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Abstract

This work is concerned with the task of mathematical modeling and the heuristical resolution of
complex scheduling problems in the context of automated IT environments. Today’s corporate
IT systems often contain several hundred thousand automated jobs that have to be executed in
the heterogeneous network on a daily basis. Because delays of the execution or finalization of
these jobs is often coupled with high costs by using legal service level agreements (SLAs), an
optimization of the processes in the system is of crucial importance.
In order to tackle a practical scheduling problem with the means of scientific optimization theory
it is necessary to find a formalization in mathematical terms. This subproblem is considered in
the first part of this work, where a number of models is examined for their adequacy. Because
of their lack of flexibility, the classical machine scheduling models are discarded in favor of the
broader project scheduling models. As final formalization the very general multi-mode resource-
constrained project scheduling problem with generalized precedence relations (MRCPSP/max
or MRCPSP-GPR) is chosen. This choice is justified by the fact that this model allows the
modeling of resources in a more adequate way to capture the broader concept of a resource in
IT environments. Furthermore it enables the formalization of complex timing constraints in a
natural way.
This increased flexibility comes with a tradeoff in the form of increased complexity. It is shown
that the resolution of MRCPSP/max instances with mixed integer programming methods is not
practical, even for small instances. Therefore in the course of this work a software library has
been implemented with the goal to provide solutions with high quality in a practical time frame
by using heuristic optimization methods. Following the proposals in the scientific literature
genetic algorithms serve as the underlying metaheuristic. This work provides an overview on
the details of available implementations from the literature and presents a combination of several
approaches in the form of a flexible software library. Furthermore we present new evolutionary
operators which are proven to perform well in extensive benchmark tests.
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Kurzfassung

Diese Arbeit befasst sich mit der mathematischen Modellierung und heuristischen Lösung kom-
plexer Scheduling Probleme im Kontext automatisierter IT Umgebungen. In solchen Umgebun-
gen werden oft hunderttausende automatisierte Jobs in einem verteilten Netzwerk von hetero-
genen Maschinen ausgeführt. Da Verzögerungen in der Ausführung beziehungsweise der Been-
digung dieser Jobs, aufgrund von Service Level Agreements, oft mit hohen Kosten verbunden
sind, ist eine Optimierung der Abläufe eine Aufgabe mit von grundlegender Bedeutung.
Um das Problem mit optimierungstheoretischen Mitteln behandeln zu können muss eine geeig-
nete Formalisierung gefunden werden. In einem ersten Schritt werden einige Modelle auf ihre
Adäquatheit hin evaluiert. Aufgrund ihrer mangelnden Flexibilität wird anstelle von klassischen
Maschinen-Scheduling Modellen den extensiveren Projekt-Scheduling Modellen der Vorzug ge-
geben. Die endgültige Formulierung schließlich erfolgt als multimodales ressourcenbeschränk-
tes Projekt-Scheduling Problem mit verallgemeinerten Vorgängerbeziehungen (MRCPSP/max
oder MRCPSP-GPR). Dieses trägt nicht nur der Tatsache Rechnung, dass im Gegensatz zu Ma-
schinenumgebungen in IT-Umgebungen das Konzept der Ressource ein erheblich flexiblerer ist,
sondern erlaubt auch eine Erweiterung der Abhängigkeiten zwischen Arbeitsschritten. Während
diese in Maschinenumgebungen meist von kausalen Abhängigkeiten dominiert werden treten in
IT-Umgebungen flexiblere Zeitbedingungen auf.
All diese Flexibilität in der Modellierung führt typischerweise zu einer höheren Komplexität der
Modelle. Es wird gezeigt, dass sich das MRCPSP/max schon bei relativ geringer Instanzgröße
nicht mehr praktikabel mit exakten Methoden lösen lässt. Daher wurde im Zuge dieser Arbeit
eine Software-Bibliothek erstellt, die hochqualitative Lösungen in annehmbaren Zeitrahmen mit
heuristischen Optimierungsverfahren liefern kann. Der Literatur zu dem Thema folgend dient
hierbei ein genetischer Algorithmus als Metaheuristik. Die Arbeit gibt einen Überblick zu den
Details bereits vorhandenen Implementierungen und kombiniert die Ansätze zu einer flexiblen
Software-Lösung. Daneben stellen wir auch neue evolutionäre Operatoren vor, die sich bei um-
fassenden Tests mit Benchmark-Instanzen bewährt haben.
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CHAPTER 1
Introduction

1.1 Motivation

This work concurs with the area of IT process automation. In the complex IT environments in
today’s big corporations, where hundreds of thousands tasks are worked off on a daily basis,
IT process automation is a key technology. Not only the volume, but also the diversity and
complexity of IT services calls for intelligent automation techniques that release the responsible
technicians from often highly repetitive tasks. This enables an efficient productive administra-
tion with reduced costs.
The development of IT process scheduling is rooted in the job scheduling problems that emerged
with industrialization and assembly line work. It is not a coincidence that many of the classical
scheduling problems have names like Job Shop Problem or Flow Shop Problem. Back then and
now the targets are the same: execute complex jobs that might need treatment on different ma-
chines in a defined sequential orders with certain degrees of efficiency. Efficiency in this context
can be defined in a number of ways. It might be the total time needed to execute a set of jobs,
the compliance of given deadlines, the minimization of overall costs or a combination of all the
above.
In this work an implementation of such an automation system is examined. The UC41 Operation
Manager (OM) provides the means to realize all the tasks that have to be dealt with in a modern
automated IT environment. This includes the control in diverse and distributed systems, effective
runbook automation as well as monitoring the tasks, reporting their outcomes and maintaining a
huge amount of data and statistics that record the behavior and performance of the system.
Because of the increasing workload the IT infrastructure has to deal with, an efficient use of the
available resources is increasingly important. Especially in highly utilized systems it is a key
concern of the executives to fulfill the service level agreements (SLAs) they committed to. These
SLAs are usually recorded in a legal contract and formulated in a way that can be implemented
in the systems. In general these SLAs are time constraints or performance values. A violation

1www.uc4.com

1



of them is usually coupled with a fee that is augmented over time.
This monetary aspect increases the need for efficient methods even further. Since scheduling
problems form a well-known subclass of optimization problems, which is easily explainable be-
cause of the obvious possibilities of application in the real world, it seems like a logical step to
formalize the problem and process it with the powerful tools provided by optimization theory.
This statement summarizes the scope of the work at hand.
In a first step the domain should be explored and formalized with a strict mathematical model.
Major requirements for this formalization are a certain extendibility to implement new concepts
as well as a focus on flexibility for both modeling approaches and the conception of objective
functions. After this, a library of competitive state of the art techniques should be provided to
solve problem instances of practical size.

1.2 Problem Statement

In this section the domain of the UC4 Operations Manager is discussed. In the following sec-
tions all the objects of interest in the UC4 system will be presented. Afterwards the desired
improvements resulting from this work are summarized.

The UC4 Operations Manager

The UC4 Operations Manager (OM) is a program used for task automation and event processing
in IT environments. A task in this context is usually a job that contains a number of commands
for the operating system or the invocation and control of other software. This may also include
file transfers, I/O on databases and the file system or the computation of more complex tasks.
These jobs may be related in either logical or temporal terms. An example for a logical depen-
dency is that some job may only be started if all its predecessors were finished successfully. A
temporal condition is that a given job must be started on workdays only.
The second large use case is the appropriate reaction to events. There are a large number of
events including examples like the unsuccessful execution of a job, reaching a given limit of free
disk space or the arrival of a certain file. In those cases the system may start some alternative
jobs or notify some users my automatically send e-mails.
The architecture of the complete UC4 system has a client-server structure (see figure 1.1). The

server maintains a central database that holds all the necessary information of the job automa-
tion. The clients in this system are a number of agents that are installed on remote machines.
Basically there are two types of agents for either direct communication with the operating system
or the automated control of an application which runs on the remote machine. If a task should
be started, the server extracts the necessary information from the database, uses it to generate
an executable job object and delegates it to the appropriate agent. After the execution the agent
notifies the server and provides information about the execution.

UC4 Objects

The most basic object in the Automation Engine is the job. There are two types of jobs:

2



Figure 1.1: This figure shows an example of a UC4 system.

1. Operating system jobs

2. Application jobs

The first interacts directly with the operating system of the machine where the assigned agent
is situated, which is typically Windows or UNIX. The latter only communicates with a certain
application. The most commonly used application job type is the one for the automation of SAP
processes.
There are three parameters that are mandatory to enable the execution of a job:

1. Host: This parameter specifies the machine or the agent where the job is executed. Note
that it is also possible to specify a group of agents with an eligible scheduling strategy at
this point. This possibility is described later in this section.

2. Login: Without login information it is impossible to access the machine or the application.
Login information is managed in so called login objects that must be assigned to the job. If
given wrong login information or login information for a not sufficiently allowed account
the job also cannot be started.

3. Commands or application calls: These define the task itself.

After these parameters are provided and saved the job can be executed. During the execution
the user interface provides a panel for monitoring. Here the status of all running tasks is shown.
After the execution the system also provides a job report which can be searched for interesting
information with different user definable filters.
It is also possible to access the job reports and execution statistics of a number of earlier execu-
tions. This number is also user definable.

3



For the combination of a number of jobs the automation engine provides the job plan object.
The contained jobs of a job plan can basically be connected by two types of relations:

1. Result-based: The most commonly used is the precedence relation, where a job can start
if another job or a number of jobs are finished. This is the simplest possible relation, but
the system provides the possibility to define user-specific relations as well.

2. Time-based: Time-based relations can either be date or time dependent. Date dependen-
cies can be managed very efficiently in the system by using so called calendars. With
them it is possible to define release and completion dates for every job in the job plan.

To define the start time of a single job or a job plan it is either possible to define a schedule or to
define the execute periodically option. Schedules provide the possibility to define the daily to-do
list of a system. To express more complex date dependencies it is also possible to use calendar
objects like in the job plan dependencies. Since the schedule object was designed to automate
the daily operations of a system the minimum period is one day.
Nevertheless the system provides the possibility to realize any other periodic behavior with
periodical execution options that can be defined for every job or job plan. There are three
possibilities to define the period:

1. Definition of a frequency. The lower limit is an execution every minute.

2. Definition of a gap, which is a time difference to the last execution.

3. Definition of a start time, as it is possible for the schedule object.

Another possibility to start the execution of a job is the usage of UC4 script. UC4 provides a
scripting language whose scripts can be attached to objects like jobs and job plans and alter their
behavior significantly. A typical example for the usage of scripts is reading and writing variable
objects. These objects can hold arbitrary variable values that can be used to make the automation
more flexible. Furthermore it is possible to set any object attribute dynamically. But it is also
possible to start other UC4 objects like jobs, job plans and schedules.
This leads to the last possibility to start the execution of an object: the event object. Events are
defined as a set of conditions. If all of these conditions hold, the attached script is executed. This
script in turn may initialize the execution of other objects.
Basically there exist three different event types:

1. Time Event: A time event is very similar to the schedule object. The user defines a
period after whose completion the event is triggered. In contrast to the schedule object the
shortest possible period is one minute instead of one day.

2. File System Event: This event class enables the user to define a number of conditions
for the underlying file system. A typical use case is the Filewatcher. It may check for
the existence of a certain file which has to be transferred from another location and then
invokes a number of jobs that need this file for their execution. Another typical example
is the monitoring of free disk space.
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3. Database Event: Similar to the file system event this event class monitors a database. The
conditions can be formulated with the results of SQL queries, variables and static values.

Note that all three classes may also be used within a job plan. Usually this option is realized for
the latter two.
After this examination of jobs and temporal relations between them, the existing features for
scheduling and workload balancing are presented. The central concept of workload balancing is
the UC4 resource. This is an integer value that the user may define for every agent and for every
job. This value can be chosen by the user and does not necessarily reflect the real performance
of an agent or the real workload of a job. Note that jobs can only get executed on agents that
provide at least the necessary resources.
The other important concept is the agent group. The user has the possibility to arbitrarily group
agents with the same operating system. This enables two use cases. If a job has to be executed on
a given set of agents, these agents can be grouped and the execution mode all can be assigned to
this group. This makes the time consuming task of generating a job for every agent superfluous.
The more interesting case from the scheduling perspective is if a job can be executed from an
arbitrary agent of the group. In that case the system provides four possible execution modes:

1. Any: Execute the job on an agent chosen randomly.

2. First: The job is executed on the first active agent that is found in the table.

3. Next: This option basically realizes a round robin strategy.

4. Load Dependent: This strategy makes use of the UC4 resources and executes the job on
the agent that possesses the highest amount of free resources.

There are a number of other objects that are available to the user but have no influence for the
problem examined in this work. The most important are listed here:

• Call: Provides different means to notify users from within the system.

