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Abstract

Event-based systems enable real-time monitoring of business incidents and automated decision making to
react on threats or seize time-critical business opportunities. Applications thereof are manifold, ranging from
logistics, fraud detection and recommender systems to automated trading. Business incidents reflect in
sequences of events. Understanding these sequences is crucial for designing accurate decision rules. At the
same time, analysis tools for event data are still in their infancy.

The on-hand thesis presents a comprehensive and generic model for similarity search in event data. It
illuminates several application domains to derive requirements for fuzzy retrieval of event sequences. Similarity
assessment starts at the level of data fields encapsulated in single events. In addition, occurrence times of
events, their order, missing events and redundant events are considered. In a graphical editor, the analyst
models search-constraints and refines the pattern sequence. The model aims at utmost flexibility and
configurability which is achieved by pattern modeling, configurable similarity techniques with different
semantics and adjustable weights for similarity features.

The algorithm computes the similarity between two event sequences based on assigning events in the target
sequence to events in the pattern sequence with respect to given search constraints. The deviations in the best
possible assignment make up the final similarity score. This assignment is discovered by applying an efficient
Branch-&-Bound algorithm. In addition, a novel way for time-series similarity is introduced and integrated. It
slices a time-series at decisive turning points of the curve and compares the slopes between these turning

points.

We surveyed applicability in real-world scenarios in four case studies. Results are promising for structured
business processes of limited length. When choosing appropriate weights and configuration parameters to
focus the search on aspects of interest, it is able to reveal if a reference case is a reoccurring pattern in the
data.
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1 Introduction

1.1 Technological background

Event-based systems and particularly the concept of Complex Event Processing (CEP) [29] have been developed
and used to control business processes with loosely coupled systems. CEP enables monitoring, steering and
optimizing business processes with minimal latency. It facilitates automated, near real-time closed-loop
decision making at an operational level to discover exceptional situations or business opportunities. Typical
application areas are financial market analysis, trading, security, fraud detection, customer relationship
management, logistics like tracking shipments and compliance checks.

In an event-based system, any notable state change in the business environment is captured in the form of an
event. Events are data capsules holding data about the context of the state change in so called event
attributes. Chains of semantically or temporally correlated events reflect complete business processes,

sequences of customer interactions or any other sequence of related incidents.
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Figure 1: Sense and respond model®

Figure 1 illustrates the closed-loop decision processes employed by CEP software. One common conceptual
(business) model is the so-called sense and respond model. Hereby, each cycle consists of 5 steps. In the
“sense” step adapters capture input data from the IT landscape of an enterprise (which is a reflection of the
physical business world). Interpretation refers to understanding, transforming, preparing and enriching the

! Figure by courtesy of SENACTIVE Inc.



data. This step is followed by an analysis step which tries to illuminate the given situation and context. Finally, a
decision can be made and carried out by responding to the business environment. Typically a system of
configurable rules is used for the decision process.

In addition to the real-time processing, during the past years one requirement has clearly emerged: The
success of event-driven business solutions depends on an ongoing learning process. It is an iterative cycle
including the analysis and interpretation of past processing results and the conversion of them into the event-
processing logic. Analysis tools are required which are tailored to the characteristics of event data to answer
questions like: Where did irregularities occur in my business? Did processes change over time? Which patterns
can be recognized in my business? To answer these questions, the analyst has to be equipped with a whole
range of supporting tools such as extensive retrieval facilities to extract required data sets. Expressive
visualizations are necessary to navigate through event data and recognize recurring patterns and irregularities
that influence the business performance.

For the analysis of historical event data, but also for the operational system, one question is of particular
interest: Having an event sequence on hand, which other sequences are similar to this sequence? For data
analysis, answering this question helps for searching the historic data for incidents and event patterns similar
to a known reference pattern. In the operational system, the discovery of similarities can be integrated into the
decision processes for automated system decisions to react in near real-time to certain event patterns. In
addition, it can be used for forecasting of events or process measures based on similar historic incidents.

The on-hand mechanisms for searching similar event sequences have been designed and developed for being
integrated into the SENACTIVE product suite. SENACTIVE Inc.? offers its customers a generic complex event
processing engine with various graphical modeling facilities for designing the event processing flow. In addition,
analysis software (the SENACTIVE EventAnalyzer™) provides facilities for analyzing historic event data. Despite
this fact, the proposed mechanisms and algorithms can be applied in any other event-based system
environment as well, as the data representation we rely on conforms to common CEP structures.

One major characteristic immanent to CEP is its claim of being generic. This means in particular the possibility
to apply it in different application domains. In fact, some of nowadays applications for CEP solutions have not
even been considered at all when CEP first emerged. This could be experienced for the real-time event
processing but also for the analysis solutions. With the diversity of applications comes also a great diversity in
the data sets. This reaches from the types of events occurring over the length and structure of correlating
event sequences to the data types and number of event attributes contained in each event. Hence, an
approach towards event-similarity intended to be integrated into such a generic environment must not only
fulfill the requirements for one specific domain and fall short in others. Instead it must be generic, configurable
and adaptable to multiple data sets.

1.2 Objectives

The aims pursued by this work are manifold. The first objective is to analyze and concrete the requirements for
a similarity framework to be applied to event sequences. Many approaches and techniques towards similarity
have already been published (see also chapter 2 - Related work), but none of these applies directly to the given
data sets. Several current application areas are taken as a basis to find different use cases for similarity
searching and derive a set of requirements to be covered by the similarity model.

2 .
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The second major objective was to define a coherent similarity assessment model, which is able to take into
consideration the different data characteristics and also provides sufficient flexibility to be adjusted as
required, for instance by configurable weighting factors and search pattern constraints.

The third and most comprehensive objective includes the development of algorithms to efficiently execute the
similarity model. Hereby, the focus is set to enhanced techniques for considering different semantics of
attributes (such as continuous value series spanning multiple events) and on modeling a search sequence in
order to restrain the search process and optimize the matching.

Finally, the work aims at providing the resulting similarity search mechanisms in a user-friendly way to business
analysts. Hereby, a compromise should be found between maximum control over the search process and
minimum complexity of the user interface.

A decent performance evaluation with respect to different use cases rounds up the thesis.

1.3 Data structure and data repository

This section describes the data representation the presented similarity search model is able to cope with, and
provides insights into how these data are stored in the SENACTIVE InTime™ system.

Continuous capturing and processing of events produces vast amounts of data. An efficient mass storage is
required to store all events and prepare the data for later retrieval and access. This mass storage is called
EventBase, a specific database repository for events in the SENACTIVE InTime™ system. During the processing,
events which should be kept persistent are pushed into this repository. Also, information about event
correlations is captured and stored. In addition, the events can be indexed for later retrieval with full-text
search as described by Rozsnyai et al. [42].

1.3.1 Single events

Events represent business activities. In order to maintain information about the reflected activity, events
capture attributes about the context when the event occurred. Event attributes are items such as the agents,
resources, and data associated with an event, the tangible result of an action (e.g., the placement of an order
by a customer), or any other information that gives character to the specific occurrence of that type of event.
For example, Figure 2 shows some context attributes of a typical order event.

Order
DateTime [Timestamp]
Order ID [String]
Product ID [String]
Customer Name [String]
Price [Numeric]

Figure 2: Event type definition of simple order event



This template of attributes defines the structure of a certain class of events and is called event type. It indicates
the underlying type of state change in a business process that is reflected by the event. The concept of event
types is strongly related to the concept of a class in object-oriented programming (OOP). Event attributes might
by of various data types. The SENACTIVE InTime™ system supports all basic .NET runtime types such as /nt32 or
String, but also multi-value types (lists, dictionaries) and arbitrary custom implemented objects. In addition,
events can be nested as attributes in other events, whereby an arbitrary hierarchy is theoretically possible. The
used event model is called SARI event model. It was originally proposed by Schiefer and Seufert [43] and

described in greater detail by Rozsnyai et al. [41].

Figure 3 illustrates the event model in UML notation. Event types can inherit from other event types and may

contain various attributes of different types.
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Runtime Type 41 ! Key Value
JAY
|
String Integer

Figure 3: The SARI event model

1.3.2 Event correlations

In many cases single events do have a certain context and are semantically related to other events. For
instance, a “task started” event is probably semantically related to a “task completed” event with the same
task identifier. Correlations are sequences of semantically related events and form the basis for most of the
following algorithms.



An event correlation is defined as a set of related events. A correlation set is a template definition for how
correlations are identified. The correlation set defines tuples of attributes whose values must match in order
for events to correlate.

C OpenAccount / BetPlaced ) Cash-In

DateTime [Timestamp] DateTime [Timestamp] DateTime [Timestamp]
—g@ Username [String] @—@ Username[String] Username [String]

Name [String] BetID [Long] Amount [Double]

Sex [Char] BetType [String] PaymentMethod [String]

ZipCode [Long] Amount [Double]

City [String] Odds [Double]

Street [String]

DateTime [Timestamp] DateTime [Timestamp] DateTime [Timestamp]
—@ Username|[String] @—@® Username[String] Username [String]

BetID [Long] BetID [Long] Amount [Double]

Amount [Double] BetType [String] PaymentMethod [String]

Amount [Double]
Odds [Double]

. Betlost 0 Frorconent

DateTime [Timestamp]
@ Username|[String]
BetID [Long]
Amount [Double]

Figure 4: Correlation set definition

Figure 4 provides an example of a correlation set. Several events of different event types are correlated to a
coherent sequence if the value of the attribute “username” matches. Such a correlation is not limited to a
single event attribute, but can be defined based on multiple attributes. The red items are a group of matching
tuples, each matching each other event type. Also, the order of the events occurring is not decisive. In case of a
cash-in event occurring first and a cash-out event occurring second, these events will also be correlated. A
sequence of correlated events may contain an arbitrary number of events of each event type. Thus, an event
sequence based on the above correlation set may contain for instance 10 “bet placed” and and 2 “cash-out”
events.

1.3.3 Database structure

In the EventBase, a specific table for each event type is automatically created when modelling the event type
definition. This specific events table contains a separate column for each event attribute, whereby basic .NET
runtime types such as String can be mapped directly to database types (i.e. varchar). Complex types such as
lists or nested types are serialized to XML to ease handling. A generic event table contains an xml
representation, id and timestamp of each event.

Correlations are also stored in the database. Per unique value group of correlation attributes a database entry
exists, and a relational table links them to the actual events in the generic events table.

The EventBase also contains all required metadata used during the similarity search process such as event type
definitions and correlation sets.
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1.4 The SENACTIVE EventAnalyzer™

The SENACTIVE EventAnalyzer™ is a business intelligence tool built on top of the EventBase. It allows the user
to query the event data and generate interactive graphical views of events. Its major components are a search
and query module, the patented event-tunnel visualization looking into the historic events like a cylinder, event
charts, several configuration parameters for the visualizations such as colors mapping, size mapping, shape
mapping and positioning of data points and utilities such as a snapshot functionality to capture analysis results
and create ready-to-use view templates or a details view to browse all attribute values of an event. Figure 5
shows a screenshot of the EventAnaIyzerT'vI with some of the named modules.
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Bl View Tools Similarity o Help
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s < [CTEAES T
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Figure 5: The SENACTIVE EventAmarIyzerT'VI

For further information on the visualizations provided by the EventAnalyzer™, the interested reader is referred

to Suntinger et al. [48].

The EventAnalyzer™ is intended to be a generic framework for event visualization and mining. It is constantly
extended by new visualizations and data mining features. The elaborated similarity search mechanisms are also
integrated directly into this framework. The objective is to trigger a similarity search directly from any of the
visualizations to search for event sequences similar to those identified in the graphical views.
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1.5 General remarks

The on-hand thesis builds upon a similarity model and framework that has been designed and implemented in
collaboration with Hannes Obweger. The result of this collaboration was the basic model for assessing
similarity between event sequences, considering various possible extensions. In his thesis [37], this basic model
for determining the similarity between single events and sequences of correlated events is depicted in great
detail and illuminated from a theoretical as well as an algorithmic point of view. Building upon this model, this
work focuses on enhancements and extensions in order to cover requirements arising in different application
domains. Among these extensions are enhanced event attribute similarity techniques and search pattern
modeling and constraining. Hence, considerations on the base similarity model are reduced to necessary
essentials in order to understand the presented model enhancements. For further, in-depth considerations the
interested reader is referred to Obweger’s thesis [37]. Also, the evaluation has been done in collaboration so
that presented results in the evaluation section are overlapping as regarding the base similarity features.
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2 Related work

This section discusses related work. It is divided into several categories, each treating a specific aspect of the
on-hand thesis. The objective of the section is to give an overview of what has already been done in the
context of and related to this work and has been taken as a basis for the event-based similarity model.

2.1 Similarity applications

In recent years a multitude of approaches and models have been published related to the broad topic of
similarity searching. These models have been applied in various application domains. For instance, Agrawal
et.al. [1] focus on discrete time-series databases and mention the following applications: company growth
patterns, product selling patterns, stock price movement patterns and comparison of a musical score with
copyrighted material. Pratt [38] applies time-series pattern searching to temperature measures and
electroencephalogram data. Other datasets which have been used for testing are photon arrival rates
(astronomy), space shuttle orientations during flights [25] and measures from production machines, like size
deviations. Data set sizes presented in these works vary from a few thousand up to a couple of millions of data
points. Another application for time-series similarity discussed for instance by Vlachos et al. [54] are location
trails, so-called trajectories, which have fuelled the interest in similarity searching algorithms in recent times.
Aside of time-series similarity, Moen [34] proposes a model for attribute, event type and event sequence
similarity. Application areas investigated in this work are news articles with keywords as attributes, and student
courses enrolment data, whereby the courses are classified by several categories and properties. In addition,
event sequence similarity was tested with a dataset of telecommunication company alarms and a WWW page
requests log. Similar data were also investigated by Weiss and Hirsh, who try to predict telecommunication
equipment failures from alarm messages [56].

Other applications requiring similarity search are image databases [30], biology/genetics (e.g. comparison of
proteins and protein sequences [59]) and user behaviour patterns for interfaces [28].

In this article, several similar application areas are discussed, whereby some extend already explored
application examples. For instance, the topic of news articles and the stock price movement patterns can be
combined for detecting complex trading scenarios considering price movement and industry news at the same
time. For other applications such as image retrieval or protein sequence similarity, the presented approach is
not directly applicable.

2.2 Similarity models

For the different application areas discussed in section 2.1, also different similarity models for assessing the
similarity between the items to be compared have been developed. Lin [27] describes 3 intuitive rules for
assessing similarity: (1) Similarity is related to commonalities. The more commonalities two items share, the
more similar they are. (2) Similarity is related to differences. The more differences two items have, the less
similar they are. (3) The maximum similarity between two items is when they are identical, no matter how
much commonalities they share.

On top of these basic assumptions, similarity models have been proposed which can be roughly categorized
into [19]:

=  Geometric models
=  Feature-based models
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=  Alignment-based models
=  Transformational models

Geometric models such as the nonmetic multidimensional scaling model (MDS) proposed by Shepard [44] try
to express similarity by representing items as points in a usually low dimensional metric space and assessing
the distance between the items in this space. Subsequently, similarity is inversely related the items’ distance in
the metric space. Resulting from the underlying geometric model, several mathematical basics apply for the
similarity assessment. An example is the triangle inequality. Let d:X X X = R, be a distance function in the
metric space expressing the dissimilarity between two items, the triangle inequality defined as

d(a,b) + d(b,c) = d(a,c)

Formula 1: Triangle inequality

applies, whereby a, b and ¢ are compared items. In the context of similarity, especially this triangle inequality
may lead to “intuitively incorrect” results.

Due to this and further shortcomings of geometric models, Tversky [53] proposed an alternative, feature-based
approach. The idea of Tversky’s similarity model is that similarity is measures by common and distinctive
features. Let sim(a,b) denote an interval similarity expressing the similarity between two items a and b.
Furthermore, let f be a scale defined on the relevant feature scale. Tversky proposed to compute the similarity
between two items a and b as

sim(a,b) = f(ANB) — f(A—B) — f(B — A)
Formula 2: Tversky similarity model

with A N B representing the features which a and b have in common. A — B are features which a has, but b
has not. Equivalently, B — A are features b has but a has not. Later, Gati and Tversky [18] proposed to multiply
these values with different weighting factors. Factor 8 weights common features, « is the weight for unique
features of a and f8 is the weight for unique features of b. The resulting formula is called the contrast model:

sim(a,b) =0*f(ANB) —axf(A—B)—B*f(B—A)
Formula 3: Tversky and Gati contrast similarity model
For instance, common features are weighted stronger as compared to distinct features. Based on common and
distinct features, also other computation models have been proposed. Examples are the Sjoberg similarity

model [46]

f(AnB)

sim(a, b) = f(A—UB)

Formula 4: Sjoberg similarity model

which computes similarity from the ratio of common features to the total number of features, or the Eisler and
Enkman similarity model [14] and the Bush and Mosteller similarity model [7].
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f(AnB)

sim(a,b) = ———F—
@h) = s+ B
Formula 5: Eisler and Enkman similarity model
. f(AnB)
sim(a,b) = ——
@b =5

Formula 6: Bush and Mosteller similarity model
These three models can all be seen as a variation of the general equation

fAnB)
f(AUB) + af(A—B) + Bf(B — A)

sim(a, b) =

Formula 7: General ratio function for feature-based similarity

which differs from Tversky’s contrast model by applying a ratio function as opposed to a linear combination of
common and distinctive features [22].

Most of these models have been tested exclusively for the similarity of images, and the formulas emerged as
the best similarity measures for the given purpose and the selected features. Thus, a feature-based similarity
approach strongly depends on the feature selection, and is currently applied mainly in the area of retrieval in
image databases.

Alignment-based similarity models have been developed to overcome some of the shortcomings in feature-
based models, especially in the domain of image comparisons. The main idea behind alignment-based models
is the following: When comparing an image of a woman wearing a red hat and a car having a red hood both
share the common feature “red”. In an alignment-based model, such a common feature may not increase the
similarity score, because the hat does not correspond to the car’s hood. Markman and Gentner [33] argue that
similarity is more accurate and intuitive, if matching features are weighted stronger if they belong to parts that
are placed in correspondence, whereby they refer specifically to images.

The last one of the four essential similarity models is the transformational model. The idea behind this model is
to assess similarity by the costs required to transform one item into the other. Hereby, different transformation
operations may have different costs. For instance, Moen [34] applies such a model to event sequences.
Transformation operations are moving an event, insertion and deletion. The idea is to first find the sequence of
transformations which is most efficient in terms of transformation costs and to assess the similarity based on
the sum of all transformation costs for the ideal sequence of transformations.

The different approaches for defining and computing the similarity between two items form the basis for the
similarity model applied in this thesis. A geometric model has known shortcomings such as the triangle
inequality problem, but brings the advantage of being “exact” in terms of comparing the original items instead
of meta-information about the items. This makes it applicable only to a limited subset of data types.

The feature-based model brings the advantage of being able to deal with huge masses of data. In addition,
many experiments have proven that it often leads to intuitive results. Yet, the model strongly depends on the
right features being selected. Current research efforts mainly focus on feature selection for images. For event
sequences, no equivalent publications are available.
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The alignment-based model solves several characteristic shortcomings of feature matching in image
processing, and the idea of making the feature weighting dependent on whether the feature context is similar
may be adapted to the on-hand requirements.

Transformation models have been shown to be applicable also in the domain of event sequence similarity. One
open issue of the approach is the handling of sub-item matching.

2.3 Event sequence and attribute similarity

The general similarity models discussed in section 2.2 are taken from various application domains. Many are
strongly related to the image retrieval domain and have their origin in cognitive psychology. In this section,
related publications are discussed which deal specifically with event sequences or cover the similarity
assessment of attributes.

Moen [34] proposed a model for attribute, event sequence and event type similarity, whereby the event
sequence similarity model has originally been published by Mannila and Moen in [31]. Thereby, the attribute
model is a simple pairwise similarity computation which considers the complete set of values as a reference.
The event sequence similarity model uses the edit distance between two event sequences. First, the minimal
number of transformations to transform the first sequence into the second one is found (transformations are
insertion, deletion and moving in time), and subsequently the similarity is assessed by the costs of these
operations. The edit distance is computed using a dynamic programming algorithm. The event type similarity
model treats the question of how the type of an occurring event can be considered for the similarity. For
instance, two different types of alert events may be considered as being similar, even if it is not the same event
type, because they are semantically related.

While the edit distance approach towards event sequence similarity is intuitive, it has several shortcomings:
subsequence matching is not supported by this approach. Therefore, only sequences expected to have equal
length can be compared. In addition, the edit distance computation takes time O (nm) for sequences of lengths
n and m. Also, finding a suitable cost model for the edit operations is problematic.

Mannila and Seppanen [32] try to alleviate some of these shortcomings and propose an approach which makes
use of random projections assigning each event type a random k-dimensional vector. For the searching
process, the vector of the pattern sequence is compared to the data set and some items where the distance
between the vectors in the k-dimensional space is the smallest are retrieved. In a next step, the edit distance
approach is used to compute a precise similarity score. Due to the fact that most of the search can be
performed in k-dimensional Euclidian space and the vectors can be hold in index structures such as an R-tree
[21], the method performs well for large data sets.

The issue of attribute similarity is discussed by Lin [27] in an information-theoretic view on similarity. The
publication discusses similarity of ordinal values based on the distribution of values in the data set, feature
vectors and string similarity. Das et al. [13] point out that similarity metrics cannot only be user defined, but
also defined on the basis of the data. Their similarity notion considers relations to other attributes and two
items are considered to be similar, if they share similar relations. Such relations can for instance be determined
with known data mining approaches such as clustering and association mining [8].

2.4 Time series similarity

In terms of event-based similarity search, time-series similarity can be seen as a specific type of attribute
similarity for numeric event attributes. The major difference is that it is not an attribute similarity technique
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comparing attributes on an event-by-event level, but at the level of the complete sequence of attribute values.
Translating a sequence of events to a time-series means seeing each event as a data point in time and taking an
event’s numeric attribute as the corresponding amplitude of the time series at the concerned point in time.

Many approaches have been published towards efficient similarity algorithms for time series. These are
intended to be applicable for various computations including indexing, subsequence similarity, clustering, rule
discovery and many more.

Many of the similarity models published so far for the comparison of time-series are based on the idea of
dimension reduction, which is to transform the original signal into a transformed space and to select some
subset of the transformed coefficients as features.

The first one to apply dimension reduction for time-series similarity was Agrawal et.al. [1] [2] who used
Discrete Fourier Transformation (DFT) for the dimension reduction. Other approaches based on DFT can be
found in [12], [8], [15] and [40]. The DFT is used to map the time series to the frequency domain. The first few
Fourier coefficients, which represent the time series accurately are then indexed using an R*tree, which can
then be used for fast retrieval. The major shortcoming of the DFT is its unsuitability when signals have
discontinuities. It is well-suited for sinus-like signals.

Discrete Wavelet Transformation (DWT) is an alternative approach to DFT-based dimension reduction. The
Haar wavelet is most commonly used for this purpose [47] but other wavelets are applicable as well and
provide reasonable or better results, as discussed by Popivanov and Miller [9]. The main problem of wavelets
is that they are not smooth. Therefore, for approximating smooth time series many coefficients are required,
which in turn reduces the performance. A further discussion on dimensionality reduction with DFT and DWT
can be found in [24] and [57].

A third dimension reduction approach is Singular Value Decomposition (SWD) proposed by Korn et al. [26]. It
uses the KL transform for dimension reduction, but is inapplicable in practice, because it needs to recompute
basis vectors with every database update.

Piecewise Aggregate Approximation (PAA) [58] is a fast dimension reduction technique. It performs the
reduction by subdividing a time series into subsequences of equal length. Taking the mean of each
subsequence, a feature sequence is formed. Obviously, the major problem of the approach is that it only
provides a rough estimation of similarity.

Toshniwal and Joshi [50][51] propose a distinct similarity model for time series based on slope variations. In a
preprocessing step, time series are brought to the same time range and the coefficients are proportionally
scaled. After the preprocessing, for small subsequences of equal length, the slopes are compared, and for the
similarity assessment, the cumulative variation in slopes is computed. The technique can handle vertical shifts,
global scaling and shrinking as well as variable length queries. One shortcoming of the approach is the missing
support of subsequence matching.

Negi and Bansal [36] generalized Agrawal’s basic model in order to allow subsequence matching and variable
length queries. In the model, the data a first preprocessed. The second step is a so-called Atomic Matching
trying to find source subsequences matching target subsequences. A KD-tree is used for indexing the items. In a
third step, the subsequence matching, it is tried to stitch all subsequences to form a long sequence matching
the target sequence.

Vlachos et al. [54] argue that for efficient retrieval, additional mechanisms that integrate above discussed
distance computations may be required. The proposed solution is an index structure capable of supporting
multiple distance measures.
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2.5 Similarity pattern modeling and search interfaces

Very early considerations on interfaces and how to provide fuzzy searching to users can be found in the work of
Motro [35] who proposed vague queries for relational databases. The idea was to extend the relational model
with data metrics as definitions of distances between values of the same domain. Though innovate, entering
textual, vague queries is still difficult for the user.

In the area of genetics, a set of tools with simple user interfaces exist focusing on searching biological sequence
databases. Examples are SimSearcher [52] or DELPHI [17]. Yet, these interfaces do not allow directly entering or
modifying a search pattern, but are limited to configuration options or general search constraints and an
output of search results.

The most wide-spread application which is in worldwide use probably is BLAST (Basic Local Alignment Search
Tool) [3]. BLAST is an umbrella term for searching tools to compare DNA and amino sequences to existing and
documented sequences.

One noteworthy project is called Smart Sequence Similarity Search (S4) System, proposed by Chen et.al. [11].
S4 is an expert system with a web-based user interface which helps biochemical researches not experienced
with similarity search algorithms to choose for the right search method and parameters. The underlying expert
knowledge is a decision tree, which can be edited by expert users in a separate interface. This advising tool
helps users getting started with difficult sequence similarity searches. The agent-based user interface is
especially valuable in case of many different algorithms to choose from and many parameters to be adjusted.
Introducing a recommendation system or wizard for event sequence similarity searching would be possible as
well and could help in speeding up the learning phase with the software.

Berchtold and Kriegel [4] proposed S3, a system for similarity search in CAT database systems. S3 supports the
query types “query-by-example”, “query-by-sketch” and “thematic-query”. A sketch-based user interface is
also presented by Pu et.al. [39] for the retrieval of 3D CAT models. Hereby, the user can draw simple 2D
freehand sketches and search for similar figures in the model database. It is possible to sketch the front view,

the top view and the side view separately.

Wattenberg provides a sketch-based interface specifically for querying stock prices [55]. QuerySketch® is a
prototype program where the user can draw a stock chart over a given, fixed time period and the system
immediately searched for similar stock movements. The interface is very simplistic but still intuitive and simple
to use.

In summary, user interfaces for similarity searches are still in their infancy. Query language models have the
downside of being complex and hard-to-learn. The advantage is that they offer precise control over the
searching process. Sketch-based models appear to be most promising for object and media searches. Even
time-series retrieval is easily possible by query sketching. Still, what remains apart from modeling a search
pattern is the necessity to set adequate configuration parameters for the various search algorithms. This task is
addressed by agent-based expert systems, guiding inexperienced users though the configuration and selection
process.

* At the time of writing this paper, an online demo is freely available at
http://www.bewitched.com/projects/querysketch/sketch.html
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3 Application examples and arising requirements

Event-based similarity search is a broad topic. Event-based systems as such may be applied in various
application domains, so can be event-based similarity search. Accordingly, the requirements are manifold. In
this section, several application domains are discussed in order to derive the matching requirements for event-
based similarity search. Based on these requirements we subsequently defined the similarity assessment
model.

