraction and
F a retract of H. A formula H is a core if every retract F of H is isomorphic
to H. A retract F of H is a core of H if F is a core. The following observations
are direct consequences of this concept.

(1) The composition of retractions is a retraction; hence, a retract of a retract
of H is a retract of H.

(2) Every retract of a formula H is isomorphic to a subset H ′ of H, and there
is a retraction ϕ : H → H ′ whose restriction to H ′ equals idH′ .

(3) If F is a retract of H, then F is satisfiable if and only if H is satisfiable;
consequently, minimally unsatisfiable formulas are cores.

Example 5 Let F = {{x0, x1, y1}, {x1, y0, y1}, {x0, x2, y1}, {x2, y0, y1},
{x0, y0}, {x0, y0}, {x0, y0}, {x0, y0}}. Setting ϕ(x0) = ϕ(x1) = ϕ(x2) = x0

and ϕ(y0) = ϕ(y1) = y0 defines a retraction of F with retract F ′ := {{x0, y0},
{x0, y0}, {x0, y0}, {x0, y0}} and co-retraction idF ′. Since F ′ is minimally un-
satisfiable, it follows that F ′ is a core of F .

If we know an endomorphism of a formula, then we can find a retraction
efficiently:

Lemma 6 Let ϕ be an endomorphism of F . Then there exists an integer
n ∈ {1, . . . , |F |} such that ϕn is a retraction. Consequently, a formula is a
core if and only if each of its endomorphisms is an automorphism.

PROOF. Note that for every i ≥ 1 we have ϕi+1(F) ⊆ ϕi(F); thus |ϕi+1(F)| ≤
|ϕi(F)|. Therefore, there exists an integer n ∈ {1, . . . , |F |} such that |ϕn(F)| =
|ϕn+1(F)|. Since ϕn+1(F) ⊆ ϕn(F), it follows that F ′ := ϕn(F) = ϕn+1(F);
thus ϕn acts as an automorphism on F ′. Let ψ denote the automorphism of
F ′ which is inverse to ϕn. We have ϕn ◦ψ = idF ′; thus ϕn is indeed a re-
traction. If F is a core, we have ϕn(F) = F , thus ϕ(F) = F ; i.e., ϕ is an
automorphism. �

Example 7 Consider F = {{x1, x2}, {y}, {z}}. Setting ϕ(x1) = ϕ(x2) = y
and ϕ(y) = ϕ(z) = z defines an endomorphism of F with F ′ := ϕ(F) = {{y},

7

{z}}. Note that ϕ is not a retraction, since ϕ ◦ ψ = idF ′ implies that ψ(y) ∈
{x1, x2}, but then ψ({y}) /∈ F . (Nevertheless, F ′ is a retract of F with respect
to the retraction defined by ϕ′(x1) = ϕ′(x2) = y, ϕ′(y) = y, and ϕ′(z) = z.)
However, ϕ2 is a retraction of F with retract F ′′ := {{z}}; as co-retraction we
can take either ψ(z) = y or ψ(z) = z. Evidently, F ′′ is a core, but F ′ is not.

Lemma 8 Cores of a formula are mutually isomorphic.

PROOF. Let F1, F2 be cores of a formula H and let ϕi be a retraction H →
Fi, i = 1, 2. By the above observation (2) we may assume that F1, F2 are
subsets of H. Consider the restriction ϕ′1 of ϕ1 to F2, and the restriction ϕ′2 of
ϕ2 to F1. The composition ϕ′1 ◦ϕ

′
2 is an endomorphism of F1, and by Lemma 6

it is an automorphism. Hence ϕ′1 and ϕ′2 are isomorphisms. �

In view of Lemma 8, a core of a formula can be considered as a normal form.
Unfortunately, cores are difficult to recognize. To show this we deploy the
following construction.

Let F be a formula. For each x ∈ var(F) we take two new variables x[1], x[2],
and for every clause C ∈ F we define

C◦ := { x[1] : x ∈ C } ∪ { x[2] : x ∈ C }.

We put

F ◦ := {C◦ : C ∈ F } ∪ { {x[1], x[2]} : x ∈ var(F) }.

Note that each clause C of F ◦ is either positive (all literals in C are positive)
or negative (all literals in C are negative). The following can be verified easily
(cf. [5, Lemma 2]).