• Login: Storage of login data for the different systems.

• Calendar: Enables the user to define complex date constraints.

• Cockpit: Provides basic information visualization tools.

Desired Results

The desired result of this work is to explore new ways of improvement for the scheduling meth-
ods of the UC4 OM. In the actual form these have a number of drawbacks like having an insuf-
ficient model of resources and a too simple prioritization. The only control parameters that can
be influenced by the user are the assignment of resource consumption and a priority value and
the choice between simple scheduling policies like random or round robin.
There is no possibility for automated planning or to simulate processes for a given period of
time. Furthermore the system lacks the possibility to optimize such processes. There is no way
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to define any performance measures for solutions or policies.
These problems should be tackled with this project. In the end the we desire a software library
with the following capabilities:

• Creation of schedules for a given period of time. A schedule in this context is a list of
start times for all the tasks that have to be worked off in the considered time period and an
assignment to an agent for every task.

• Evaluation of schedules. When a schedule is created it should automatically be evalu-
ated. This evaluation should be flexible and configurable by the user. Different desired
features might be the overall execution time, the accuracy of timing of some jobs or the
minimization of additional costs that are caused by SLA violations.

• Expandability of the method. The resulting solutions should be as general as possible
to allow expansion. This is important because the UC4 OM is developed as a universal
solution to automate IT environments of corporations in many different domains. Further-
more the area is constantly changing and new concepts might have to be integrated in the
system.

1.3 Methodological Approach

To achieve the goals set in the previous section it is necessary to translate the real world prob-
lem into an optimization problem. This formalization makes it possible to examine the problem
from an algorithmic point of view. This in turn has a number of advantages that allow an effi-
cient resolution of the task. First, it is possible to determine the true complexity of the problem,
which in turn enables us to choose an appropriate solution approach. Furthermore due to the
obvious practical applicability scheduling problems have received an enormous amount of re-
search work. Therefore the chances are high to find promising solution approaches that might
be enhanced in the best case. Another advantage of having a formalized problem at hand is, that
the solution methods may be compared and evaluated with benchmarks that are used by the sci-
entific community. This is also advantageous for the validation and acceptance of the software.
This section summarizes the findings that were gathered during a preliminary study with experts
from UC4. The goal of this study was to find a well-defined model for the OM scheduling that
allows capturing every aspect of the system. On the other hand the model should of course be
kept as simple as possible to remain applicable with respect to runtime.
With that in mind several models were examined and evaluated. In the following subsection
the framework for describing scheduling problems and the classic machine scheduling problems
are presented. Then we discuss the shortcomings found for these formalizations that lead to
the choice of project scheduling formalizations that is first outlined afterwards, but examined in
greater detail in the next chapter.

Machine Scheduling Problems

A basic scheduling problem contains machines and jobs and is concerned with the task of al-
locating the machines in order to process jobs. Additionally there are a number of constraints
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that restrict the processing, for example limitations of the machines or forced orderings of the
jobs. The desired output is a timetable or schedule that defines at what point in time a machine
is allocated for a certain job.
This section is based on the first chapter of Brucker [2] and follows the same conventions of
notation and definition. The author defines for a basic scheduling problem m machines Mj ,
j = 1, . . . ,m and a set of n jobs Ji, i = 1, . . . , n is given. A job Ji may in general consist of
ni operations Oi1, . . . , Oini . With these operations two crucial pieces of information are asso-
ciated. For every operation there exists a subset of machines µij ⊆ {M1, . . . ,Mj} where it can
be processed. Furthermore the execution is described with a so called process requirement pij .
This quantity describes how many time units the operation takes on machine j.
Note that even on this level there are differences in the definitions between different authors.
Pinedo [21, pp.13] for example relies on a notation without the use of operations and uses the
concept of routes for jobs instead.
A concept that is shared between many authors of the field to classify different scheduling prob-
lems is the so called three-field notation. It is usually denoted as α|β|γ, where α characterizes
the machine environment, β specifies job characteristics and γ holds a definition of the objective
function.
Now some commonly known machine environments are presented. Basically they can be di-
vided into two groups. First we consider the models that typically work with jobs containing
only one single operation. Therefore in the following list of common values for α the notion of
jobs is used.

• α = ∅ means that every job has to be processed on a specified machine. More formally
speaking this means that for every set µij it holds that |µij | = 1. This special machine
environment is called dedicated machines.

• α = P : This environment represents the opposite to the previous, meaning that there are
m identical parallel machines. That implies that every job may be processed on every
machine and that the process requirements do not differ between them. This means that
pij = pi holds.

• α = Q: A further generalization is the use of uniform parallel machines. This model
enriches the previously mentioned one by the introduction of a speed factor sj for ev-
ery machine. With this concept it is possible to calculate a machine-dependent process
requirement with pij = pi

sj
.

• α = R: In the next step the notion of machine speed is extended by also depending on the
job at hand. This results in an m × n matrix holding the factors sij . The actual process
requirement is still calculated as pij = pi

sij
.

Now we examine the group of the so called multi-operation models. As mentioned be-
fore, the jobs in these models consist of a number of operations Oi1, . . . , ini . Typically there
are precedence relations between the operations, which are mostly based on simple causality.
Frequently the processing of one operation sets some preconditions for the processing of its suc-
cessors. In general causal precedence relations are directed acyclic graphs. Some special cases
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are mentioned in the definition of the β field.
Another difference to the previously examined models is concerned with the set of machines for
the processing of an operation. Whereas first parallel machines were mentioned the classical
specifications of the following models work with dedicated machines. So every operation can
only be executed on one machine, implying that |µij | = 1.

• G: This model is called the general job shop. The following models are restricted versions
of this general model.

• J : For the job shop the precedence relations of the operations of a job are restricted, such
that only chains are allowed:
Oi1 → Oi2 → · · · → Oini .
The formulation of the classical job shop problem also does not allow machine repetition.
Every job might visit every machine only once.

• FJ : A flexible job shop generalizes the classical job shop such that the machines are
not dedicated anymore. Instead there exist a number of workcenters that group identical
machines in parallel. If a job arrives in such a workcenter it may be processed by an
arbitrary machine. The route of the jobs through the machine environment is still defined
by their sequence of operations [21, p. 15].

• F : Another well-known special case of the general job shop is the flow shop. All the
jobs have to be processed on every machine and have to follow the same route through
the machine environment. This means it holds that the number of operations ni = m for
every job i and also that µij = {Mj} for every job i and every machine j.

• FF : As for the job shop, there also exists a generalization called the flexible flow shop
where the machines are not dedicated anymore. Again instead of single machines every
stage can contain a number of identical machines [21, p. 15].

• O: An open shop is another generalization of the flow shop. Again every job has to be
processed on every machine, but there is no predetermined sequence of machine. The
operations of a job have no precedence relations at all.

Additionally to the first letter(s) the α field has a number attached. Normally this number is
a positive integer and defines the number of machines for this very problem instance. For the
flexible job shop and the flexible flow shop it denotes the number of workcenters instead.
Now we turn to the β field which holds the characteristics of the jobs. Brucker [2, pp. 3]
identifies six elements that define the properties of the jobs and their execution:

• β1: This field defines whether or not it is possible to pause and resume an activity without
losing any time. This property is called preemption and is signaled with strings like prmp
[21] or pmtn [2].

• β2: The second field is used to describe the relations between the jobs. These relations
usually indicate the sequences for the execution of jobs. Typically these sequences can
be expressed by an acyclic directed graph G = (V,A), where V represents the activities
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and every arc (i, j) ∈ A imposes a constraint stating that activity j may only be started
if activity i is finished. This rather general case is expressed by the indicator prec. More
specialized problem instances work on trees or chains of activities.

• β3: In many practical problems it is necessary to define release dates ri for activity i.
Release dates restrict the start time of an activity such that it may not smaller than the
corresponding release date.

• β4: This field may be used to specify restrictions concerning the processing times. For
example the entry pi = 1 indicates that every activity is processable in one time unit.
Other examples are pi ∈ {1, 2} or di = d.

• β5: Where release dates restrict the start times of activities, due dates set deadlines for
them. A due date di states that the corresponding activity must be finished at time di.

• β6: This field indicates the possibility of batch processing. This means that some machines
offer the possibility of processing a number of activities simultaneously.

The last component of the three-field representation of scheduling problems is the γ field, which
holds the objective function for the instance. Typical objective functions measure the time
needed for the processing of all jobs or minimize the lateness of certain jobs. But it is also
possible to evaluate the regularity of tasks or absolute punctuality. Since this question does not
directly influence the choice of the model it is postponed to a later section, where it is investi-
gated in the context of the chosen model.

Formulation as Machine Scheduling Problem

During the course of the preliminary study including the experts of UC4 we evaluated all of
these classical machine scheduling problems on their appropriateness for the problem at hand.
Special attention received the parallel machine approach Rm and the flexible job shop envi-
ronment FFc. So we picked a model from both, single-operation and multi-operation machine
environments.
Now we outline the discussed model translations and take a look on their weaknesses, which in
the end lead to their rejection.

Parallel Machines

Together with the experts of UC4 it was concluded that the most appropriate single-operation
model was the most general parallel machine model. As stated before this model contains m
machines in parallel, n jobs with only one operation and an m× n matrix sij for the calculation
of individual processing times from the given job processing requirements pi by pij = pi

sij
.

In this formalization the machines correspond to the UC4 agents installed on the different ma-
chines. If a job i cannot be started on a specific agent m this can be expressed by setting a value
value for the corresponding sij that delivers an enormous processing time.
The translation of tasks in the UC4 system is straightforward. Tasks without subtasks are directly
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transformed into jobs and jobplans are transformed to jobs with precedence relations (prec). Be-
cause of the schedule objects and the possibility of defining periodical executions for the tasks
it is also necessary to include the concept of release dates (ri).
At this point we still do not consider the objective functions, which are left unspecified in the γ
field. So the first model is defined by

Pm|prec, ri|γ (1.1)

Flexible Job Shop

As an alternative attempt the model was encoded as a flexible job shop problem. As stated in
the previous section this machine environment is a combination of the parallel machine environ-
ment and the job shop environment. The difference to the ordinary job shop is that machines are
grouped in so called workcenters. These workcenters can process the same operations, which is
suitable for modeling the agent groups. Again the machines in this model can be mapped to the
UC4 agents.
Since job shop problems are formulated for multi-operation jobs, but a direct transformation
of UC4 jobplans to jobs is not possible, because the precedence relations between operations
are limited to chains. More complex relations, as they are possible in UC4 jobplans, are only
expressible on job level. Nevertheless transformations are possible by grouping chains of tasks
into jobs and preserving the precedence relations between these groups.
So the β field must contain the entry for precedence relations and because of the periodic execu-
tions there might also be some release dates to consider. The third entry rcrc (or recirculation) is
specific for job shop problems and indicates that a job may visit a machine or work center more
than once [21, p.17].
This leads to the alternative formulation

FJc|prec, ri, rcrc|γ (1.2)

Open Shop

To overcome the deficiencies of the flexible job shop formulation also the open shop formulation
was evaluated. Basically all the concepts and also the problem encoding stay unchanged, but
relations between operations are arbitrary. This relaxation supports the encoding by making the
superficial approach of grouping chains of operations superfluous. Also the β field entry for
recirculation is not necessary in an open shop:

Om|prec, ri|γ (1.3)

Shortcomings

Even the most general machine scheduling formulation, namely the open shop, fails to capture
some of the concepts and restrictions appearing in the system. The main weaknesses identified
by the experts of UC4 are outlined here:
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• Timing Constraints: Precedence relations between jobs and operations in machine schedul-
ing problems are causal precedence relations. This notion is not expressive enough for the
problem at hand. This fact also cannot be compensated by the use of release and due dates.
In detail the following concepts are needed:

– General Precedence Relation: In machine scheduling problems the minimal differ-
ence between the start times of two jobs or operations is always equal to the preced-
ing one. So there is no natural way of defining a “release date” for an operation or
job that depends on the start or completion time of some preceding activities, but is
independent of their processing times.

– Maximum Time Constraints: The second weakness concerning timing constraints is
the lack of a possibility to define a maximum time span between the start or com-
pletion times of two jobs or operations. The only workaround for this problem is
the use of due dates, but as release dates they are not flexible enough, since they
only constrain the start times of certain jobs relative to the start time of the problem.
There is no natural way to express due dates relative to other jobs.

• Machines: Another point is the concept of machines. Since the machine environments
scheduling problems are designed to capture scheduling problems that arise in the man-
ufacturing industry, they are not necessarily suitable for the formalization of problems in
IT automation. The following points are problematic:

– Agents and Machines: The agent-machine mapping is not a one-to-one relation in
general. It is not unusual that several agents are installed on a single machine. This
problem cannot be avoided by using a direct computer-machine relation, because the
models do not allow multitasking.