3.1 Finance - market analysis and trading scenario discovery

3.1.1 Overview

For market analysis, a major application of similarity search is the discovery of stock chart patterns and
correlations between several traded values (e.g. correlation of gold price with a certain gold explorer stock, or
correlation of a currency with an exporting company’s stock). When applying event-based similarity search,
besides time-based price series additional information can be taken into consideration for the discovery of
complete scenarios. For instance, news events can be considered to search for a chart pattern where at a
certain point a decisive news event was published, influencing the price.

Figure 6 depicts several event types which may occur in an event-based stock market analysis application. For
the options and futures market, instead of the stock ticks other data may be available, but basically the data
will be the same. For the foreign exchange, ticks will be available for pairs of currencies.

( Stock Tick News

DateTime [Timestamp] DateTime [Timestamp]
ISIN [String] Headline [String]
LastPrice [Double] ShortText [String]

Bid [Double] FullText [String]

Ask [Double] RelatedTolSIN [String]
BidSize  [Int]

AskSize  [Int]

Volume [Int]

StockRating MergerAcquisitionNews
DateTime [Timestamp] DateTime [Timestamp]
PreviousRating [String] Investor [String]
NewRating [String] InvestorlISIN [String] (...)
Analyst [String] Sum [Double]

AnalystCompany [String]

Figure 6: Event types for event-based stock trading

3.1.2 Similarity search example - trading scenarios

Many traders have a set of trading scenarios in mind, which they try to detect. On occurrence they buy or sell

accordingly.
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As an example, Figure 7 depicts such a trading scenario. In this case, a stock whose price first moved sideward
and formed a support level rose strongly, but after several news events it plunged down again to the support
level. A trader could for instance want to buy exactly at the support level after the plunge, to profit from a little
rebound at this level, which is likely to occur.

A stockTick.LastPrice OO @
o O
o O

Support level CS Zb/OOOOOOOO

Time

Q

O StockTick Event
News Event

Figure 7: Trading pattern of stock ticks and news events

Such a pattern is easy to detect manually, when looking at the chart. On the other hand these scenarios are
quite rare. Therefore, it would be valuable to detect it among thousands of stocks, which is not possible
manually. Hence, a similarity search which is capable of a fuzzy detection of such a pattern is required.

3.1.3 Requirements for similarity searching

In order to apply similarity search in this area of financial market analysis and automated trading, at least the
following requirements have to be covered:

= |t must be possible to not only compare numeric event attributes in an event-by-event matter with
absolute difference similarity, but also to compare the complete sequence of values in the pattern
sequence to the sequence of attribute values in the target sequence (time-series similarity).

= Time-series similarity for attributes must be independent of absolute values, and ideally also support
different relative scaling of the complete pattern.

= |t should be possible to “weaken” the search sequence. For instance, in the example, the number of
news events is not relevant, so the occurrence of one news event is as equal as the occurrence of 5
news events.

=  Similarity search must deal with different length of event sequences.

= |t should be possible to omit certain parameters for the similarity search. For instance, the event
attributes of the news events are not relevant, but rather their occurrence only. Also, for the tick
events only the attribute “price” is relevant.

3.2 Online betting fraud detection — user behavior profiles

3.2.1 Overview

In online betting and gambling, one important issue is fraud detection and prevention. Hereby, one approach is

to selectively filter user actions by rules in the sense of “If a user does XY, then block this user”. Yet, the

definition of “if the user does XY” is not as easy as it looks at first sight. The possibilities of strict rules on
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incoming events are limited. In this way, only exactly defined data values and thresholds can be tested. An
alternative approach is to use behavioral patterns, and formulate the rule as “If a user behaves similar to
pattern XY (a known fraud pattern), then block this user”. For the latter approach it is required to compare the
user behavior profile of a user with those of other users. The problem of the similarity approach is that it might
be too fuzzy, because the behavior of users, incorporated in sequences of events can vary, but might still be
similar. In order to alleviate this problem, maybe a hybrid approach of a fuzzy similarity search couples with a
set of rules could be applicable. Yet, a further discussion of this issue is beyond the scope of this work.

Figure 8 shows a set of typical event types for an online betting environment. In the following, a similarity
search example is defined based on these event types.

OpenAccount ; BetPlaced Cash-In
DateTime [Timestamp] DateTime [Timestamp] DateTime [Timestamp]
Name  [String] Username(String] Username [String]
Username[String] BetID [Long] Amount [Double]
Sex [Char] BetType [String] PaymentMethod  [String]
ZipCode [Long] Amount [Double]
City [String] Odds [Double]
Street [String]

eV ewlceraiedilil) Cash-

DateTime [Timestamp] DateTime [;'in?estamp] DateTime [Timestamp]
Username[String] Username String] Username [String]
BetlD [Long] Amount [Double]
BetID [Long] A ‘
Amount [Double] BetType [String] PaymentMethod  [String]

Amount [Double]
Odds [Double]
ErrorCode[Int]

DateTime [Timestamp]
Username|[String]
BetID [Long]
Amount [Double]

Figure 8: Event types in an event-based online betting application

3.2.2 Similarity search example

Applications in online betting and gambling are mostly one of the following: fraud detection, or the discovery
of cross/up selling opportunities with custom recommendations. For fraud detection, the recognition of
behavioral patterns is a valuable approach. Fraud as such, and also “suspicious behavior” is hard to define. Yet,
it is possible to take a behavioral profile from a known fraudster and compare it to others.

An example of a characteristic behavior profile is depicted in a simplified matter in Figure 9. Here, a so-called
sleeper account is illustrated. This user hasn’t placed bets for quite a long time, only one small bet directly after
opening the account, but then cashes-in a high amount, places a bet for nearly the same amount, wins it and
cashed out immediately. This sequence repeats a second time.
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A BetPlaced.Amount Cash-In, bet placement and immediate
Cash-In.Amount cashout after winning the bet

Cash-Out.Amount
BetWon.Amount
BetLost.Amount

@) .
—O d Tlnf

Idle Phase o
O OpenAccount Event O Cash-Out Event
BetPlaced Event c BetWon Event
(O Cash-In Event @ BetLost Event

Figure 9: Example for a similarity search pattern in online gambling

While this sequence of events is not fraud per definition, it may be an indication, because it is an unusual
betting behavior as compared to typical customers. For instance, that fact that the high-stake bet is placed
after a long idle time may indicate that the user is very sure of this bet. Maybe she has insider information.

3.2.3 Requirements for similarity searching

From the above example, for the area of fraud pattern searching, the following requirements for similarity
searching can be derived:

= The occurrence times of events should be considered.

= In the example, the length of the idle time is not decisive as long as it is above a certain threshold. It
should be possible to model that for instance the idle time can be between 1 months and 5 years
without changing the similarity scoring.

= |t should be possible to model that a recurring sub sequence of events such as the sequence of cash-
in, bet placement, bet won and immediate cash-out may occur multiple times without decreasing the
similarity score.

3.3 Airport turnaround — detecting process deviations

3.3.1 Overview

On airports, the sequence of actions which are to be performed from when an airport lands to its takeoff is

typically a standardized process, including deboarding, reflueling, cleaning, and many more steps until boarding

and takeoff. The detection of deviations from the typical process can be done either by checking every single

action in the process with a specific rule, or, more intuitively, by comparing a process instance with a default

process and assessing the similarity between these processes. In this way, the deviation assessment is not
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bound to hard value thresholds, but it is a fuzzy comparison of the complete sequence pattern. For historic
data analysis, it may be of interest, to retrieve those processes, where the most decisive deviations occurred,
for instance to answer questions like “Which airline caused the most deviations?” or “At which time of the day

do most of the deviations occur?”

3.3.2 Similarity search example

In Figure 10, the events in a typical turnaround scenario are depicted in temporal order. As an application
example it could be required to take this sequence as the normal process execution, and perform a similarity
search to discover sequences with strong deviations from the typical process execution. Hereby, mainly the

occurrence of events of a certain type is relevant.
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CargoUnload
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(Carge Loaders/Unloaders:
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Figure 10: Airport turnaround scenario

(start)

3.3.3 Requirements for similarity searching

From the above example, the following requ

irements can be derived:

=  The weighting of certain characteristics, such as the occurrences time of events, should be adjustable.
=  Event attributes such as the flight ID are not relevant and it should be possible to completely omit

them for the similarity searching.

= The discovery logic should be invertible, so that the similarity search can also be used to retrieve the

most deviating sequences.
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3.4 Other application areas

3.4.1 Supply-chain/shipment processes

Shipment processes and supply-chains are standardized within large companies. Such processes reach from the
initial customer order over order processing to the manufacturing, shipment and finally the delivery at the
customer. For optimization, the analysis of historic processes is of interest. Hereby, a first step is to have the
processes visualized to see how a normal process evolves. The second step is search for processes that are not
similar to the default case, and why there where deviations. This step leads to the error cases where
optimization potential is available.

3.4.2 ITSM - Trouble-ticket tracing

IT Service Management (ITSM), including the support of business processes by IT has grown to an important
business factor in recent years. One major component of ITSM is the efficient management of so-called trouble
tickets. Trouble tickets are issues reported by users. Subsequently, a member of the service team picks up the
ticket and resolves the problem. Similar to bug tracking systems in software development, such issues may
reoccur and similar issues may be reported by different users. In order to enable a steady improvement of
service quality, it is essential to evaluate these trouble tickets, and find those which occur very often, or have
some kind of noticeable history.

If an interesting history for a certain ticket is discovered, it may be of interest to discover other tickets with a
similar history. One concrete requirement of a large IT service provider is to find similar assignment patterns of
events. This company faces the problem of tickets being assigned from support group to support group (and
back) until finally the responsible group receives handles it. The problem is that it’s not totally clear in which
cases this occurs and for which groups. Only certain reference cases have been discovered. Based on them a
similarity search could help to evaluate if there are many similar cases and it can be considered as a recurring
assignment pattern. With this knowledge the assignment process can be optimized.

3.4.3 Clickstream — Usage patterns

In e-commerce, custom and intelligently placed product recommendations on a website, the webshop layout
and the presentation of the offers is a key factor to success. Thus, in order to design a webshop as efficiently as
possible, customer usage patterns have to be explored and understood in detail. For this purpose, many
techniques exist, reaching from visualizations such as heatmaps to trace statistics. In recent times, the analysis
of trajectories, i.e. navigation paths in programs and websites has grown to an interesting application for
similarity mining. With the support of similarity analysis, behaviour patterns could be clustered in different
groups, and also repeating usage patterns (eventually event some which are unsatisfactory for the customers)
could be discovered.
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4 Similarity assessment model

According to the requirements emerging from the above examples, a model for similarity assessment can be
derived. The model determines how similarity between two sequences of events is defined and what
influences the similarity computation. The model also considers the requirements for search sequence and
constraint modeling.

4.1 Summary of approach

In section 2.2 — “Similarity models” a set of similarity model classes have been introduced. Namely these have
been the geometric models, feature-based models, alignment models and transformational models. Feature-
based models strongly depend on the feature selection process. For image and object searches this is a well-
researched problem, but for event sequences it is yet an open issue. In addition, the basic idea of feature-
based models which is, to put it crudely, to extract certain features and see how many features two items have
in common and how many differentiating features they have does not apply in the given context. In our case
the event sequences’ features are well known, i.e., the strongly typed event attributes, the sequence of types,
the occurrence times of events etc. It is decisive which specific values these known features have. We therefore
decided not to use a feature-based model. Alignment models are closely related to the image retrieval and
bioinformatics domain as well and cannot directly be employed in our given context.

Transformational models are proven to be usable for event sequence comparison. Yet, in the on-hand case
with many more similarity features to consider and the requirement to perform subsequence matching and
take sequence constraints into consideration such a model is difficult to apply and an efficient algorithmic
evaluation is complicated. Finally, the idea of geometric models remains. The core idea is to have a set of single
data characteristics which are to be compared. Each characteristic can be seen as one dimension in an n-
dimensional feature space. Subsequently, similarity is assessed based on the distance between two items in the
geometric space. Thereby, different metrics can be used, for instance Euclidian distance or the city-block
metric. The problem with this approach is that the features must be numeric, or have to be mapped to
something numeric. In case of complex events, with string event attributes, multi-value types or nested events
to be included in the similarity computation this is not intuitively possible.

We therefore designed an adjusted similarity model. Simply put, it foresees a range of individual similarity
features, each computed separately. The overall similarity score is then a computed aggregate value from
these individual functions. The computation model corresponds to the simple weighted average model
proposed by Gowser [20]. Let sim(a, b) with denote the similarity between two event sequences a and b. We
compute its value as

Yieisim;(a;, by) * w;

Xl Wi

sim(a,b) =
Formula 8: Similarity aggregation
with a; to a, and b, to b, being the features to be considered and sim; being the respective similarity function

for the i feature. In addition, w; is a weight or weighting function for the concerned feature, which returns a
normalized value between 0 and 1.

Figure 11 illustrates all aspects of event sequences which are currently considered. Each of these aspects is
described throughout this chapter.
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Figure 11: Overview similarity model

4.1.1 A multi-level similarity approach

In practice, in order to balance the similarity computation and, speaking colloquially, to not compare apples
with pears we need to introduce multiple levels of similarity. We define a multi-level similarity computation
model as a model in which not all individual features are aggregated directly according to Formula 8. Instead,
first the “lowest level” similarity features, i.e. the single event attribute similarities are aggregated to one

event-to-event similarity. This single event similarity is then aggregated with similarity features on event

sequence level to the overall event sequence similarity. Without applying this multi-level approach, event

sequence level features would be overruled by a potentially large set of event attribute similarities through the

weighted average process.
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4.1.2 Similarity versus distance

Up to this point, we have expressed similarity in terms of a similarity function sim:A X A — [0,1], i.e., a
normalized function returning values between 0 (unequeal) and 1 (equal). The approach is intuitive and brings
the advantage that all results of individually assessed similarity features are directly comparable and
combinable. Yet, in practice it imposes one major downside caused by the fact that the maximum dissimilarity
between two items is 0. Considering an example of three similarity aspects or properties p1, p2 and p3
illustrates the problem. Taking two items a and b to be compared, let us assume that the similarity functions
simy; through sim,; each access these properties of the items a and b and assess similarity based on their
values. Let us further assume that these properties are optional and may be totally absent. In case of total
absence of such a property, the overall similarity should be drastically reduced much more than in case the
property values are present but dissimilar. For the example, we now assume that a and b are equal with
respect to sim,, and sim,,, whereby the p3 is absent in b. Expressed in terms of our known similarity function

sim: A X A - [0,1] this would mean simy;(a,b) = 1, sim,,(a,b) =1 and simy,3(a,b) = 0. Taking equal

weights of 1 of for w,,; to wy,; the aggregated similarity score is % = 0,66. Yet, the result contradicts with

the desire to drastically reduce the overall similarity score in case of the absence of an item’s property. Also,
using different weights does not solve the problem, as in case of presence of all properties, the equal weighting
is desired and appropriate.

Such situations, which we will show to occur regularly in our context especially at the level of event sequence
similarity, can be tackled in various ways. One could argue that linear similarity aggregation is not the best
choice in general for combining the independent similarity aspects. Yet, the claim that the model is simple and
intuitive and found an alternative approach to avoid above said shortcoming. The first possible solution is to
apply a logarithmic adjustment function before the similarity aggregation, mapping similarity inversely to a
distance value between 0 and +o0. The alternative is to calculate based on a distance or cost model already up-
front, and perform the mapping from distance to similarity inversely. In this model, we can easily overcome the
problem of the previous example, by assigning the appropriate cost function cost,; any arbitrarily high value,
for instance 100000. Accordingly, we would set cost,; = 0 and cost,, = 0 as we stated that a and b are
equal with respect to p1 and p2. It is obvious that now a weighted average would still result in large total costs
and subsequently in a very low similarity.

Due to these considerations, we apply a cost model for event sequence level similarities. For single event
similarities we stick with known similarity function, as it is more intuitive and there is no need to perform a
conversion of costs to similarity. Obviously now, in order to integrate the cost model for event sequence
similarity with the similarity model for event-level similarities, a conversion of costs to similarity or vice-versa is
required. Hereby, we follow the model of Shepard [45] who defined an exponential relation between a
distance, or cost function and a similarity measure. Given a set of entities A and a similarity measure
sim: A X A - [0,1], a corresponding distance function d: A X A - R} is defined as:

d(a,b) = —Insim(a, b)

Formula 9: Converting similarity to distance

Equivalently, given a distance measure d: A X A - R} a corresponding similarity measure sim: A x A - [0,1]

is defined as follows:

sim(a, b) = e~ 4@b)

Formula 10: Converting distance to similarity
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4.2 Single event similarity

The assessment of similarity for considering the event attributes depends on the similarity technique applied
for the similarity comparison. The following table lists different attribute similarity techniques applied in the
course of this work. Entries marked with an asterisk are techniques which cannot be applied in an event-by-
event comparison process. These techniques must be treated separately.

Attribute data type ‘ Similarity technique ‘
Normalized absolute difference similarity

Relative difference similarity

Numeric, Timestamp, Timespan Normalized sequence similarity *

Normalized relative sequence similarity *

Lookup table similarity

String distance metric similarity

String Semantic similarity

Lookup table similarity

Boolean similarity

Boolean

Lookup table similarity
Multi-value types Multi-value similarity
Nested events Single event similarity
All Attribute expression similarity
Unknown / Custom objects Generic similarity

Table 1: Similarity techniques for event attributes

4.2.1 Normalized absolute difference similarity

Normalized absolute difference (NAD) similarity computes the relative distance of two values with respect to
the overall value range of all considered items. Given an event type T; with an event attribute x, and X being
the set of all attribute x’ values extracted from the events of type T; in the searched data set, we define the
NAD similarity measure as

|xi — % |
max(X) — min(X)

SiMyap (xl-, x]-) =
Formula 11: Normalized absolute difference similarity

whereby i and j are fictive indices of two events to be compared in the total set of events and thus x; is the
value of the event attribute x for the event at index i, and x; is the respective value for the event at index j.

This implies that the minimum and maximum occurring attribute value in the complete data set must be known
up-front. The technique is applicable for continuous numeric attributes. In case of numeric attributes
representing categories it might be misleading. A common example of numeric attributes which are not
comparable by normalized absolute difference is an error code attribute. Here, similar values may have a
completely different meaning.
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4.2.2 Relative difference similarity

For cases where a relative similarity measure, independent from the complete data range, is more appropriate,
we provide the relative absolute difference (RAD) similarity, which is calculated as

X — X;
ir Ay

Formula 12: Relative difference similarity

whereby again x; and x; denote the event attribute values of the attribute x for the events indexes i and j.

4.2.3 String distance metric similarity

Measuring similarity between strings is a research topic with a long history. Many approaches and measures
have been published, which can be roughly divided into syntactic, phonetic and semantic approaches. Yet, a
detailed discussion of these methods is out of scope for this thesis.

We have integrated a set of string similarity techniques, e. g. Levenstein distance, L2 distance, Jacard Similarity
and many more available in the open-source similarity library SimMetrics, developed by Sam Chapman at
Sheffield University [10].

4.2.4 Lookup table similarity

Despite of type-specific similarity measures, one of the simplest techniques for similarity is the use of lookup
tables, where the user explicitly assigns similarity values to arbitrary value-pairs. From such a mapping, a
similarity measure can then be derived: When comparing two attribute-values, the table is simply looked up
and the corresponding similarity value is returned. The advantage is that highly purpose-specific, semantic
similarities can be defined. For instance, Table 2 lists some similarities which could be set of a string attribute
“sport type” in a “sports bet placed”-event.

Term 1 ‘ Term 2 ‘ Similarity
Rughby American Football 1.0
Free throws Penalty 0.7
Penalty Direct free kick 0.2

Table 2: An exemplary similarity lookup table from the sports domain

Please note that from such a table we do not derive associate relations. For instance,
simyr(A,B) = 0.4,sim;7(B,C) = 0.6 & sim;+(4,C) =0.5

Formula 13: No association rules in lookup table similarity

with A, B and C being items to compare and sim;; denoting a function looking up the items’ similarities in the
lookup table.
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4.2.5 Boolean similarity

Given a Boolean event attribute x we define Boolean similarity as

1, X = x]'

sim(x, xj) - {O, else

Formula 14: Boolean similarity

whereby x; is the attribute value of attribute x of an event at the fictional index i, and x; is the respective

attribute value of a second event at index .

4.2.6 Multi-value similarity

A multi-value type is defined as any ordered or unordered set of values of a given runtime type. The definition
of a similarity measure for multi-value types must therefore consider the single values. Yet, the question
remaining is which items to compare to each other. A simple example is the following: An order event could
contain a list of products ordered. Let’s say, the first event contains the list [A,B,C] with A, B, and C being
product names, and the second event contains the list [D,E,F]. Now, even if we know that products A and E are
similar (for instance with a lookup table), how to we know which items to compare? An n-to-n comparison
could lead to significant performance problems. Therefore we propose, referring to Sjoberg’s feature-based
similarity-model [46] to compute multi-value similarity based on common items in the two value sets in
relation to total items as

] count(X; N X;)
SLm(xi,xj) =—
count(Xl- U XJ-)

Formula 15: Multi-value similarity

whereby x; is the attribute value of attribute x of an event at the fictional index i (in this case x; is a container
object for a typed value set), and x; is the respective attribute value of a second event at index j. X; and X; are
the sets of values contained in x; and x; and Count(A) denotes a function returning the number of items in a
set A.

4.2.7 Nested event similarity

Besides runtime types and multi-value types, attributes can also be of another event type (see section 1.3.1).
Even multi-value types may again contain a set of other events. For instance, an alert notification event may
contain an incoming error event which triggered the alert. Obviously such events may be important to consider
in certain business cases.

We define similarity for nested events recursively as

n )
D=1 (Slm (xl-k, xjk) * Wk)

n
k=1Wx

simgr (xl-, x]-) =
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simgr(a, b), typeof (a), typeof (b) € Event Types

sim(a, b) = {sim* (a,b), else

Formula 16: Recursive similarity definition for nested events

with x; and x; being event attributes of an attribute x with the attribute type “event type”, x;; to x;, the
attributes of the nested event, n the number of attributes in the nested event object and w; to w,, the user-
configured weights for the attributes of the nested event types. In addition, sim,(a, b) refers to all other
attribute similarity techniques except of nested event similarity described and selected for the concerned
attributes.

4.2.8 Attribute expression similarity

Above described similarity measures are defined to always compare single event attributes. In certain cases
though, it might be of interest to consider a compound value of multiple attributes. For instance, when having
an attribute “start time” and a second attribute “end time”, the compound value “duration”, derived by
computing end time minus start time could be of interest.

We therefore introduce the attribute expression similarity. It allows evaluating an arbitrary EventAccess (EA)
expression which returns a typed value computed based on the event. Depending on the return type of the EA
expression, one of the above named similarities can subsequently be applied.

4.2.9 Generic similarity

Our similarity model foresees the integration of custom similarity measure implementations. The framework
for generic similarity basically allows their integration into the matching process. The purpose is mainly to keep
an open, extendible and customizable character of our event processing platform. Details on the integration of
custom similarity measures are provided in section 5.4.

4.2.10 Event level constraints

4.2.10.1 Attribute constraints

Attribute constraints are set for single event attributes in the pattern sequence. In Figure 12 an example of a
numeric attribute constraint is given. Attribute constraints are supported for numeric values and string
attributes, limiting the set of allowed attribute values to a given range or a list of allowed values.

/ Numeric attribute constraint

[0 <= A.Attrl <=20]

s @A)

Event Type: A
Attributes:

A1 [Integer]

Figure 12: Numeric attribute constraint
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In the computation model, attribute constraints are evaluated in companion with attribute similarities. If the
constraint evaluation fails, the matching process stops and the specific match is omitted.

4.3 Event sequence similarity

4.3.1 Overview and definitions

Throughout the following sections, various similarity features are discussed concerning sequences of events.
We define an event sequence S of length n formally as an ordered sequence of n events e; to e, where
ve(e)) < ve(ej41) Vi =1,...,n, with v,(e) representing the occurrence time of an event e.

As already mentioned above, in order to compute the similarity of two event sequences, we define a cost-
based computation model. This cost model describes the costs for a possible solution, i.e. one combination of
mappings from events of the searched sequence to events in the reference sequence. Formally, we define a
solution as a function s:S,, — 5, U {€}. Hereby, S,, is the reference or pattern sequence and S; denotes the
target, or searched sequence. We further define € as a null-node, or missing event, an event that is virtually
inserted into a solution if for a mapping no respective event is available in S;. Formally, we define a mapping as
a pair of events (e,s(e)), eeSy,, s(e) €S, U{e}l ifs(e) = ¢, itis considered a null-mapping, else we refer to it

as a normal mapping.

In the following, all cost factors for the similarity are conceptually summarized. Details on the cost computation
are provided in companion with the algorithmic implementation in section 5.

4.3.2 Event type occurrence

The first factor to consider for the assessment of similarity between a reference event sequence and the
compared event sequence is the occurrence of event types.

In terms of event type occurrence we define:

(1)  Full event sequence equality of two event sequences in terms of event type occurrence is given, if a
solution s:S5, = S, (without &!) exists so that pos(e,S; ) = pos(s(e),Sp) Vs €S, and ng, = ng,
i.e., for each event in the pattern sequence S, a corresponding mapping can be found in S, at the
same event position and the two sequences are of equal length. In Figure 13, events of different event
types, denoted by characters a to c are illustrated on a time axis according to their occurrence time t.
In terms of event type occurrence, these sequences are equal.

s (@) —~boHb——(b(e)>
S:
o (- (ey t

Figure 13: Full event sequence equality in terms of event type occurrence

(2) Subsequence equality of two event sequences in terms of event type occurrence is given, if a solution
s:S, = S; (without &!) exists so that pos(e, S;) = pos(s(e),Sp) Vs € S;. The only difference to full
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event sequence equality is that other events, which are not mapped may precede or follow the events

in the mapping as illustrated in Figure 14.
s {any—(bo-(e2) (b) (e~
;
a1 (o)) {on bi — o~

Figure 14: Subsequence equality in terms of event type occurrence

(3) One or several mapping pairs of events may be in incorrect order. An incorrect order increases costs
(and thereby decreases the similarity score) proportionally to the number of events between the
desired position (as it is in the pattern sequence) and the actual position (as it is in the target
sequence). Please note that, unlike Figure 15 might suggest the pure type sequence deviation solely
considers the type order, but not the occurrence time of the events. Up to this point, the model is
comparable to edit-distance approaches. However, later extensions will underline that a pure edit
distance model is not applicable for all considered similarity features.

Type sequence
deviaton:

Figure 15: Event type sequence deviations

(4) One or several events might be present in S; which are not considered for a solution as no
corresponding event is present in the pattern sequence S,. We refer to these events as redundant

events. The costs of a solution are increased proportionally to the number redundant events.

o (@)—(Eo-bd——(baH{eo>
S
o ()@ e)ba) () !

Redundant event for s

Figure 16: Redundant events
(5) If for an event in the pattern sequence no suitable corresponding event in the searched sequence can

be found to build a mapping, a virtual event must be inserted. We have defined this as a null-mapping.
These mappings cause additional costs and decrease the similarity score by a user-configurable factor.
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Figure 17: Null-mapping

4.3.3 Occurrence times of events

In the previous section, order deviations between an event in the target sequence and the corresponding event
in the pattern sequence for a given solution s have been discussed independent from the actual occurrence
times of the events despite the fact that order also in that case referred to the temporal order.

In the following we refer to a function t(ei, ej) as the time span between the occurrence times of two events e;

and e;. Based on the so-calculated time spans we define 2 modes for computing deviation costs.