Lemma 9 For every formula F

(1) F is satisfiable if and only if F ◦ is satisfiable, and
(2) F ∈ MU(k) if and only if F ◦ ∈ MU(k), for every k ≥ 1.

In the proof of Theorem 12 below we use a simple concept of connectedness:
We say that clauses C,C ′ of a formula F are connected in F if there exists
a sequence of clauses D1, . . . , Dr (r ≥ 1 and Di ∈ F for i ∈ {1, . . . , r}) such
that D1 = C, Dr = C ′, and var(Di) ∩ var(Di+1) 6= ∅ for 1 ≤ i < r. We call F
connected if every pair of clauses of F is connected.

Lemma 10 Minimally unsatisfiable formulas are connected.

8

PROOF. Let F be a minimally unsatisfiable formula and suppose to the
contrary that F is not connected. Consequently, there is a proper subset F ′ 6= ∅
of F such that (i) F ′ is connected and (ii) there is no connected F ′′ such that
F ′ (F ′′ ⊆ F . Being a proper subset of a minimally unsatisfiable formula,
F ′ is satisfiable. Let t be a satisfying total assignment of F ′. Note that Xt =
var(F ′) 6= ∅. By (ii), var(F ′)∩ var(F \F ′) = ∅; hence F ′ contains all clauses of
F which are touched by t. We conclude that t is an autark assignment of F .
Since Xt 6= ∅, F is not lean. However, every minimally unsatisfiable formula
is lean, a contradiction. �

Lemma 11 The homomorphic image of a connected formula is connected.

PROOF. Let H,F be formulas and let ϕ : H → F be a homomorphism.
We assume that ϕ(H) 6= ∅; otherwise the lemma is vacuously true. Choose
C,C ′ ∈ ϕ(H) arbitrarily, and let C0, C

′
0 ∈ H with ϕ(C0) = C and ϕ(C ′

0) = C ′.
Since H is connected, there is a sequence D1, . . . , Dr (r ≥ 1 and Di ∈ H for
i ∈ {1, . . . , r}) such that D1 = C0, Dr = C ′

0, and var(Di) ∩ var(Di+1) 6= ∅ for
1 ≤ i < r. It follows that var(ϕ(Di)) ∩ var(ϕ(Di+1)) 6= ∅ for 1 ≤ i < r. Hence
the sequence ϕ(D1), . . . , ϕ(Dr) certifies that C and C ′ are connected in ϕ(H).
Since C,C ′ where chosen arbitrarily, the lemma follows. �

Theorem 12 Recognition of cores is co-NP-complete.

PROOF. If a formula F is not a core, then by Lemma 6 there must be
an endomorphism ϕ of F which is not an automorphism; i.e., ϕ(F) 6= F . If
such ϕ is guessed, then ϕ(F) 6= F can be verified in polynomial time. Hence,
recognition of cores is in co-NP.

To demonstrate co-NP-completeness, we use the following construction. In [20]
it is shown that for every formula F one can construct in polynomial time a
formula f(F) such that

• F is satisfiable if and only if f(F) is satisfiable;
• if f(F) is unsatisfiable, then f(F) is minimally unsatisfiable.

Let F 6= ∅ be an arbitrary formula and put H := f(F). Furthermore, let

Y := {{y[1], y[2]}, {y[1], y[2]}, {y[2]}}

and observe that Y is a satisfiable core. Consider H∗ := H◦ ∪ Y (we assume
that var(H◦) and var(Y) are disjoint). We show that F is unsatisfiable if and
only if H∗ is a core; the theorem will then follow from the co-NP-completeness
of unsatisfiability.

9

Assume that F is unsatisfiable. Now H and (by Lemma 9) H◦ are minimally
unsatisfiable; thus H◦ is a core (see observation (3) above). Since Y is satisfi-
able, we conclude by Corollary 3 that

(*) there is no homomorphism from H◦ to Y .

On the other hand, every homomorphic image of Y is either isomorphic to Y
or to Y ′ = {{z}, {z}}. However, no subset of H◦ is isomorphic to Y or Y ′ by
construction. Hence

(**) there is no homomorphism from Y to H◦.