– Multitasking: In classical machine environment scheduling problems every machine
can only be occupied by one job at a time. This of course is absolutely inappro-
priate when modeling a computer environment where every machine can handle a
multitude of tasks simultaneously.

– Resources: The only resource considered in the models so far is “work”. A job or
an operation needs some amount of it to be finished and the machines provide some.
The provided amount can only be expressed by a single factor for every machine
operation pair. This is not practical for IT environments. First of all it might be
of interest to model the computational “work” of the computers in the system on
a finer-grained level (e.g.: number of CPUs or amount of RAM). Another aspect
of interest that cannot naturally be expressed in machine environment scheduling is
the possibility that the processing of an operation might allocate resources on two
different machines. A typical and of course frequent example is the task of file
transfer or data streaming.
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Project Scheduling Problems

The results of the preliminary study clearly suggest that a more general model is needed to
capture all the aspects of the problem at hand. The two major weaknesses of the too narrow ma-
chine model and the lack of flexible time constraints can both be tackled by the use of a project
scheduling problem.
The most influential difference between the two families of scheduling problems is the exten-
sion of the concepts of machines to the concept of resources. The classical machine scheduling
problems assumed that a machine can only do one job at a time. This is certainly not true for
computer systems in an IT environment. Also the introduction of batch processes as sometimes
used is not flexible enough and rather suited to model working stations on an assembly line.
Resources in some sense loosen the tight coupling of machine and work piece and transform it
to the more abstract level of provider and consumer. The consumers are again rather abstract
entities that are not jobs and operations any more, but instead are called activities. Every activity
might need various resources for its execution and in the resource-constrained project schedul-
ing problem (RCPSP) the task is not to push this resource demand over given limits in every
point in time, while still optimizing some objective function. The RCPSP is the basic model that
is dealt with in this work and is formally introduced in section 2.1.
In [14, p. 321] the authors define the following types of resource environments, which corre-
spond to the α field:

• PS: This denotes the basic RCPSP as described above.

• PS∞: The infinity symbol signalizes unlimited resource availability. This means that only
timing constraints imposed by the relations between the activities have to be respected. It
will be shown that this is much more complex when generalizing these relations.

• PSc: This environment specifies a project scheduling problem with cumulative resources
and is not in the scope of this work.

• MPS: The multi-mode resource-constrained project scheduling problem introduces the
concept of execution modes of activities, which influence their resource demands. The
solution of a scheduling problem is not only to choose start times for the activities any
more, but also to assign the optimum execution modes. The work at hand focuses on the
resolution of these models.

As for the machine scheduling problems there also exists a β field to describe the relations of
the activities in the project scheduling problem. Neumann et al. [14, pp. 321] list three possible
entries:

• β1: It holds that β1 ∈ {prec, temp}. The first case describes causal precedence relations
that are also used in machine scheduling. The latter describe the much more expressive
concept of temporal constraints. These can be used to model more complex relations like
the definition of time windows or enabling another action after 25% of the predecessor is
processed.

• β2: If β2 = d the project’s overall time is restricted by a deadline.

12



• β3: It is possible to describe sequence-dependent changeover times between activities.
This is signaled by setting β3 = sij .

It holds the β ⊆ {β1, β2, β3}. Objective functions which are specified in the γ field do not
change.

Benchmarking

Another advantage that arises from the strict formalization of the problem is the ability to com-
pare obtained results with outcomes of state of the art algorithms. Since project scheduling
problems arise in a number of real world applications, a lot of effort has been invested into the
development of benchmarks sets [18]. These can basically be divided into real world problems
and artificial instances.
Since this project is concerned with the resolution of scheduling problems for many different and
dynamically changing environments, we focused on benchmark sets that are designed to cover a
variety of cases. In an early work Kolisch and Sprecher [17] not only presented a benchmark set
that they argued is well-balanced, but also introduced an instance generator (ProGen) to produce
an arbitrary number of instances with certain characteristics.
These characteristics were identified by the authors and may roughly be divided into three
groups:

• Scale parameters: These parameters can be used to control the size of the generated
projects. They contain the number of activities, execution modes and different resources.

• Network parameters: For the characterization of the relationship between the activities
a number of parameters is given to emulate the complexity. These include parameters to
control the number of preceding and succeeding activities and the number of dependencies
of the activities.

• Resource availability: A third group of parameters allows manipulating the availability of
resources. This includes the availability itself, the average consumption, or the probability
that there is a tradeoff between activity duration and resource consumption.

Note that this list is only a short summarization to provide an idea of the ProGen. The program
itself is available for download on the website2 and might be used to generate problem instances
tailored for a specific environment. Further information on the use and parameterization can be
found in [17] and [18].
The website not only provides the instance generation tool, but also the benchmark set used in
this work and many others. Each benchmark set comes with a file that contains the parameter
settings used for the generation. Furthermore there are benchmark results available that show
the best known solutions to the problems at hand. New results can be submitted by sending an
e-mail in a standardized format.
Furthermore there is a number of papers on the generation tool, the instances itself and com-
menting on the development of resolution methods, the most recent being from Kolisch and
Hartmann [16].

2http://129.187.106.231/psplib/
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CHAPTER 2
Methodology

2.1 Problem Formalization

In this section we present the formal problems which were identified in section 1.3 to fit the
given problem statement. This ection starts with the most basic model that already incorporates
resources and causal precedence relations between activities. This model is extended with the
possibility to process activities in certain predefined execution modes that influence resource
consumption and processing times. Additionally these execution modes can be linked with an-
other type of resource that is not available with a certain amount in every point in time, but
limited for the whole project. In a last step the model is extended for generalized time lags.
These allow the formalization of complex temporal time constraints that are useful for the prob-
lem at hand.
This section closes with an examination of alternative objective functions and the problem trans-
lation. The latter shows how to encode the concepts of the automation engine in formalized
problem instances.
For the remainder of this chapter the notational guidelines and conceptual definitions of [14]
will be followed.

The Resource-Constrained Project Scheduling Problem

The resource-constrained project scheduling problem (RCPSP or PS|prec|f ) provides a basic
formalization for typical aspects of practical project scheduling. Let us now take a thorough
look at the components that form an instance of the problem.
First a number of real activities 1, ..., n is given. All of these activities have to be executed and
once they are started, they cannot be stopped or paused. In other words, preemption is not al-
lowed. Furthermore two dummy activities 0 and n+ 1 are added to represent the project’s start
and completion. Put together they form the set of activities V = {0, . . . , n+ 1}.
Every activity i has a processing time pi assigned to it. For real activities it holds that pi ∈ N.
The dummy activities both have a processing time that equals zero, p0 = pn+1 = 0.
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A solution of a RCPSP assigns a start time Si ∈ Z≥0 to every activity in V . Such an assignment
S = (Si)i∈V is called schedule. It is obvious that the start time of the dummy node that repre-
sents the project’s start is zero, i.e. S0 = 0. The time assigned to the project’s end is the project’s
duration which is also called the makespan. In project scheduling problems there usually exists
a number of constraints concerning the execution of activities. Typically some activities have
to be finished before a given activity i is allowed to start. This precedence relation is modeled
by defining sets of successors succ(i) and predecessors pred(i) for every activity i. Naturally it
holds that pred(0) = ∅ and succ(n + 1) = ∅. We can also formulate the constraints imposed
by these precedence relations using the assigned start times of the schedules. Consider activity
i with a set of successors succ(i). Then the following condition has to hold:

Sj − Si ≥ pi, j ∈ succ(i) (2.1)

In addition a set of renewable resources R is given. These resources are required for exe-
cuting the activities of the project. They are called renewable because a fixed amount of every
resource is given in every point in time. Typical examples of such resources are staff members
with a specific skill or the computational power provided by host stations. The capacity of every
resource k ∈ R is given by Rk ∈ N. Furthermore the resource consumption of an activity i
is given by rik ∈ Z≥0. To integrate these resource constraints into the problem definition, we
consider a given solution or schedule S = (Si)i∈V , respectively. The set of active activities for
every point in time t can be defined as follows:

A(S, t) = {i ∈ V |Si ≤ t < Si + pi}, t ≥ 0 (2.2)

With this definition it is possible to formulate the resource consumption of a given schedule over
time:

rk(S, t) =
∑

i∈A(S,t)

rik, k ∈ R, t ≥ 0 (2.3)

This function is also referred to as resource profile of resource utilization function.
For the complete formalization of the problem also an upper bound for the project’s duration is
needed. An intuitive bound for this planning horizon is the sum of all the processing times pi:

vd =
n∑
i=1

pi (2.4)

With this upper bound the planning horizon can be limited and the resource constraints can
be formulated:

rk(S, t) ≤ Rk, k ∈ R, 0 ≤ t ≤ d (2.5)

Finally the RCPSP can be stated as the following mathematical model:

Min Sn+1, s. t.

rk(S, t) ≤ Rk k ∈ R, 0 ≤ t ≤ d
Sj − Si ≥ pi i ∈ V, j ∈ succ(i)

Si ≥ 0 i ∈ V
S0 = 0
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Instances of the RCPSP can easily be described graphically. A natural way to do so is with an
activity-on-node network or AoN network N = (V,A).
In an AoN network every activity is assigned to a node. So given n real activities we obtain the
node set V = {0, 1, . . . , n+ 1} after inserting the two dummy nodes that represent the project’s
start and end, respectively. There also exists a number of arcs A between the nodes that are
used to express the causal precedence relations between activities. So A = {(i, j)|i ∈ V, j ∈
succ(i)}. Note that AoN networks representing a feasible problem instance do not contain any
cycles. Since the precedence relation is causal, which means that the completion of a predeces-
sor is a precondition for the start of the successor, activitys contained in a cyclic structure can
never be scheduled.
Additionally to a label that shows the number of the activity every node has at least two other
values assigned to it: the activity’s execution time and at least one value that denotes the ac-
tivity’s resource requirement. Generally a number of these resources is given and every node
holds a vector of resource requirements. Furthermore a complete RCPSP contains a vector that
represents the available resource units for every point in time.
Figure 2.1 depicts an exemplary AoN network. It contains six real activities, the two dummy
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Figure 2.1: This figure depicts a basic RCPSP instance.

nodes and eight arcs to model the precedence relations. Note that activities without a real pre-
decessor get 0 as their only predecessor, whereas activities without a successor are connected to
n+ 1. Of course an insertion of other arcs is possible but would be superfluous.
In addition to this so called temporal network two more values are assigned to each node. On
top of it the required processing time is given. This processing time also determines the mini-
mal time difference between the starting points of two adjacent activities in a schedule for the
problem instance.
The value under every node specifies the resource consumption of each activity in every time
unit between its start time Si and Si + pi. In this case only one renewable resource with a ca-
pacity of 4 is given.
With the temporal network at hand one can easily compute the possible time windows for the
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activities. This includes the earliest start and earliest completion time ESi and ECi where

ECi = ESi +pi, i ∈ V (2.6)

as well as the same concepts for the latest start and completion time LSi and LCi with

LCi = LSi +pi, i ∈ V (2.7)

The algorithm for the calculation of this values is straightforward (see algorithm 2.1). Since
the temporal network of an RCPSP instance does not contain any cyclic structures it is easy to
find a topological sorting. This is a sorting of activities that satisfies the condition that for every
activity every predecessor in the temporal network is also a predecessor in the sorting. In order
to find the earliest starting and completion times it is only necessary to perform a simple forward
recursion on such a topologically ordered list of activities.

input : temporal network N , topologically sorted list of activities l

1 EC0 = 0, EC0 = 0;
2 for k ← 1 to n+ 1 do
3 j ← l[k];
4 ESj = max{ECi |i ∈ pred(j);
5 ECj = ESj +pj ;
6 end

Algorithm 2.1: Calculation of earliest starting and completion times for a RCPCP instance.

Analogously a backward recursion is performed to compute the latest start and completion
time for every activity (see algorithm 2.2). An additional parameter for this algorithm is a plan-
ning horizon limit. In practice a project often has a deadline that determines when it has to be
finished. If such a deadline is given it can be used to compute the time windows. Otherwise the
upper bound of the project’s makespan given in equation 2.4 can be utilized.
This upper bound of course is not tight, but it has the advantage that there must exist a time
and resource feasible solution within it. For a tighter upper bound the earliest start time of the
project’s end activity, calculated with the previous algorithm can be used. Note that it is not
guaranteed that there exists a solution within this bound, because due to resource constraints an
exceeding might be inevitable. It can be seen that the use of the tight upper bound will clearly
lead to at least one critical path of precedence relations within the network. A critical path can
be recognized by the fact that for every node i on the path it holds that ESi = LSi. A critical
activity cannot be postponed without violating the project’s deadline or in general increase the
project’s duration.
So the strict upper bound does provide time windows that can be used to provide precedence fea-
sible solutions. Note again that this does not necessarily mean that a resource feasible schedule
can be generated on this basis.