4.3.3.1 Absolute time spans

In the absolute time span mode, the absolute difference between t(ei, ej) and t(S(ei),S(ej)) is used to
compute similarity costs. This Figure 18 depicts these time spans. In practice, the absolute time difference will
be adjusted by a however defined function or constant in order to align resulting costs with other cost factors.

t(aq,b1) t(s(a1),s(b1))

Figure 18: Absolute deviations in events' occurrence times

4.3.3.2 Relative time spans

The absolute time span mode implicitly results in the “expectation” that the length of the target sequence
corresponds in absolute values to the length of the pattern sequence. Yet, in many cases the absolute values
are not relevant. In contrast, the time gaps within the sequence are decisive. We introduce the relative time
span mode to cover this case. It sets the time span between two events in the pattern sequence t(ei,ej) in
relation to the total time span the sequence is covering, denoted as (Sp) . Equivalently, the time span between
two subsequent mappings t(s(ei),s(ej)) in a solution s is set in relation to the total time span between the
first and last event in the mapping I(s).
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t(s(ar).s(b1))
-

I(s)
Figure 19: Absolute deviations in events' occurrence times

Costs are computed based on the absolute difference between these time span ratios. This means in particular,
that a sequence of events can be relatively stretched or jarred without decreasing the similarity score.

4.3.4 Numeric sequence similarity

Numeric sequence similarity and relative numeric sequence similarity are special cases of attribute similarities
which cannot be evaluated on an event-by-event level. Here, the complete sequence of attribute values must
be extracted first and compared separately. The resulting similarity is then one additional factor like for
instance the result of the type similarity comparison. Further details on the applied time-series similarity model
for numeric sequence similarity can be found in section 0.

4.3.5 Event sequence level constraints blocks

Sequence level constraints concern the occurrence of a single event or set of event within the event sequence
or in relation to each other (e.g. the order). We distinguish restrictive and broadening blocks. Restrictive blocks
are limiting the set of possible solutions by certain constraints, e.g. constraints on occurrence times of events
or order constraints. Broadening blocks “weaken” the similarity assessment by allowing more possible
solutions. For instance, a block allowing a subset of events to occur in arbitrary order without decreasing the
similarity score is counted as a broadening block.

4.3.5.1 Restrictive blocks

4.3.5.1.1 Required block

A “required“-block indicates that for all solutions s:S, — S, U {€}, the comprised pattern-sequence events
must have a counterpart in the target-sequence, i.e., for each event e € S, that is part of a “required”-block,
s(e) # & must hold.

Required

Figure 20: Required block
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4.3.5.1.2 Time of occurrence constraints

A “time of occurrence“-constraint block indicates that for all solutions s: S, = S; U {¢}, the comprised pattern-
sequence events must be mapped to target-sequence events who's times of occurrence are inside a certain,
user-specified time interval, as indicated in Figure 21.

Time of occurrence

Tmin=1.1.2009
Tmax=2.1.2009

Figure 21: Time of occurrence constraint block

This means in particular, that the block checks whether the events in the target sequence occur at respective
points in time or not, but it does not increase or decrease the similarity score.

4.3.5.1.3 Maximal time span constraints

A “maximal time span‘“-constraint block indicates that for all solutions s: S5, = S; U {¢}, the comprised pattern-
sequence events are mapped to target-sequence events so that the time span between the earliest and the
latest target-sequence event is smaller than a user-defined time span m. Before giving a more formal
description, let us define the concept of the maximal time span in a set of events:

Definition: Given a set of events E C E, with e; addressing the i™ event in E and |E| addressing the number of
events in E, we refer to the result of a function t: E* —» R, with t(E) = max;<;<g v¢(e;) — minicj<g vt(ej)
as the maximal time span in E.

Thus, given a “maximal time span”-block M € S, and a maximal time span m, t(MSt) <m with Mg, =
(s(e)|e € M) must hold for all solutions s:S, = S, U {e}.

Maximal time span

TSmax=4d

Allowed occurrence period for b,
/ if by is already mapped in s

|

Y
A
4

5d 5d

Figure 22: Maximal time span constraint
A violation of the maximal time span constraint leads to omitting the possible match.

4.3.5.1.4 Minimal time span constraints

A “minimal time span“-block can be considered the opposite of a “maximal time span” block: It indicates that
for all solutions s:S, » S, U {€}, the comprised pattern-sequence events are mapped to target-sequence
events with a time span greater than a user-defined, minimal time span. More formally, given a “minimal time
span”-block M € S, and a minimal time span m, t(MSt) >m with Mg, = (s(e)|e € M) must hold for all

solutions s:S, — S, U {e}.
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Minimal time span

TSmin=2d

(oADK (o
-

\ 2d 2d /
Allowed occurrence period for b,

if by is already mapped in s

St.

Figure 23: Minimal time span constraint

4.3.5.1.5 Strict order constraint block

A “strict order”-constraint block indicates that for all solutions s:S, — S, U{e}, the comprised pattern-
sequence events must be in the correct order in s, i.e., for each pair of (successive) events e and f of a “strict
order”-block 0 € S;, e, f € 0, pos(e,S.) > pos(f,S;) = pos(e,s) > pos(f,s) (or, equivalently, v.(e) >
v (f) - t(e,s) > t(f,s)), most hold.

f Strict order ;

Figure 24: Strict order constraint block

4.3.5.2 Widening blocks

4.3.5.2.1 Arbitrary order block

An “arbitrary order”-block A € S, indicates that when calculating the overall costs of a target-sequence S, not
normal” solutions S, — S; shall be taken into account, but also all solutions for the so-called temporal

|Il

only al
permutations of S,, with respect to A.

In the following, the concept of temporal permutations is clarified by a simple example: Consider a sequence S,

with a “arbitrary order”-block A as shown in Figure 25.

Arbitrary order

-¢ > -t -
00:01 00:02 00:01

00:01

Figure 25: Arbitrary order block
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The temporal permutations of S, can now be considered event sequences that are, in most respects, equal to
S, but contain different permutations of 4; yet retaining the original set of time stamps. Figure 26 shows all
permutations of S,, (including S,, itself) with respect to A:

00:01 00:01 00:02 00:01

Figure 26: Temporal permutations in an arbitrary order block

Thus, a temporal permutation of an event sequence S, with respect to a sub-sequence A € 5, is an event
sequence S, " where the times of occurrence (and, consequently, the positions in Sy ') are permutated for all

events in A. All other event attributes remain equal across the eventsin S, and S, ‘.

4.3.5.2.2 Occurrence number blocks

An “occurrence number”-block € S, , defining a minimal occurrence of min and a maximal occurrence of max,

| “ III

indicates that when calculating the overall costs of a target-sequence S;, not only all “normal” solutions
S, = S; shall be taken into account, but also all solutions for the so-called foldings of S,, with respect to 0.
Again, let us clarify the concept of foldings in a simple example. Note that at this point, we do not take the
exact times of occurrence into account; we will deal with this issue in next section.

Example: Consider a sequence S with an “occurrence number”-block O as shown below in Figure 27.

Occurrence |

Yollosolon

min=0, max=3

Figure 27: Example for an occurrence number block

For n > 1, the n-folding S,, of S can now be considered an adapted version of S with the events in O appearing
n times, one “block” following the other.* For n = 0, S,, does not contain the events in O at all. For n =1,
S, = S. Below, we list all foldings S; of S with min < i < max.

* Given a sequence S and an “occurrence number”-block 0, we refer to the i" appearance of a block O in a
folding S,, n < i, of S as the i™ iteration of 0 in S,
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Figure 28: Foldings for a simple occurrence number block

§

Here, d,, d, and d; can be considered as “shifted” clones of d, i.e., dy, d, and d; equal to d regarding all
event-attributes but the time of occurrence. Consequently, b, and bs, and ¢, and c3, can be considered shifted
clones of b and c, respectively.

Temporal structure

It is easy to see that the order of events in a folding S,, is defined. This is not the case, however, for the exact
temporal structure. Consider, for instance, S3 as shown above. Here, the following time spans between events
derive naturally from the base sequence S:

t(b,c) ? t(b,c) t(c,d)

Figure 29: Temporal structure problem for folding in case of occurrence number blocks

The time spans between c and b, and between c, and b3, i.e., the “borders” between successive iterations, are
still to be defined, though. Also, for a zero-folding, the time-span between the event that precedes the (not
existing) block and the event that succeeds the (not existing) block (in the above example, these are a and d;),
is to be defined.

We deal with this issue by letting the analyst define this time span, i.e., a time span between the latest and the
earliest event of a block O and, if a minimum occurrence of zero was chosen, a time span between the events
“surrounding” 0.

4.3.5.2.3 Arbitrary events

Arbitrary events are events of the predefined event type Arbitrary which does not declare any event attributes
(except of the event header with event id and time stamp) and cannot occur in the operational business
environment. Instead, they are used as tools for enhanced similarity searching: As part of a pattern sequence,
arbitrary events are considered compatible to all events of any given target-sequence. We depict arbitrary
events with a diamond shape and question mark inside as illustrated in Figure 30. Also, we will refer to the
overall set of arbitrary events as X.

Arbltrary event

o (D)D)

Figure 30: lllustration of arbitrary events
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Arbitrary events can only be created “artificially”, i.e., defined by the business analyst. With a certain, user-
defined “time of occurrence”, an arbitrary can then be inserted into a given pattern-sequence. Therewith,
different solutions are considered valid, which may affect the overall costs of a target-sequence. Note,
however, that for mappings to arbitrary events all attribute similarities are omitted. We will show in the
implementation section, that the therewith left unconsidered cost-factors require an adaption of the cost
model in terms of computing a correct weighted average by omitting these factors.
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5 Similarity computation

In the previous section the similarity assessment model has been presented from a general viewpoint,
independent from any algorithmic considerations. In this section, we propose how to apply this model by
introducing our algorithmic models for basic event sequence similarity, event sequence constraints and time-
series similarity for event attributes.

5.1 The base algorithm

In his thesis, Obweger [37] presents a base algorithm for evaluating event sequence similarity which has been
designed in collaboration. Here, the cornerstones of this base algorithm are summed up in order to understand
subsequent deliberations especially on event sequence constraint.

5.1.1 Finding the best solution: an assignment-based approach

In section 4.3.1 we have introduced the term solution as a function s: S, = S; U {¢} with S,, being the pattern
sequence and S; the target sequence. Thus, implicitly we have already introduced an assignment-based
approach towards similarity: A solution maps events from the pattern to events in the target sequence or
assigns them as missing (null mapping). Depending on all similarity factors and constraint blocks presented
above, each solution has a certain quality. The similarity assessment model defined how to compute this
quality. Yet, the remaining challenge is how to efficiently discover the solution with the best quality.
Mathematically, a huge number of possible solutions exist. This number can be computed based on the length
of the pattern and target sequences as:

min(|Sp|.IS¢l)

SR

k=0

Formula 17: Theoretical number of solutions for matching two event sequences

For instance, for a pattern sequence with |S,| =10 and a target sequence with |S;| =12 in total
2,581,284,541 solutions exist.

Luckily, some natural limitations exist for the set of solutions. For instance, not each event can be mapped to
each other event. Intuitively, events of different event types are not compatible to each other. Formally, we
define compatibility as function comp: S, X (E U {€}) — {0,1}. Two entities e and f, e € S, e € E U {e} with
comp(e, f) = 1 we refer to as compatible with respect to comp. Otherwise, if comp(e, ) = 0, we refer to e
and f as incompatible with respect to comp.

5.1.2 Implementation model

The base algorithm for finding similar event sequences can be counted to the family of Branch & Bound
algorithms. Using a tree-based structure, valid solutions are discovered with respect to a given compatibility. A
dynamic threshold helps to reduce the number of investigated solutions and identify the best solution as fast
as possible.
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The tree structure is build up incrementally: To the tree’s root node first a set of child-nodes is added
representing all matches for the first event of the pattern sequence. To each of these nodes, all matches for
the second event in the pattern sequence are added and so forth. Yet, it is important to notice that we build

the tree in a depth-first fashion.

5.1.2.1 Building the solutions tree

Let us consider an example to clarify the approach. In the following, we assume to have a pattern sequence S,

and a target sequence S; as depicted in Figure 31.

OO
HORORORCOROAL

Figure 31: Exemplary pattern and target sequence

Furthermore, for the example we will define a simple compatibility which assumes that only events of the same
type are compatible to each other and we omit null-mappings for a moment. Based on these assumptions the
dynamic tree can now be build. Adding to a virtual start node N the first compatible event from S; to build a
mapping, a4, is added to the tree. As the tree is built up depth-first, this process continues to the last event in

the pattern sequence a;. The contemporary result is illustrated in Figure 32.

ap

aa b, Ca

Figure 32: First possible solution in the dynamic tree
In this branch, the alternative mapping for a,, is a; instead of a,. Thus, this node is added to the tree, as shown
below. Please note that no node can be “reused” in a branch. Intuitively, we assume that one event cannot be

counted several times within the same solution. Therefore, a,is not added as an additional leaf node to this

branch.

aa ba Ca ap

S1

(a) =

Figure 33: Continuing to build the tree of solutions

Continuing the process, a full tree of possible solutions will be build up. In the given case, 6 possible solutions
exist, each depicted in the tree by a branch from the start node to a leaf node.
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S1

S2

S3

S4

S5

Se

Figure 34: Full tree of solutions

For this small example and the assumption that null-mappings are not allowed and thus every event must be
present in the target sequence, the number of solutions is still manageable. Yet, allowing null-mappings already
increases the number of solutions to 52. In such a case, for each mapping it is possible to either use one of the
target-sequence events or insert a special node, the so-called null-node into the tree. Figure 35 shows a subset
of the resulting tree. Named null-nodes are shaded in light-grey.

Figure 35: Excerpt of the solutions tree in case of null-mappings

5.1.2.2 The dynamic threshold

The simple example given in the previous section demonstrated that the solutions tree grows huge in case of
longer event sequences. Thus it is crucial to limit a branch as early as possible. In section 4 we presented, based
on which features costs for a solution are computed. Building up the tree in a depth-first manner allows us to
compute the first costs ¢; immediately when reaching the first leaf node. From this point only solutions need
to be considered with total costs below c;, . If a new solution is found with still lower costs, these costs make

up the new threshold.
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An example is provided in Figure 36. For the sake of simplicity, the applied cost model only considers type
deviations, and a deviation in terms of event position counts 1 per event that has to be “jumped over”. As can
be seen from the figure, the first 4 matches have to be build up to the last event. Though s; exceeds the prior
dynamic threshold of ¢;, = 3 this is only clear after adding the last mapping. In the last branch, after adding a;

and b; costs are already higher than the dynamic threshold and the rest of this branch may be omitted.

da ba Ca ap
S
N 1@ O@ ¢y e
s 1
@ S4 CS4=3

Figure 36: Threshold example

In case of assigning high costs to null-mappings and considering also event-level similarities it is obvious that
this dynamic threshold omits a huge set of possible, but bad solutions.

5.2 Enhanced search pattern building blocks

5.2.1 Integration into the base algorithm

In order to integrate the additional search pattern building blocks into the base algorithm, we first designed a
generic structure for their integration. Each block is represented by a block object, holding a separate state
during the matching process. The block implementation as such is responsible for computing the costs for
mappings, if an event is contained in the block. Basically, the interface each block has to implement provides
the following operations:

e AddMapping() — This function is called for each object in the block and returns a BlockResult wrapping
the costs. For instance, an arbitrary order block would return only the single event similarity costs but
omit the order deviation costs. In addition, the BlockResult object returns allowed indices for the
subsequent mappings. These indices indicate which mappings are valid for the next event. This is
decisive in case of the occurrence number block, which enables to jump over certain events.
Restrictive blocks return null if the mapping is not allowed, for instance in case of an order deviation
within a strict order block.

e RemoveMapping() — This function is called when stepping out of a recursion. For performance
reasons, blocks are not totally recalculated for every branch of the solutions tree, but adjusted
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dynamically. Below, we will see that most blocks internally use a stack structure to dynamically add
and remove the mappings.

e SetSucceedingMapping() — This function is called when the first mapping after a block is build. It is
required for blocks which can in part be computed only after all events of the block are present, for
instance in case of the occurrence number block.

Algorithm 1: Integration of search pattern building blocks into the base algorithm

Input: TreeNode parent (the parent node), int index (the current level of the tree)

Output: -

Variables: j, j, indices; prevPEvent, the previous pattern-sequence event; pEvent, the current pattern-sequence
event; prevBlock, the block instance surrounding prevPEvent; block, the block instance surrounding pEvent;
match, a match at the current level of the tree; child, a tree node representing the current match. indices, the
pattern-sequence indices to continue the tree with; weightedCosts, the costs as calculated from the current
and the previous mapping; cont, a flag indicating whether the current path can be continued or has to be
aborted due to constraint violations.

State: pattern, a field of events representing the pattern sequence; matches, a field containing sets of matches
in the order of the corresponding pattern-sequence events; threshold, the current threshold, initialized with a
used-defined value t;,;tiq-

1: // Get current pattern event and previous pattern event
2: Event prevPEvent = pattern[index - 1];
3: Event pEvent = pattern[index];
4.
5: // Get block instance for current pattern event . Can be null if the event is not surrounded by a block
6: ConstraintBlock block = blocks[index];
7:
8: // Get block instance for previous pattern event if different instance than “block”
9. ConstraintBlock prevBlock = blocks[index —1];
10: if (prevBlock = block) then
11: prevBlock = null;
12: end
13:
14: // Iterate through the matches for the corresponding pattern-sequence events
15. fori=1to matches[index].length step 1
16: Event match = matches[index][i];
17:
18: // Check whether match is already part of the so-far path
19: if ((match # €) and (parent.IsinPathToRoot(match))) then
20: continue;
21: end
22:
23: // Calculate costs via the previous block, the current block
24: // or as in the original base algorithm if the event is not part of a block
25- int[] indices = new int[] {index + 1 };
26: Double weightedCosts = null;
27: bool cont = true;
28:
29: // If prevBlock is set, call SetSucceedingMapping...
30: if (prevBlock # null) then
31: weightedCosts = prevBlock.SetSucceedingMapping(
32: prevPEvent, parent.Match, pEvent, match, index);
33: end
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34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45;
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

end

// If prevBlock is null or prevBlock.SetSucceedingMapping returned null...
if (weightedCosts = null) then
// If inside a constraint block, call AddMapping(...), use result for further calculations
if (block # null) then
BlockResult blockResult = block.AddMapping(
prevPEvent, parent.Match, pEvent, match, index);

cont = (blockResult # null);
if (cont) then
weightedCosts = blockResult.Costs;
indices = blockResult.Indices;
end
// Otherwise, if block is null, calculate costs as usual
else
weightedCosts = CalculateCostsAsUsual(
prevPEvent, parent.Match, pEvent, match, index);
end
else
// Call AddMapping and set “cont” and “indices”, but ignore costs since they are
// overruled by prevBlock .SetSuccedingMapping
BlockResult blockResult = block.AddMapping(
prevPEvent, parent.Match, pEvent, match, index);

cont = (blockResult # null);
if (cont) then
indices = blockResult.Indices;
end
end

// Check whether so-far costs are below the current threshold
if (cont) and (parent.Sum + weightedCosts < threshold) then
// Create child node and add to parent
TreeNode child = new TreeNode(match);
parent.add(child);
// Set costs calcuated up to this point to child node
child.Sum = parent.Sum + weightedCosts;

// Do recursive method call or set threshold if a leaf is reached
if (index < matches.length) then
for j =1 to indices.length step 1
CreateSolutionsTree(child, indicesl[j]);
end
else
threshold = child.Sum;
end
end

// If inside block, call RemoveMapping
if (block # null) then

block.RemoveMapping(pEvent, match, index);
end
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5.2.2 Restrictive blocks

5.2.2.1 Attribute constraints

In section 4.2.10.1 attribute constraints have been introduced as conditions required to be fulfilled in order to
form a valid solution. Hence, it is not sufficient to set the event similarity to zero in case of an un-fulfilled
attribute constraint. Instead, it must be guaranteed that the complete solution is omitted.

This can be achieved by introducing an extended compatibility which guarantees each attribute constraint to
be fulfilled. Given a pattern-sequence S, a set of attribute constraints attrr,, ..., attry, with attrp;: T -
{0,1}Vi=1..n on events of type T and a compatibility c:S, X (E U {&}) — {0,1}, we define an adapted
version c": S, X (E U {&}) - {0,1} of c as follows:

cle, f), féT
c(e,f) * 1_[‘_1 attr’ﬂ‘i(f)' f €T

c'(e,f) =

Formula 18: Extended compatibility function for attribute constraints

This means, plainly spoken, that an event is only compatible for a mapping, if all attribute constraints are
fulfilled.

5.2.2.2 Required block

Given a pattern-sequence S,, a “required”’-block R € S,, and a compatibility c:S, X (E U {e}) - {0,1}, we
define an adapted version ¢”: S,, X (E U {€}) — {0,1} of c as follows:

, _ 0, eERNf=¢
c'le.f) = {c(e,f), otherwise

Formula 19: Extended compatibility function for “required”-blocks

Thus, when using ¢’ instead of ¢, null-mappings are considered invalid for all those events that are part of the
“required”-block.

Example. Consider two event sequences S, and S; and a “required”-block as shown below:

Required

OO
s (@)@~ —e~

Figure 37: Example for a “required” block

Given above defined, adapted compatibility ¢’ the following solutions of S, are considered valid:
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Figure 38: Tree of valid solutions in case of a “required”-block

As a “required” block has no effect on the calculation of a solution similarity, but instead only excludes certain
solutions, we omit the similarity computation n the given example.

5.2.2.3 Time of occurrence constraints

Given a pattern-sequence Sy, a “time of occurrence”-block O < S, with a time interval T reaching from Ty, to
Tinax as well as and a compatibility c: S, X (E U {e}) — {0,1}, we define an adapted version ¢’ of c as follows:

' _ 0, (e€eO)N(w(f)&T)
clef)= {C(e, ), otherwise t

Formula 20: Extended compatibility function for “time of occurrence”-blocks

Thus, when using ¢’ instead of ¢, all mappings between pattern-sequence events in O and target-sequence
events “outside” T are considered invalid.

Example. Consider two event sequences S, and S; and a “time of occurrence”-block as shown below:

Time of occurrence

s (@) () (o)~ ¢

Tmin=5.1.2009
Tmax=6.1.2009

Figure 39: Example for a “time of occurrence” block

In the given example, b; and c; are outside of T. Therefore, with a base event-type compatibility ¢ with
c(e,f) = 1forall f = g, the following solutions of S; are considered valid:
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Figure 40: Tree of valid solutions in case of a “time of occurrence”-block

5.2.2.4 Maximal time span constraints

Given a solution s: S, = S; U {¢} and a “maximal time span”-block M € S,, with a maximal time span of tsy, .,

let us define a maximal time-span function maxTSpan: Sp* - {0,1} with

1’ t({S(el),S(ez), "'!S(en)}) < tsmax

maxTSpan(ey, ey, ..., e,) = {0 othermise

Formula 21: Maximal time span function
We now consider s valid only if maxTSpan results in 1 for all events in M.

Note that an evaluation of whether the maximal time span in a set of target-sequence events exceeds the given
threshold ts,,,, is valuable each time a new target-sequence event gets known: From t(Mst') > tSmax it
follows that t(MSt) > tSpmax for each Mg," © Mg,. We therefore integrate the “maximal time span”-block as
follows into the base algorithm: When adding a node that represents a mapping for the n™ event in a “maximal
time span”-block M, i.e., a mapping (e,s(e)) with e € M and pos(e, M) = 1, we evaluate maxTSpan for the
node and its n — 1 predecessors. If maxTSpan returns 1, the recursive algorithm is continued; otherwise, if
maxTSpan results in 0, the algorithm is cancelled for the concerned path.

In pseudo-code, an efficient implementation of a “maximal time span”-block can be described as follows:

Algorithm 2: Processing of maximal time span constraints - AddMapping()

Input: Event prevPatternEvent, Event prevMatch, Event patternEvent, Event match, int index

Output: A BlockResult object if the mapping (patternEvent, match) is valid with respect to the given block M,
null otherwise.

Variables: Pairs of time stamps (i.e. temporal ranges) lastRange and newRange. Time stamps earliest and
latest.
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State: The maximal time span timespan; ranges, a stack of maximal temporal ranges between target-sequence
events, with the /" element representing the temporal range between the first i target-sequence events in M.

1: // Get “as yet” range of timestamps or “null”-range if stack is empty
2:  Pair<TimeStamp, TimeStamp> lastRange;
3. if (ranges.length ==0) then
4: lastRange = new Pair<TimeStamp, TimeStamp>(null, null);
5: else
6: lastRange = ranges.peek();
7: end
8:
9: // Calculate new range...
10: Pair<TimeStamp, TimeStamp> newRange;
11: if (match =€) then
12: // Leave range unchanged in case of a null-mapping
13: newRange = lastRange;
14: else
15: // Otherwise, adapt range if necessary
16: TimeStamp earliest = lastRange.First;
17: TimeStamp latest = lastRange.Second;
18: if (earliest = null or earliest > v,(match)) then
19: earliest = v;(match);
20: end
21: if (latest = null or latest < v;(match)) then
22: earliest = v;(match);
23: end
24: end
25:
26: // Add new range to stack
27: ranges.push(newRange);
28:
29: // Evaluate range after earch new mapping, return “null” if illegal
30: if (lastRange.First # null and
31: lastRange.Second #null and
32: (lastRange.Second - lastRange.First) > timespan)) then
33: return null;
34: end
35:
36: // Return default costs otherwise
37: return new BlockResult (
38: new int[] { index + 1},
39: CalcDefaultCosts(prevPatternEvent, prevMatch, patternEvent, match));

In the block’s RemoveMapping()-function, the stack’s top-element is removed via ranges.pop(). The
SetSucceedingMapping()-function is irrelevant and returns null.

Example. Consider two event sequences S, and S; and a ,maximal time span“-block M < S, with a maximal

time span ts,,4, = 20s as shown below:
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Maximal time span

Olee6-

tSmax=20s

st (@b ~e) (b))
-~ -~

]
00:08 00:08 00:16 00:08 00:08

Figure 41: Example for a “maximal time span” constraint block

With the above described block implementation and an event-type compatibility ¢ with c(e, f) = 0 for all
f = &, the following tree is calculated; here, those nodes that are not continued due to the maximal time-span
constraint are marked with a red border:

Figure 42: Tree of solutions for a “maximal time span” constraint block

5.2.2.5 Minimal time span constraints

Given a solution s: S, = S, U {€} and a “Minimal time span” constraint M € S, with a minimal time span ts,;,

let us define a minimal time-span function minT Span: Sp* - {0,1} as

1, max vt(s(ei)) — 1%isr1n v (s(ej)) > tSmin '

0, otherwise

minTSpan(ey, ey, ..., €,) =

Formula 22: Minimal time span function
We now consider s valid only if minTSpan results in 1 for the events in M.

Unlike in case of the maximal time-span constraint, evaluating whether the minimal time span in set of target-
sequence events is greater than a certain threshold ts,;;, is only possible as soon as the complete set Mg, of
target-sequence events is known: From t(MSt’) < tSpin it does not follow that t(MSt) < tSpin for an
Mst' C Mg,. We therefore integrate the minimum-time-span functionality as follows into the base algorithm:
When adding a node that represents a mapping for the last event of a “minimal time span”-block M, i.e., a

mapping (e,s(e)) with e € M and pos(e, M) = |M|, we evaluate minTSpan for the node and its |[M| — 1
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predecessors. If minTSpan results in 1, the recursive algorithm is continued; otherwise, if minTSpan results in
0, the algorithm is cancelled for the given certain path.

In pseudo-code, an efficient implementation of a “maximal time span”-block can be described as follows:

Algorithm 3: Processing of minimal time span constraints - AddMapping()

Input: Event prevPatternEvent, Event prevMatch, Event patternEvent, Event match, int index

Output: A BlockResult object if the mapping (patternEvent, match) is valid with respect to the given block M,
null otherwise.

Variables: Pairs of time stamps (i.e. temporal ranges) lastRange and newRange. Time stamps earliest and
latest.