Let ϕ be any endomorphism of H∗; we show that ϕ is an automorphism. Since
Y is evidently connected, and since H◦ is connected by Lemma 10, it follows
by Lemma 11 that ϕ(Y) and ϕ(H◦) are connected subsets of H∗. However,
every connected subset of H◦ is either a subset of Y or a subset of H◦, since
var(Y) ∩ var(H◦) = ∅. Therefore, (*) implies ϕ(Y) ⊆ Y , and (**) implies
ϕ(H◦) ⊆ H◦. Since Y and H◦ are cores, ϕ(Y) = Y and ϕ(H◦) = H◦ follows.
Thus ϕ(H∗) = H∗, and so ϕ is an automorphism of H∗. In view of the second
statement of Lemma 6, we conclude that H∗ is a core.

Conversely, assume that F is satisfiable; thus H and H◦ are satisfiable. Let t
be a satisfying total assignment of H◦. Observe that t(x[1]) = 1 or t(x[2]) = 1
for every x ∈ var(H); we assume, w.l.o.g., that always t(x[1]) = 1 prevails. It
follows that every negative clause of H◦ must contain x[2] for some x ∈ var(H).
Define ϕ : lit(H◦) → lit(Y) by setting ϕ(x[i]) := y[i] for all x ∈ var(F)
and i = 1, 2. It follows now that all positive clauses of H◦ are mapped to
{y[1], y[2]}, and all negative clauses of H◦ are mapped to {y[1], y[2]} or {y[2]}.
Thus ϕ is a homomorphism from H◦ to Y . The union of ϕ and idY yields an
endomorphism ϕ′ of H∗ with ϕ′(H∗) = Y (H∗; hence H∗ is not a core. �

5 The Concept of Proof by Homomorphism

Let Γ be a set of unsatisfiable formulas. We say that Γ is tractable if Γ can
be recognized in polynomial time, and that Γ is homomorphically complete
(or h-complete, for short) if for every unsatisfiable formula F there exist some
H ∈ Γ and a homomorphism ϕ : H → F . We call a triple (H,ϕ, F) a proof of
F by homomorphism (with respect to Γ) if H ∈ Γ and ϕ is a homomorphism
from H to F . The set of all proofs by homomorphism w.r.t. Γ is denoted
by ΠΓ.

The next result is a direct consequence of these newly introduced concepts
and Corollary 3, and is key for the subsequent considerations.

10

Proposition 13 If a set Γ of unsatisfiable formulas is both tractable and
h-complete, then ΠΓ is a proof system.

Example 14 The tractable set Γhorn of unsatisfiable Horn formulas is not
h-complete: For, every unsatisfiable Horn formula contains at least one clause C
with |C| ≤ 1 (see, e.g., [11, p. 205]); thus, if F is an unsatisfiable formula with
|C| ≥ 2 for all C ∈ F (e.g., F = {{x, y}, {x, y}, {x, y}, {x, y}}), then there
cannot be some H ∈ Γhorn with ϕ : H → F being a homomorphism.

One may ask whether there exists some tractable and h-complete set of unsat-
isfiable formulas at all. Goldstern [8] observed that a trivial set Γtriv with such
property can be obtained by adding an irrelevant clause CF of exponential
cardinality (w.r.t. the length of F) to every unsatisfiable formula F . This can
be done in such a way that

• there is a homomorphism from F ∪ {CF} to F ;
• F ∪ {CF} is unsatisfiable.

Thus Γtriv := {F ∪ {CF} : F is unsatisfiable } is h-complete. Now, the unsat-
isfiability of F can be tested in polynomial time w.r.t. the length of F ∪{CF};
hence Γtriv is tractable.

We are going to identify non-trivial sets of unsatisfiable formulas which are
both tractable and h-complete.

The next lemma, which is due to an observation by Kullmann [15], follows from
the fact that if ϕ : H → F is a homomorphism and C is a resolvent of clauses
C1, C2 such that lit(C1), lit(C2) ⊆ lit(H), then either (i) ϕ(C) is the resolvent
of ϕ(C1) and ϕ(C2) or (ii) ϕ(C) is a tautological set of literals. However,
by standard transformations one can efficiently eliminate tautological sets of
literals from resolution proofs (see [11]). An explicit proof of Lemma 15 can
be found in [21].