In table 2.1 the time windows for the example in figure 2.1 are shown. Note that for the
calculations of the latest schedule limits the strict bound was used. It can be seen that with this
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input : temporal network N , topological sorted list of activities l, time bound B

1 LSn+1 = B, LSn+1 = B;
2 for k ← n to 0 do
3 j ← l[k];
4 LCj = max{LSi |i ∈ succ(j)};
5 LSj = LCj −pj ;
6 end
Algorithm 2.2: Calculation of latest starting and completion times for a RCPCP instance.

bound the critical path 0→ 2→ 4→ 6→ 7 can be identified.

Aside to the earliest and latest start time of every activity, table 2.1 includes two other values.
First there is the total float TF for every activity i ∈ V . This value simply expresses how many
time units an activity i ∈ V can be postponed from its earliest start time with still meeting the
deadline.

TFi = LSi−ESi = LCi−ECi, i ∈ V (2.8)

Furthermore the interval [LSi,ECi[ is calculated for every activity i ∈ V . This interval is also
called the base time interval or unavoidable time interval for activity i [14, p. 13]. It is clear
that if the project is executed within the time limit used to calculate the time windows, activity
i will be in progress in this time interval. Note also that for activities i that are non-critical, it
holds that [LSi,ECi[= ∅. If that is not the case the activity is critical or near-critical. For a
near-critical activity i ∈ V it holds that 0 < TFi < pi.
Note that for a schedule of the example instance that meets a deadline of 8, which is the earli-
est start time of the project’s end activity, it is necessary that the activities on the critical path
are executed consecutively without any interruptions. A look on figure 2.2 reveals that such a
schedule cannot be found. The figure shows a schedule and its resulting resource consumption
profile over the time.
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Figure 2.2: In this figure a possible solution schedule for the RCPSP instance in figure 2.1 is
shown.
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From that figure we can easily deduce that no schedule with duration of 8 can be found. The
reason for this is activity 3, which utilizes the entire capacity of the resource for one time unit
and has to interrupt the execution of the activities on the critical path for at least one time unit.
Therefore a solution of the instance must have at least a makespan of 9, which is the makespan
of the given solution. Therefore this solution is optimal.
Although the RCPSP is the simplest model that is examined in this work, it has been reported

i 0 1 2 3 4 5 6 7

pi 0 2 2 1 2 2 4 0

ESi 0 0 0 2 2 3 4 8

LSi 0 3 0 5 2 6 4 8

TFi 0 3 0 3 0 3 0 0

[LSi,ECi[ ∅ ∅ [0, 2[ ∅ [2, 4[ ∅ [4, 8[ ∅

Table 2.1: Time window calculations for the RCPSP depicted in figure 2.1.

to be NP-hard [7, p. 10].

The Multi-Mode Resource-Constrained Project Scheduling Problem

An extensions of the RCPSP is the multi-mode resource-constrained project scheduling problem
(MRCPSP). For this variation the model is augmented with two further concepts: Non-renewable
resources denote resources whose availability is not fully restored for every point in time. There
exists only a certain amount for of these resources for the whole project. Like for renewable
resources every activity may consume a given amount of them.
For the RCPSP the concept of non-renewable resources does not make sense, because they could
only be used to calculate the feasibility of the project in principal. But in the MRCPSP there
is not only one way to work off an activity, but a number of execution modes for every one of
them. Both the process time as well as the resource consumption vector of an activity depend
on its chosen execution mode.
Again we will only consider the MRCPSP without preemption. This means, once an activity is
started in a certain execution mode it has to be finished without any interruptions. It is also not
possible to change the execution mode during the process.
This extension of the model is useful for many real-world tasks. Typically project scheduling is
not only concerned with the assignment of start times for the activities that have to be worked off,
but also decisions can be made how to execute an activity. With this model different assignments
of activities to different types of machines or to workers with different levels of expertise can be
considered. Additionally the concept of non-renewable resources provides a natural way to take
budget restrictions or consumed matter like a chemical fluid into account.
We will now extend the mathematical formulation of the RCPSP to include the new concepts:
First let Mi be the set of possible execution modes for an activity i. The variable ximi ∈
{0, 1}, i ∈ V,mi ∈ Mi) indicates that activity i is executed in execution mode mi. Naturally
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every activity can only be executed in a single execution mode, thus the following must hold:∑
mi∈Mi

ximi = 1, i ∈ V (2.9)

For the MRCPSP there must also be a differentiation between the two types of resources. Let
Rυ be the set of non-renewable and Rρ the set of renewable resources. Both types of resources
have a given capacity Rk ∈ N, k ∈ Rυ ∪Rρ.
We can now consider a subproblem of the MRCPSP which is to find a feasible mode assignment
for all activities. A complete mode assignment is a vector x = (ximi)i∈V,mi∈Mi that satisfies
the condition of providing a unique execution mode for every activity (equation 2.9) and is
furthermore resource feasible with respect to the non-renewable resource limits. Let us define
the resource consumption of activity i for resource k when executed in modemi as rikmi ∈ Z≥0.
Then the consumption of a non-renewable resource k by an acitivty i can be calculated as

rυik(x) =
∑

mi∈Mi

rikmiximi , i ∈ V, k ∈ R
υ

The overall consumption of a non-renewable resource k by the complete execution mode assign-
ment x is given by

rυk(x) =
∑
i∈V

rυik(x), k ∈ Rυ

A mode assignment is called resource-feasible, if it satisfies the constraints of the non-renewable
resources:

rυk(x) ≤ Rk, k ∈ Rυ (2.10)

Aside from the resource consumptions also the processing times can depend on the chosen
execution mode. Hence the processing time of an activity i ∈ V , if executed in mode mi ∈ Mi

is denoted by pimi . Given a mode assignment, the processing time of an activity is

pi(x) =
∑

mi∈Mi

pimiximi , i ∈ V

With that in mind we can slightly rephrase the time constraints of the RCPSP to

Sj − Si ≥ pi(x), j ∈ succ(i) (2.11)

The same can be done for the resource requirement function of an activity i ∈ V given a mode
assignment x

rρik(x) =
∑

mi∈Mi

rikmiximi

and the notation of the active set of activities at time t given a schedule S and a mode assignment
x

A(S, t, x) = {i ∈ V |Si ≤ t < pi(x)}
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Again with this function it is possible to describe the resource consumption profile of schedule
S with respect to mode assignment x:

rρi (S, t, x) =
∑

i∈A(S,t,x)

rρik(x), k ∈ Rρ, t ≥ 0

As before for the RCPSP an upper bound or planning horizon is needed for the formulation of
the renewable resource constraints. Again the accumulation of the processing times provides
a rather loose bound. The only difference is that in the case of the MRCPSP the maximum
processing time of all execution modes is used.

d =
∑
i∈V

max
mi∈Mi

pimi

So finally all necessary concepts for stating the renewable resource constraints are at hand.

rρk(S, t, x) ≤ Ri, k ∈ Rρ, 0 ≤ t ≤ d (2.12)

The complete MRCPSP can be formalized with the following model:

Min Sn+1, s. t.∑
mi∈Mi

ximi = 1 i ∈ V

rυk(x) ≤ Rk k ∈ Rυ

rρk(S, t, x) ≤ Rk k ∈ Rρ, 0 ≤ t ≤ d
Sj − Si ≥ pi(x) i ∈ V, j ∈ succ(i)

Si ≥ 0 i ∈ V
S0 = 0

ximi ∈ {0, 1} i ∈ V,mi ∈Mi

Obviously the MRCPSP is a real extension of the RCPSP. In fact a MRCPSP without any non-
renewable resources and with only one mode for every activity is a RCPSP. Therefore the MR-
CPSP is NP-hard.

General Time Constraints

The use of generalized time constraints is an important extension of both, the RCPSP and the
MRCPSP. So far time constraints were solely based on causal precedence relations: an activity
could only be started, if all its predecessors are worked off. In this section we consider a gener-
alized concept of time constraints which is also referred to as time lags.
Consider a RCPSP as defined earlier. At this point another set of parameters is introduced to the
model. Every arc between two activities i and j is labeled with a minimum time lag dmin

ij ∈ Z≥0.
This imposes the following restriction on the two start times Si and Sj :

Sj − Si ≥ dmin
ij (2.13)
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It is easy to see that this generalizes the time constraints used in the previous sections. If for
every precedence relation it holds that dmin

ij = pi we obtain a classical RCPSP instance with
simple precedence constraints.
With this additional parameters it is now possible to let activities overlap dmin

ij < pi and formal-
ize statements like “acitvity j may start after 50% of activity i is worked off” with dmin

ij = 1
2pi. It

is also possible to enforce that activity j may not be started before activity i by setting dmin
ij = 0.

Another important concept of project scheduling that can be modeled in a natural way are release
dates. Release dates specify the time a given activity is available for processing. To incorporate
a release date for activity i of 10 time units in the project, one only has to introduce a minimum
time lag between the dummy node that represents the project’s start and the respective activity,
e.g. dmin

0i = 10.
Initial activities i with no real activities as predecessors and no given release dates receive min-
imum time lags of dmin

0i = 0. So they can be started right at the beginning of the project. Fur-
thermore we assume that terminal activities - these are activities without real successors - have
a minimum time lag of at least their processing time to the project’s end activity dmin

i,n+1 > pi. If
that condition is not met the affected activities will not be completed at the project’s end.
Another condition that has to be taken care of is concerned with non-terminal activities i with a
rather long processing time pi and a successor j with a shorter processing time dmin

ij + pj < pi.
In that case it is necessary to introduce an additional minimum time lag between dmin

i,n+1 = pi to
assure that the activity is completed at the project’s end.

Now a different type of time lag is considered: a maximum time lag dmax
ij between two

activities i and j states that activity j must be begun at most dmax
ij time units after the start of

activity i.
Sj − Si ≤ dmax

ij (2.14)

Together with minimum time lags maximum time lags allow the definition of time windows. To
state that an activity i must be started earliest at time t1 ∈ Z≥0 and latest at time t2 ∈ Z≥0
two time lags dmin

0i = t1 and dmax
0i = t2 must be introduced. The application of this idea to the

completion of an activity is trivial. It is only necessary to subtract the processing time pi from
the points in time. Time windows can also be specified between two real activities.
It is also possible to enforce the synchronous start of activities by defining time windows of
length 0 between them. In general if m activities i1, . . . , im have to be started on the exact same
point in time m time lags are needed to synchronize them. First m − 1 minimum time lags of
length 0 are introduced as a chain between the firstm−1 activities, then a single maximum time
lag dmax

im,i1
to force S1 = S2 = · · · = Sm.

Another important concept used in project scheduling are deadlines. Similar to release dates,
which can easily be modeled with minimum time lags between the concerned activity and the
project’s start activity, deadlines can be expressed with maximum time lags between the con-
cerned activity and the project’s start. Assume that the real activity i must be finished at a given
point in time d ∈ N. This can be assured by introducing the time lag dmax

0,i = d− pi. Like with
all the other concepts presented, the transformation between start-start or completion-completion
constraints can easily be done to every desired configuration.
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Now the modifications of the model will be implemented in the AoN networks presented in
section previously. Naturally the set of activities V stays the same, but since the relation between
these nodes is not a simple precedence relation anymore, the arcs 〈i, j〉 ∈ A have to be enriched
with additional information. Therefore the weight δij ∈ Z0 is introduced. For a minimum time
lag dmin

ij , which refers to the arc 〈i, j〉 ∈ A it is defined as δij = dmin
ij .

A maximum time lag dmax
ij is expressed with a backward arc 〈j, i〉 in the network. Also the

weight of such an arc is defined as δji = −dmax
ij and is therefore from the set Z0.

Using these newly introduced weight factors the temporal constraints for minimum and maxi-
mum time lags in equations 2.13 and 2.14 can be unified in the new constraint set

Sj − Si ≥ δij , 〈i, j〉 ∈ A (2.15)

l j

1

3

-2

i h

Figure 2.3: This figure shows a path of two minimum and one maximum time lags. The place-
ment of the nodes should support the idea of induced time lags.