State: The position endPosition of the last pattern-sequence element in M. The minimal time span timespan. A
stack ranges of maximal temporal ranges between target-sequence events, with the i™ element representing
the temporal range between the first i target-sequence events in M.

1: // Get “as yet” range of timestamps or “null”-range if stack is empty
2:  Pair<TimeStamp, TimeStamp> lastRange;
3: if (ranges.length == 0) then
4: lastRange = new Pair<TimeStamp, TimeStamp>(null, null);
5: else
6: lastRange = ranges.peek();
7: end
8:
9: Pair<TimeStamp, TimeStamp> newRange;
10: if (match =€) then
11: // Leave range unchanged in case of a null-mapping
12: newRange = lastRange;
13: else
14: // Otherwise, adapt range if necessary
15: TimeStamp earliest = lastRange.First;
16: TimeStamp latest = lastRange.Second;
17: if (earliest = null or earliest > v,(match)) then
18: earliest = v;(match);
19: end
20: if (latest = null) or latest < v;(match)) then
21: earliest = v;(match);
22: end
23: end
24:
25: ranges.push(newRange);
26:
27: // Evaluate range when a last mapping is added, return “null” if illegal
28: if (patternEvent.Position = endPosition or
29: lastRange.First == null or
30: lastRange.Second == null or
31: (lastRange.Second - lastRange.First) < timespan) then
32: return null;
33: end
34:
35: // Return default costs otherwise
36: return new BlockResult(
37: new int[] { index + 1},
38: CalcDefaultCosts(prevPatternEvent, prevMatch, patternEvent, match));
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In the block’s RemoveMapping() function, the stack’s top-element is removed via ranges.pop(). The
SetSucceedingMapping() function is irrelevant and returns null.

Example. Consider two event sequences S, and S; and a ,minimal time span“-block M < S,, with a maximal

time span ts,,;, = 20s as shown below:

Minimal time span

-@0-©-@)-

tSmin=205

s: (@)~ ~(e)——) () (@)~

D——
00:08 00:08 00:16 00:08 00:08

Figure 43: Example for a “minimal time span” constraint block

With the above block implementation and an event-type compatibility ¢ with c(e, f) = 0 for all f = ¢, the
solutions tree is generated as shown in Figure 44. Here, those nodes that are not continued due to the minimal
time-span constraint are marked with a red border:

Figure 44: Tree of solutions for a “minimal time span” constraint block

5.2.2.6 Strict order constraint block

Given a solution 5:5, = S, U {e} and a “strict order”-constraint block O € S,,, let us define an order-function
order:S, x S, - {0,1} as

order(e, f) = {0’ (e,f € 0) A(pos(e,s) > pos(f,s))
' 1, otherwise '

Formula 23: Strict order function

We now consider s valid only if order results in 1 for each pair of successive pattern-sequence events (e, f),
e,f €S, d(ef,S,) =1
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Strict-order constraints are integrated as follows into the base algorithm: When adding a node (i.e., a mapping)
to the tree, we evaluate the order-functions for the node and its predecessor. Only if all order-functions result
in 1, the recursive algorithm is continued.

In pseudo-code, an efficient implementation of the presented constraint can be expressed as follows:

Algorithm 4: Processing of strict order constraints — AddMapping()

Input: Event prevPatternEvent, Event prevMatch, Event patternEvent, Event match, int index

Output: A BlockResult object if the mapping (patternEvent, match) is valid with respect to the given block M,
null otherwise.

Variables: Positions in the target-sequence lastPosition and nextPosition.

State: positions, a stack of positions of target-sequence events in the target sequence, with the i"™ element
representing the last position throughout the first i target-sequence events in M.

1: // Get last position or “null” if stack is empty
2: Integer lastPosition;
3: If (position.length ==0) then
4: lastPosition = null;
5: else
6: lastPosition = position.peek();
7: end
8:
9: // Calculate new position...
10: Integer newPosition;
11: if (match =€) then
12: // Use last position in case of a null-mapping
13: newPosition = lastPosition;
14: else
15: // Otherwise, use match-position in the target-sequence
16: newPosition = GetPositionInTargetSequence(match);
17: end
18:
19: // Add new position to stack
20: positions.push(newPosition);
21:
22: // Check wheter newPosition is greater than lastPosition
23: if ((lastPosition != null) && (lastPosition > newPosition)) then
24: // Return null if invalid
25: return null;
26: else
27: // Return default costs otherwise
28: return new BlockResult(
29: new int[] { index + 1},
30: CalcDefaultCosts(prevPatternEvent, prevMatch, patternEvent, match));
31: end

Example. Consider two event sequences Sp and S; and a ,strict order“-constraint block as shown below:
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 Strictorder

Figure 45: Example for a “strict order” constraint block
With an order-function order as defined above and an event-type compatibility with c(e, f) = 0 if f = ¢, the

following tree of solution is generated. Again, those nodes that are not continued are marked with a red
border.

a, Da

o
o

Figure 46: Tree of solutions for a “strict order” constraint block

5.2.3 Widening blocks

5.2.3.1 Arbitrary order block

In section 4.3.5.2.1 we introduced the concept of temporal permutations of a pattern sequence S,, with respect
to a sub-sequence A € §,, as an event sequence S, " where the times of occurrence (and, consequently, the
positions in S, ') are permutated for all events in A. All other event attributes remain equal across the events in
S, and S, ".

Obviously, one possible approach for implementing “arbitrary order”-blocks would be to perform the base
algorithm several, using the various permutations of S, and choosing the cheapest solution from all pattern-
sequences. This, however, is impracticably slow as most calculations are redundant.

Therefore, we implement “arbitrary order”-blocks as follows: Given a target sequence S;, we find solutions “as
usual”, i.e., for the original pattern sequence S,, only. Though, when calculating the (order- and temporal-
structure-related) costs of a solution s:5, — S, U {¢}, we instead consider a virtual solution s:5,," = S, U {e},

with Sp’ being the best-possible permutation of S, with respect to s.

Example: Consider two solutions s;:S,, = S; U {€} and 5,:S,, > S, U {€} as shown below:
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[ ————— P —> [ ————— >
00:01 00:02 00:01 00:01 00:02 00:01

5 (@) by ——(co{(d)>t s (a) @@ (d)>1
Sq: So!
s (@)oo~~~ s (a)——bo~(e) ()~

[ ———— > — > |—>] | ———— > — - — >
00:02 00:01 00:01 00:01 00:02 00:01 00:01 00:01

Figure 47: Example of two possible solutions for a short event sequence

Now, consider an “arbitrary order”-block A € S, as shown below:

Arbitrary order

Figure 48: Example on an “arbitrary order” block

Taking A into account, calculating overall costs remains unchanged for s;; here, S, itself is the “best”
permutation of S,. For s,, however, overall costs (regarding the order and the temporal structure) are
calculated as for an imaginary solution s3:5p' — S, U {e} as shown below, with Sp' being the optimal of

permutation of S, with respect to s,:

—— >
00:01 00:02 00:01

(e o)) (@)~

S3.

s: (@) E)~(e)—) ()~

I ——]
00:02 00:01 00:01 00:01

S

©

Figure 49: Optimal permutation of a pattern sequence in case of an “arbitrary order” block

5.2.3.1.1 Adapting the base algorithm

We have stated that an “arbitrary order”-block requires a conceptual adaption of the pattern-sequence
depending on the given solution. As the proposed algorithm builds upon the idea of certain, fixed pattern-
sequences, an implementation of the described block requires an adaption of the basic structure of the
algorithm, and is thus much more difficult than for previous blocks.

Consider a pattern sequence S, a target sequence S; and an “arbitrary order”-block A < S, and let e; address
the i event in A. When a tree node representing a match for e;, j < |A], is added to the tree, single-event
similarities are evaluated as usual. Cost-factors regarding the order and the temporal structure, however, are
not calculated and therefore not added to the costs of the current solution.

Finally, when a tree node representing a match for ey is added to the tree, we read the last |N| matches from
the node an its |[N| — 1 predecessors, and get a “partly” solution s: N — S, U {€}, s(e;) € S;v1 <i < |NJ. “In
memory”, i.e., without adapting the actual structure of the tree, we now rearrange the mappings in s, so that
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the earliest target-sequence event is mapped to the earliest pattern-sequence event, the second-earliest
pattern-sequence event is mapped to the second-earliest target-sequence event, and so on. As all
permutations of the pattern-sequence can be considered “valid”, and single-event similarities have been
calculated before, we do not have to care about compatibilities here. Thus, for the adapted list of mappings s,
pos(e,N) > pos(f,N) - pos(e,s’) > pos(f,s") holds forall e, f € N.

In the last step, we calculate those cost-factors that have been omitted before, but apply the according cost-
functions on the mappings in s’ instead of the mappings in s. Finally, we weight these cost-factors accordingly
and add them to the overall costs of the original solution.

Algorithm 5 and Algorithm 6 list these steps in pseudo-code.

Algorithm 5: Processing of arbitrary order blocks — AddMapping()

Input: Event prevPatternEvent, Event prevMatch, Event patternEvent, Event match, int index
Output: A BlockResult object containing single-event similarity costs.

Variables: -

State: A stack matches of previous matches in the given arbitrary-order block A.

1: // Add mapping to stack of mappings
2: mappings.Add(new Pair<Event, Event>(patternEvent, match);
3:
4: // Store pre-block mapping
5: if (pos(patternEvent, A) = 1) then
6: preBlockPatternEvent = prevPatternEvent;
7: preBlockMatch = prevMatch;
8: end
9:
10: // Return “block result” containing (only) single similarity costs
11: return new BlockResult(
12: new int[] { index + 1},
13: CalculateSingleSimCosts(patternEvent, match));

Algorithm 6: Processing of arbitrary order blocks — SetSucceedingMapping()

Input: Event prevFinalPatternEvent, Event prevFinalMatch, Event finalPatternEvent, Event finalMatch, int index
Output: The order- and temporal-structure costs for the given, succeeding mapping.

Variables: -

State: matches, a stack of current matches in the given arbitrary-order block A.

1: // Calculate ordered list of matches
2. List<Event> orderedMatches = new List<Event>();
3. for each Pair<Event, Event> mapping in mappings
4. if (mapping.Second # &) then
5: orderedMatches.Add(mapping.Second);
6: end
7: end
8:
9: SortByTimeOfOccurence(orderedMatches);
10:
11: Double costs =0;
12:
13: // Find best-possible mappings and calculate corresponding order- and temporal-structure costs
14: Event prevPatternEvent = preBlockPatternEvent;
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15: Event prevMatch = preBlockMatch;
16: for each Pair<Event, Event> mapping in mappings

17: Event match = mapping.Second;

18: if (match # €) then

19: match = orderedMatches.GetFirst();

20: orderedMatches.RemoveFirst();

21: end

22:

23: costs += OrderAndTemporalStructureCosts(

24: prevPatternEvent, prevMatch, mapping.First, match);
25:

26: prevMatch = match;

27: prevPatternEvent = mapping.First;

28: }

29:

30: costs += OrderAndTemporalStructureCosts(

31: prevPatternEvent, prevMatch, finalPrevPatternEvent, finalMatch);
32:

33: return costs;

In the block’s RemoveMapping() function, the stack’s top-element is removed via mappings.pop().

5.2.3.1.2 Example

Consider two solutions s;:S,, = S; U {e} and s,:S,, = S; U {e} and an “arbitrary order”-block A € S, as shown

below:

_ Arbitrary order |

Figure 50: Example on an “arbitrary order” block

With a event-type compatibility ¢ with c(e, f) = 0 for all f = ¢, uniformly distributed weights, a however
defined single-event similarity cost-function cg;,,, and an order cost-function c,.q4e a@s based upon
comer’(e,s(e),f,s(f)) =7x*(|1—d(e, f,s)|), costs are calcualted as presented below. Those calculation

steps that are particularly interesting regarding the presented block, 6 and 12, are highlighted in red.
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Weights: w;= 1/7 f.a. 0<i<8

@ Csim(aay a1) = 315

CS = Csim(@,, a1)*w1 = 0,5

costua(Sp, s1) = 3,25 @ No costs calculated due to
the arbitrary order constraint.

(3) com(ca 1) = 1,75
€S = Csim(Ca, C1)*w3 = 0,25
No costs calculated due to
the arbitrary order constraint.
csim(ca: C1) =7
cs = csim(cas 01)*0)5 =1
@ Find optimal mappings with
respect to order/temporal
structure: b,—b4, c;—¢4
|d(@a, ba, s4) - 1| = [d(as, b1, Sp) - 1| =0
|d(ba, Ca, 81) - 1] = |d(bs, €1, Sp) - 1| = 0
[d(ca, da, s1) - 1| = [d(cy, dy, Sp) - 1] =1
cp = 7*0%w, + 7*0*w, + 7*1*we =1

(7) Com(ba, br) = 1,75

CS = Csim(ba, b1)*w7 = 0,25

costwa(Sp, 82) =3

@ Find optimal mappings with
respect to order/temporal
structure: b,—¢q, C;—by
|d(aa, ba, s1) - 1] = |d(as, ¢, Sp) - 1| =1
|d(ba, Ca, 81) - 1] = |d(cy, b2, Sp) - 1] =0
|d(Ca, da, 81) - 1| = |d(b2, d1, Sy) -1 =0

cp = T*1*wWz + 70" w4y + 7*0*we = 1

Figure 51: Cost calculation example in case of an “arbitrary order” block

Note that because of the “arbitrary order” block and slightly better single-event similarities, the apparently
uncommon solution s, is considered optimal:

Figure 52: Optimal solution for “arbitrary order” block example

5.2.3.2 Occurrence number blocks

In section 4.3.5.2.2 we introduced the concept of foldings of a pattern sequence S, which contains multiple
subsequent occurrences of a subsequence O < S, at the original position of O in S,,. We further noted that the
order of all events in a folding S,, is naturally defined, whereas the exact temporal structure is undetermined so
that we require the user to configure how to compute the timespan between foldings of 0. Figure 53 again
illustrates the foldings S, through S5 for a simple example.

S OO0
~ Occurrence |
s DHO)-CH @+ = @-O-C-B-@-@~
e s @-0-0-®-0-0-@@

Figure 53: Foldings of a sample sequence for an occurrence number block
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5.2.3.2.1 Adapting the base algorithm

Consider a pattern sequence Sy, a target sequence S; and an “occurrence number”-block O € S with a minimal
occurrence of min and a maximal occurrence of max, and let e; address the i event in the max-folding of S,
Spmax. Consequently, let ey, ., address the n"™ event in the i"" iteration of 0 in Spmax

When calculating the overall costs between S, and S;, we start creating a tree as if the maximal folding Spmax
was the pattern-sequence we search solutions for. Thereby, we derive the weights for Spmax from the set of
weights for O by proportionally distributing the normal weights without any folding within the maximal folding
of 0. E.g., when a weight of wy; was originally chosen for the order cost-factor of (ey.;, €x+14+1), We assume

Wi+l
max

weights of for the order cost-factors of (ek+(i_1)*|0|+l, ek+(i—1)*|0|+l+1)r i = min, ..., max.

Now, when adding a tree-node that represents ey;.|o|, | = min, we allow creating a “short-cut” for exiting the

|Il

iterations part of Spmax: To the node representing ey.;.o|, we allow adding “additional” tree-nodes

representing matches for ey max«|o|+1, I-€., the event that succeeds the last iteration of O in Spmax' If no such
event is available, we allow reaching a (virtual) leaf: Here, the node representing ey ;.|o| is considered the last
mapping of a certain solution s, but nonetheless serves as an origin for further solutions. For calculating cost-
factors for (ek+i*|0|' ek+max*|0|+1)l we assume t(ek+i*|0|' ek+max*|0|+1) = t(ek+max*|0|' ek+max*|0|+1) and
d(ek+l~*|o|, ek+max*|0|+1,5p) = t(ek+max*|o|, ek+max*|0|+1,5p) =1, and also chose weights as if we were
calculating cost-factors for (ek+max*|o|, ek+max*|0|+1,5p).

Keep in mind, however, that for “short-cut” solutions, the sum of weights may be smaller than 1. Therefore,
when adding a short-cut to a node representing ey..jo|, We read the cost-factors for e;, k < j < i« |0|, and
for (e, e141), k <l <ix*|0|, ie., the cost-factors for those parts of the current solution that comprise
elements of the iterations part of Spmax and add them to the solution’s costs so that a.) the sum of weights is
correct with respect to the current pattern-sequence event and b.) the proportions between the inner-block
weights are maintained.

Algorithm 7, Algorithm 8 and Algorithm 9 express the implemented strategy in pseudo-code.

Algorithm 7: Processing of arbitrary order blocks — AddMapping()

Input: Event prevPatternEvent, Event prevMatch, Event patternEvent, Event match, int index

Output: A “BlockResult” object.

Variables: ¢, representing the costs for the current mapping (patternEvent, match). relativePosinBlock, the
relative position of patternEvent in O. costFunctions, the given cost functions. costFunction, a cost function.
State: costs, a stack of “so far” weighted cost factors calculated in the given occurrence-number block O.
sumOfWeights, the “so far” weights assigned in O.

1: // Generate costs for the added mapping, add cost factors and weights to stack/”sum of weights” for
2: // later normalization
3: Doublec=0;
4: for each CostFunction costFunction in costFunctions
5: Double costFactor = costFunction.GetCosts(
6: prevPatternEvent, prevMatch, patternEvent, match);
7: Double weight = GetWeight(patternEvent, costFunction);
8:
9: costs.push(new WeightedCostFactor(costFactor, weight);
10:
11: ¢ += weight * costFactor;
12: sumOfWeights += weight;
13: end
14:
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15: // Check relative position in block and decide wether a shortcut can be added
16: Integer relativePosInBlock = index — startindex;
17: if ((relativePosInBlock + 1) % 1 length = 0 and

18: relativePosInBlock + 1) / length >= minlterations)) then

19: // Return block result including shortcut

20: return new BlockResult(c, new int[] { index + 1, endIndex + 1 });
21: else

22: // Return block result not including a shortcut

23: return new BlockResult(c, new int[] {index + 1 });

24: end

Algorithm 8: Calculation of arbitrary order blocks — SetSubsequentMapping()

Input: Event prevPatternEvent, Event prevMatch, Event postBlockPatternEvent, Event postBlockMatch, int
index

Output: The costs for the given mapping (postBlockPatternEvent, postBlockMatch).

Variables: totalSumOfWeights, holding the maximal sum of weights to be assigned in the given block O.
lastBlockPatternEvent, the last pattern event in the maximal folding of O. costs, the return value.

State: costs, a stack of “so far” weighted cost factors calculated in the given occurrence-number block O.
sumOfWeights, the “so far” weights assigned in O.

1: // Call “AddMapping” (with the block’s last pattern-sequence event instead of the “correct” previous
2: // pattern-sequence event) to calculate the mapping’s basic costs
3: BlockResult blockResult = AddMapping
4: (lastBlockPatternEvent, prevMatch, postBlockPatternEvent, postBlockMatch, index);
5:
6: Double costs = blockResult.Costs;
7:
8: // Normalization of prior costs so that overall sum of weights is reached
9: for each WeightedCostFactor weightedCostFactor in costs
10: costs += weightedCostFactor.Costs *
11: (weightedCostFactor.Weight / sumOfWeights) *
12: (totalSumOfWeights — sumOfWeights);
13: end
14.
15: // Remove previously added mapping
16: RemoveMapping(postBlockPatternEvent, index);
17:
18: return costs;

Algorithm 9: Calculation of arbitrary order blocks — RemoveMapping()

Input: EventWrapper patternEvent, int index

Output: -

State: costs, a stack of “so far” weighted cost factors calculated in the given occurrence-number block O.
sumOfWeights, the “so far” weights assigned in O.

Variables: costFunction, the given cost functions. costFunction, a cost function. weightedCostFactor, the costs-
stack’s current top-level element.

1: // Remove corresponding cost factors from stack, reduce “total costs”
2: for each CostFunction costFunction in costFunctions
3: WeightedCostFactor weightedCostFactor = costs.pop();
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4: totalCosts -= weightedCostFactor.Weight;
5: end

5.2.3.2.2 Example

Consider a pattern sequence S, a target sequence S;, and an “occurrence number”-block 0 < S,, as shown
below:

Occurrence

5 @)~

min=1, max=2

% (@-()—(e-C—(e-(e)—e)~ «

Figure 54: Example of an “occurrence number” block

With a event-type compatibility c with c(e, f) = 0 for all f = &, weights uniformly distributed over the adapted
pattern sequence S, and an order cost-function Coger as based upon corder’(e,s(e),f,s(f)) =10 =
(]1 —d(e, f,s)]), costs are calcualted as presented below. Being particularly interesting with respect to the
presented block, calculation step 3 is marked red. Also, for the sake of brevity, we decided to focus on a smaller
part of the (rather larger) overall tree.

a

Son (@) (o) —(ea)—b)—(c2)—(d)> 1
a c Ca

ba

da Weights: w;= 1/5 f.a. 0<i<6

@ d(@a, bay S1234) - 1] = 0
cp=10*0*w, =0
@ |d(ba, Cay $12) - 1] =0
0

cp =10"0*w; =

off
[d(Ca, da, 1) - 1] =3
cp’ =10*3*w; =6
b.)
Normalize last 3 cost
factors so that overall
| | block costs of Wa .=
I I WetWtwstwtwsare
| I reached:
| | Wa, = Wrtwetws
! ! cp = cp’ + 0*(wi/wa,)*(Wa,,7Wa,)
1 | * 0*(wln )" (O, 700m,)
| |
| |
| |
| |

a a a

cp=10*0*w; =0
Id(ba!: Ca,s SZ) - 1| =0
cp=10*0*w, =0

(6) 1d(cs’, da, 52) - 1] = 1

cp=10"1*ws =2

sum=0
| + 30%(Walwa )*(Wa..,-wa ) = 10
~4 ld(Ca, ba', $2) - 1] = 0
‘ ~N
|

Figure 55: Solution tree (excerpt) and calculated costs for an “occurrence number”-block
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5.2.3.3 Arbitrary events

5.2.3.3.1 Implementation approach 1

One possible implementation of arbitrary events is that of using an adapted version of the base compatibility as
shown above. Therewith, all events of the target sequence are considered compatible to events of type
Arbitrary.

5.2.3.3.2 Implementation approach 2

The described approach on arbitrary events is in full accordance with the base algorithm and treats arbitrary
events just like any normal one: An arbitrary event may, for instance, be placed at an exact point in time and
thus be considered in a temporal-structure cost-function, or it may be part of constraint block. Yet, by
massively extending the overall set of matches, arbitrary events may result in a notable growth of the tree, and
thereby slow down the calculation.

We therefore propose an alternative, block-based implementation of arbitrary events that builds upon the (in
fact, simplistic) assumption that for a (sub-)pattern-sequence S’ = (e, X1, X5, ..., Xpn, f), X1, X2, e, Xy € X,
e, f X, xq,x,,...,X, are mapped to target-sequence events somewhere “in between” the target sequence
events mapped to e and f in the best-possible solution s: S — T U {&}. In other words, if pos(e, s) = pos(f,s),
we assume that pos(e,s) = pos(x;) = pos(f,s)V1 < i < n. Otherwise, if pos(e,s) < pos(f,s), we assume
that pos(e, s) < pos(x;) < pos(f,s)Vl <i<n.’

In the pattern editor, we let the user create an “arbitrary events”-block around two successive pattern-
sequence events e, f € S, and define a range min to max of arbitrary events that shall be “between” the
matches for e and f in the target sequence. When calculating the order cost-factors for a target sequence S;,
we assume a (virtual) distance between e and f in S, that is a.) in [min + 1,max + 1] and b.) optimal with
respect to the distance between e and f in the given solution s, d(e, f, s). Consider, for instance, an “arbitrary
event”-block with min = 3 and max = 5: Here, for a solution with d(e, f,s) = 4, we assume d(e,f, Sp) =4,
For a solution with d(e, f,s) = 7, however, we assume d(e,f,Sp) = 6 as the distance must be in [min +
1, max + 1].

The question arising is what happens if there are fewer events between e and f in s than minimum number of
arbitrary events required? From the above assumption, it clearly follows that the minimal number of arbitrary
events must be mapped to something in between; thus, one might consider something similar to null-matches

IH

for non-mapped arbitrary events. As arbitrary events are usually less critical then “normal” events (otherwise
they wouldn’t be “arbitrary”), we decided to implement a very simple null-match approach that differs from
the rather complex and cost-function specific default implementations: Whenever the distance between e and
f in a solution s is smaller than min, we add the according number of fixed and user-defined “pseudo null-
node” costs to the (still to be weighted) order-cost factor. E.g., for a solution with d(e, f,s) = 2, we assume

d(e,f, Sp) = 2 but add two times the user-defined pseudo null-node costs.

Algorithm 10 and Algorithm 11 list the calculation steps in pseudo-code.

> Equality is allowed here due to possible null-mappings.
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Algorithm 10: Processing of arbitrary event blocks — AddMapping()

Input: Event prevPatternEvent, Event prevMatch, Event patternEvent, Event match, int index

Output: A “BlockResult” object.

Variables: endindex, the end index of the given arbitrary event block. minEvents, the minimum number of
arbitrary events, maxEvents, the maximum number of arbitrary events. nullNodeCosts, the costs for “arbitrary”
null nodes. ¢, representing the costs for the current mapping (patternEvent, match).

1: //If pattern event is the second event in the given block, perform special cost calculation
2: if (index = endIndex) then
3 // If match is a null node, calculate costs as usual
4 if (match = &) then
5: return new BlockResult(
6 CalculateDefaultCosts(prevPatternEvent, prevMatch, patternEvent, match),
7 index + 1);
8 else
9: // Calculate single sim & temp structure costs as usual
10: Double regularCosts = CalculateSingleSim&TempStructureCosts(
11: prevPatternEvent, prevMatch, patternEvent, match);
12:
13: // Get/update “last position” in the order cost-function.
14. // For more details on the order cost-function, refer to Obweger [37].
15: Integer lastPosition = orderCostFunction.CalculateLastPosition(
16: prevPatternEvent, prevMatch, patternEvent, match);
17:
18: // Calculate the distance between match and the last previous non-null match (“last
19: // position”) in the target sequence.
20: Integer targetSeqDist = match.Position — lastPosition;
21:
22: // Find a pattern sequence distance “optimal” with respect to patternSeqDist and
23: // maxEvents.
24: Integer patternSeqDist;
25: if (targetSeqDist > 0) then
26: patternSeqgDist = Min(maxEvent, targetSeqDist);
27: else
28: patternSeqDist = 1;
29: end
30:
31: // Calculate order costs as if the distance between prevPatternEvent and
32: // patternEvent was “optimal”, i.e., patternSeqDist.
33: Integer orderCosts = orderCostFunction.CalculateCosts(
34: targetSeqDist, patternSeqDist);
35:
36: // Finally, if there are too few events between match and prevMatch regarding
37: // minEvents, add an according number of “null node costs” to orderCosts.
38: Integer missingInTargetSeq = _minEvents — Abs(targetSeqDist);
39: if (missingInTargetSeq > 0) then
40: orderCosts += missingInTargetSeq * nullNodesCosts;
41: end
42:
43: return new BlockResult(
44: regularCosts + orderCosts * GetWeight(orderCostFunction, patternEvent),
45: index + 1);
46: end
47.

48: // Otherwise, calculate costs as usual
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49: else

50: return new BlockResult(

51: CalculateDefaultCosts(prevPatternEvent, prevMatch, patternEvent, match),
52: index + 1);

53: end

Algorithm 11: Retrieving/Updating the last target-sequence position in the order cost-function
Input: Event prevPatternEvent, Event prevMatch, Event patternEvent, Event match, int index

Output: The last successfully mapped target-sequence position, null if not available.
Variables: lastPosition, the return value.
State: /astPositions, a field holding the last successfully mapped target-sequence position for each pattern

sequence index.