Lemma 15 Let ϕ : H → F be a homomorphism. Then every tree resolution
proof of H can be transformed into a tree resolution proof of F in polynomial
time.

Proposition 16 Let Γ be a set of unsatisfiable formulas. Tree resolution
p-simulates ΠΓ if and only if for every formula in Γ a tree resolution proof
can be found in polynomial time.

PROOF. Assume that tree resolution p-simulates ΠΓ. Choose some H ∈ Γ
and observe that (H, idH , H) ∈ ΠΓ. By assumption we can obtain a tree
resolution proof T of H in polynomial time.

11

Conversely, let H ∈ Γ and ϕ : H → F be given. By assumption we can find a
tree resolution proof of H in polynomial time. In view of Lemma 15 we find ef-
ficiently a tree resolution proof of F . Hence tree resolution p-simulates ΠΓ. �

6 Proofs by Homomorphism w.r.t. MU(1)

Lemma 17 Let T be a tree resolution proof. Then we can find in polynomial
time a tree resolution proof T ′ and a homomorphism ϕ : pre(T ′) → pre(T)
such that

(1) T ′ differs from T at most in its labeling;
(2) ϕ(λT ′(v)) = λT (v) for all vertices of T , consequently ϕ(pre(T ′)) = pre(T);
(3) T ′ is literal-once (c.f. Section 2.3).

PROOF. We proceed by induction on the number n of vertices of T . If n = 1
then we put T ′ := T . Now assume n > 1 and choose a non-leaf v of T such
that the predecessors v1, v2 of v are leaves. Let x be the resolution variable
of v and assume, w.l.o.g., that x ∈ λT (v1) and x ∈ λT (v2). Denote by T0 the
tree resolution proof obtained from T by removing v1 and v2. Let T ′

0, ϕ0 as
supplied by induction hypothesis with respect to T0. We take a new variable
y and obtain from T a tree resolution proof T ′ by replacing λT by λT ′ defined
as follows. We put λT ′(w) := λT ′

0
(w) if w /∈ {v1, v2} and

λT ′(v1) := ϕ0

(

λT (v1) \ {x}
)

∪ {y},

λT ′(v2) := ϕ0

(

λT (v2) \ {x}
)

∪ {y}.

Evidently, T ′ satisfies the claimed properties. We extend ϕ0 to the required
homomorphism ϕ by setting ϕ(y) := x. �

Based on structural properties of MU(1) established in [5], it is shown in [22,
Proposition 3] that F ∈ MU(1) if and only if there is a literal-once resolution
proof T with pre(T) = F . Hence Lemma 17 implies the following (see also [16,
Lemma C.5]).

Proposition 18 To every tree resolution proof T one can find in polynomial
time a formula H ∈ MU(1) and a homomorphism ϕ : H → pre(T) such that

(1) ϕ(H) = pre(T), and
(2) |H| equals the number of leaves of T .

Corollary 19 MU(1) is homomorphically complete.

12

�

{y} {y}

{x, y} {x, y} {y, z} {y, z}

{x, y, z} {x, z} {x, y, z} {x, z}

Fig. 1.

�

{y1} {y1}

{x1, y1} {x1, y1} {y1, z2} {y1, z2}

{x1, y1, z1} {x1, z1} {x2, y1, z2} {x2, z2}

Fig. 2.

Example 20 Figure 1 shows a tree resolution proof T of the formula F =
{{x, y, z}, {x, z}, {x, y}, {x, y, z}, {y, z}} (the clause {x, z} appears at two
leaves of T). By the construction presented in the proof of Lemma 17 we ob-
tain the literal-once tree resolution proof T ′ depicted in Figure 2 with H :=
pre(T ′) = {{x1, y1, z1}, {x1, z1}, {x1, y1}, {x2, y1, z2}, {x2, z2}, {y1, z2}} ∈
MU(1) and a homomorphism ϕ : H → F defined by ϕ(x1) = ϕ(x2) = x,
ϕ(y1) = y, and ϕ(z1) = ϕ(z2) = z.

If F ∈ MU(1) then a tree resolution proof of F can be found in polynomial
time (formulas in MU(1) can be refuted by unit resolution, [5]). Hence MU(1)
satisfies the hypothesis of Proposition 16; together with Proposition 18 the
next result follows. (Observe that, if T is literal-once, then |pre(T)| equals the
number of leaves of T .)