Now let us consider paths in AoN networks. Figure 2.3 shows a path including four nodes.
The length of this path sums up to two and therefore induces a minimum time lag dmin

ij from
start node i to source node j, which is also indicated with the dashed arc. In general the length
of a path can also be negative. In that case a maximum time lag dmax

ij is induced. If the length
of the path sums up to 0 either a maximum or a minimum time lag is induced.
With the use of maximum time lags also cycle structures may be introduced to the AoN net-
works. These are in fact paths having the same start and source node. Note that cycle structures
with a path length l > 0 are unfeasible. Given equation 2.13 considering the induction of
time lags the constraint Si ≥ Si + l is generated for every activity i in the cycle. Since these
constraints state that activities have to be started some time after they have been started, time
feasibility is unachievable and therefore problem instance containing a cycle structure with pos-
itive path length are not solvable.
There are solution approaches that treat cycle structures as separate subprojects. After a cycle
structure is identified it is extended by an artificial start and source node and planned separately.
After a valid schedule for the subproblem is found the cycle structure is treated as a single node
in the original problem. Of course the time lags for the adjacent nodes have to be adapted and
also the resource consumption profile of the subproject has to be added to the overall project.
A more thorough treatise on these decomposition methods is given in section 2.2. In general
the advantage of these approaches is the lowered complexity. On the other hand the separate
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treatment of the subprojects also lowers the flexibility.

Another important concept that comes into play with the introduction of maximum time lags
is the temporal scheduling network N+. This network is just an extension of the AoN network
used before by an additional arc 〈n+ 1, 0〉 which represents a maximum time lag between the
start and source nodes of the project. In general the weight of this arc is either given by a
predefined deadline or the earliest start time of the project’s end node ESn+1. The distance dij
in such a temporal scheduling network is the longest path between two nodes i and j. Since
N+ is a cyclic structure that contains every node, there also exists a path between every node.
The calculation of dij can be done in polynomial time with the well-known Flyod-Warshall
algorithm [5] and delivers a number of useful information.

1. Implicit time lags between the activities are made explicit. If dij > 0 there exists a
minimum time lag between i and j. If dij < 0 there exists a maximum time lag with value
−dij between i and j.

2. The existence of cycle structures with positive cycle length is easily detected by checking
if dii = 0 holds for every activity i ∈ V .

3. All the earliest start times ESi and therefore the earliest schedule

ES = (ES0, ES1, ..., ESn+1) (2.16)

is given with ESi = d0i.

4. The same holds for all the latest start times LSi and the latest schedule

LS = (LS0, LS1, ..., LSn+1) (2.17)

with LSi = −di0.

Again these values allow the calculation of the useful concepts of completion times, floats and
base time intervals that were already introduced earlier.
Figure 2.4 depicts a temporal scheduling network with multiple cycle structures and the added
backward arc 〈n+ 1, 0〉 with δn+1,0 = −ESn+1. Table 2.2 shows the corresponding distance
matrix, where the earliest schedule ES = (0, 0, 1, 0, 3, 8, 10) and the latest schedule LS =
(0, 4, 6, 1, 5, 8, 10) can easily be read off. With this information we can calculate the float and
identify the critical path 〈0, 5, 6〉

Now the concept of generalized time constraints is finally also applied to the MRCPSP. In the
literature the resulting problem is referred to as either MRCPSP/max or MRCPSP-GPR, where
GPR stands for general precedence relations. In the three field notation it is MPS|temp|Cmax.
Basically all the needed concepts are already defined. Execution modes, non-renewable re-
sources and the assignment problem were introduced previously and in this chapter the gener-
alized time lag was presented. But an important new aspect is the dependency of the time lags
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Figure 2.4: This figure depicts the temporal scheduling network N+ of a RCPSP/max instance.

i /j 0 1 2 3 4 5 6

0 0 0 1 0 3 8 10

1 −4 0 1 −4 −1 4 6

2 −6 −3 0 −6 −3 2 4

3 −1 −1 0 0 2 2 6

4 −5 −5 −4 −4 0 3 4

5 −8 −8 −7 −8 −5 0 2

6 −10 −10 −9 −10 −7 −2 0

Table 2.2: Distance matrix calculation for the example depicted in figure 2.1.

from the execution modes of the corresponding activities. Formally defined the weight func-
tion is not a simple arc to value mapping like when dealing with the PS|temp|Cmax, but also a
function of the mode assignment vector x:

δij(x) =
∑

mi∈Mi

∑
mj∈M|

ximixjmjδimijmj (2.18)

Consider the example instance depicted in figure 2.5 which is taken from Barrios et al. [1] and
consists of six real activities and the two dummy nodes. Each of the real activities has three pos-
sible execution modes to choose from. On top of each real activity node there is a vector with
three elements that show the processing time for each execution mode. The matrix beneath each
real activity node determines the resource consumption. The first column of the matrix shows
the consumption of the single non-renewable resource. This non-renewable resource is limited
with 10 units in this example. The second column shows the consumption of the renewable re-
source. Both consumption vectors also contain as many elements as there are execution modes.
The weight function maps aMi ×Mj function to every arc of the network. Between real ac-
tivities these are all 3 × 3 matrices in this example, whereas the arcs from the start node have
only one row and the arcs to the source node have only one column since there is no choice of
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execution modes for the dummy nodes.
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Figure 2.5: This figure shows a basic MRCPSP/max instance.

The determination of the execution modes has an additional aspect in contrast to the simple
MRCPSP. Not only the consumptions of the non-renewable resources have to be taken into ac-
count, but there is also the topic of time feasibility. Consider for example the mode assignment
vector x = 〈1, 2, 2, 3, 3, 1, 3, 1〉. Once a mode vector is chosen the MRCPSP/max is reduced to
a RCPSP/max. The corresponding AoN network is depicted in figure 2.6.

0 0

0

1 1 4

6 2 1
1

4

2

-3

-2

4

1

4

1 1 2

1 4 3

0

1

2

3

4

5

6

0 7

0

0

Figure 2.6: This figure depicts the RCPSP/max instance that is the result of assigning the mode
vector 〈1, 2, 2, 3, 3, 1, 3, 1〉 to the MRCPSP/max instance of figure 2.5.

27



The non-renewable resource consumption of the mode assignment is 0+1+1+1+1+1+2 =
7 which is greater than 10 and therefore resource-feasible. But because of the cycle structure
(2, 4) that has a path positive sum of 2 the mode assignment is not-time feasible.
The problem of testing if there exists a time-feasible mode assignment for an MPS|temp|f (where
f is an arbitrary objective function) has been shown to be NP-complete [14, p. 151]. Since
verification of time feasibility can be done in polynomial time with a longest path calculation
of the AoN network the membership in NP is given. The proof of NP-hardness is done by
giving a polynomial transformation of the problem to the partially ordered knapsack problem
[14, pp. 151].

General Objective Functions

In this section the most commonly used objective functions for project scheduling problems in
general are presented. In the previous sections the makespan Cmax is used as the default objec-
tive function. This is also the standard case in the literature and therefore for all the benchmark
instances for the problem at hand. But since one of the requirements given in the problem state-
ment is to provide a certain flexibility regarding the objective function used, a closer look on this
topic is provided here.
The problem that is examined here can be characterized as PS|temp, d|f , or in other words a
resource-constrained project scheduling problem with general time constraints, a deadline d and
a general objective function f . But note that the presented concepts also apply to the multi-mode
case.
If a project deadline is given the model for the RCPSP/max presented earlier is extended with
the constraint

Sn+1 ≤ d (2.19)

As presented in the same section such a deadline constraint can easily be incorporated in the
AoN network with a maximum time lag from the project’s end to the project’s start dummy
node with an arc weight of δn+1,0 = −d.
This additional constraint is added because in general objective functions are not necessarily
regular. An objective function f is regular if it holds that

S ≤ S′ =⇒ f(S) ≤ f(S′) (2.20)

In other words, the objective function that has to be minimized, has to be nondecreasing in the
start times of the activities. This condition obviously holds for f(S) = Cmax = Sn+1. Late
objective function that do not exhibit this behavior are presented. These are the reason why the
deadline constraint is added in this section. Otherwise there might exist problem instances where
the start times of activities increase unlimited while still improving the objective function.
Another common example for regular objective function is the maximum lateness

f(S) = max
i∈V

Li = max
i∈V

(Si + pi − di) (2.21)

Here it is assumed that there exists a due date di ∈ Z≥0 for every activity i ∈ V . The lateness is
simply the difference between the completion time and the due date of a given activity.
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The concept of flow time on the other hand considers release dates ri ∈ Z≥0 for every activity
i ∈ V . The flow time is now defined as the difference between the completion time and the
release date of a given activity, Fi = Si + pi − ri. Additionally a weight vector wFi is given to
assign a degree of importance to the particular deviations. So finally the function can be stated
as

f(S) =
∑
i∈V

wFi Fi =
∑
i∈V

wFi (Si + pi − ri) (2.22)

The tardiness is a concept similar to the lateness but is limited to positive values, Ti = max (Li, 0) =
max (Si + pi − di, 0). It is also usually used in the form of a weighted sum and called the
weighted tardiness

f(S) =
∑
i∈V

wTi Ti =
∑
i∈V

wTi (Si + pi − ri) (2.23)

In [21, pp. 19] the author also mentions the weighted completion time f(S) =
∑

i∈V w
C
i Ci,

where again Ci = Si + pi and a generalization called the discounted total weighted completion
time f(S) =

∑
i∈V wi

C(1− erCi). With this more complex function it is possible to control
the discount of the costs with a rate parameter 0 < r ≤ 1.
Another function is weighted number of tardy jobs. To define this objective function the follow-
ing auxiliary function is defined to provide an indicator for every activity if it is tardy.

Ui =

{
1 if Ci > di
0 otherwise

Together with another weight vector the objective function is defined as
∑T

i∈V wiUi.

For the treatment of nonregularity the central concept of earliness is defined as Ei =
max di − Ci, 0. Given another weight vector wi ≥ 0 it is possible to define the weighted earli-
ness function as

f(S) =
∑
i∈V

wEi Ei =
∑
i∈V

wEi (Si + pi) (2.24)

In contrast to regular objective function use cases for nonregular objective functions are not
that obvious. A reason for applying this function is the existence of hight storing costs of a
product [14, p. 179]. This function is also not just nonregular, but antiregular. Antiregular
objective functions have the property that S ≥ S′ =⇒ f(S) ≤ f(S′).
Nevertheless the function does not seem practicable since it only postpones certain activities as
much as possible. Another function that combines two of the presented functions is the weighted
earliness-tardiness

f(S) =
∑
i∈V

wEi Ei + wTi Ti (2.25)

Again it holds that wEi ≥ 0 and sTi ≥ 0. The obvious application is to schedule just-in-time
production, where it is one of the central tasks to streamline the storage infrastructure and reduce
costs this way. In [14, p. 180] rescheduling is mentioned as another interesting use case. If a
calculated schedule gets corrupted by unforeseen events like machine breakdowns or inaccurate
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processing time estimates, it is often desirable to generate a new schedule that is as similar as
possible to another one. This is not a big priority for scheduling tasks in fully automated envi-
ronments, but it is for staff scheduling. For the implementation of the function the original start
value of an activity i ∈ V in the corrupted schedule is taken as di. This ensures that the shifts of
starting times are minimized.
The last objective function mentioned here can be used to distribute activities evenly in the
scheduled period of time and is called the weighted start time deviations. In contrast to the pre-
viously mentioned weighted functions this function requires not only an n-dimensional weight
vector but an n× n matrix wij ≥ 0. The function itself is defines as

f(S) = −
∑
i∈V

∑
j∈V :j>i

wij |Sj − Si| (2.26)

In [14, p. 180] the author proposes a calculation of the weight matrix such that the variation of
the resource utilization get minimized throughout the planning period.
There is also a number of other objective functions that do not seem appropriate for the problem
at hand. These can be found in [14, pp. 175] where the authors also propose a classification in
seven classes and provide a profound theoretical treatment as well as practical thoughts on the
resolution approaches for the different classes.

Problem Translation

Having formulated the MRCPSP and the MRCPSP/max in the previous sections the problem of
generating an instance from an OM has to be dealt with. For a first evaluation of the approach the
possible use of UC4 script was not taken into account, because the implementation of a parser
would exceed the scope of this work.
So for the remainder of this chapter it is assumed that a planning interval is given and the OM
does not contain any script. Note that this means neither script objects nor scripts attached to
jobs, job plans or schedules are considered.
In order to determine the set of jobs that must be executed in a given time interval we have to
examine the two concepts of schedules and periodic executions. The third UC4 object that can
be used to trigger the execution of a job is the time event. Due to the fact that events only work
in combination with UC4 scripts, they are not taken into account.
A schedule can contain a list of jobs and job plans and has a minimum period of one day. Since
it is unlikely that planning intervals are going to exceed 24 hours, it is sufficient to examine the
schedule, extract the desired start time of the included jobs and job plans and add them as jobs
to the problem instance.
For periodic executions more work has to be done. There are three different possibilities to
define the execution frequency:

1. Every (hhh:mm): This option invokes a job or job plan invocation for the given frequency.

2. Time Gap (hhh:mm): Here it is possible to define a time gap between the completion of
one execution and the start of another.