Integer lastPosition = null;

if (prevMatch = €) then

// If prevMatch is a null match, get position from index - 1
lastPosition = lastPositions[index - 1];

1

2

3

4:

5: else
6 // Otherwise, get prevMatch’s position

7 lastPosition = GetPositionInTargetSequence(prevMatch);
8: end

9: lastPositions[index] = lastPosition;

11: return lastPosition;

Both the block’s SetSucceedingMapping() function and the block’s RemoveMapping() function are irrelevant:
The former returns null, the latter does nothing at all. Note that with the alternative approach, the user can
define the pure existence of arbitrary events, yet he or she cannot define an exact time stamp. Thus, the
proposed blocks only affect order cost-factors. Also, for several reasons, the algorithm does not necessarily
calculate correct overall solution costs:
e In cases where null-mappings are considered, it may be more efficient to map an event that is outside
the surrounding non-arbitrary mappings.
e As the algorithm does not mark those target-sequence events that are considered as mapped to
arbitrary events as part of the given solution(s), those may “re-mapped” to later pattern-sequence
events. This clearly conflicts with the algorithm’s general approach and may result in solutions with

too low costs.

Example. Consider a pattern sequence S, a target sequence S;, and an “arbitrary events”-block A < S, with

min = 2 and max = 4 as shown below:

Arb. Events

» @@

min=2, max=4

% @)oo (e e

Figure 56: Solution tree (excerpt) and calculated costs for an “occurrence number”-block
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With a event-type compatibility c with c(e, f) = 0 for all f = &, uniformly distributed weights and an order
cost-function Corqer as based upon coraer' (€, s(€), f,5(f)) = (|d(e, f, Sp) —d(e,f,s)|), costs are calculated

as presented below. Again, those calculation steps that are particularly interesting with respect to the

presented block, 2 and 3, are marked red.

Weights: w;= 1/2 f.a. 0<i<3

|

|

| (1) Id(2a, by, 12) - 1] =0

| cp=0w=0

| costwa(Sp, 81) =2 @ As d(ba, Ca, S1) is smaller than

} min + 1,

| min + 1 -d(aa, bs, s1) null-

I mappings must be considered.

| We therefore calculate order

I costs as follows:

| n=min + 1 - d(@a, ba, $1) = 2

} costwa(sp, Sz) =05 cp = n*c*w, = 2*2*0.5 = 2

| @ As d(b,, ca, s2) is larger than min

I + 1, all arbitrary events could be
mapped to events of the target
sequence. Thus, we find an
optimal virtual distance of b, and
Cain Sp with respect to s,, min
and max, ds,, min, max(Pa, Ca, Sp) =
4, and calculate the order cost-
factor as follows:

|d(aa: ba: S1,2) - ds2,min, max(ba: Ca, Sp)l =1
cp=1w,=0,5

Figure 57: Solution tree (excerpt) and calculated costs for an “arbitrary events”-block

5.2.4 Asymptotic runtime

In his thesis, Obweger [37] discusses the complexity of the base algorithm, which is in the worst case directly

min(|5p|.|5t|)( (Isp])!

k=0 (G

stage, we refer the interested reader to this thesis, and limit the discussion to the impact of presented

proportional to the number of possible solutions Y, )* ('i") (see section 5.1.1). At this

enhanced pattern sequence building blocks. It is still important to note that in practice, we avoid the worst-
case runtime through

= compatibilities, restricting the set of valid solutions, and the

= dynamic threshold, allowing us to skip costly solutions early in the calculation.
In summary, the basic runtime may be influenced by the additional blocks in one of the following ways:

= Increase or decrease the number of compatible events.
= Influence the probability of solutions being omitted due to exceeding the threshold.

=  Add to the total number of possible solutions.

5.2.4.1 Restrictive blocks

Restrictive blocks have been introduced as blocks which do not decrease a similarity score proportionally to a
deviation, but omit solutions if the so-defined restrictions or constraints are violated. Thus, using such blocks in
general reduces the number of valid solutions and therewith the runtime. We count the following blocks to the
family of restrictive blocks. All restrictive blocks influence the runtime positively by decreasing limiting
compatibilities.
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= Attribute constraints — Certain matches will not be compatible any longer due to violating an attribute
constraint.

= Time of occurrence constraints — Similar to attribute constraints: Matches outside the allowed time
span are not compatible any longer.

= Maximal time span constraints — Also decrease the compatibility with the only difference that these
constraints can be evaluated only after two or more events in a block have been mapped. The
asymptotic runtime remains equal though.

= Minimal time span constraints — Decrease the compatibility in the same way as the maximal time
span constraints, with the difference that evaluation is possible only after all events in the block are
mapped.

= “Strict order” constraint block — Mappings which are not in the correct order are incompatible within
the scope of the block.

= “Required”-block — Decreases the compatibility as for events in the block null-mappings are not
compatible any longer.

5.2.4.2 Widening blocks

Intuitively, widening blocks have negative impact on the runtime by weakening the matching or allowing
additional solutions to be built. We count the following blocks to the family of widening blocks:

= Arbitrary order block — Arbitrary order blocks do neither influence compatibilities nor the total
number of solutions. Yet, such blocks decrease the probability of solutions being omitted by the
threshold, as within the block order deviations are not scored so that solutions in general have lower
costs.

=  Occurrence number blocks — Occurrence number blocks have the worst influence in terms of the
runtime. Such a block increases the number of possible solutions by the maximum number of foldings
plus the maximum number of iterations at the solution tree level of the first match after the block.
Considering a small example makes it clearer: Having an occurrence number block which allows one to
five occurrences of a subsequence, this subsequence is now added five times to the pattern and in
addition solutions are possible that map the first occurrence only and then take the described “short-
cut” to the event following the block, or two occurrences and so forth.

= Arbitrary events (implementation approach 1) — This approach increases the compatibility. An
arbitrary event is an event with a very high compatibility, and thus can be mapped to any event. In
general this causes more solutions to be valid.

=  Arbitrary events (implementation approach 2) — This implementation model increases or decreases
the probability for solutions being omitted due to exceeding the threshold. An increase is possible in
combination with a defined minimum number of arbitrary events. In that case, many null-mappings
have to be build if the target sequence does not contain sufficient events, and thus the costs increase
faster. Typically yet, it will decrease the probability and slow down the matching process.

In total, positive influence on the compatibilities or hitting the threshold early is very desirable. Thus, where
possible the user should try to restrict the search in order to omit considering a large bulk of bad solutions.
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5.3 Time series similarity for event attributes

5.3.1 Overview and requirements

From the application examples named in section 3 it becomes obvious that simple event-by-event comparisons
with a distance metric such as normalized absolute difference may not be sufficient in all application areas.
Typical examples requiring other models are chart pattern discovery in financial market analysis or numeric
series of machine precision measures, sensor logs and similar series occurring in manufacturing applications.
Therefore, additional similarity techniques are proposed. In the following, these are referred to as

= Normalized sequence similarity and
= Normalized relative sequence similarity.

5.3.1.1 Normalized sequence similarity

The normalized sequence similarity technique is used for normalizing attribute values prior to assessing
similarity. Normalization is performed relatively to any reference value. For instance, the first value of a
sequence of values may be used as a reference. In Figure 58, 2 event sequences S; and S, are given. The
sequences of values are shown before and after normalization. The normalized values can then be compared to
each other with any similarity matching algorithm.

Event Type: A Event Type: A Event Type: A Event Type: A
Attributes: Attributes: Attributes: Attributes:
Ss
A1:[INTEGER] 22 A1:[INTEGER] 12 A1:[INTEGER] 109 A1:[INTEGER] 79
Event Type: A Event Type: A Event Type: A Event Type: A
Attributes: Attributes: Attributes: Attributes:
Sz

A1:[INTEGER] 2 A1:[INTEGER] 1 A1:[INTEGER] 11 A1:[INTEGER] 8

After normalization

Before normalization

Value sequence 1

J

Value sequence 2

Figure 58: Normalized sequence similarity

5.3.1.2 Normalized relative sequence similarity

The normalized relative sequence similarity technique considers the relative distance between subsequent

values in a value series. An example is given in Figure 59.
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Before normalization ‘ After normalization

Distance values sequence 1 2,3 (...) 1 1,15 (...)
Distance values Sequence 2 4,5 (...) 1 1,125 (...)

Figure 59: Attribute value series for normalized relative sequence similarity

In the example, the normalized sequence similarity technique is applied to the distances between the values
instead of applying it to the values itself. In this way, the two value series shown in Figure 59 are considered as
being similar to each other.

In each of these two cases, after a transformation/data extraction step a series of ordered value pairs
consisting of a time stamp and an according value has to be compared to a corresponding series in the
reference pattern. Hence, an appropriate time-series similarity model has to be found to perform this
comparison, and it must be compatible for being integrated into the base algorithm. In the following, the
applied time-series similarity model is discussed in detail, before its integration into the event similarity
algorithm is described.

5.3.2 Applied time-series similarity model

5.3.2.1 Overview and requirements

This section describes the time-series similarity approach which is applied and integrated into the similarity
matching of event sequences. From the requirements derived from named application examples, the time-
series approach has to support the following parameters:

= The time-scaling of target sequence and reference pattern may be distinct, i.e., these are not equally
sampled time-series.

= Time-series do not necessarily have a constant sampling rate, the time between single data points may
vary strongly.

= The algorithm must support full sequence matching as well as subsequence matching and the
intermediates of a matching starting at the first data point or ending with the last data point.

=  The output of the algorithm must be a ranking of matches, so that these can be combined with further
characteristics of the complete event sequence. This means in particular that the time-series
comparison of an attribute can be only one of several considered characteristics, and the best match
of the time-series comparison is not automatically the best match overall.
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Due to these requirements, many existing approaches fall short in one or the other way. For instance, many
approaches rely on constant value sampling, or do not support subsequence matching. Therefore, a new
approach is proposed, which adopts some of the existing ideas and extends them to be applicable in the given

environment.

5.3.2.2 Method summary

The applied time-series model is based on the idea of utilizing the slopes between the single data points for
comparing time-series data [50] [51]. The existing model of Toshniwal and Joshi assumes that data points are
sampled regularly in order to subdivide the value series into regular slices. In the given context, the problem is
that the time span between events, and therefore between the data points of the time-series, may vary
strongly. Therefore, the question of how to subdivide the series into several slices in order to compare the
slopes, arises. The second problem of the existing slope model is that it does not support subsequence
matching and different scaling on the time-axis of target sequence and reference pattern. Considering a simple
example from the stock chart pattern domain underlines the problem: One of the classical problems in this
domain is the “W-pattern”: A chart formation which looks like a “W” or a reversed “W” may be an indication of
a trend reversal.

Figure 60: W-Formation in stock charts

In practice, of course, such patterns may not always be that clear and intermediate, outlying data points may
be present. Therefore, the detection of such a pattern is a good example for applying fuzzy similarity
techniques.

Considering this example it becomes clear that a fixed-scale similarity model fails in the pattern detection: A W-
formation may occur at the scale of years, but also within one day. Having the pattern defined as a reference
pattern, the similarity comparison model must be flexible enough to detect it at different scales. Also, the
relative height of the “W” might vary, depending on the prior history and first of all the volatility of the stock.

These aspects are considered in the proposed similarity model. It is based on the idea of subdividing the time-
series into slices at those points of the series where the movement trend of the series is turning and using
these turning points as the basis for comparing the slopes of the series. As a consequence, the scale at which a
pattern is detected strongly depends on the turning points selected. When extracting only the turning points of
the long-term movement, short-term movements will be smoothed implicitly and remain unconsidered.

The determination of the turning points utilizes well-known and simple techniques from the financial market

analysis. Here, so-called trend following strategies rely on mechanisms to detect changes in the overall

direction of a price movement over a certain period. Among these mechanisms, the moving average (MA)

intersection technique is one of the most simple and most popular ones. The simple moving average (SMA)
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with a period of n is the unweighted arithmetic mean of the previous n data points. It is used to smooth-out
short-term fluctuations and highlighting long-term trends or cycles. Mathematically, building the moving
average is simply an example of a convolution, so it is similar to low-pass filters in signal processing.

2006 Oct MNov Dec 2007 Feb Mar Apr May Jun  Jul Aug Sep Oct Nov Dec 2008 Feb Mar Apr May Jun  Jul Aug

Figure 61: Example of stock chart with moving average6

Figure 61 provides an example of a 2-years stock chart and the moving average (red) with a period of 50. For
generating trading signals based on such a MA curve, the following rules are applied:

=  When the price curve crosses the MA line from top to bottom, an up-trend turns into a down-trend.
This gives a sell-signal.

=  When the price curve crosses the MA line from bottom to top, a down-trend turns into an up-trend.
This gives a buy-signal.

These simple rules are based on the idea that the smoothed MA-line always moves behind the price curve. As
long as the price does not change the major direction, they do not cross. When they cross, it is an indication of
a trend change.

Exactly these crossing points can also be utilized to extract the turning points in the trend of the overall chart
with respect to a given MA period. The algorithm first computes the MA and determines the crossing points. In
the next step, the slopes between these points are computed and finally they are compared to each other.
These steps are repeated in multiple passes with varying MA periods. In this way a search pattern can be
detected at different scaling levels. At the end, the result contains a list of possible matches for the series, each
match having a sum of slope deviations and a starting point in the series. Algorithm 12 summarizes the steps in
pseudo code.

Algorithm 12: Base algorithm for comparing two time series

Input: TimeSeries pattern, TimeSeries targetSeries

Output: Sorted list of similarity matches as tuples of time-series subsequence and similarity score

Variables: Arrays of time-series data points patternPoints, targetPoints; deviation (sum of slope deviations for a
certain match); Arrays of slope values patternSlopes, targetSlopes; Indizes MAPeriod, startpoint, index

1: //iterate in multiple passes through the data with varying MA period
2: for MAPeriod = minPeriod to maxPeriod step precision

® Chart created with YAHOO Finance, finance.yahoo.com. Copyright: YAHOO Inc.
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3: DataPoint[] patternPoints = GetTurningPoints(pattern, MAPeriod);
4: DataPoint[] targetPoints = GetTurningPoints(targetSeries, MAPeriod);
5: patternSlopes = GetSlopesBetweenTurningpoints(patternPoints);
6: targetSlopes = GetSlopesBetweenTurningpoints(targetPoints);
7: //start from different points in the longer series and evaluate the resulting match
8: deviation = 0;
9: if (patternPoints.Length>=targetPoints.Length)
10: for startingPoint = firstPointInTarget to lastPointInTarget step 1
11: for index = 0 to patternLength step 1
12: deviation += Difference (targetSlopes[index+startPoint],
13: patternSlopes[index]);
14: next
15: StoreDeviationForThisMatch();
16: deviation = 0;
17: next
18: else
19: //iterate over the pattern sequence instead of the target sequence
20: next

In the following the method, several parameters and introduced variations are described in greater detail. For
instance, in Algorithm 12 the search pattern and the source series are both smoothed with the same MA period
which is not generally desirable.

5.3.2.3 Determination of turning points

In the above overview, it was said that the crossing points between the MA curve and the original curve are
used as the turning points between which the slopes are computed and subsequently compared. In fact, this
has the downside that the turning points are set after the actual turn of the trend. Especially for longer MA
periods, this can be very decisive. The rule is that the greater the MA period, the later can the actual reversal
be detected. The advantage is that we of course have the possibility to track back the series to the actual point
where the trend reversed: in case of an up-trend turning into a down-trend this is the highest data point since
the last trend reversal or the beginning of the series, for a down-up trend reversal, it is the lowest point.

Out of these considerations, several modes are introduced for determining the turning points. Ultimately, the
user can choose which mode to apply. The modes available are:

=  Extremum — Take the extremum between the current and the last crossing point.

= CrossingPoint — Take the value of the crossing point directly.

=  AvgExtremumAndCrossingPoint — Build an average between the extremum and the crossing point.
Averages the value as well as the timestamp.

= ExtremeValuesAverage — Compute an average of the highest/lowest n percent of values. Set the
timestamp to the point of the absolute extremum. This technique is used to straight out extreme
outliers.
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Figure 62: Impact of different turning point modes

Figure 62 illustrates the impact of these turning point modes. In Figure 62a, the MA crossing points are marked
for an MA period of 50. It can be seen that such a relatively large MA period smoothes out big movements,
such as the price high in November and the subsequent temporary decline.

In Figure 62b, the series of turning points resulting from the turning point mode “CrossingPoint” is shown. The
resulting curve is very smooth; many smaller movements nearly disappear completely. Reversal points are
mostly far behind the actual turning point of the curve.

Figure 62c shows the use of the turning point mode “Extremum”. The mode emphasizes the original
movements of the curve, but in case of many short subsequent changes such as in August/September, the
result is a sequence of rough spikes, which may be undesirable.

In Figure 62d, the “AvgExtremumCrossingPoint” turning point mode is applied. In this case the resulting turning
points must not necessarily be points on the original curve. Turning points are set later than the actual curve
turns. Smaller up/down alterations are smoothed better.

Finally, Figure 62e shows the result of applying the “ExtremeValuesAverage” technique. The result is similar to
the “Extremum” technique. Yet, extreme outliers are not used directly. This may be of advantage in case of
extreme short term variations which should not be considered for the overall trend.

Algorithm 13 demonstrates the combined computation of the moving average and the extraction of turning

points depending on the turning point mode.
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Algorithm 13: Computation of turning points based on MA crossing points

Input: TimeSeries searchedSequence, int period (the MA period), TurningPointMode mode, int

extremeValuesAveragePercentage

Output: TimeSeries turningPoints

Variables: Indices indexOverall (index of the current data point in the sequence), indexInternal (index within
the internal array of last values for MA computation): lastValues (array of last values used for MA
computation), curSum (current sum of MA values), replacedValue (last value still used for the MA's sliding time
window - the value that is replaced when moving the time window forward), maPoints (calculated series of MA
points), pointsFromLastCrossingPoint, penultimatePoint, intersection;

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:

for each point in searchedSequence

//always add the first and the last point
if indexOverall =0 or indexOverall = searchedSequence.Lenth - 1
turningPoints.AddDataPoint(point);

if indexInternal = period
indexInternal = 0;

//update the next values for the MA period computation
replacedValue = lastValues[indexInternal];
lastValues[indexInternal] = point.Value;

//prior to reaching the first MA period, simply sum up all values
if indexOverall <= period -1
curSum +=point.Value;

if indexOverall = period -1
maPoints.AddDataPoint(point.TimeStamp, curSum / period);

//for subsequent MA value remove the last value and add the new one
else if indexOverall >= period
curSum = curSum - replacedValue + point.Value;
maPoints.AddDataPoint(point.TimeStamp, curSum / period);

//check if the ma line intersects with the data point series. the function Intersects(a,b,c,d)

//returns the intersection of two lines a-b and c-d

intersection = Intersects(maPoints[penultimatePoint],maPoints[point.TimeStamp],
searchedSequence [penultimatePoint], point.Value);

if intersection = Intersection.FromBottomToTop
if mode = TurningPointMode.Extremum
turnPointToAdd = FindLastMaxValue(pointsFromLastCrossingPoint);
if mode = TurningPointMode. CrossingPoint
turnPointToAdd = point;
if mode = TurningPointMode. AvgExtremumAndCrossingPoint
turnPointToAdd =Avg(FindLastMaxValue(pointsFromLastCrossingPoint),
point);
if mode = TurningPointMode. ExtremeValuesAverage
turnPointToAdd = (point.TimeStamp, GetAvgOfHighestValues(
pointsFromLastCrossingPoint, extremeValuesAveragePercentage));

if intersection = Intersection.FromBottomToTop

//equivalent to intersection from top to botton, yet, use functions
//”FindLastMinValues” and “GetAvgOfLowestValues” respectively, instead of the
//max value functions
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47: if intersection # Intersection.None

48: turningPoints.AddDataPoint(turnPointToAdd);
49: pointsFromLastCrossingPoint.Clear();

50:

51: pointsFromLastCrossingPoint.AddDataPoint(point);

52: penultimatePoint = point.TimeStamp;

53: indexInternal++;

54: indexOverall++;

55: next

56: return turningPoints;

5.3.2.4 Modes and parameters for MA smoothing

In Algorithm 12 on page 71 both the pattern series and the searched series are smoothed with the same MA
period in each pass. This technique may be appropriate when comparing two independent and potentially
unknown time-series. In other cases, for instance when the pattern is a well-known formation such as the “W-
pattern” illustrated in Figure 60 on page 70 which also has a known time scaling, the analyst may wish to set
the MA period so that the turning points exactly emphasize the most important characteristics of the input
pattern. Hence, separate control of the determination of turning points in the reference pattern sequence and
the target sequence is required. In order to provide utmost flexibility, the algorithm in addition provides two
modes:

= EqualPeriodAlways — Method as used in Algorithm 12. In different passes both series are smoothed
with the same MA period.

=  VaryingPeriod — The MA periods for reference pattern and target sequence are varied independently
and compared to each other. The user can set the minimum and maximum MA periods and the
precisions (step lengths) for both series independently. Algorithm 14 illustrates the resulting iteration
loops.

Algorithm 14: Iterations for varying period MA smoothing

Input: TimeSeries pattern, TimeSeries targetSeries
Variables: Arrays of time-series data points patternPoints, targetPoints; Indizes MAPeriodPattern,
MAPeriodTarget

1: //iterate in multiple passes through the data with varying MA period

2: for MAPeriodTarget = minPeriodTarget to maxPeriodTarget step precisionTarget

3 for MAPeriodPattern = minPeriodPattern to maxPeriodPattern step precisionPattern
4 DataPoint[] patternPoints = GetTurningPoints(pattern, MAPeriodPattern);
5: DataPoint[] targetPoints = GetTurningPoints(targetSeries, MAPeriodTarget);
6: next

7 //Get slopes and compute deviations

8

9 next

With this mode it is also possible to set the MA of the reference pattern to a fixed value, in case of minimum
period equaling maximum period.

5.3.2.5 Anchoring the match

For certain applications it might be of interest to anchor the match, i.e., to guarantee that the match either

starts with the first value of the searched sequence or ends with the last value or both. Especially in finance,

anchoring the end of the match is important, as users may want to find stocks or other instruments where a
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search pattern is currently emerging, and not those where the pattern occurred somewhere in the past but
now the price moved to other directions.

Anchoring the match at the start can be achieved by just comparing the match starting with the first turning
point. Practically this just leaves out the loop shifting the shorter series over the longer one. Instead, it only
compares the first n slopes between the turning points, whereby n corresponds to the length of the shorter
sequence, which is mostly the search pattern.

Equivalently, anchoring the match at the end can be done by leaving m — n values at the beginning of the
longer sequence unconsidered, whereby m is the length of the longer sequence, n the length of the shorter

sequence.

Anchoring both, start and end of the match is yet a special case. Trying to apply the same algorithm as above
fails, because the number of turning points may vary, and it is impossible to choose which turning points should
be used. Also, forming combinations of all possible turning point usages is inappropriate. Due to these
considerations this setting is treated completely separate, using a different technique for the matching. In this
case, the original algorithm of Toshniwal and Joshi [50][51] is applied.

The idea is that when wanting to anchor the start and the end of the match, the search pattern should be
virtually stretched over the compared sequence, and differences should be assessed. Even if this is the simplest
case of time-series comparison it is still necessary to find an efficient way to perform this comparison. The
slope-model is applied as follows: First, the two time-series are normalized on the time-axis. Then both series
are subdivided into equally-sized slices. The density of these slices is configurable. In a next step, the slopes
between the curve points at each slice are computed, and finally pair-wisely compared.

Figure 63 illustrates the described process. The simple example also underlines a major problem when using
this approach: The slicing is a kind of resampling to reduce the complexity and number of slopes to compare. It
has the purpose of emphasizing the overall movement instead of small fluctuations, which always decrease the
similarity score. As a consequence, the success of the comparison strongly depends on the chosen sampling
rate for slicing. If it is not appropriate, important parts of the curve may just be smoothed out. As can be seen
in the example, the W-formation is less clear after the slicing. For the red line it nearly vanishes. The effect can
be reduced by again iterating in multiple passes over the series with varying sampling rates, but not completely
omitted.
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Figure 63: Process of slope comparison with regular slicing

5.3.2.6 Modes for comparing the slopes

In case of the default mode for the matching, i.e. the computation of turning points based on MA crossings and

the comparisons of slopes between them the next question arising is which slopes to compare to each other.

The simplest method is to always compare the slopes between subsequent points only. This technique is also

applied by Toshniwal and Joshi in their original publication. One problem arising from these slop-by-slope

comparisons is the following: In combination with varying distances between the turning points, it is possible

that the method leads to false positives, i.e., matches that are in fact not equal or even similar. An example
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makes it clear. In Figure 64 two series are shown, which have exactly matching slopes from one point to the
other. Yet, due to the fact that they are not equally sampled, they are not guaranteed to be equal, as the
example shows. A value-by-value comparison would assess these series as being equal.

A A

L L

(@) (b)

Figure 64: Two unequal series with equal slopes between turning points

In consequence of these considerations, different locality modes for the slope comparison are introduced. The
offered modes are:

= None — In this mode only neighbouring turning points are compared, with the above said shortcoming.
Requires the fewest comparison operations.

=  Local — In this mode, slopes between each point and n subsequent points are compared, whereby n is
a user-configurable parameter.

=  Global — In this mode the slopes from each point to each other point are considered. This causes the
most global view onto the series.

=  WeightedGlobal — In this mode, also all slopes are considered as in the global mode, but the closer
two points are, the higher is the slope deviation weighted.

The modes virtually span different grids of slope lines over both the reference pattern and the compared
sequence. Figure 65a illustrates this virtual grid of considered slopes for local comparison mode with the
number of points taken into account set to 3. In comparison, Figure 65b shows the considered slopes in case of
global comparison mode.

\
\

Local (3) (@) Global (b)

Figure 65: Considered slopes in local and global mode
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The figure underlines the major difference and value of both techniques: In the example sequence, the two
lowest points in the series have the same value. In the finance domain, one of the main application areas for
these techniques, such a pattern could be interpreted as a resistance level, a point where a down-side
movement stops more than once. In the local mode, the slope of 0 degrees between these 2 points remains
considered, while in global mode it gets equally weighted as all other slopes and is taken into account. In other
application areas of course this might not be desirable.

Please note that for the special example of resistance levels mentioned above it would be possible to go even
one step further and allow the user to emphasize such levels in the search pattern. Yet, a specific modelling of
time-series constraints is out of scope for the on-hand thesis.

5.3.2.7 Time weighting

The example in Figure 62 on page 73 shows that with the turning point extraction technique it might occur that
the time spans between the extracted points vary strongly. For instance, for a longer subsequence that moves
straight in one trend direction, only one turning point at the beginning and end will be extracted, whereas in
other sequence areas with short-term fluctuations many consecutive turning points with only minimal time
spans in between may emerge from the extraction process. In Figure 66 two series of this kind are shown. In
fact, sequences (a) and (b) only vary in the second curve point, which means only two of eight slopes show a
deviation.

[
|

(a) (b)

\j

Figure 66: Two sequences with many equal slopes

Yet, for the assessment of similarity this might be misleading, as the overall curve movement is not similar.
Therefore, we introduce an optional time weighting as an additional parameter for the algorithm. If time
weighting is activated, each deviation is weighted proportionally to the relative length of a slope in relation to
the complete sequence’s length. For the above example, this would result in a very high weight for the first 2
slopes and very low weights for the subsequent slopes, resulting in a high dissimilarity of the two sample series.

5.3.2.8 Search patterns

Implicitly, throughout the above considerations it was assumed that the input for a similarity search is a time-
series on its own. This results from the fact that when using an event sequence as the pattern, it is natural that
it’s interpreted as a time-series. Anyway, in many cases the user will want to search for a specific and most
often simplistic pattern such as for example the “W-formation”. It is unnecessary in this case though, to use a
time-series as pattern and compute turning points based on different MA periods. Instead, the data points as
such should be interpreted as the turning points forming the input pattern, and this pattern should be searched
at different scales (by varying the MA) in the searched series.
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Therefore, the time-series comparison library implemented in the course of this work offers also a method to
compare such a pattern directly. The base algorithm remains the same, but instead of computing any turning
points for the reference pattern, the pattern’s data point are passed directly to the slope computation.