Theorem 21 Tree resolution and ΠMU(1) are p-equivalent.

By means of Proposition 18 we can generalize the following characterization
of lean formulas which is due to Kullmann [17].

Theorem 22 ([17]) A formula F is lean if and only if for every clause C ∈ F
there is a tree resolution proof T such that C ∈ pre(T) ⊆ F .

Corollary 23 A formula F is lean if and only if for every h-complete set Γ
of unsatisfiable formulas the following holds. For every clause C ∈ F there is
some formula H ∈ Γ and a homomorphism ϕ : H → F such that C ∈ ϕ(H).

PROOF. Assume that F is lean. Let Γ be a h-complete set of unsatisfiable

13

formulas and choose some C ∈ F . By Theorem 22 there is a tree resolution
proof T with C ∈ pre(T) ⊆ F . Hence, by Proposition 18, there is a formula
H1 ∈ MU(1) and a homomorphism ϕ1 : H1 → F such that pre(T) = ϕ1(H1);
thus C ∈ ϕ1(H1). Since Γ is h-complete, there exist H2 ∈ Γ and a ho-
momorphism ϕ2 : H2 → H1. However, since H1 is minimally unsatisfiable,
ϕ2(H2) = H1 follows. Putting ϕ := ϕ1 ◦ϕ2 yields a homomorphism from H2

to F such that C ∈ ϕ(H2).

Since minimally unsatisfiable formulas are lean, the converse follows from
Corollaries 4 and 19 by putting Γ := MU(1). �

7 Proofs by Homomorphism w.r.t. MU(k) and MU(≤ k)

It is natural to consider proof systems based on MU(k) and MU(≤ k) for some
fixed k ≥ 2. Note that MU(≤ k) is both tractable ([16,6]) and h-complete
(MU(1) ⊆ MU(≤ k)) for every fixed k ≥ 1; thus ΠMU(≤k) is a proof system by
Proposition 13. The question arises whether, for k > 1, ΠMU(≤k) is stronger
than ΠMU(1). In [10] it is shown that formulas in MU(k) have short resolution
proofs. Moreover, in [16] it is shown that tree resolution proofs of formulas
in MU(k) (and so tree resolution proofs of formulas in MU(≤ k)) can be
found in polynomial time. Hence, the next result follows by Proposition 16
and Theorem 21.

Theorem 24 Tree resolution and ΠMU(≤k) are p-equivalent, for fixed k ≥ 1.

Note that every h-complete set Γ of unsatisfiable formulas must contain the
trivial formula F0 = {�}, since otherwise unsatisfiability of F0 cannot be
established by a homomorphism from an element of Γ. Thus, given any set Γ
of unsatisfiable formulas, we consider Γ′ := Γ ∪ {F0}.

In a preliminary version of this article we asked whether the sets MU′(k) for
k > 1 are homomorphically complete. A recent result by Kleine Büning and
Zhao [12] answers this question positively. Below, we present a proof based on
the proof given in [12], using the following construction.

Lemma 25 For every k ≥ 1 there is a formula Fk ∈ MU(k) and a homomor-
phism ϕk with ϕk(Fk) = {{x}, {x}}; Fk and ϕk can be obtained in polynomial
time depending on k.

14

PROOF. First we obtain a formula Hk ∈ MU(k) by the following recursive
construction. Set

H1 := {{x}, {x}},

H2 := {{x, y}, {x, y}, {x, y}, {x, y}}.

Clearly H1 ∈ MU(1) and H2 ∈ MU(2). For k ≥ 3 construct Hk−1 and take
a formula H ′

2 isomorphic to H2 such that var(Hk−1) ∩ var(H ′
2) = ∅. Choose

clauses C ∈ Hk−1, D ∈ H ′
2, and a new variable z /∈ var(Hk−1) ∪ var(H ′

2). Put
C ′ := C ∪ {z}, D′ := D ∪ {z}, and

Hk := (Hk−1 \ {C}) ∪ (H ′
2 \ {D}) ∪ {C ′, D′}.

It can be easily verified that Hk ∈ MU(k).