3. Time (hh:mm): In this field the user is allowed to define a specific time.
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Furthermore there are two additional parameters that can influence the executions. First the user
is allowed to define a time window for the executions. Of course this option is not available if a
specific execution time was defined. Additionally it is possible to force the alignment of execu-
tion within this time window. Note that it is also possible to assign more complex calendars to
the periodic execution which limits the number of days the execution is performed. In this work
we omit those implementation details, since they do not influence the formalization itself.

The determination of the execution modes of a job is rather simple. It corresponds with the
assignment of a job to a machine. Note that jobs that are assigned directly to a single host by the
user only have one execution mode. If the user assigns the host to a group of agents the number
of execution modes equals the number of agents within this group.
In the current version of the OM there exists only one estimated runtime which lacks context
sensitivity. This deficiency is going to be eliminated in future versions, so we assume that an
estimated processing time is available for every assignable agent.

For the determination of the time lags in an instance the schedules, periodic executions and
job plans of an OM have to be taken into account. The integration of jobs or job plans included
in a schedule’s list is straightforward. Since the schedule only triggers the included objects at
a predefined point in time, this can be modeled as a release date or minimum time lags respec-
tively. These time lags are inserted between the project start and the considered activity.
As it was mentioned before schedules have a minimum time period of one day and the system
allows executing jobs and job plans periodically. The possible modes for these periodic execu-
tions are presented earlier in this section. From these modes Time (hh:mm) requires the fewest
modeling effort, since its behavior is equal to a schedule object and can be expressed with a
minimum time lag. The mode Every (hhh:mm) is similar with the only difference of allowing a
smaller period. Also for the formalization of the Gap (hhh:mm) the only difference is that the
minimum time lag is not inserted between the start activity and every activity generated from
the periodic execution but between the successive activities theirselves.
At this point it must be added that there are alternative ways to express this concepts. This is pos-
sible because usually there are no causal relationships between jobs or joplans that are executed
in this way. If strict causal relations are at hand, they should be modeled as precedence relations
within a job plan. A crucial question for alternative methods is how flexible the start times of
these tasks are for the user, since in this formalization the activities can easily be postponed.
Other approaches might be the following:

• Rigid formulation: To force the system to execute the activities on strictly defined start
points it is possible not only to insert a minimum time lag, but also a maximum time lag
having the same but negative arc cost in the opposite direction. The disadvantage of this
formulation is that much flexibility of the formulation is lost.

• Flexibility factors: Another approach is also to insert maximum time lags, but not with the
strict time lag values as in the rigid formulation. Instead these values can be relaxed with
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Figure 2.7: Encoding of the different recurrence variations by using only minimum time lags.

some flexibility factor, e.g. 50% of the processing time for the corresponding execution
modes. These adjustments could be performed by the user or the system itself could relax
the time constraints in case that more flexibility is needed to find a solution.
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Figure 2.8: Rigid version of the encoding of the recurrence variations by using minimum and
maximum time lags

• MRCPSP formulation: It is also attainable to translate the problem in an MRCPSP in-
stance. This seems desirable since the MRCPSP/max is a real extension of the MRCPSP
and therefore harder to solve. The missing capability of defining time lags with values
different from the processing time can be compensated by the use of appropriate objective
functions.
Following this approach the most suitable choice to achieve a desired start time or a dis-
tribution of activities over time that is as even as possible is a combination of weighted
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earliness-tardiness (equation 2.25) and weighted start time deviation (equation 2.26). All
the options that can be expressed with the insertion of time lags between the project
start node and the corresponding activity can be expressed with the weighted earliness-
tardiness function, since both the release and due date are given. Additionally the weight
vector can be used to prioritize the recurring objects with respect to their accurate execu-
tion.
The periodic execution in mode Gap (hhh:mm) cannot be evaluated with this objective
function since the desired start times of an activity depends on the start time of the directly
preceding activity. This can directly be modeled with the weighted start time deviation,
where only the start time of the direct predecessor is taken into account. This is done by
using the appropriate weight matrix.
But the advantage of translating the problem into an MRCPSP has the drawback that the
objective functions that have to be used are nonregular. This means that commonly used
local search methods that usually try to improve schedules by shifting activities to an
earlier point in time are not applicable.

2 30 1

2 30 1

Figure 2.9: Encoding of recurrence variations as MRCPSP instance. If using these encodings,
appropriate objective functions must be chosen.

Another important aspect that reduces the complexity when the MRCPSP/max encoding is used
is the fact that the UC4 system supports only causal relations between jobs in a job plan. In
general the user is allowed to create more general relations, but the default relation is the causal
precedence relation. This means that there is no need of using a weight function where each
arc (i, j) ∈ A is described by an |Mi| × |Mj | matrix. The weights can be expressed with an
|Mi|-dimensional vector where δi(mi) = pi. So the time lag corresponds to the processing time.
The same holds for release dates and due dates where corresponding time lags can be described
by a single element, since they are not influenced by the execution mode of the activity.

Now the non-renewable resources are considered. The system already provides a renewable
resource. It is possible to assign a resource limit to each of the agents. On the other hand the
execution of a job lowers the available amount of the resource on this agent. After the execution
the full amount is available again. This rudimentary conception of renewable resources has
several drawbacks:

• It is totally artificial and might fail completely as a description of the actual performance
of an agent.
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• The same argument holds for the resource consumption.

• There is also no possibility to invent another resource, e.g. to model the amount of Ran-
dom Access Memory, the number of CPUs and the bandwidth available to the agent.

• There is also another problem with the concept of resources: Resource production is as-
signed on agent level. But it is not guaranteed that there is only one agent installed on a
machine. There might be an agent that is communicating with the OS, one that executes
SAP commands and one that controls a virtual machine.

• Maybe the most important aspect to prevent practical usage is the fact that every value has
to be defined by the user manually.

These points may be enhanced in the future and are expressible with the concept of renewable
resources in both the MRCPSP and the MRCPSP/max.
The second possibility to mock a renewable resource is through the option of limiting the num-
ber of simultaneously running instances of certain objects. This possibility allows the user also
to synchronize the access to shared resources. This is also expressible by introducing a renew-
able resource with limit 1 for every shared resource that may only be accessed exclusively. Jobs
that need to access this shared resource indicate this in the consumption vector.

In the actual system there does not exist any analogy for non-renewable resource. But for
future extensions the concept might be useful. The introduction of non-renewable resources for
execution modes can indicate the usage of external resources. This might be an additional server
that is purchased. It can also be used to model the ability to outsource certain jobs to an external
provider of cloud computing.

2.2 Solution Approaches and Related Works

In this section a summary of the related literature is given. The primary source of references
is the current survey of Weglarz et al. [30] which provides an overview for a large number of
algorithms designed for various special cases and extensions of project scheduling problems.
In this section we first take a look at exact solution methods and proceed with an overview of
notable heuristic methods. We conclude with a justification for the course of action chosen in
this work.

Exact Methods

In a preliminary study we formulated the MRCPSP and the MRCPSP/max as a mixed integer
linear program in order to evaluate the possibility to solve at least small instances in an exact
manner by using the IBM ILOG CPLEX Optimizer. The study revealed that only instances
with a rather small number of activities may be tackled this way. The approach worked out
well for the benchmark instances with ten activities, but already for 30 activities the solver did
not produce any solutions within a reasonable timespan. The detailed results obtained by the
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executed test runs are presented in chapter 4.
The mixed integer linear program itself is defined as follows:

Min sn+1 (2.27)

s. t. si − sj ≥ δj,mj ,i,mi ∗ yj,mj ,i,mi ∀(j, i) ∈ E,∀mj ∈Mj ,∀mi ∈Mi(2.28)∑
mj∈Mj

∑
mi∈Mi

yj,mj ,i,mi = 1 ∀(j, i) ∈ E (2.29)

∑
mj∈Mj

xj,mj = 1 ∀j ∈ V (2.30)

∑
mi∈Mi

yj,mj ,i,mi = xj,mj ∀(j, i) ∈ E,∀mj ∈Mj (2.31)

∑
mj∈Mj

yj,mj ,i,mi = xi,mi ∀(j, i) ∈ E,∀mi ∈Mi (2.32)

∑
j∈V

∑
mj∈Mj

rϑj,mj ,k ∗ xj,mj ≤ R
ϑ
k ∀k ∈ Rϑ (2.33)

∑
j∈V

∑
mj∈Mj

rρj,mj ,k ∗ aj,mj ,t ≤ R
ρ
k ∀k ∈ Rρ,∀t = 0 . . . tmax (2.34)

aj,mj ,t ≥ xj,mj + σj,t + τj,t − 2 ∀j ∈ V,∀mj ∈ mj , ∀t = 0 . . . tmax(2.35)

C ∗ σj,t ≥ t− sj + 1 ∀j ∈ V,∀t = 0 . . . tmax (2.36)

C ∗ τj,t ≥ −t+ sj +
∑

mj∈Mj

(pj,mj ∗ xj,mj ) + 1 j ∈ V,∀t = 0 . . . tmax (2.37)

xj,mj ∈ {0, 1} ∀j ∈ V,∀mj ∈Mj (2.38)

yj,mj ,i,mi ∈ {0, 1} ∀(j, i) ∈ E,∀mj ∈Mj ,∀mi ∈Mi(2.39)

aj,mj , t ∈ {0, 1} ∀j ∈ V,mj ∈Mj , ∀t = 0 . . . tmax (2.40)

σj,t ∈ {0, 1} ∀j ∈ V,∀t = 0 . . . tmax (2.41)

τj,t ∈ {0, 1} ∀j ∈ V,∀t = 0 . . . tmax (2.42)

sj ≥ 0 ∀j ∈ V (2.43)

s0 = 0 (2.44)

The solution of an MRCPSP/max instance is a mode assignment and a schedule which defines a
start time for every activity. These solutions are encoded by the following variables:

1. sj : Denotes the start time of an activity j which may be any positive integer value or zero
2.43. The start time of the dummy activity representing the project’s start time is set to
zero 2.44.

2. mj : Encodes the mode assignment of an activity j. There is no direct representation of the
mode assignment as a decision variable in the formulation. Instead each mode assignment
is encoded as a set of binary variables.

The formulation uses a number of binary variables to encode the different constraints:
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1. xj,mj : Indicates that activity j is executed in mode mj 2.38. The constraint that every
activity must be executed in exactly one mode is realized by inequality 2.30. Furthermore
the non-renewable resource constraints can be expressed with these decision variables and
the corresponding resource consumption values rϑj,mj ,k. The constraints are formulated
with inequality 2.33.

2. yj,mj ,i,mi : To encode the time lag constraints a variable is needed to indicate the execu-
tion modes mj and mi of two related activities j and i. Inequality 2.29 makes sure that
this joint mode assignment is unique, whereas the inequalities 2.31 and 2.32 assure the
consistency of the individual mode assignments with the joint mode assignment.
Having these indicators available it is easy to formulate the inequality that models the time
lag constraints 2.28.

3. aj,mj ,t, σj,t, τj,t: For the realization of the renewable resource constraints three additional
binary variables are used. To indicate that activity j is active at time t and is executed
in mode mj the decision variable aj,mj ,t is used. The variable τj,t is used to mark the
timespan [0, sj + pj,mj ) whereas σj,t is defined to indicate time values in within [s, tmax].
These characteristics are defined with the inequalities 2.37 and 2.36 respectively.
Together with the variable aj,mj ,t they are used to mark the timespan where the activity
j is executed with the execution mode mj as depicted in figure 2.10 and defined with
the inequality 2.35. With this indicator value it is possible to implement the constraints
concerning the renewable resources 2.34.

1
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Figure 2.10: Visualization of time dependent MIP variables.
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Furthermore we used the constant C which has to be large enough and was chosen to be
the same as tmax which denotes an upper bound for the problem. Note that performance was
not a number one priority in the preliminary study. Instead the goal was to explore the limits
of the approach only approximately. For this reason we used the simple upper bounds already
presented previously in this section.

Even though small problem instances may be solved with an MIP solver like CPLEX it
has been decided that heuristic methods must be used, because the size of practical instances is
typically much larger. In their survey Weglarz et al. point out that even the most sophisticated
exact algorithms are not able to solve all the benchmark instances of size 30 [30]. The mentioned
state of the art approaches are the branch-and-bound implementation of Hartmann and Drexl [8]
and the branch-and-cut procedure of Zhu et al. [31]. The latter also relies on the usage of the
CPLEX solver and solves 506 of the 552 benchmark instances optimally.