In addition, such a simplified pattern can be attached with a minimum and maximum duration it may span. The
rationale is that it may be useful to restrict the search in a way that for instance a certain pattern must span at
least a couple of weeks but not more than several years.

5.3.2.9 Similarity computation

Up to this point, we discussed slope deviations rather than similarity. Yet, in order to integrate the time-series
model with the event sequence similarity matching, results have to be translated to a unified measure. This
measure is a similarity score between 0 and 1. In case of slope deviations, it is possible to determine for each
slope the maximum possible deviation, which is 180 degrees.

Let slopes,, be the slope values in degrees between the turning points extracted from the reference pattern
and slopes; be the slope values in degrees between the turning points in the compared target sequence. A
similarity score sim can then be computed as an inverse of the ratio of a match’s sum of slope deviations to the
sum of theoretical maximum deviations with the following formula:

Z{‘=1|Slopesp [i]-slopes, [i]| * W;
180 *w;

sim(ref,seq) =1 —

Formula 24: Time series similarity computation

Formula 24, w; refers to a specific weight for each pair of slopes. Depending on the algorithm settings, its value
is computed from the length of the respective slopes in relation to the complete sequence length (time
weighting, see section 5.3.2.7) and, in case of weighted global matching mode a linear factor that weights
deviations of distant slope pairs less high than directly corresponding pairs.

5.3.2.10 The STSimilarity library

The implementation was done in C# and the resulting .dll can be integrated into other applications rather than
the on-hand event similarity as well. The most important interface methods and configuration parameters are
summarized in Appendix A — The STSimilarity library.

5.3.2.11 Possible extensions

This section briefly discusses some possible extensions and improvements that could be made in order to
enhance the applied time-series model.

Volatility indicator

A volatility indicator such as the rate of change (ROC) or Bollinger bands could be used to avoid falsely detected
trend reversals. In this way smaller fluctuations could potentially be omitted for the matching if desired. Thus,
it depends on what the user wants to find and if these movements might be relevant.

Constraint modeling
It was already briefly discussed that in order to emphasize certain characteristics in a search patter like a
resistance level, enhanced possibilities for search pattern modeling would be a plus. Such constraints could be
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certain slopes which are required to be in a given value range, or also tolerance levels for single data points or
slopes.

Enhancements for anchored start and anchored end

In case of a configuration set to anchor the match at the start and at the end of the series, the algorithm has to
be adapted. Currently, a simplified version of the algorithm is used, that performs a constant slicing of the
time-series and compares the slopes pair-wise. It shows that this method is very sensitive to the configuration
parameter of the slicing rate and may omit important aspects of a time-series. Originally, this was the reason
for the introduction of the trend-reversal method.

A possible enhancement for this special case of full-sequence matching could be to use the MA smoothing and
turning point extraction also in this case, but to intelligently thin-out the turning points to an equal number of
points. Hereby, turning points which are positioned nearly on the straight line between the prior and the
succeeding point could be omitted. Alternatively it would be possible to match subsequences of turning points
onto the target sequence and omit those turning points not required. It is yet a challenging task to find efficient
ways for discovering the best partial matches.

5.3.3 Asymptotic runtime

The following considerations illuminate the asymptotic runtime of the proposed slope-based time-series
similarity comparison algorithm between two time-series T, (pattern sequence) and T;(target sequence).

5.3.3.1 Turning point computation

The first operation to consider is the extraction of turning points. Algorithm 13 shows the turning point
extraction algorithm, taking a time-series T of length n, the period for the MA smoothing p,,, and turning
point mode input. With the loop on line (1) it iterates once over the complete series. The MA period p,,, does
not influence the runtime, as the algorithm continuously remembers the last value to be subtracted from the
MA sum and solely adds the new ones rather iterating again over the last p,,, number of values. The selected
turning point mode is also not decisive for the runtime. The turning point modes
“AvgExtremumAndCrossingPoint” and “ExtremeValuesAverage” add, compared to “CrossingPoint” and
“Extremum” an additional constant factor to the runtime for the computation of the average value. In total,
this still results in an asymptotic runtime of ©(n) for the extraction of turning points based on MA curve
crossings.

5.3.3.2 Slope computation

The runtime of the slope computation depends upon which slopes should be extracted. In case of locality mode
“None”, i.e. only subsequent slopes should be compared to each other, the runtime is ©(n). For the
comparison mode “Local”, always the slopes between a point and m subsequent points are computed. As m is
a constant (user-configurable) factor, the asymptotic runtime is still @(n). For the modes “Global” and

. ” . . . L1
“WeightedGlobal”, for each point the slopes to all other points are required, i.e. 7 * n? slopes and thus the

runtime is in @(n?).

5.3.3.3 Total runtime

MA smoothing mode “EqualPeriodAlways”
Algorithm 12 summarizes the algorithmic steps in case of comparing T,, and T; with the MA smoothing mode

“EqualPeriodAlways”. It means that the MA period is period is varied, but always equally for T,, and T;. With
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Pma_max—Pma_min

the loop on line (1), the algorithm iterates —
precision

times, whereby precision is a user-configurable

step-length and p, . aswellasp . arethe lower and upper bounds for the moving average periods,
defined by the user. On lines (3) to (6) the turning point and slope computations are done in each loop.
Subsequently, the algorithm generates multiple matches, by “shifting” the shorter sequence of turning points
over the longer sequence of turning points and computing the underlying slope deviations. In the following, n,,
denotes the number of points in the T,, and n; the number of data points in T;. The total runtime r of the
algorithm is

_ Pma_max — Pma_min
precision

r * (np +n, + fon, + fin, + |fpnp — ftnt| * min(fpnp,ftnt))

=0(n, +n, + |np - nt| * min(np,nt))
Formula 25: Asymptotic runtime of base time-series similarity algorithm

with f, and f; denoting the factor by which the original sequences are “thinned out” by the turning point
extraction process. This factor depends on the MA period (the smaller the period, the more turning points in
typical data sets) and the characteristics of the data. In case of the locality mode for slope comparison set to
“Global” or “WeightedGlobal”, according to above considerations the asymptotic runtime is given as:

r = 0(n,% +n2 +|n, — n,| * min(n,, n,))

Formula 26: Asymptotic runtime when comparing slopes globally

5.3.3.3.1 Bestcase

The best case of the algorithm is when pattern and target sequence both have data points on a straight line, as
the given example in Figure 67.

A Vvalue

o© Time-Series / Moving Average

Figure 67: Best case for time-series similarity runtime

In this case, the MA line never crosses the curve, and only the start and end points will be added. In total, only
one pair of slopes needs to be compared, and the runtime is solely the time for the turning point extraction, i.e.
©(n). Thus, we can say that the complete algorithm has a lower bound of Q(n).

A second best-case scenario is given if f,n, = fin,, i.e. the numbers of turning points extracted from both

sequences are equal.
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5.3.3.3.2 Worst case

The worst case is the case where the utmost possible number of turning points is extracted. An example is
sketched in Figure 68. The maximum number of turning points for a series of length n and an MA period p,,, is
n—7Pma+ 1.
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Figure 68: Worst case for time-series similarity runtime

In addition to the worst case in terms of the number of turning points, for comparing the slopes, the worst case

is given when pran;f:ncl = min(f,n,, f;n;) , i.e. the number of turning points extracted from one sequence is

exactly twice as high as the number of turning points from the second sequence. If n is the length of the longer
sequence, the loop for shifting the shorter sequence over the longer one and comparing the slope deviations

1 1
requires Sn*on iterations. Thus, the upper bound of the algorithm is 0(n?).

MA smoothing mode “VaryingPeriod”
In Algorithm 14, the iterations in case of the MA smoothing mode “VaryingPeriod” have been introduced. In
terms of the runtime, this means that the steps of turning point extraction, slope computation and slope

Pma_max—Pma_min Pma_max”Pma_min

precision

asymptotic runtime, this is still a constant factor which does not depend on the number of data points, so the

deviation assessment are not executed

2
times, but ( ) times.” In terms of the

precision

algorithm’s upper and lower bounds are not influenced. In practice however, for typical data series these
modes have high impact on the performance.

5.3.4 Results and performance

The performance and matching results of the time-series model have been evaluated separately from the
event similarity matching process in order to simplify testing and enable targeted assessment of outcomes. The
results are summarized in Appendix B — Evaluation results time-series similarity model.

'ma_max _pattern~Pma_min _pattern " Pma_max _target—Pma_min _target
precision_pattern precision_target

’ To be precise, it is P times, as we allow specifying

separate MA period ranges for both the target and the pattern sequence. Yet, it is irrelevant for the
considerations on the asymptotic runtime.
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5.3.5 Integration into base similarity algorithm

In order for the time-series model to be fully integrated into the base similarity algorithm, the following
requirements have to be met:

= Time-series similarity is just one of many attribute similarity factors. It must be possible to add the
matching results with equal weight as other attribute similarities and event sequence characteristics
to the overall similarity.

=  Multiple attributes may use time-series similarity as the attribute similarity technique. This means in
particular, that also the results of multiple time-series similarity comparisons must be combinable.

We propose two modes of execution for performing an event sequence similarity search with at least one
attribute utilizing numeric sequence similarity.

5.3.5.1 Mode 1 - Post-matching execution

In mode 1, post-matching execution, first the base algorithm is applied, including the processing of all
constraint blocks. For each ranked match above the similarity threshold, the series of attribute values from the
chosen events for the match is extracted. This series is compared to the attribute series extracted from the
search pattern, and the similarity result is weighted and added to the overall similarity.

For this approach, the time-series algorithm is configured to perform full-sequence matching as we assume
that the base algorithm selects the events of the sequence that must be taken into consideration. Figure 69
illustrates the process. As can be seen from the illustration, the approach guarantees that for the time-series
matching an equal number of data points is available in the searched sequence and the reference sequence
after executing the base algorithm. Therefore, these points can be understood directly as the turning points of
the series and only the slopes need to be compared.
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Figure 69: Post-matching mode for numeric sequence similarity attribute technique

The post-matching mode implies a certain limitation in the execution of complex similarity searches with type

matching and time-series similarity. The problem at hand is that in case of a high weight of the attribute to be

evaluated with time-series similarity, cases might exist where a chosen subsequence from the time-series

matching with the costs of types to be omitted could still be better than a subsequence chosen by the base

algorithm and all other constraint blocks. In order to avoid these effects, it would be required to provide an

implementation of the time-series algorithm that is able to process constraint blocks and type deviations, in

order to execute the type matching coupled with time-series similarity and constraint blocks all in one. On the

other hand this contradicts with our approach to keep attribute techniques atomic and exchangeable. Another

issue in that case is the impossibility to apply the extended time-series algorithm for many attributes at the
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same time. We have therefore chosen to take this limitation into account and provide the alternative pre-
matching execution mode which is able to cover many of these cases.

5.3.5.2 Mode 2 — Pre-matching execution

Mode 2, pre-matching execution assumes that type deviations as well as related constraint blocks such as
order constraints are less important for the matching compared to the attributes for which time-series
similarity is applied. Considering an event sequence search pattern from the finance domain proves this
assumption to be adequate in many cases.

A stockTick.LastPrice OO @
o ©O
o O
QQO
Q0

OO O O Time

O StockTick Event
News Event

Figure 70: Example of a search pattern from finance domain

For the pattern in Figure 70, the type order for stock tick events is practically irrelevant, as these events occur
regularly, in the frequency of the data captured. The only aspect important regarding the event types is the
occurrence of news events in relation to the pattern of the LastPrice attribute of the StockTick events.

5.3.5.2.1 Pre-matching one time-series attribute

In many cases exactly one attribute of one event type is chosen for the time-series matching. Figure 71
illustrates the matching process in that case. First the series of attribute values is extracted from both the
reference pattern (Figure 71a) and the target sequence (Figure 71b) by taking the attribute values of all events
of the concerned event type. For these two series, the time-series similarity algorithm is applied. It is
configured to return a list of possible matches (Figure 71c). Matches below the similarity threshold are omitted.
Subsequently, for each of these matches the events are chosen from the searched sequence (Figure 71d), and
passed to the base algorithm to perform the matching process. Results from the base algorithm and the time-
series similarity are then weighted and combined.
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Figure 71: Pre-matching mode for numeric sequence similarity attribute technique

Typically, in case of pre-matching the weight of type deviations for the concerned event type is set to zero.
Otherwise after the subsequence selection process of the time-series algorithm the omitted events might
sharply reduce the overall similarity, which is undesired in most cases. This is indicated in Figure 71d by greying
out events of type B which are subsequently indecisive for the type matching process. Yet, other attribute

similarities might be evaluated on these events now as well.
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Figure 71d shows that events of other event types are not cut-off when selecting a subsequence according to
the results of the time-series matching. The rationale of the approach is not to implicitly omit other events that
are not directly concerned by the time-series matching. Rather, the fact that they might now occur at points in
time having a big deviation to the found time-series match will decrease the similarity score when performing
the base algorithm, but all information is considered.

5.3.5.2.2 Pre-matching multiple time-series attributes of the same event type

The user might select numeric sequence similarity as the attribute technique for multiple event attributes of
the same event type. For instance, StockTick events might contain the attributes LastPrice and Volume. A
similarity search may consider both attributes at the same time in order to find sequences where both the
price and the traded volume are correlating. In that case, first multiple results of the time-series matching have
to be combined with each other. The challenge about this combination is that of course only the same
subsequences of events are allowed to be combined. Otherwise a virtual match is created that utilizes one set
of events or another at the same time. Please note that all of the following considerations apply only in case of
subsequence searching. If the user requires matches to be anchored at the first and last data points, the
matching process will return exactly one attribute similarity score per attribute, and from these scores, a
weighted average is computed.

The problem in case of subsequence searching is illustrated in Figure 72. For two event attributes of event type
A, namely Attrl and Attr2 the time-series similarity matching is applied. In the example, the best and second
best matches from the time-series comparison are shown. Apparently, the two sequences of best matches
cannot be combined directly, as they result from attribute value sequences extracted from distinct sets of
events.
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Figure 72: Pre-matching in case of multiple time-series attributes
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In order to figure out the combined best matches, we apply the following process:

(1) Build m-tuple wise combinations of solutions from the m sets of subsequence matches, whereby m is
the number of different attributes for which time-series similarity is applied (e.g. m = 2 in the

previous example).

(2) For each tuple: Get the set of common events S¢,mmon based on the subsets of events from which
originally the time-series attribute values have been extracted (in the following denoted as S; to S,).

Scommon = 51 N S,...N S,,. Depending on the event sets, apply one of the following operations:

a. Scommon =@ (The event sets are disjoint): Select the attribute series with the highest
similarity score. Extract the attribute values for all other attributes and recompute time-series

similarity in terms of full-sequence matching.

b. 8§ =5,..=8, = Scommon (The event sets are equal): Compute the similarity as a weighted

average from the m matches in the tuple.
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€. Scommon F D and Scommon * S1 07 S, ...or S, (The event sets are overlapping): For each
entry i in the tuple perform one of the following operations:

i. S;=Scommon : The already computed similarity score is added to the overall
similarity score (as one additional factor in a weighted average).

ii. S;# Scommon: The original value set for which the similarity score has been
computed is different to the common value set. Extract the values of the concerned
attribute and recomputed the similarity in the sense of full event sequence
matching.

Scommon, together with all events of other event types is then passed to the base similarity algorithm for the
rest of the matching process.

5.3.5.2.3 Pre-matching multiple time-series attributes in different event types

The execution in case of multiple time-series attributes chosen for multiple different event types is similar to
the case of one event type. In addition to the technique presented in the previous section 5.3.5.2.2, also the
results from different event types have to be combined by simply forming permutations of matches.

As denoted above, in case of time-series similarity applied to the events of one event type, for a possible match
all events of the other event types are added and not cut-off. This implies for each permutation, that it unions
the subsequence of events of each event type. For types for which no time-series pre-matching has been
performed, all events are added to the permutation. A temporary similarity score is computed based on the
similarity of each subsequence (weight average).

5.4 Generic similarity

In this section we discuss the integration of custom event similarities into the existing framework. In the
SENACTIVE InTime system, typically a default implementation class called EventObject is used for events. For
certain features or to ease event processing, also custom implementation classes derived from EventObject
may be used. We provide an interface ISimilarityComparable with a function Compare(). It is expected to get
two objects of the ISimilarityComparable type as input and return a value between 0 and 1. This applies to
complete event objects, but also to attributes with custom runtime types. The purpose is mainly to keep an
open, extendible and customizable character of our event processing platform.
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6 Implementation

6.1 Data and memory management

In order to implement event-based similarity searching in practice, it is not sufficient to only provide an
efficient search algorithm. In addition, a well-designed infrastructure is required, being able to cope with
potentially millions of events. Especially in case of events holding many event attributes, physical memory
limits may soon be reached when trying to load all events and holding them as runtime objects in memory.

In order to overcome these difficulties, we propose two architecture models, the incremental load architecture
and a batch loading architecture.

6.1.1 Incremental load architecture

The incremental load architecture is applicable independently from the size of the dataset. In this architecture,
the data management module for the similarity search engine queries the database one-by-one for sequences
of events. The engine then compares the sequence to the pattern, and memorizes only the sequence id
assigned with the computed similarity score. Figure 73 illustrates the incremental load architecture.
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Figure 73: Incremental loading architecture
The downside of this architecture is that the database roundtrips cost performance in terms of execution

speed, and also cause higher load on the database. This is critical in case of an operational system which is
under constant load.
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6.1.2 Bulk load architecture

In order to increase performance and reduce database roundtrips, the bulk load architecture may be applied.
In this architecture model, a larger bulk of event sequences is retrieved from the database and kept in memory
until all event sequences in the bulk have been searched. In case of smaller data sets up to several hundred
thousand events, even the complete dataset can be loaded in bulk. Figure 74 shows the loading process in case

of bulk loading.
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Figure 74: Bulk load architecture

In order to increase the number of events that can be hold in memory, we have implemented a specific in-
memory event data store. It is capable of compressing the events by a factor of up to 1:10. This compression
rate is achieved by representing the event data in efficient byte arrays. The in-memory data container also
makes use of common attribute values. For instance, having “bet placed” events with a string attribute “bet
type”, this attribute will always hold one value of a very narrow value set such as “goal bet”, “free throws” etc.
In case of 2 different values, only 1 bit is required to store this information, compared to 8 bits per character

for strings. In case of millions of events these savings are decisive.

The advantage of the approach is clearly that fewer database roundtrips are required. The time for
compressing the events is negligible. The only downside is that still a lot of memory may be occupied, and one
has to take care that in case of large bulk sizes and eventually multiple parallel similarity queries (requiring
different data) the machine does not run out of memory during the matching process which by itself

temporarily requires a higher amount of memory.
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7 Providing similarity mining to the analyst

7.1 Overview

The value of a comprehensive model for event-based similarity search is only as high as the number of features
that are made available, and more importantly, usable for operators of the software. Therefore it is a crucial
part of this work to develop not only the algorithmic backend, but also a user interface which makes all above-
presented searching opportunities and configuration options available to end-users.

In literature, discussions on user interfaces for similarity search are rare up to the date of writing this thesis.
Related publications are discussed in section 2.5 on page 18. In the following sections, the key points of our
user interface concepts will be presented. This includes the overall workflow, the graphical pattern editor and
also the listing and presentation of results.

7.2 User workflow for similarity mining

In order to perform a similarity search, basically a reference pattern orand a data set are required. If no further
information is available, a default similarity configuration model is applied. The default model weights all
attributes equally (except of event object header attributes such as the unique event identifier). Thus, the user
will get results without any initial configuration. Yet, the search model is rather sensitive to configuration
parameters. Therefore, there are several opportunities to improve the results:

= the base similarity configuration can be refined,
= similarity priorities can be refined
= and the reference pattern can be refined.

All of these parameters are discussed throughout the subsequent sections. Figure 75 illustrates the major
elements of our intended workflow model.

7.2.1 Setting the base similarity configuration and similarity priorities

The base similarity configuration defines the attribute similarity techniques and their default parameters used
for different event attributes. In the user workflow, the base similarity configuration is strongly related to the
event type definitions. Therefore, typically the application developer who designs the data repository, the
event processing model and the event types as well as their attributes will provide meaningful default values
for this configuration (Figure 75a). Based on the base similarity configuration, the business analyst which we
consider as our actual end user of the similarity search may refine similarity priorities (weights of the individual
features to be considered), and trigger a search.

In order to perform a similarity search, we propose two workflow models, which are discussed in the following.

7.2.2 Workflow model 1: Querying by example

Workflow model 1 assumes that the analyst first queries the data for known event sequences or discovers an
event sequence in a search result. From the visualizations, it is possible to directly start the similarity search
without any further refinements. In addition, the user may refine the search result in the search pattern editor.
Figure 75b illustrates the workflow path.
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7.2.3 Workflow model 2: Building a search pattern

Workflow model 2 illustrated in Figure 75c assumes that the user wants to trigger a search based on a new or
existing reference pattern rather than querying by example. In the similarity search view of the SENACTIVE
EventAnalyzer™, the pattern editor can be opened in order to create a blank search pattern or open an existing
one. After modeling the desired event sequence and constraint blocks, the search is triggered.
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Figure 75: User workflow for event-based similarity mining
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7.3 Similarity search pattern modeling

This section describes our search pattern editor. It enables users to refine a similarity query based on a
discovered event sequence, or to build a new search pattern from scratch. The major requirements to be met
by the editor are:

= Enable adding and removing events

= Allow editing attributes of events

= Allow modeling of constraint blocks

= Allow setting attribute and occurrence time constraints
=  Enable excluding the events of a certain event type

=  Store and load search patterns

In addition, the pattern editor must be integrated seamlessly into the SENACTIVE EventAnalyzer and should
conform to the usability principles of the complete application. Therefore, we decided to build the editor upon
an existing visualization module in the EventAnalyzer, the EventChart. It is a configurable 2D scatter chart for
events, enabling to occupy the axis with different placement policies. These policies include time (see X-axis in
Figure 76a and b), numeric event attributes (Y-axis in Figure 76b), sectors by numeric or literal attributes (X-axis
in Figure 76¢, and both axis in Figure 76d), ideal space filling (Y-axis in Figure 76c), and distinct axis positions for
each event sequence (Y-axis in Figure 76a). As can be seen from the figures, all policies can be freely combined
and configured. For further details on the placement policies the interested reader may refer to [49].
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Figure 76: Event Chart with different placement policies
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7.3.1 The similarity pattern editor

As discussed in the overview, the similarity pattern editor should be integrated directly into the SENACTIVE
EventAnalyzer. We therefore decided to make it available in each of the existing visualizations via context
menus. Having discovered an interesting event sequence, for instance in the event tunnel view, via the context
menu it is possible to directly search for similar event sequences (see Figure 77). The search scope may either
be the current result set (a queried and filtered data set) or the complete event repository. In addition, it is
possible to open the search pattern editor. The selected event sequence is used as an input for the editor and

can then be refined.

@ Details
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M Create Cluster |

<52 Find Similar Correlations  » J  In Current Result Set

*r Filter Out b | @ InComplete Event Space
':'3 Edit Search Pattern

Figure 77: Integration of search pattern editor in visualizations

After invoking the edit operation, the pattern editor opens as a separate dialog window. In provides operations
for adding, editing and removing constraint blocks. Figure 78 shows the pattern editor. In its default
configuration, on the x-axis the user sees the time. On the y-axis all events of the sequence are plotted in

center-axis position.
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Figure 78: Example for constraint block configuration — time constraint blocks

In order to emphasize certain characteristics of the pattern, such as a numeric event attribute, the user could
change the configuration and use other placement policies on the y-axis. The x-axis is always occupied by the
event’s occurrence time. This limitation results from the fact that all constraint blocks are strongly time-
related. Editing them and displaying them is virtually impossible with other attributes on the axis.

Figure 79 shows the context menu for excluding single events or all events of a given event type. The figure
shows events plotted with different colors and a certain shape. The reason is that the pattern editor keeps the
user’s color, size and shape mappings set for the other views, in order to recognize the events also in the
pattern editor.
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Figure 79: Excluding events and event types
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7.4 Similarity search management

A similarity search might be a long-running process in case of a large data repository to be analyzed,
comparable to typical data mining processes. Hence, it is intuitive to understand the search as kind of a
background activity, which, triggered once executed in the background while the user is able to perform other
analysis tasks. It may even be desired to trigger several searches in parallel, for instance over night, in order to
view the results on the next day. Out of these considerations, we propose a similarity search management
module. This module is responsible for starting searches on background threads, and it displays the progress of
each search. Figure 80 shows the panel in the EventAnalyzer.
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Figure 80: Similarity search management panel

As can be seen from the figure, each search can be paused or cancelled directly from the view. From the
already searched event sequences a forecasting is done on the total search time.

7.5 Visualizing similarity search results

In the EventAnalyzer, we offer two ways for displaying search results, namely a similarity ranking view and the
graphical visualization of the discovered event sequences.

7.5.1 Similarity ranking view

The similarity ranking view lists the event sequences by similarity ranking in a table. It is possible to click the
entries in order to highlight the event sequence in the visualization. The table also offers useful summaries
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such as average similarity, average number of events in the searched sequences and the like. Figure 81 shows
the similarity ranking view.
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Figure 81: Similarity ranking view

7.5.2 Graphical view

The event sequences returned from a similarity search are plotted in all EventAnalyzer views like a normal
search result. In addition, similarity highlighting enables to visually distinguish most similar hits from least
similar ones. This highlighting configuration is provided to the user via a set of sliders (see Figure 82). Dragging
these sliders directly updates all visualizations.

17L Similarity Highlighting 5
Filter Out Highlight Opacity Saturation
Comelations

Figure 82: Similarity highlighting control panel
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The following highlighting techniques are supported currently:

=  Filtering by threshold — All sequences with a similarity less than a user selected threshold are filtered
out

=  Event sequence highlighting — Sequences which are most similar are painted as connected sequences

= Opacity — The less the similarity the lower the opacity of the plotted events

= Saturation — The less the similarity, the lower the saturation
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8 Results and evaluation

8.1 Overview

In the course of this work, a comprehensive evaluation has been carried out in order to judge both algorithmic
performance and accuracy of search results. We claim to provide a generic model for event sequence similarity.
Hence, in order to prove the generic character of our approach, we decided to evaluate results based on
strongly varying input data from different application domains. In addition for each evaluation scenario we
defined different objectives, which are reasoned by the idea to cover different interests of our software’s end
users. For each scenario, the evaluation is spilt up into two parts, the results of performance measures and the
judgment of search results including a discussion on the degree to which we see initial aims being fulfilled by
the gathered results. Especially the second part is done in awareness of the fact that full objectiveness is
virtually impossible when it comes to assessment of similarity search results. We therefore focus on our
concrete, application specific objectives for judging the value of the results.

8.2 Case studies

8.2.1 C1 Online gambling —user activity histories

8.2.1.1 Scenario and data structure

The first evaluation scenario aims at investigating on the algorithmic performance and correctness of search
results in a controlled and exactly defined environment. We achieve this environment by utilizing simulated
data with controlled variations in the generated event sequences. The simulation model generates events
representing the activity log of single customers of an online betting platform. Such sequences include the
following activities: opening the account (i.e., registering at the platform), cashing-in and cashing-out money,
placing bets, winning and losing bets and notifications on failed bet placements. The occurring event types and
their attributes are depicted in Figure 83.