Now consider Fk := H◦
k

for some k ≥ 1. Note that it takes only polyno-
mial time to construct Hk and Fk. By Lemma 9, Fk ∈ MU(k). We define a
homomorphism ϕk : Fk → H1 by setting ϕk(x[1]) = ϕk(x[2]) = x for each
x ∈ var(Hk). Since each clause C of Fk is either negative or positive, it follows
that ϕk(Fk) = H1. Trivially, ϕk is obtained in linear time for given Fk. �

Lemma 26 ([12]) For each formula {�} 6= F ∈ MU(1) and every k ≥ 1
there is some Hk ∈ MU(k) such that F = ϕ(Hk) for some homomorphism
ϕ : Hk → F . Hk and ϕ can be obtained in polynomial time depending on the
length of F .

PROOF. Consider {�} 6= F ∈ MU(1). By [5, Theorem 12] there is a variable
x such that F contains exactly one clause C1 with x ∈ C1 and exactly one
clause C2 with x ∈ C2. Consider Fk and ϕk : Fk → {{x}, {x}} as defined in
Lemma 25 (we assume that Fk and F have no variables in common). Now put

Hk := F \ {C1, C2} ∪

{C ∪ C1 \ {x} : C ∈ Fk, ϕk(C) = {x} } ∪

{C ∪ C2 \ {x} : C ∈ Fk, ϕk(C) = {x} }.

It can be verified by a straight forward argument that Hk is minimally unsat-
isfiable. Moreover, |Hk| = |F |−2+|Fk| and |var(Hk)| = |var(F)|−1+|var(Fk)|.
Thus δ(Hk) = k and so Hk ∈ MU(k). Setting

ϕ(y) :=

ϕk(y) if y ∈ var(Fk);

y otherwise (i.e., y ∈ var(F) \ {x})

for y ∈ var(Hk) evidently defines a homomorphism ϕ : Hk → F with ϕ(Hk) =
F . �

15

Example 27 Consider the formula F = {{v, w}, {w}, {v, w, x}, {v, x}} ∈
MU(1). We look for a formula H2 ∈ MU(2) and a homomorphism ϕ : H2 → F .
According to Lemma 25 we construct F2 = {{x[1], x[2]}, {y[1], y[2]}} ∪
{ {x[i], y[j]} : 1 ≤ i, j ≤ 2 } and ϕ2 : F2 → {{x}, {x}} with ϕ2(x[i]) =
ϕ2(y[i]) = x, i = 1, 2. Observe that C1 = {v, w, x} and C2 = {v, x} are the
only clauses of F containing x and x, respectively. By the construction pre-
sented in the proof of Lemma 26 we get H2 = {{v, w}, {w}, {v, w, x[1], x[2]},
{v, w, y[1], y[2]}} ∪ { {v, x[i], y[j]} : 1 ≤ i, j ≤ 2 } and the homomorphism
ϕ : H2 → F defined by ϕ(v) = v, ϕ(w) = w, ϕ(x[i]) = ϕ(y[i]) = x, i = 1, 2.

Theorem 28 ([12]) Tree resolution and ΠMU′(k) are p-equivalent, for every
fixed k ≥ 1.

PROOF. In view of Proposition 16, and since tree resolution proofs of for-
mulas in MU(k) can be found in polynomial time (see the discussion at the
beginning of this section), it suffices to show that ΠMU′(k) p-simulates tree
resolution. Let F 6= {�} be an arbitrary unsatisfiable formula and T a tree
resolution proof of F . By Theorem 21 we can obtain a formula F1 ∈ MU(1)
and a homomorphism ϕ : F1 → F in polynomial time. Applying Lemma 26
we obtain Hk ∈ MU(k) and a homomorphism ψ : Hk → F1 with ψ(Hk) = F1

in polynomial time with respect to the length of F . Now ϕ ◦ψ is the required
homomorphism from Hk to F . �

8 Concluding remarks

Our results do not imply that tree resolution p-simulates ΠΓ for every tractable
h-complete set Γ of unsatisfiable formulas. For example, one could consider
the set MU(1)∪PH where PH denotes the set of so called “pigeonhole formu-
las.” Since pigeonhole formulas require (tree) resolution proofs of exponential
size [9], it follows that tree resolution cannot p-simulate ΠMU(1)∪PH. Recently
we showed that for every proof system Π there is a tractable and h-complete
set Γ of unsatisfiable formulas such that ΠΓ and Π are p-equivalent [23].