Heuristic Methods

In order to solve NP-hard and NP-complete problems as the MRCPSP and the MRCPSP/max, it
is necessary to use heuristic methods if the instance size exceeds a certain limit. These methods
are characterized by the fact that they do not necessarily deliver the optimal solution to an opti-
mization problem, but an approximation within an acceptable timeframe.
Heuristic methods may be divided into three kinds: construction heuristics implement proce-
dures to build good solutions from scratch, whereas improvement heuristics work with complete
solutions and attempt to improve them incrementally. Methaheuristics on the other hand work
with a potentially high number of these heuristics and guide the optimization process in some
sense. Many well-known metaheuristics are inspired by processes in nature. The most promi-
nent examples are probably simulated annealing which simulates the behavior of atoms during a
controlled cooling process, evolutionary computation which is based on Darwin’s theory of the
evolution of species and ant colony optimization.
Early heuristic approaches for the MRCPSP and the MRCPSP/max were pure construction
heuristics and scheduled activities based on their relative priority, which is determined by so
called priority rules. Together with different schedule generation schemes. An example for a
typical priority rule is the so called smallest latest start time first (LST) rule, where the activities
are ordered based on their latest possible start time LS. A more detailed examination of priority
rules and schedule generation schemes is given lateron.
In [30] Weglarz et al. give an extensive overview of different heuristic approaches for the MR-
CPSP, claiming that the best results are achieved with the genetic algorithms of Lova et al. [19]
and van Peteghem and Vanhoucke [20]. The first one enhances earlier algorithms by using addi-
tional genes to ensure a more flexible decodification process and a new fitness function for the
evaluation of invalid candidate solutions. Furthermore a new mutation operator is introduced.
The results of the second paper are the best reported so far. The authors modified existing
implementations by using the less common random key representation and using a population
management approach where two populations with different characteristics are maintained. Fur-
thermore the decodification process in enriched with a local search procedure.
The MRCPSP/max (also known as the MRCPSP-GPR) did not receive as much attention from
the academic community. Nevertheless Barrios et al. presented also a genetic algorithm which
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outperforms all previously published methods [1]. The main feature of this implementation is the
decomposition of the MRCPSP/max instance into a subproblem concerned with finding mode
assignments and a schedule optimization phase. Both subproblems are tackled with a genetic
algorithm. Furthermore the authors present a powerful local search procedure.
These genetic algorithms form the starting point for the design of a library that provides the
possibility to solve all the scheduling problems that arise in the context of the UC4 OM.
Genetic algorithms are a commonly used method in computational intelligence and are based on
the work of Holland who presented the approach in 1975 [12]. Since then a tremendous amount
of research has been put into the method and a large variety of applications were found suited to
be solved with them.
The paradigm is motivated by evolutionary theory and simplified processes it relies on. In con-
trast to traditional local search procedures which work with a single candidate solution and im-
prove it by deterministically examine its neighborhood in the solution space, genetic algorithms
maintain a whole population of such candidate solutions. These candidates are encoded in some
suitable form like strings or vectors of bits in the classical form. In analogy to nature these are
often called chromosomes which are composed of alleles - the concrete value of one element
of the string or vector. The chromosomes of a candidate solution is also called the genotype,
whereas the solution of the optimization problem itself is the phenotype. It is the task of the
designer to choose an appropriate encoding/decoding scheme for the stated problem. For an in-
depth exploration of the topic of representation refer for example to the book of Rothlauf [24].
This work provides an investigation of different representation schemes as well as their impact
on the behavior of the algorithms.
The computation itself is summarized in the following steps:

1. Initialize the population.

2. Calculate the fitness of the candidate solutions.

3. Select candidate solutions that form the next generation.

4. Perform the evolutionary operators.

5. If no termination condition is met, proceed with step 2.

Iterations of a genetic algorithm are analogously to nature called generations. The first genera-
tion must be constructed by an initialization method, which can either implement a randomized
construction instance, a complete randomized construction or a mixture of both. In general it is
desirable to implement a strategy that delivers a population with a high diversity.
Another important design decision is the implementation of the fitness function and - depending
on it - the selection strategy. The basic idea of genetic algorithms is that high quality candidate
solutions must be selected to influence the production of the next population. So advantageous
sequences of their genotype, which encode desirable features of the phenotype, accumulate in
the population and guide the search into more promising regions of the solution space. This idea
is called the building block hypothesis. After the candidate solutions that should build the next
generation are selected the evolutionary operators crossover (or recombination) and mutation
are applied. A crossover operation typically takes two input candidates and creates two output
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candidates which represents a random combination of the two inputs. If this operator is carefully
chosen the resulting candidates will be similar to the input solutions and maintain features that
are also present in either one of the input solutions.
The second operator also found in nature is the mutation. It mimics the phenomenon that off-
spring in nature sometimes shows features that are not present in neither one of the parents. In the
context of evolutionary computation this operator works on only one individual and randomly
modifies a rather small portion of its genotype. This realizes a diversification of the population
and obtains the ability to introduce features that were never present within the population before
or reintroduce them, if they got lost in the course of the evolutionary process.
These steps are repeated until some predefined termination condition is satisfied. Typical exam-
ples are time limits, the achievement of a satisfying objective function value or the convergence
of the algorithm.
This is only a very short overview of the topics that must be covered when designing a genetic
algorithm. For each of this steps there are a number of strategies that may guide implementation
each with a number of parameters to tune. In the next chapter we will analyze these questions in
the context of both the MRCPSP and the MRCPSP/max.

Chosen Method

After a preliminary study it turned out that the problem at hand is not tractable for instance sizes
as large as they are expected in a typical UC4 OM environment. The review of the available
literature showed that the most powerful approach to tackle both the MRCPSP and the MR-
CPSP/max is the usage of a genetic algorithm together with local search strategies (memetic
algorithms).
In general genetic algorithms also provide the advantage of changeable objective function. This
property adds more flexibility when deciding which value(s) must be optimized. This is impor-
tant, because academic research is focused on the minimization of the execution times of the
whole project. Economic or management decisions on the other hand are most often tradeoff
problems, where the selected option is a compromise between time, cost and often quality.
For these reasons it was decided that the most suitable solution approach for the scheduling
problems in the UC4 environment is the implementation of a genetic algorithm framework that
is capable of solving both MRCPSP and MRCPSP/max instances.
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CHAPTER 3
Concepts for Genetic Algorithms

3.1 Representation of Schedules

One of the critical design decisions, when realizing a genetic algorithms is which representation
should be used. A comprehensive investigation of the topic is provided by Rothlauf [24].
The apparent idea of operating with arrays of start times for the activities proves indecisive after
some analysis. The obvious advantage of this direct representation is that there is no need for an
additional encoding scheme, which again has to be implemented and consumes time during the
search. But the overwhelming drawback of this idea is the enormous extensiveness of the search
space of O(d

n
). For this reason a number of alternative representations for schedules have been

developed. Most of them are based on two concepts:

• Ordering: A procedure or a data structure that encodes a ranking on the set of activities.

• Schedule Generation Scheme: A method that iteratively constructs a schedule using the
ranking system.

With this approach the search space can be limited to the number of permutations of the set of
activities, which is O(n!).
The remainder of this section is organized as follows: Because of the importance of the concept
of orderings of activities we start with a theoretical examination of the topic. After that the
two commonly used encoding/decoding schemes are presented, followed by five sections that
outline the established approaches for the encoding of the activity orderings. The investigation
is focused on the activity list and the random key representations, since these were implemented
and benchmarked in the course of this work.
Note that this section is in general concerned with the RCPSP and the RCPSP/max. The presence
of multiple execution modes is mostly excluded and investigated in the next section.
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Orderings of Activities

For the scheduling methods presented in this chapter it is useful to define strict orderings on
the set of activities. These orderings take into account the causal precedence relations of the
RCPSP or the temporal constraints of the RCPSP/max respectively. So they define when a
certain activity is scheduled and ensure that all the causal and temporal conditions to do so are
satisfied.
To state the concepts in a formal manner binary relations need to be introduced. Consider the
binary relation ρ in set V , which is a set of pairs 〈i, j〉 with i, j ∈ V . Ordering relations are by
convention often denoted with the symbol ≺ which can be interpreted as “before”. So 〈i, j〉 ∈ ρ
is equivalent to i ≺ j which can be read as activity i before activity j.
A strict ordering in V is a binary relation ≺ in V which exhibits the properties of asymmetry
and transitivity. The first states that there are no elements i, j ∈ V where it holds that i ≺ j and
j ≺ i, whereas the second ensures that for any h, i, j ∈ V if h ≺ i and i ≺ j then also h ≺ j.
In [14, pp. 15] the authors discuss the problem of defining such strict orders for the RCPSP/max.
In contrast to the RCPSP where the underlying AoN network is acyclic the AoN network of an
RCPSP/max instance may contain cycles. A cycle structure C of an AoN network N is defined
as a strong component of the underlying graph structure. A strong component of a directed graph
is a maximum subgraph where any two nodes are reachable from each other. So a cycle structure
is the maximum set of nested cycles. Consider for example the temporal scheduling network
N+ in figure 2.4 from the previous chapter. Because of the artificial backward arc 〈n+ 1, 0〉 all
temporal scheduling networks are generally cycle structures. If the backward arc is removed the
underlying AoN network is obtained. This contains two cycle structures C1 = {0, 3, 4, 5} and
C2 = {1, 2}.
When extracting an ordering from a cycle structure the minimum time lag dminij between two
activities i, j ∈ C has to be taken into account. If this time lag is positive i has to be scheduled
before j. This implies i ≺ j. A special case is the existence of null cycles. These are cycles
composed of arcs with weight 0. Such structures force the concurrent start of all activities
included in this cycle. In that case neither i ≺ j nor j ≺ i holds [14, p. 16].
The use of time lags for the definition of orderings of V leads to the distance order ≺D. This
special ordering is defined for a project network N with activity set V such that for every i, j ∈
V with i 6= j i ≺D holds, if either

• dij > 0 or

• dij = 0 and dji < 0.

The first condition states that if there is a positive minimum time lag from activity i to activity
j, i must be started before j which implies i ≺ j. The second condition ensures that if there
exists a maximum time lag between j and i it also has to be considered in the ordering by adding
i ≺ j. Note that this definition rules out the insertion of null cycles.
Furthermore the properties of a strict ordering are given. asymmetry is provided since per defi-
nition the existence of positive cycles is prohibited. Therefore it holds that dij + dji ≥ 0 for all
i, j ∈ V . Transitivity on the other hand is ensured because of the triangle inequality.
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Clearly the longest paths dij in the temporal scheduling network N+ have to be computed to es-
tablish a distance orders. This can be done for example with the Floyd-Warshall triple algorithm.
The two most important aspects of the algorithm shall nevertheless be mentioned here: First the
algorithm is quite efficient and exhibits polynomial time complexity and second it allows the
detection of positive cycles. This in turn can be used to determine whether or not the instance at
hand can be solved at all.
Note that strict orders may not only be represented as sets of pairs but also as graphs. A prece-
dence graph G≺ is an acyclic directed graph with the node set V and containing a path from i to
j if and only if i ≺ j. It is possible to construct such a precedence graph by introducing an arc
〈i, j〉 for ever i ≺ j. This may lead to graphs G≺ with a number of redundant arcs. An arc 〈i, j〉
is redundant if there already exists another path from i to j. Algorithms for the identification
and elimination of such redundant arcs are available and can be found in [6].
At this point the set of immediate predecessors of an activity i inG≺ may be defined as pred≺(i).
Note that this set does not necessarily coincide with the set of predecessors of the AoN network
pred(i) as defined in the previous chapter. In general it holds that pred≺(i) ⊆ pred(i), since the
latter may also contain nodes introduced by maximum time lags or nodes from arcs eliminated
because of redundancy.
Another well-known strict order from elementary graph theory that plays a role in the generation
of schedules is the topological order ≺T . This order can be defined for acyclic project networks
and states that for any i, j ∈ V with i 6= j, it holds that i ≺T j if and only if there exists a path
from i to j. Note that the condition of i 6= j has to be introduced to ensure asymmetry. The
condition of transitivity is obviously fulfilled, since it reduces to simple path concatenation.
Note also that a topological order has to be handled differently when dealing with a RCPSP/max
instance than when working with a RCPSP instance. Because topological orders may only work
with acyclic graphs the project network N of a RCPSP/max instance is not suitable. Instead the
precedence graphG≺ has to be used. When dealing with an RCPSP instance the project network
N suffices.

Schedule Generation Schemes

In this section the common methods for schedule generation schemes are presented. These
procedures are used to iteratively generate a schedule, usually under some ordering constraints
imposed by a ranking of the activities to schedule. Basically there are two principles available.
Either an activity-based or a time-based policy may be used for the generation. We present both
approaches in detail for both the RCPSP and the RCPSP/max.