(L OpenAccount BetPlaced ) Cash-In

DateTime [Timestamp] DateTime [Timestamp] DateTime [Timestamp]
—g Username [String] Username [String] Username [String]

Name [String] BetID [Long] Amount [Double]

Sex [Char] BetType [String] PaymentMethod [String]

ZipCode [Long] Amount [Double]

City [String] Odds [Double]

Street [String]

DateTime [Timestamp]

DateTime [Timestamp] DateTime [Timestamp]
—@ Username [String] Username [String] Username [String]
BetID [Long] BetID [Long] Amount [Double]

Amount [Double] BetType [String] PaymentMethod [String]
Amount [Double]
Odds [Double]

ErrorCode [Int]

DateTime [Timestamp]
g Username [String]
BetID [Long]
Amount [Double]

Figure 83: Event types and correlations in evaluation scenario C1 — Online gambling
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The simulation model generates several arbitrary sequences of events, whereby the simulation engine takes
care of correctness and validity of the sequence. For instance, the simulation keeps track on the virtual cash
balance of a customer during the simulation, so that only bet placements are simulated, if money is available.
In addition to the arbitrary sequences, several account histories are generated, which follow a defined
template structure. These template structures have been defined based on a requirements study carried out at
a large European online betting and gambling provider. In the course of this study, known, suspicious behavior
pattern have been identified and described. Yet, the descriptions are fuzzy, and the concrete sequences
simulated vary in the number of events occurring as well as certain event attribute’s values.

For instance, one of these patterns is the sleeper pattern. Sleepers are users which, after registration and
maybe a few initial bets do not bet for a long period of time. It is then remarkable, if such sleepers suddenly
cash-in a large amount of money, place a very high bet, and cash-out again immediately. This is often an
indication that the user had insider information on a bet or places the bet for a user who is not allowed to place
it, for instance game officials such as referees or players and other participants.

8.2.1.2 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

=  Among the simulated account histories, 10 are simulated based on a selected template. Using one of
these 10 sequences, the other 9 sequences must be discovered with the similarity search.

= None of the other account history should be retrieved, except in case the arbitrary simulation
generates a pattern similar to our template.

In addition to these measureable objectives, the focus of this evaluation case is on:

=  Determining the sensitivity of the model towards the similarity configuration.
=  Measuring the performance with different configuration parameters.

In the following, different combinations of search patterns and similarity configuration options are defined
which have been executed for the case study.

8.2.1.3 Cl.a - Type matching with subsequence searching

8.2.1.3.1 Search pattern and configuration

In this scenario, no attribute similarities are considered. Weighting of all possible type deviations and missing
events are neutral and equal; matches do neither have to start with the first event nor end with the last event.

The following reference sequence is used as the search pattern, whereby the table lists the event type colors.

Thus, the short pattern sequence starts with an “open account” event, followed by a placed bet and a
notification that the bet was lost. At the end of the sequence, this user won a bet and cashed out directly after.
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Figure 84: Search pattern for evaluation case Cl.a

8.2.1.3.2 Search results and discussion

Plainly spoken scenario Cl.a tries to find occurrences of the same order of event types. The time spans

between the events are not considered.

The results are accordingly. Figure 85 shows the best matches in the given scenario among the searched 438
event sequences. According to the plot, these results intuitively appear inappropriate: Most matches are longer
than the pattern sequence and show a completely distinct shape compared to it. Yet, this results simply from
the fact that we configured subsequence searching. Thus, for most of these discovered event sequences only
the first few events match, and the rest is ignored.

Figure 85: Best search results for scenario Cl1.a visualized in the Event Tunnel
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Remarkable is the high ratio of “overhead” time, i.e. the time for data loading and preparation in relation to
the pure algorithm time (see performance summary below). Caused by the fact that the matching is very fast in
case of the short pattern event sequence, data loading and preparation make up more than 75% of the total
search time in this scenario®.

8.2.1.4 Cl.b - Type matching without subsequence searching

8.2.1.4.1 Search pattern and configuration

This scenario is defined equally to scenario Cl.a, but matches are anchored at the start and the end of the
searched sequence.

8.2.1.4.2 Search results and discussion

Scenario Cl.a showed that subsequence searching may lead to intuitively incorrect results for the given
dataset. Requiring a match to start with the first event and end with the last event (everything else decreases
the similarity) retrieves sequences which intuitively appear by far more similar. The best matches are depicted
again in Figure 86.

This scenario fulfils already our initial requirement to retrieve a set of simulated event sequences, which all
have a very similar structure concerning the occurrence of different event types.

[ Pattern sequence ]

Figure 86: Best search results for scenario C1.b visualized in the Event Tunnel

®ltis important to mention at this stage that for the evaluation the proposed reference architecture loading
event sequence-by-event sequence from the database is used.
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8.2.1.5 Cl.c- Type matching with time deviations (full-sequence matching)

8.2.1.5.1 Search pattern and configuration

For scenario Cl.c we use the same search pattern as before, but occurrence time deviations are considered in
addition to the order of the events.

8.2.1.5.2 Search results and discussion

In section 4.3.3 we presented two different modes for handling time deviations, namely the absolute time
difference mode and the relative time difference mode.

The given evaluation scenario showed that the absolute time difference mode is virtually inapplicable in this
context. The time spans between the events in the scenario are relatively large (e.g. several hours to a couple
of months). Thus, some of these deviations have huge absolute values and require a very small scaling factor in
order to scale them to a range comparable to other aspects such as type deviations. In return, this scaling
factor causes “minor” deviations to be almost ignored. Yet, these “minor” deviations might also be a couple of
days and decisive for the search semantic.

The relative time mode works out better for the scenario. Still, the best matches in the previous scenario
already had a very similar temporal structure (see Figure 86) so that again these sequences have been
discovered as the best matches.

8.2.1.6 Cl.d - Type and attribute matching (Numeric attributes)

8.2.1.6.1 Search pattern and configuration

In this scenario, the following event attributes are considered in addition, using the normalized absolute
difference similarity technique (see section 4.2.1):

=  BetPlaced.Amount

=  BetPlaceFailed.Amount
= Cash-In.Amount

= Cash-Out.Amount

=  BetPlaced.Odds

=  BetPlaceFailed.Odds

8.2.1.6.2 Search results and discussion

The discovered sequences for this evaluation case again only slightly differ from the retrieval results in scenario
C1.b. In the simulated data set, variations in terms of the selected event attributes are not significant, and thus
considering these attributes in addition only has slight influence on the overall similarity score. Obviously,
considering the event attributes costs some performance.

As a variation from the originally defined scenario C1.d we also tried to maximize the weight of only the

selected event attributes. Using this configuration, some other event sequences consorted with the prior

discovered sequences, but all in all, we found that it is hard to adjust the weights so that absolute difference

similarity deviations in combination with type deviations allowing null-mappings return reasonable result. The

problem is similar as with time deviations: In order for such a combination to return meaningful results, the

costs of the absolute difference deviations must be well-adjusted with other similarity costs. In other words, if
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the absolute value differences (which the user will not know up-front) are very small, deviations will show
almost no effects in combination with costs for other mappings such as null-mappings.

8.2.1.7 Cl.e — Using strict order constraint blocks

8.2.1.7.1 Search pattern and configuration

This scenario is defined equally to scenario Cl.c, but in addition 2 strict order blocks guarantee the sequence of
bet placements and immediate cash-outs.

Strict u:-rderl Strict orde r|

Figure 87: Search pattern for evaluation case Cl.e

8.2.1.7.2 Search results and discussion

For the given data set, search results did not differ from the search results in scenario Cl.c. This is caused by
the fact that the simulation model used to generate these sequences follows a template where these events
are always simulated in order. Only the execution speed is slightly better, as a few solutions can be omitted
earlier on the way to discovering the best solution.

8.2.1.8 C1.f — Using a minimum timespan constraint block

8.2.1.8.1 Search pattern and configuration

In the evaluation scenario C1.f, a minimum timespan block is utilized to guarantee an idle period in the user
activities for about 3 months before placing a new bet, winning and cashing out immediately. The search
pattern is depicted in Figure 88.

= 100 days

Figure 88: Search pattern for evaluation case C1.f

8.2.1.8.2 Search results and discussion

Looking at the search results for this scenario shows that the best matches in the previous scenario did not pass
the constraint block. Thus, all in all the best matches are much less similar. It is well visible that all of these
matches have a very long idle phase where no events occurred (see Figure 89).
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[ Pattern sequence ]

Figure 89: Best search results for scenario C1.f visualized in the Event Tunnel

8.2.1.9 Performance summary

All of the scenarios have been executed with the following data set:

Total number of events: 12455
Total number of event sequences: 438
Average number of events per event sequence: 27,043

First, the scenarios have been executed without an initial threshold. Thus, the threshold value of costs is
dynamically updated with every possible solution, but initially a set of potentially bad solutions have also been
build up completely, until the dynamic threshold bit by bit decreases and more and more solutions can be

omitted early.

Scenario | Eventsin | Total time Algorithm Events/sec | Sequences | Events/sec | Seq./sec
pattern ‘ time’ total /sec total algorithm algorithm

Cla 6 00:00:14.25 | 00:00:03.32 889,64 31,08 3663,24 128,53
Clb 6 00:00:19.58 | 00:00:08.28 638,71 22,46 1500,60 52,65
Cl.c 6 00:00:15.03 | 00:00:03.05 830,33 29,13 4151,23 146,66
Cld 6 00:00:25.58 | 00:00:11.68 488,43 17,13 1073,71 37,35
Cle 6 00:00:23.21 | 00:00:09.77 536,63 18,87 1274,82 44,83
Cl.f 6 00:00:24.12 | 00:00:10.02 516,37 18,16 1243,01 43,71

Table 3: Performance results for evaluation scenario C1 without initial threshold

° Measure the pure algorithm execution time, i.e. the total time minus the overhead for data retrieval from

database and conversion of the raw data into the processable events.
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In addition, we executed the scenarios with an initial threshold, for a target similarity of 0,5 with the objective
to speed up the searching process. The best matches shown above have still been discovered. Performance

results are listed below.

Scenario | Eventsin | Total time Algorithm Events/sec | Sequences | Events/sec | Seq./sec
pattern ‘ time total /sec total algorithm algorithm

Cla 6 00:00:14.99 | 00:00:00.97 830,88 29,21 12580,81 442,42
Clb 6 00:00:15.91 | 00:00:01.01 803,84 27,52 12331,68 433,66
Clc 6 00:00:16.55 | 00:00:01.17 752,56 26,46 10645,30 347,36
Cld 6 00:00:17.96 | 00:00:02.05 693,48 24,38 6075,61 213,56
Cle 6 00:00:17.52 | 00:00:01.49 710,90 25,00 8359,06 293,95
Cif 6 00:00:14.27 | 00:00:01.23 827,81 30,69 10126,02 356,06

Table 4: Performance results for evaluation scenario C1 with initial threshold

8.2.2 C2 Trouble tickets — change history sequences

8.2.2.1 Scenario and data structure

Trouble tickets in general can be understood as issues and problems reported either by customers or company-
internal. Typically, a trouble ticket holds a problem or task description. It may be assigned to a certain person
or support group and have a defined priority. Common trouble-ticket systems keep track of each ticket’s status,
whereby typical states are open, assigned, resolved, incomplete etc.

The second evaluation scenario aims at analyzing sequences of trouble-ticket traces. In contrast to the first
evaluation scenario, for this case study real data from a trouble ticket system have been used instead of
simulated data. The data have been provided by an international company offering, among others, IT services
such as maintaining and monitoring other companies’ servers and IT landscapes. With thousands of customers
who all might submit issues to the trouble ticketing system, the analysis thereof becomes a demanding task.
Figure 90 depicts the relevant event types for this application example. In the concrete case, server alerts are
captured. In addition, changes on trouble-tickets are traced and reflect as “ticket created”, “ticket resolved”,
“ticket changed” and “ticket reopened” events. The figure also shows how these events are correlated to
change history sequences: All ticket events correlate via the unique ticket ID; server alerts are unique via their
event handle, server handle and date fields. In the dataset, tickets might be opened due to a server alert, but
not necessarily. Many ticket histories also contain solely the various ticket events, in case they have been
created manually without a prior alert. In addition, many alerts exist without any ticket events.
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self correlation

Server Alert ) (" TicketiDTicket EvEHting]

HostID [String] BriefDescription  [String]

SupportGroup [Integer] ProblemStatus [String]

ServerModel [String] ProblemShortName

HostName [String] [String]

Manufacturer [String] Priority [Integer]

Platform [String] OpenTime

OperatingSystem [String] [DateTime]

AlertClass LogicalName [String]

[String] DowntimeStart  [DateTime]

Date [String] AlertDate [DateTime]

ServerHandle [Integer] E E EventHandle [Integer]

EventHandle [Integer] ServerHandle [Integer]

Duration [Timespan] Customer

Message [String] [String]

RepeatCount [Integer] Assignee [String]

Severity [Integer] AssigneeClass1  [String]

Source [String] AssigneeClass2  [String]

SubSource [String] AssigneeClass3  [String]

ServerUsage [String] TicketStatus ZP [String]

Slots [Array<String>] |

Ticket Resolved Ticket Reopened
ResolvedBy ReopenedBy
[String] [String]
| |

( Ticket Created | . Ticket Changed
TicketCreator ChangedBy ‘
[String] [String]

I
Ticket Reassigned

ChangedBy
[String]

Figure 90: Event types and correlations in evaluation scenario C2 — Trouble tickets
In the given case, the following questions have been of particular interest:

= Which tickets have suspicious or extraordinary histories?

=  Which tickets have not been resolved within the foreseen time period? Is it a repeating pattern that
always certain ticket classes are not resolved in time?

= With tickets have many reassignments, and is there a general pattern such as “All tickets of type A are
first assigned to support group X which then assigns them to support group Y before they are then
again forwarded to support group Z who’s members finally resolves these issues”?

Obviously, for certain queries such as retrieving tickets with many reassignments no similarity search is
required. Yet, in order to assess if a certain type of assignment sequence seems to be a general pattern, we
propose to apply the presented event sequence similarity model. In many cases people also have a certain
suspicion and want to prove if this suspicion holds true based on the historic data.

8.2.2.2 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

=  For a given, interesting sequence of ticket assignments, the similarity search is able to discover further
ticket histories, if available, having a similar assignment history.
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= |t must be possible to assess whether the given assignment sequence can be understood as a general

pattern reoccurring several times, or whether it is not reoccurring.

In addition to these measureable objectives, the focus of this evaluation case is on:

=  Measuring the performance in case of sequences with strongly varying lengths
= Measuring the performance in case of a large amount of event attributes
= Proving the applicability of the model in a real-world use case

8.2.2.3 (C2.a - Searching the complete data set for a known event sequence

8.2.2.3.1 Search pattern and configuration

For the first evaluation scenario, we utilized a known ticket history as the search pattern. This ticket was
identified more or less by chance by one of the operators in the incident management department. The plot in
Figure 91 shows that this ticket has a significantly long history with several ticket changes and also

reassignments (blue, and green events).

Figure 91: Activity history for a known incident ticket plotted in the event tunnel

For the given use case, the sequence of reassignment is of particular interest. Figure 92 visualizes how the
ticket was assigned between different support groups, whereby each sector on the Y-axis represents one
support group. Time is on the X-axis.
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Figure 92: Sequence of ticket reassignment events over time (x-axis) by assigned support groups (y-axis)m

For the first scenario, we searched for this complete event sequence in the reference data set of about 165,000
events with the objective to discover similar occurrences.

Search Parameters:
=  Match must start with first event: False
=  Match must end with last event: False
=  Time matching mode: Relative
= Attribute similarities: Ticket Reassigned.Assignee — Levenstein string similarity

8.2.2.3.2 Search results and discussion

The search for the known, very long ticket event sequence returned no matches. This means, with the given
configuration for no event sequence a solution could be found with sufficiently low costs to be at least 50%
similar.

Our investigations on this result showed that the reason is simply that no other event sequences of such an
extreme character, i.e. that many reassignments and ticket changes is contained in the data set. This results in
a need of multiple null-mappings in each solution, which drastically decreases the similarity score.

Yet, our objective to figure out whether such a behavior is a reoccurring pattern is fulfilled as we figured out
that at least in our reference data set, no significantly similar event sequence is contained.

8.2.2.3.3 Performance summary

Total number of events: 165841
Total number of event sequences: 87241

% In the chart, two areas are marked with an asterisk. At these points in time, the data set showed a longer
time period between the events which has been cut out in order to fit the figure to the page size.
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Average number of events per event sequence: 1,9
Average number of events per event sequence with at least 1 ticket event: 8,47
Initial threshold set for a target similarity of: 0,5

Scenario | Eventsin | Total time Algorithm Events/sec | Sequences | Events/sec | Seq./sec

pattern time total /sec total algorithm algorithm
C2.a 91 00:18:43.10 | 00:08:11.34 147,67 77,68 337,67 177,68

Table 5: Performance results for evaluation scenario C2.a

8.2.2.4 C2.b -Finding reassignment scenarios

8.2.2.4.1 Search pattern and configuration

Scenario C2.a showed that a too specific or extreme pattern is hard to discover in the data. One of the reasons
why the previous scenario did not return any results was also that the search was not particularly focused on
what we have actually been interested in most: the reassignments. The pattern sequence contained a whole
range of ticket changed events, which of course have also been considered during the search and influence the
matching process significantly.

Scenario C2.b attempts to concentrate the similarity search to the reassignment. Therefore, we excluded the
ticket changed events totally from the search pattern. In addition, the order remains unconsidered and also the
temporal structure is omitted with the objective to simply discover if several support groups always assign the
tickets to each other, no matter in which order.

For the scenario, we furthermore chose a shorter reassignment sequence, with reassignments among 3
support departments “AT”, “DSS” and “H”. Within each of these departments support groups exist, such as
“AT.SUPPORT.SAP”. We tried to figure out, if there are regular reassignments among these departments, which
normally should not occur as each has separate concerns.

In scenario C2.a we searched the complete data set. In fact, this is not required: event sequences containing
only an alert event but no ticket events because for this alert no ticket had been opened, as well as sequences
with less than 2 reassignment events can be pre-filtered.

8.2.2.4.2 Search results and discussion

Using above described settings to narrow the search scope, the whole searching process executes more than
10 times faster than in scenario C2.a. The results have been rather surprising: We discovered that more than
8% of all tickets had a match of 75% similarity and higher. Figure 93 depicts the best matches regarding to the
reassignments. As can be seen from the figure, each sequence contains reassignments among named
departments. Only the order is switched, as we consciously omitted this factor.
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(a) — Ticket reassignments in search pattern
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Figure 93: Best matches for evaluation scenario C2.b — Reassignments by support department over time

In addition, searching the limited data set (which can be hold in memory) drastically reduces the data retrieval
time to about 1/5th of the time required when reloading sequence by sequence from the database.

The scenario shows that a targeted search, focusing on the current analysis question returns valuable results in
short execution times. Yet, this requires a knowledgeable and skilled user, and also some data preprocessing,
for instance to be able to load only sequences with more than 3 reassignments or the like. The only problem
we encountered with this scenario was how to get accurate results with string similarities. In the given case,
the naming convention for a ticket assignee was DEPARTMENT.SUPPORTGROUP.NAME. In the dataset we
found entries such as “DSS.SUPPORT.ALL” or “CSS.SUPPORT.ALL”. Looking at the string, these values are very
similar whereas from there semantics, they are almost not similar as the groups are in different departments.
We resolved this issue by splitting up the department substring into a separate event attribute which we
considered in the search with a significantly higher weight.

8.2.2.4.3 Performance summary

Total number of events: 10095
Total number of event sequences: 372
Average number of events per event sequence: 27,14
Initial threshold: 00

Scenario | Events in | Total time Algorithm Events/sec | Sequences | Events/sec | Seq./sec

pattern time total /sec total | algorithm algorithm
C2.b 28 00:00:05.83 | 00:00:04.71 1725,38 63,81 2143,31 79,98

Table 6: Performance results for evaluation scenario C2.b
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8.2.2.5 C(C2.c - Considering alert events and the order of assignments

8.2.2.5.1 Search pattern and configuration

In scenario C2.b we focused on reassignments but ignored the order of these reassignments. In the next
scenario, we considered not only the order in which the assignments happened, but also if the ticket was
created for a certain server alert. Thus, the practical question we tried to answer was: For a certain server alert,
is the opened ticket (re)assigned in multiple cases in the same way, between the same departments.

8.2.2.5.2 Search results and discussion

In the pattern sequence we chose, a server alert with the message “Disk space warning: only 4,97% free on disk
[...]” triggered a ticket to be created. This ticket was then first assigned to department “CSS”, from “CSS” to “H”
and to “AT” where it was reassignment several times within the department, then back to “CSS” and finally
resolved. This sequence of reassignments is visualized over time in Figure 94 (sequence highlighted in violet).

The search among 10,000 events finished in less than 10 seconds, and revealed some interesting results: For
instance, the best match of the search, depicted also in Figure 94 (grey sequence) showed a very similar
sequence of reassignments, from “CSS” to “H”, to “AT”, only with some more reassignments within the
individual departments. Interestingly enough, the ticket was also opened due to an initial alert, and this alert
was again a disk space warning. The knowledge about such incidents is a good starting point for investigating in
detail the support process in case of disk space warnings.
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Figure 94: Search pattern and best match for evaluation scenario c2.c"

8.2.2.5.3 Performance summary

Total number of events: 10095
Total number of event sequences: 372
Average number of events per event sequence: 27,14
Initial threshold: o

! In the chart, two areas are marked with an asterisk. At these points in time, the data set showed a longer
time period between the events which has been cut out in order to fit the figure to the page size.
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Scenario | Eventsin | Total time Algorithm Events/sec | Sequences | Events/sec | Seq./sec

pattern time total /sec total algorithm algorithm
C2.b 28 00:00:09.37 | 00:00:07.63 1077,37 39,70 1323,07 48,75

Table 7: Performance results for evaluation scenario C2.c

8.2.3 C3 Credit card transaction — sequences of purchases

8.2.3.1 Scenario and data structure

In scenario C3 we used a data set containing sequences of purchases from a credit card provider. As these data
are highly confidential, all of the following results and considerations are expressed in terms of anonymous
names for products, customers and purchase information.

The data set contains sequences of activities for a selected group of 4000 customers. These activities are,

besides creating or closing the account, first of all “sales” events. These events reflect that a customer paid for
something by credit card. In that case, we have the information on which shop that was (or ATM), the country

and the paid amount available for the analysis. Figure 95 shows the occurring types of events and their

attributes.

Create Account Close Account Sales
CustomerID [Integer] CustomerID [Integer] DateOfSale [DateTime]
CreditCardNr [Long] CreditCardNr [Long] CardNr [Long]
ZipCode [Integer] Reason [String] Amount [Double]
Sex [Character] ContractOutType  [String] Branch [Integer]
DateOfBirth [DateTime] Partner [String]
CardProduct [String] ZipCode [Integer]
DirectDebig [Boolean] NationalCode [String]
BankCode [String] Currency [String]
BankGaranty [String] e OriginalAmount [Integer]

InternetSale [Boolean]
InvoicelD [Integer] InvoicelD [Integer]
InvoiceDate [DateTime] Country [String]
SalesDate [DateTime]
Amount [Double]

OutstandingAmount [Double]

Figure 95: Event types and correlations in evaluation scenario C3 - credit card transactions

In the previous two evaluation scenarios, we focused on the retrieval quality and execution time in case of
known pattern sequences for evaluating if other, similar sequences exist and if yes, in which extend these are
similar in order to assess whether the given case is a reoccurring pattern.

In this scenario we focus on applying the similarity search in comparison to established and well-known data
mining techniques. In the given case, we did an analysis of the raw dataset with RapidMinern. The objective
was to figure out if there are certain patterns in the customer behavior for customers whose accounts had to
be closed due to illiquidity and thus unpaid invoices.

"2 RapidMinder by Rapid-I is an open-source data mining software, providing access to a whole range of data
mining algorithms such as decision trees or lazy learners, association mining techniques and also data pre-
processing and feature selection operators.
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8.2.3.2 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

=  Figure out if the similarity search is applicable for the given purpose
=  Find possible improvements for supporting the analyst’s workflow given a similar task

8.2.3.3 (3.a - Data integration and preprocessing

Up to this point, we haven’t considered this aspect and started with data already being loaded to the event
repository and ready to be searched. Yet, when talking about data mining, it is unavoidable to first talk about
data integration and preprocessing.

8.2.3.3.1 Preprocessing for classical data mining

The most important preprocessing step in order to successfully apply existing data mining algorithms was the
generation of additional attributes, in order to have an utmost complete attribute space. For instance, the
occurrence date attribute had been split up into additional “month of the year”, “day of week” and “week of
month” attributes in order to make it accessible. The currency of the purchases showed too many distinct
values with only a few occurrences each, which caused inappropriate or statistically insignificant results and
had to be summarized to “EUR” and “not EUR”. Sales amounts had to be categorized into equidistant classes,
working with the discrete values was impossible.

8.2.3.3.2 Preprocessing for similarity search

Basically, the similarity search requires less preprocessing, as all attributes, i.e. also discrete values can be used
and compared directly, without categorization. In addition, it is not necessary to extract attributes such as “day
of week” into separate attributes, as calculated attribute expressions (see section xxx) can be used to extract
such values on the fly.

8.2.3.3.3 Summary and discussion

With the use of calculated attribute expressions, the effort for preprocessing is minimal in our approach.
Discrete values don’t need to be categorized and attribute expressions add artificial event attributes on-the-fly
during the comparison which can then be weighted accordingly. Yet, in order to optimize performance of the
searching process, we still recommend extracting derived values into separate event attributes during the data
integration to save computation time.

8.2.3.4 (C3.b - Getting started with the mining process

The next question after preprocessing is how to start the data mining. Below we discuss be situation we faced.

8.2.3.4.1 Getting started with the “classical” data mining

Among the existing data mining approaches, we decided to apply a classification and regression tree (CART) in
order to derive simple rules such as “if customers buy more than 4 times in branch X and pay in currency Y, the
probability for illiquidity is 91%”. In fact, in order to get started with the mining process, profound knowledge
on the existing techniques is required in order to choose the right algorithm for the given purpose, but despite
of that only some configuration parameters have to be set.

8.2.3.4.2 Getting started with the similarity search

The goal with similarity search was to find a sequence of certain purchases, which is reoccurring in multiple
cases of known customer illiquidity. Obviously, the similarity search engine cannot be directly compared to
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data mining algorithms such as decision trees or other learners in general. The greatest problem we had in the
given case was that we did not have any assumptions or reference cases to be checked for occurrence and
validity. Thus, the only thing possible was to pick a sequence more or less by chance and try to search for
similar occurrences. We tried picking several sequences, starting with the one customer where most money
was lost. Yet, this cannot be called a structured and systematic approach.

8.2.3.4.3 Summary and discussion

The use case shows the necessity to embed the similarity search in a greater context, for instance in the form
of a clustering algorithm, which forms groups of similar sequences based on multiple similarity comparisons. As
is, only a punctual search is possible. Without initial knowledge on the dataset, it is hard to model a suitable
reference pattern.

8.2.3.5 (C3.c- Finding sequences of purchases

Finally, taken said limitation into account that we can only pick certain pattern sequences by chance and not
automatically investigate the whole data set, we tried to discover sequences of similar purchases for one
selected reference pattern.

For the search, we limited the whole dataset of 182.023 events to 14.034 events of those customers, whose
accounts have been closed. In total, these are 348 of 98.355 customers. For the search, Levenstein string
similarity, which performed quite well in scenario C2 was used for the attributes “Sales.Partner” (i.e. the shop
where a purchase took place), “Sales.Currency” and “Sales.Country”. For “Sales.Amount”, normalized absolute
difference similarity was uses, as well as Boolean similarity for the attribute “Sales.InternetSale”.

Figure 96 shows how the sales events in the selected pattern sequence are distributed with respect to the
product branch (Figure 96a) and the country (Figure 96b).