Formulas in CNF, together with our notion of homomorphism, form a category,
and there are several adjunctions which naturally arise within this framework.
It is conceivable that an in-depth study of this category and its adjunctions
will provide new insights into the structure of formulas in CNF and the satis-
fiability problem.

16

Acknowledgment

The author thanks the referees for valuable suggestions which helped to im-
prove content and presentation of this paper.

References

[1] R. Aharoni and N. Linial. Minimal non-two-colorable hypergraphs and minimal
unsatisfiable formulas. Journal of Combinatorial Theory, Series A, 43:196–204,
1986.

[2] N. H. Arai and A. Urquhart. Local symmetries in propositional logic. In
R. Dyckhoff, editor, Automated Reasoning with Analytic Tableaux and Related
Methods (Proc. TABLEAUX 2000), volume 1847 of Lecture Notes in Computer
Science, pages 40–51. Springer Verlag, 2000.

[3] B. Benhamou and L. Sais. Tractability through symmetries in propositional
calculus. Journal of Automated Reasoning, 12:89–102, 1994.

[4] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, Mar. 1979.

[5] G. Davidov, I. Davydova, and H. Kleine Büning. An efficient algorithm for the
minimal unsatisfiability problem for a subclass of CNF. Annals of Mathematics
and Artificial Intelligence, 23:229–245, 1998.

[6] H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of
minimal unsatisfiable formulas with fixed clause-variable difference. To appear
in Theoretical Computer Science.

[7] J. Franco and A. Van Gelder. A perspective on certain polynomial time solvable
classes of satisfiability. To appear in Discrete Applied Mathematics.

[8] M. Goldstern. Personal communication.

[9] A. Haken. The intractability of resolution. Theoretical Computer Science,
39:297–308, 1985.

[10] H. Kleine Büning. An upper bound for minimal resolution refutations. In
G. Gottlob, E. Grandjean, and K. Seyr, editors, CSL’98, volume 1584 of Lecture
Notes in Computer Science, pages 171–178. Springer Verlag, 1999.

[11] H. Kleine Büning and T. Lettman. Propositional Logic: Deduction and
Algorithms. Cambridge University Press, Cambridge, 1999.

[12] H. Kleine Büning and X. Zhao. Homomorphisms and MU(k). Unpublished
Manuscript, Mar. 2001.

17

[13] B. Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22:327–
337, 1985.

[14] O. Kullmann. Lean clause-sets: Generalizations of minimally unsatisfiable
clause-sets. To appear in Discrete Applied Mathematics.

[15] O. Kullmann. Personal communication.

[16] O. Kullmann. An application of matroid theory to the SAT problem. In
Fifteenth Annual IEEE Conference of Computational Complexity, pages 116–
124, 2000.

[17] O. Kullmann. Investigations on autark assignments. Discrete Applied
Mathematics, 107(1-3):99–137, 2000.

[18] B. Meltzer. Theorem-proving for computers: some results on resolution and
renaming. The Computer Journal, 8:341–343, 1966.

[19] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps.
Discrete Applied Mathematics, 10:287–295, 1985.

[20] C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved. Journal
of Computer and System Sciences, 37(1):2–13, 1988.

[21] S. Szeider. Conjunctive Normal Forms with Bounded Deficiency. PhD thesis,
University of Vienna, Sept. 2001.

[22] S. Szeider. NP-completeness of refutability by literal-once resolution. In
R. Gore, A. Leitsch, and T. Nipkow, editors, IJCAR 2001, Proceedings of
the International Joint Conference on Automated Reasoning, volume 2083 of
Lecture Notes in Artificial Intelligence, pages 168–181. Springer Verlag, 2001.

[23] S. Szeider. The universality of refutation by homomorphism. Preprint, 2001.

[24] A. Urquhart. The complexity of propositional proofs. The Bulletin of Symbolic
Logic, 1(4):425–467, Dec. 1995.

[25] A. Urquhart. The symmetry rule in propositional logic. Discrete Applied
Mathematics, 96/97:177–193, 1999.

18