(a) (b)

Figure 96: Search pattern events for evaluation scenario C3.c
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8.2.3.5.1 Search results and discussion

Given the selected pattern sequence and configuration, the algorithm failed to return valuable results. We
tried to adjust the weights of the considered attributes, but the pattern remained too long and too specific to

be rediscovered in the data.

The apparent problems are in particular:

= The pattern sequence contains 65 sales events. Sequences with a lower number of events have to
be mapped using several null-mappings. Depending on the null-mapping costs, this decreases the
similarity score drastically and these sequences soon fall below the threshold. On the other hand,
if the null-mapping costs are low, solutions using a log of null-mappings might be preferred over
solutions taking the available events.

= The length of the event sequences in the data set varies from 10 up to 530 events. For such a
length of an event sequence, a huge amount of solutions exist, and the approach of considering
the single events is probably not appropriate any longer. Rather, aggregation would be required.

=  When looking at the rules derived from the CART, these patterns could not be discovered with the
similarity search, because they are “overruled” in the matching process by the whole range of
additional events, which are not statistically cumulating in the pattern. In other words, even if we
know that 4 purchases in branch 123 in Germany have always been followed by illiquidity in the
past, it might be that we still do not discover such an event sequence as it contains, aside of these
4 events, maybe another 100 purchases, all decreasing the similarity to the reference pattern.

= For very long event sequences, the weight of a single event is minimal. Thus, the matching
process continuously has to build up huge solution trees before reaching the similarity threshold.
This problem is yet inherent to the chosen approach and could only be omitted by either
techniques to detect huge deviations earlier in the matching process or weighting events at
earlier stages of the mapping processes stronger compared to the rest in order to reach the
threshold faster, if a solution is bad. At the same time, this distorts the correctness of results.

In summary, the evaluation scenario pointed out a set of shortcomings or missing features in the current
approach, some of which will be discussed again in the future work section.

8.2.4 C4 Algorithmic trading — trading scenario discovery

8.2.4.1 Scenario and data structure

The term algorithmic trading in general refers to using computer programs for submitting trading orders.
Hereby computer algorithms are used to determine various parameters of the trade, starting from the traded
amount to the completely automatic selection of the instrument to be traded and the time at which it is
bought or sold. A more detailed discussion on algorithmic trading and its possibilities and techniques is beyond
the scope of this work. Yet, we picked out one aspect from the algorithmic trading domain and tried to apply
the proposed event sequence similarity algorithm for this selected application example.

For the fourth evaluation scenario, we took freely available, historic data from the stock market. These include
the end-of-day price of about 14,000 stocks over the course of a year, and news, whereby each news item is
wrapped into one single news event. News items belonging to a certain stock are correlated with the sequence
of stock tick events. Figure 97 shows the event types, their attributes and the defined event correlations.
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Figure 97: Event types and correlations in evaluation scenario C4 — Trading scenarios

For the scenario, we tried to discover defined trading scenarios. Many traders trade (explicitly or implicitly) in
terms of scenarios. For instance, if the price chart forms a certain pattern and the traded volume is increasing
at the same time, they buy or sell.

8.2.4.2 Objectives and evaluation focus

For the evaluation of our similarity search algorithm in the given context, we define the following objectives:

= Discovering past occurrences of trading scenario based on price and volume patterns and the
combination thereof.
= Discovering trading scenarios based on the combined occurrence of price patterns and occurrence of

news events.

8.2.4.3 C4.a - Type matching and normalized absolute difference similarity

During the planning phase, theoretical considerations on this scenario already pointed towards the necessity
for enhanced event attribute techniques and a mechanism to consider a series of attribute values in particular.
With the evaluation scenario we wanted to judge if made assumptions hold true and the base algorithm with

normalized absolute difference similarity is really insufficient for the use case.

8.2.4.3.1 Search pattern and configuration

We searched the complete dataset for the following event sequence, plotted in the event chart with the
attribute “price” on the y-axis and the occurrence time of events on the x-axis.
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Figure 98: Pattern sequence for evaluation scenario C4.a

We chose the following configuration:
=  Match must start with first event: False
=  Match must end with last event: False
=  Time matching mode: Relative
= Attribute similarities: StockTick.PastPrice — Normalized absolute difference similarity

8.2.4.3.2 Results and discussion

Unsurprisingly, the algorithm does not terminate within several hours or even days. We cancelled the
evaluation at a certain stage as the search time already exceeded any practically acceptable limits. Taking a
look at the data set, this is explained easily. Figure 99 shows several of the occurring event sequences in the
dataset. Each row in the time line view represents one event sequence. Each sequence contains about 290
stock tick events and a few news events. With the current configuration, we consider now the order of event
occurrences. As most events are of the same event type, we almost hit the algorithm’s worst case, with most
events being compatible to each other. In addition, the time deviations between many stock tick events are
minimal and thus all can be taken into consideration for a possible mapping.
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Figure 99: Several event sequences from the data set used for evaluation scenario C4.a

8.2.4.4 (CA4.b - Using time-series similarity for a single event attribute

Scenario C4.a not only confirmed our assumption that the default base algorithm will fail in the given context,
but it also proved already that the integration mode of time-series, performing the type matching first, is not
applicable for this dataset. Therefore, for the following scenarios we chose time-series similarity for at least
one numeric event attribute of the stock-tick events, and executed it in pre-matching fashion.

8.2.4.4.1 Search pattern and configuration

In C4.b we utilized the same pattern sequence as in the previous scenario and chose the following
configuration:

= Match must start with first event: False

= Match must end with last event: True

=  Time matching mode: -- (event occurrences times not considered)

=  Order deviations: --

= Attribute similarities: StockTick.LastPrice — Normalized sequence similarity
= Integration mode of time-series: Pre-matching execution

8.2.4.4.2 Results and discussion

As this scenario reflects a simple time-series similarity search retrieval results are not discussed separately at
this stage. Instead, we refer the reader to Appendix B where detailed results of the separately carried out time-
series evaluation are documented. At this stage, the one interesting aspect remaining is the performance of the
matching process when integrated into the event similarity framework. As can be seen below, again the data
retrieval and the extraction of the attribute values from events before having them at hand cause some
overhead. On the other hand, for such a big dataset of over four million records it is simply not possible to hold
them in memory (at least not in the form of event objects). In total, the overhead time is around 50%.

8.2.4.5 C4.c - Using time-series similarity for combined price and volume patterns

So far, we did not make use of the ability to combine multiple aspects of the event sequence. In scenario C4.c,
now two time-series, i.e. the price series and the volume curve should be considered in combination.
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8.2.4.5.1 Search pattern and configuration

In C4.c we utilized the same pattern sequence as in the previous scenario and chose the following
configuration:

= Match must start with first event: False

= Match must end with last event: True

=  Time matching mode: Relative

= Attribute similarities: StockTick.LastPrice — Normalized sequence similarity
StockTick.Volume — Normalized sequence similarity

= Integration mode of time-series: Pre-matching execution

The volume curve for the search pattern (depicted in Figure 98) looks as shown below:
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Figure 100: Volume curve for the stock tick events in evaluation scenario C4.c

8.2.4.5.2 Results and discussion

The searching process considering two numeric attribute series is in total only slightly slower than then the
searching considering only one sequence. The re-execution of a full-sequence matching process, which is
required if the best matches of the attribute series are not overlapping, brings in relation to the normal
matching process no remarkable performance overhead. In addition, the time-series matching for the two
considered event attributes can be executed in parallel which is the reason for the algorithmic time not to
double in comparison to scenario C4.b.

In the dataset, a whole range of considerably good matches could be discovered, showing combined similarities
(from price and volume curve) of up to 96%.
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8.2.4.6 C4.d - Combining time-series patterns with news events

In the last evaluation scenario, C4.c is extended by considering also the temporal structure and occurrence of
news events. In comparison to C4.a, the temporal structure and occurrence of event types has only to be
computed based on the best match after executing the time-series similarity, which is fast and straight-
forward.

8.2.4.6.1 Search pattern and configuration

C4.d uses the same search pattern as before and the following parameters:

=  Match must start with first event: False

= Match must end with last event: True
=  Time matching mode: Relative
=  Order deviations: Considered

= Attribute similarities: StockTick.LastPrice — Normalized sequence similarity

= Integration mode of time-series: Pre-matching execution

8.2.4.6.2 Results and discussion

As the recomputation of the time deviation and order deviation costs is fast, the search executes only slightly
slower compared to scenario Cl.c. In the configuration, we weighted order deviations and time deviations
almost equal. From the results we found that in practice, the occurrence time of the news should be weighted
much higher. The results can further be improved by using occurrence number blocks for the news events, in
order to guarantee only at which time news should be present, but to not be influenced too strongly by the
actual number of the news items at this time. The rationale is simply that in many cases, the same news
content has been captured multiple times from different news channel, which distorts similarity results.

8.2.4.7 Performance summary

Total number of events: 4.010.272
Total number of event sequences: 13.909
Average number of events per event sequence: 288,32

Scenario | Eventsin | Total time

Seq./sec

Events/sec Events/sec

total

Algorithm Sequences

pattern time /sec total algorithm algorithm

Cd.a 282 -- Not terminated --

Ca.b 282 00:35:33.1 | 00:19:01.4 1880,02 6,52 3418,52 11,85
Ca.c 282 00:41:11.4 | 00:25:42.1 1622,67 5,62 2600,52 9,01
cad 282 00:42:01.9 | 00:27:11.4 1590,17 5,51 2458,17 8,52

Table 8: Performance results for evaluation scenario C4
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9 Summary, conclusions and future work

In this thesis, we presented a structured and comprehensive approach for assessing the similarity of event
sequences. We showed how to integrate this similarity computation into an event querying and visualization
framework, the SENACTIVE EventAnaIyzerTM in order to provide a mechanism for fuzzy retrieval of event
sequences based on a reference pattern. The similarity assessment model is able consider multiple aspects of
event sequences, which can be roughly categorized into event type occurrence, temporal structure and single
event attribute similarities. In addition, attribute value sequence similarity has been introduced, considering
the complete value sequence of attribute values extracted from multiple events, instead of event-by-event
attribute comparisons. In terms of single event similarity, we propose a range of default attribute techniques,
reaching from normalized absolute difference similarity for numeric attributes over the integration of string
similarity measures to calculated attribute expressions. In addition, we proposed a set of building blocks in
order to refine the search pattern, for instance to define allowed occurrence numbers of events, weaken the
pattern by allowing a selected number of arbitrary events, time constraints and many more. At the end, a
linear aggregation of all similarity-relevant features is performed by combining costs of the manifold
deviations, and the result is transformed into a final similarity score between 0 (no similiarty) and 1 (equality
with respect to all considered features).

The similarity assessment model resulted from analyzing the requirements of different use case domains, all of
which showed very different characteristics and difficulties. For instance, in order to discover trading scenarios
in the algorithmic trading domain, time-series similarity has been introduced to find similar price series. Here, a
pure matching process based on the occurrence of certain event types fails as such sequences only contain
regular “stock tick” events. At the same time, in other application areas where business processes execute
more or less according to a template (for instance shipment processes, airport turnaround processes, etc.)
matching based on event type occurrence and time deviations is appropriate.

It was a defined objective of this research effort to define a framework flexible enough for being adjusted as
required for different data sets and application domains, as well as to be open for extensions. This reflects in
leaving a lot of control up to the user who can select from different event attribute similarity techniques to be
applied for each event type. Furthermore, every single cost factor can be weighted and finally a set of modeling
options exist in a graphical search pattern editor. The evaluation shows that the generic character of the
similarity framework enables the application for different types of datasets without tailoring the matching
process exclusively to one of these cases. We hope that in the future further, not yet considered application
areas will be identified and can be covered by adjusting the existing techniques. At the same time, this
flexibility comes at a price, which is, that the applied configuration has to be chosen carefully. It is up to this
point definitely not a “one-click-search” experience. Instead, in order to retrieve valuable results the whole
investigation has to be well-thought, starting from the data integration to a targeted configuration focusing
exactly on the analysis questions. Yet, we see the possibility to provide ready-to-use configuration packages in
the form of solution templates in the future. Having a suitable configuration set, the proposed integration into
the user interface and workflow ease the access to typically complex data mining features, one of which
similarity search definitely is.

The presented reference implementation focused in particular on enhanced techniques for considering

different semantics of attributes such as named time-series similarity and on modeling the pattern sequence.

The evaluation showed that the concepts work well for event sequences up to around 20-50 events. In case of

longer event sequences the execution time increases drastically. Though, the evaluation scenario looking at
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credit card transactions showed that in general it is questionable if such as detailed matching makes sense at
all for long event sequences. At some stage such activity sequences contain loads of events surrounding the
events which could potentially make up a pattern so that they overrule the high similarity values of well-
matching subsequences. One could refer to this effect as kind of noise. The apparent problem is though that it
is not known up-front, which events will be similar and which are noise. As already partly discussed in the
evaluation section, a user activity of 500 actions (e.g. bet placements, purchases, etc) will hardly reoccur more
than once even in a large data set. Instead, multiple small sub-sequences might be common and would be
interesting to identify.

The proposed method for comparing time-series is more robust with respect to execution time in case of long
event sequences. It is based on the idea of measuring and comparing the slopes between pairs of curve
sections. Hereby, the original curve is not sliced at a regular frequency, but at turning points where the major
orientation of the curve turns up or down. For the identification of these turning points a technique from the
financial market analysis is utilized, detecting trend reversals based on the moving average. By varying the
calculation period of the moving average, these turning points can be identified at different granularities. The
approach is invariant to the scale of the absolute curve-point values and also supports for subsequence
matching.

In total, we consider the presented similarity assessment model as a solid basis to apply it for the discovery of
event sequences based on a reference pattern. Throughout the works on the basic features, we identified a set
of further requirements which would be interesting to cover in various application domains. One potentially
highly valuable extension could be to build up a clustering mechanism based on multiple, automatic similarity
comparisons. Such a clustering could separate business entities such as customers into different groups based
on their behavior, which reflects in event sequences. Having such a mechanism in place would make the whole
search more applicable for data mining in general. Currently, as the evaluation underlined, it supports a
selective searching process only. Without knowing an interesting reference sequence or pattern, it is hard to
get started at all.

Another requirement we figured out was a dissimilarity search: In domains where business processes execute
strictly according to a process template, especially those event sequences are of interest, where a strong
deviation of any kind is present. Currently, such a query is hardly possible because in the given model only one
deviating event sequence could be taken to find similar deviations. Other, unknown deviations could not be
found. Still, such a feature could easily be provided by keeping the worst-matching sequences instead of the
best-matching ones. Yet, maybe for dissimilarity search other algorithmic approaches are more efficient.

Regarding to applications for the similarity assessment model, forecasting could be a further topic of interest. A
forecast of key figures and the possible outcome of a business process could be based upon similar historic
event sequences. An example would be forecasting fraud in online gambling based on suspicious behavior.

Finally, further research effort could be spend into a dynamic handling of the similarity threshold. For longer
event sequences, the threshold is crucial in order to omit bad matches as early as possible and thus keep the
execution time low. At the same time, it is hard to figure out at the beginning of the searching process which
threshold is appropriate. We propose to integrate an automated threshold control, which starts at a very
restrictive threshold and weakens it step-by-step if insufficient results are retrieved.
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Appendix A — The STSimilarity library
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Interface ISTSimilarityAlgorithm
The ISTSimilarityAlgorithm is the interface to the main comparison operations. All provided operations can be
accessed via this interface and the below described methods.

Method ‘ Summary

Compare

Parameters:
=  SearchPattern pattern
=  TimeSeries sourceSeries
=  STSearchConfig config
Return value type:

=  SimilarityResult

Compares a source series to a search pattern and returns a
similarity result with a sorted list of matches.

Compare

Parameters:
= TimeSeries pattern
=  TimeSeries sourceSeries
= STSearchConfig config
Return value type:
= SimilarityResult

Compares a source series to an input series and returns a
similarity result.

FindBestMatch

Parameters:
= TimeSeries pattern
= |Collection<TimeSeries> sourceSeries
= STSearchConfig config

Return value type:

=  TimeSeries

Finds the time series matching best a given reference
sequence. Make sure that the pattern sequence is not
contained in the collection of input series!

FindBestMatch

Parameters:
= SearchPattern pattern
= |Collection<TimeSeries> sourceSeries
=  STSearchConfig config

Return value type:

=  TimeSeries

Finds the time series matching best a given reference
pattern.

CompareAll

Parameters:
= TimeSeries pattern
=  |Collection<TimeSeries> sourceSeries
= STSearchConfig config
Return value type:
= SimilarityRanking

Compares a set of source series to a reference sequence.
The result is a ranking of similarity matches.

CompareAll

Compares a set of source series to a reference pattern. The
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result is a ranking of similarity matches.
Parameters:
= SearchPattern pattern
ICollection<TimeSeries> sourceSeries
= STSearchConfig config
Return value type:

=  SimilarityRanking

Table 9 Methods of ISTSimilarityAlgorithm

Class STSearchConfig
The STSearchConfig class is the configuration object containing all parameters for time-series similarity search.
In order to achieve reasonable matching results for a certain application domain, these parameters must me
configured advisedly.

Field ‘ Summary

MinMAPeriodReferenceSequence Gets or sets the minimum moving average (MA) period
applied for smoothing the reference sequence and

Type: extracting the turning points.

Int

MaxMAPeriodReferenceSequence Gets or sets the maximum moving average (MA) period

applied for smoothing the reference sequence and

Type: extracting the turning points.

Int

MinMAPeriodSearchedSequence Gets or sets the minimum moving average (MA) period
applied for smoothing the searched sequence and

Type: extracting the turning points.

Int

MaxMAPeriodSearchedSequence Gets or sets the maximum moving average (MA) period
applied for smoothing the searched sequence and

Type: extracting the turning points.

Int

MAStepReferenceSequence Step-length for the reference sequence: The algorithm
goes stepwise from minimum to maximum MA period. This

Type: parameter determines the step-length inbetween.

Int Minimum value is 1. The lower the value, the higher the

exactness of the algorithm and the more iterations are

necessary.
MAStepSearchedSequence MA step-length for the searched sequence.
Type:

int
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AnchorStart

Determines whether a match must start with the first point
of the time-series.

Type:

bool

AnchorEnd Determines whether a match must end with the last point
of the time-series.

Type:

bool

LocalityOfSlopeComparisons

Type:
Locality (enum)

The locality mode of slope comparisons. Determines which
slopes are compared to each other. Global comparison
compares each value to each other. Weighted global
weights direct neighbours stronger. Local mode compares
only a set of local/near values.

NumOfLocallyComparedSlopes

Type:
Int

This parameter is only relevant in case of Locality set to
"Local". Determines how many values before and after the
concerned slope are considered.

TurningPointMode

Type:
TurningPointMode (enum)

Gets or sets the mode how turning points are determined.
“Extremum” takes the highest or lowest value of the time-
series

“CrossingPoint” takes the point where a trend reversal is
detected (which is always later than the actual reversal, of
course)

“AvgExtremumAndCrossingPoint” takes an averaged value
between the value at the trend reveral detection and the
extreme value since last trend reveral
“ExtremeValuesAverage” forms an average of the highest
or lowest x% of values between the reversal points.

ExtremeValuesAveragePercentage

Type:
Int

Relevant only for turning point mode
"ExtremeValuesAverage". Determines how many percent
of highest or lowest values are averaged for the turning
point computation.

MASmoothingMode

Type:
MASmoothingMode (enum)

Two possible modes for the different passes between
minimum MA period and maximum MA period.
“EqualPeriodAlways” - it is iterated from minimum of both
searched sequence and reference sequence min MA
period to maximum of both periods, in the minimum of
steps-lengths. The same MA period is used for a
comparison of searched and reference sequence. In this
mode matches must have a similar overall time scaling.
“VaryingPeriods” - Each MA period is compared to each
other to find best matches. Used when the pattern can be
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matched also at a very different scaling.

ConstantSlicingDensity

Type:
Int

This factor is relevant only in case of AnchorStart and
AnchorEnd both set to true. In this case the algorithm
switches to a mode of constantly slicing the sequence into
regular pieces and comparing slopes inbetween. The
densitiy determines for how many data points one slice
point is generated (kind of a sampling rate).

WeightBySubsequencelLength

Type:
Boolean

This flag determines whether during the slope comparison,
the deviation is weighted relatively to the length of the
subsequence between the two curve points. Setting this
parameter to true means that a slope deviation of a
shorter subsequence is less relevant than the deviation of
a longer subsequence. It is relevant in case of irregular
turning points extracted: In such a case, short slopes
between certain turning points may bias the matching
process.

Table 10 STSearchConfig fields with configuration options for the time-series algorithm
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Appendix B — Evaluation results time-series similarity model

In the course of this work, a separate evaluation of the proposed time-series similarity search model has been
carried out. The rationale of this separate evaluation was to isolate the time-series search performance from
the overall event sequence search and assess in details its strengths and weaknesses.

Setup

For the evaluation, price history data of stocks taken from YAHOO Finance™ have been utilized. We have
written a tool to download the free end-of-day data, which is available in CSV format via a download link**. In
order to automate the downloading of multiple historic price series, our sample data loading tool first parses
the YAHOO finance webpage which lists all available symbols (i.e., short names for stocks) and then one-by-one
requests the CSV download. In total, 2982 price series have been chosen for which regular data is available.
Each series holds the data for at least 1 year.

For the evaluation, the downloaded data are searched for defined reference patterns. Accuracy of the result is
judged by plotting the ranked similarity results in comparison to the search pattern. Evaluation speed is
measured in terms of execution time.

For the tests, the following hardware has been used:
=  DELL Dimension 9200 with Intel Core 2 CPU 6400, 2*2,13 GHz, 2GB RAM

Evaluation results pattern searching

The pattern searching evaluation is defined as a time-series search for a given search pattern with relative data
points. For the presented slope-based time-series searching algorithm, this means in particular that the pattern
data points are understood directly as the turning points of the search pattern. No moving average smoothing
is done therefore on pattern side. Only for the searched sample series, the turning point extraction is carried
out.

The sample search patterns defined are 5 typical price series movements in the financial market:

B http://finance.yahoo.com

% At the time of writing this thesis, data are available via the following URL:
http://ichart.finance.yahoo.com/table.csv?s={0}&a={1}&b={2}&c={3}1&d={4}&e={5}&f={6}&g={7}&ignore=.csv
The parameters are: Yahoo symbol name, start month, start data day, start date year, end date month, end

date day, end date year, data granularity (e.g. d for daily).
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Figure 101: Sample search pattern for time-series evaluation

Scenario 1 — Subsequence pattern searching with varying MA periods

The first evaluation scenario was defined to produce reasonably precise results by varying the MA period
smoothing. The algorithm is defined to perform complete subsequence searching, meaning that a match must
neither start with the first data point nor end with the last data point. For the evaluation, the following
parameters have been chosen for the algorithm:

Field ‘ Value

MinMAPeriodSearchedSequence 14
MaxMAPeriodSearchedSequence 30
MAStepSearchedSequence 2
AnchorStart false
AnchorEnd false
LocalityOfSlopeComparisons Global
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TurningPointMode

Extremum

WeightBySubsequencelLength

true

Table 11: Algorithm parameters for time-series evaluation scenario 1

Search results

Figure 102 shows the best matches from the sample data set for each of the defined patterns. Below every
match, the computed similarity score (sim) is listed. The plot shows that matches above a similarity score of 0,9

appear very similar and accurate. Below, deviations are already quite distinctive.
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Figure 102: Search results for defined time series patterns

Performance

The execution speed of the search strongly depends on the following parameters:

=  The number of data points in the searched sequence — The more data points the longer takes the MA
smoothing and potentially more turning points emerge.

= The characteristics of the searched sequence — The more fluctuations and direction changes it has, the
more turning points are extracted and the more slopes have to be compared.

= The minimum MA smoothing period — Especially for small periods the computation effort is large, as
many turning points emerge from short-term movements.

= The MA step and the maximum MA smoothing period — The step length directly determines the
number of iterations until the set maximum MA period is reached.

Thus, the performance is directly proportional to the number of turning points extracted, which depends on
the MA period (the shorter the period, the more turning points), and the number of iterations with varying
periods.

For the above presented search results and configuration, the following performance was measured:

Run | # Time series | # Parallel threads" | Avg DP per series | DP in pattern | Total time ‘ Series/sec
1 2982 1 185 15 00:01:58 25,13
2 2982 5 185 15 00:01:28 33,85
3 2982 8 185 15 00:01:21 36,41
4 2982 15 185 15 00:01:30 32,81

Table 12: Performance results of time series pattern searching scenario 1

The result shows that the use of parallel threads speeds up the execution by up to 40%. With too many parallel
threads, performance decreases again.

Scenario 2 — Subsequence pattern searching with anchored matches

The second evaluation scenario is defined for higher evaluation speed as the MA period is not varied but only
one pass is executed at a fixed MA period. In addition, the matches are anchored at the end, which also limits
the algorithmic effort.

> For the implementation of muli-threaded tests, the SmartThreadPool was utilized.
http://www.codeplex.com/smartthreadpool

135


http://www.codeplex.com/smartthreadpool

For scenario 2, different parameters have been tried out and the performance and results have been compared

for one selected search pattern.

Search results
Figure 103 shows the three best matches for different configurations C1 to C3. The parameters of each

configuration are given below.
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Figure 103: Search results for decrease and flatness pattern with different configurations
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Subjectively, results for this pattern appear to be most accurate with configuration C2. In case of local slope
comparison mode, the overall similarity score is lower for the same sequence. In all three cases, the best match
was the same time-series. Another series was ranked second in C1 and third in both C2 and C3.

Performance
For the above presented search results and configuration, the following performance was measured:

Configuration | # Time series | # Parallel Threads Avg DP per series DP in pattern Series/sec16
C1 2982 8 206 15 926,7
Cc2 2982 8 206 15 876,1
Cc3 2982 8 206 15 852,0

Table 13: Performance resulsts of time series pattern searching scenario 2

Evaluation results reference sequence searching

Scenario 3 — Reference sequence searching varying MA periods

In this evaluation scenario, the input for the search algorithm is not a search pattern with a couple of turning
points, but a time-series taken from the original dataset. This means in particular that both the pattern
sequence and the target sequence undergo the MA smoothing and turning point extraction process.

In scenario 3, a reference sequence is searched with the MA smoothing mode “VaryingPeriods”, thus each
comparison runs through multiple passes of MA variations for the reference and target sequences. For the
scenario, the following configuration parameters have been chosen:

Field ‘ Value

MinMAPeriodSearchedSequence 20
MaxMAPeriodSearchedSequence 40
MAStepSearchedSequence 2
MinMAPeriodReferenceSequence 20
MaxMAPeriodReferenceSequence 40
MAStepSearchedSequence 2
AnchorStart True
AnchorEnd False
LocalityOfSlopeComparisons Global
TurningPointMode ExtremeValuesAverage
ExtremeValuesAveragePercentage 5
WeightBySubsequencelength true

Table 14: Algorithm parameters for time-series evaluation scenario 3

As can be seen from the table, the MA period is varied between 20 and 40 at a step length of 2 for both series.

2
40-20 .
) = 100 passes of slope comparisons for each sequence.

This means (

¢ As the execution speed strongly varied up to 150 series/sec, the average speed of 3 successive runs has been
taken.
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Search results
Figure 104 shows the best matches for a given search pattern with the presented configuration.

Reference sequence
2,9

20 \

19

1,4 Y
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Matched subsequences from the reference sequence (red)
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1,4 1,4 1,4
0,4 0,4 0,4

Best matching target sequences

0,7
0,7
2,3
0,3 0,2 0,2
sim =0,979 sim =0,978 sim=0,975

Figure 104: Search results for reference sequence time-series evaluation scenario 3

Performance

For the above presented search results and configuration, the following performance was measured:

# Time series # Parallel Threads Avg DP per series # DP in ref.seq. ‘ Series/ses
1 2981 8 206 236 11,3
2 2981 15 206 236 9,68

Table 15: Performance results of time series reference sequence searching scenario 3
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