Serial Schedule Generation Scheme

The serial schedule generation scheme iteratively extends a partial schedule by one activity
in each step. The order in which the activities are considered defines the resulting schedule.
Such orders can be defined with priority rules or suitable data structures like an array of integer
values, representing a permutation of the set of activities. Priority rule heuristics are applied for
the RCPSP for a long time and a lot of research has been done in this area (see Kolisch and
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Hartmann [15]). In a computational study by Neumann et al. [14, p. 84] the following priority
rules turned out to be the most practicable for the RCPSP and the RCPSP/max:

• LST (smallest latest start time first): exth∈E π(h) = minh∈E LSh

• MST (minimum slack time first): exth∈E π(h) = minh∈E TFh

• MTS (most total successors first): exth∈E π(h) = maxh∈E |Reach(h)|, where Reach
is defined as the set of nodes i that can be reached from h in the instance’s underlying
network graph.

• LPF (longest path following first): exth∈E π(h) = maxh∈E l(h), where l(h) denotes the
length of the longest path from h to the project’s end node.

• GRD (greatest resource demand first): exth∈E π(h) = maxh∈E ph
∑

k∈R rhk

• RSM (resource scheduling method): This complex rule selects the activity that causes
the smallest delay of every other eligible activity under the assumption that there exists a
causal relation between every considered activity.
exth∈E π(h) = minh∈E max 0,maxj∈E\{h} (ESh +ph − LSj)

Priority rules can be classified into static and dynamic priority rules. The values of static priority
rules can be computed at the very beginning of a generation algorithm and do not need to be
updated anymore. Dynamic priority rules exhibit a volatile behavior and depend on dynamic
data like the eligible set Ei or the partial schedule.
The presented selection holds three static priority rules namely MTS, LPF and GRD. The first
two depend on the graph structure that characterizes the problem instance, whereas the values
produced by the latter are defined by the resource demand and the processing time. RSM is
clearly dynamic and the last two, LST and MST, can either be implemented in a dynamic or
static form by either updating the corresponding values in every iteration or using values from
the preprocessing phase.

So in every iteration k an activity j is selected from the set of eligible activities Ek with
respect to a given priority function p. The eligible set Ek contains all the activities that may be
scheduled in this iteration. When decoding a RCPSP instance this holds all the activities that do
not have an unscheduled predecessor.
When an activity is chosen it is scheduled as early as possible. The temporal constraints that
originate from the causal precedence relation are respected by updating the earliest possible start
time of an activity whenever one of its predecessors gets scheduled. This earliest possible start
time serves as a lower bound for a function that delivers the earliest possible start time that
satisfies the resource limits. This value finally serves as the start point of the activity.

Algorithm 3.1 outlines the method on a high abstraction level. The used subroutines are the
following:

• ChooseActivity: In this procedure it is decided which activity j is considered in the actual
iteration. This decision is based on the set of eligible activities and their corresponding
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input : RCPSP problem instance, priority function p
output: Valid schedule S

1 E0 = {0};
2 for k ← 0 to n+ 1 do
3 j ← ChooseActivity;
4 t← FindEarliestResourceFeasibleStart;
5 Sj ← t;
6 UpdateResourceProfile;
7 ES← UpdateEarliestStart;
8 Ek+1 ← UpdateEligibleSet;
9 end

Algorithm 3.1: Serial schedule generation scheme for a RCPCP instance.

priority values given by the priority function p. Typically it can be described with the
formula

j = min
i∈E

p(i) (3.1)

• FindEarliestResourceFeasibleStart: This function delivers the earliest time to schedule a
given activity with respect to the available renewable resources. Furthermore the earliest
possible start time ESj is considered to satisfy the time constraints. Formally speaking it
searches a minimal time point t∗ such that

t∗ ≥ ESj and rk(S, t)− rjk ≥ 0, ∀k ∈ R, t ∈ [t∗, t∗ + pj ] (3.2)

• UpdateResourceProfile: In this function the resource profile of the partial schedule is
updated. This is done by decreasing the available amount of every resource in the time
interval the new activity is scheduled.

rk(S, t)← rk(S, t)− rjk, ∀k ∈ R, t ∈ [t∗, t∗ + pj ] (3.3)

• UpdateEarliestStart: To update the earliest start values it is sufficient to consider the
successors of the freshly scheduled activity and increase their corresponding values in
case that the completion time of the scheduled successor is greater than the earliest start
time.

• UpdateEligibleSet: For recalculating the set of eligible activities for the next iteration it is
checked if the successors of the scheduled activity have unscheduled predecessors left. If
no unscheduled predecessor is found, the activity is eligible in the next iteration.

Parallel Schedule Generation Scheme

In contrast to the serial generation scheme which works in an activity-oriented manner by
scheduling an activity in every iteration, the parallel generation scheme is time-oriented. Ev-
ery iteration in this algorithm resembles a time step instead of an activity. The central idea of
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input : RCPSP/max instance, priority function p
output: Valid schedule S

1 E0 = {0};
2 for k ← 0 to n+ 1 do
3 j ← ChooseActivity;
4 t← FindEarliestResourceFeasibleStart;
5 if t > LSj then
6 u← u+ 1;
7 Unschedule;
8 end
9 else

10 Schedule;
11 end
12 end

Algorithm 3.2: Serial schedule generation scheme for a RCPCP/max instance.

input : activity triggering the unscheduling operation j∗, violating timespan ∆
output: Updated completed set C and activity bounds ES and LS

1 U ← {i ∈ C|LSj∗ = Si − dj∗i};
2 if 0 ∈ U and u > u then
3 Terminate;
4 end
5 foreach i ∈ U do
6 ESi ← Si + ∆;
7 Ck ← Ck \ {i};
8 end
9 foreach i ∈ U with Si > minh∈U Sh do

10 Ck ← Ck \ {i};
11 end
12 foreach j ∈ V \ C do
13 ESj ← max d0j ,maxh∈U ESh +dhj ;
14 LSj ← −dj0;
15 foreach i ∈ C do
16 ESj ← max ESj , Si + dij ;
17 LSj ← min LSj , Si − dji;
18 end
19 end
20 UpdateResourceProfile;

Algorithm 3.3: Unschedule procedure used for a RCPCP/max instance.
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this approach is to schedule as many activities as possible in such a time step.
Algorithm 3.4 outlines the main characteristics of the approach. Basically every iteration is
featured by the following values:

• A time value tk, since it is obviously ineffective to investigate every point in time. Only
the ones where an activity changes their status are of significance for the task.

• The set of active activities Ak and the set of completed activities Ck.

• Another difference between the serial and the parallel generation scheme involves the con-
cept of the set of an iteration’s eligible activities Ek. In the serial version it is sufficient
that an activity did not have any unscheduled predecessors to be classified as eligible. The
effort of finding a valid start point is postponed to the moment, when the activity is in fact
scheduled. In the parallel case both the temporal and the resource constraints have to be
satisfied for the activities included in Ek.

input : RCPSP problem instance, priority structure P
output: Valid schedule S

1 k ← 0; t0 ← 0; A0 ← ∅; C0 ← ∅;
2 while Ck 6= V do
3 Ek ← InitializeEligibleSet;
4 while Ek 6= ∅ do
5 j ← ChooseActivity;
6 Sj ← tk;
7 UpdateResourceProfile;
8 Ak ← Ak ∪ j;
9 Ek ← UpdateEligibleSet;

10 end
11 tk+1 ← mini∈Ak Si + pi;
12 Ak+1 ← Ak \ {i|Si + pi = tk+1};
13 Ck+1 ← Ck ∪ {i|Si + pi = tk+1};
14 k ← k + 1;
15 end

Algorithm 3.4: Parallel schedule generation scheme for a RCPCP instance.

A closer examination of algorithm 3.4 shows that it consists of two nested loops. The outer
providing the next iteration’s characteristic values and the inner realizing the actual scheduling.
The procedures ChooseActivity and UpdateResourceProfile in the inner loop are identical to the
ones used for the serial schedule generation scheme. But the two subroutines manipulating the
set of eligible activities have to be different, since the underlying concept also diverges.

• InitializeEligibleSet: This operation calculates the eligible set for each time step. As in
the serial generation scheme an activity must not have an open causal predecessor or be
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contained in the completed set itself for being eligible. In contrast to the serial generation
scheme the activity must be startable in the given time step without violating any resource
constraints. Furthermore it must not be included in the active set.

pred(j) \ C = ∅, j /∈ (Ak ∪ Ck) and Rk ≤ rjk, ∀k ∈ R, t ∈ [tk, tk + pj ] (3.4)

must hold, then j ∈ E0.

• UpdateEligibleSet: Updating the eligible set in the inner loop of the algorithm basically
consists of two steps. First the activity that has been scheduled has to be removed. Then
every activity of the set has to be examined to ensure that it is still startable when taking
the modified resource profile into account.

Another crucial aspect is that in contrast to the serial generation scheme which produces active
schedules the parallel version delivers non-delay schedules (Kolisch [15]). Non-delay schedules
have the property that no activity can start earlier without delaying some other. This also holds
if preemption of activities is allowed.
This fact implies that the solution space of the parallel schedule generation scheme is smaller,
which leads to a major drawback in the method shown by Kolisch [15]: given a regular objective
function for the problem, the solution space of the parallel schedule generation scheme might
not contain the optimal solution.
Still the method is considered in this work, because in the same paper the author claims that it
performs well for highly resource-constrained instances. Furthermore the use of a population-
based metaheuristic allows us to use both approaches and integrate the choice of the decoding
algorithm into the genotype of the individuals.
Algorithm 3.5 shows how the method can be modified to handle RCPSP/max instances. Note
that there are several modifications compared to the version for the RCPSP. Similarly to the
serial generation scheme the lower and upper bounds ESj and LSj have to be maintained for
every unscheduled activity j as the algorithm proceeds. The procedure also calls the same un-
scheduling method like the serial implementation and uses a counter u to limit the number of
unscheduling steps.
The second adaption that has to be made is concerned with the initialization of the eligible set
for every time step. The activities provided by the initialization subroutine is not necessarily
schedulable at the current time step without violating the resource constraints. Instead the pro-
cedure delivers the activities that might be scheduled with respect to the precedence constraints
while having the minimum earliest start time.
So the specific point in time in this iteration tk can directly be extracted from any activity in the
set. This possibility makes the maintenance of a set containing the active activities superfluous.
On the other hand the method for finding the earliest possible start time with given resource
constraints has to be used.
Note that this method provides another point in time t∗ and only if this value equals the earliest
possible start time of the examined activity it actually gets scheduled. If it is contained in the
interval [ESj +1,LSj [ the earliest start times of all the unscheduled activities are updated. And
if it is greater than the latest start time of the given activity an unscheduling step has to be per-
formed.
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A detailed example using the GRD priority rule and this generation scheme with multiple un-
scheduling steps can be found in [14, pp. 90].

input : RCPSP problem instance, priority structure P
output: Valid schedule S

1 k ← 0; t0 ← 0; C0 ← ∅; u← 0;
2 while Ck 6= V do
3 Ek ← InitializeEligibleSet;
4 tk ← mini∈Ek ESi;
5 while Ek 6= ∅ do
6 j ← ChooseActivity;
7 t∗ ← FindEarliestResourceFeasibleStart;
8 if t∗ > LSj then
9 u← u+ 1;

10 Unschedule Ek ← ∅;
11 end
12 else
13 if t∗ > tk then
14 foreach i ∈ V \ C do
15 ESj ← max (ESj , t

∗ + dji);
16 end
17 end
18 else
19 Sj ← tk;
20 UpdateResourceProfile;
21 Ck ← Ck ∪ j;
22 foreach i ∈ V \ C do
23 ESi ← max (ESi, Sj + dji);
24 LSi ← max (LSi, Sj − dji);
25 end
26 Ek ← UpdateEligibleSet;
27 end
28 end
29 end
30 k ← k + 1;
31 end

Algorithm 3.5: Parallel schedule generation scheme for a RCPCP/max instance.

Activity List Representation

One of the most frequently used representation schemes is the activity list. An activity list

λ = (i1, i2, . . . , in) (3.5)
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is a permutation of the set of nodes V . Such a list can be interpreted as a priority rule since
it imposes an ordering on the elements of V . Formally this priority rule can be defined as
exth∈E π(h) = min (ω|hω ∈ E), where E denotes the set of eligible activities as used in the
previously presented decoding algorithms. So basically the rule chooses eligible activity iω with
the smallest index ω.
Furthermore an activity list represents a strict order≺λ of the set of activities, where iω ≺λ iυ if
ω > υ. This definition naturally satisfies both, assymetry and transitivity. Furthermore the strict
order exhibits the property of linearity, which means that for any two activities i, j ∈ V with
i 6= j it holds that i ≺λ j or j ≺λ i [14, p. 94].
Note that in general the solution space of the activity list representation contains n! individuals.
But in fact two activity lists L and L′ represent the same solution if the orderings ≺λ and ≺λ′
select the same activity for every eligible set calculated during the schedule generation. So it is
save to limit the solution space to permutations that do not assign a smaller index to an activity’s
predecessor than the activity has itself. Activity lists that satisfy this condition are also called
precedence-feasible.
Naturally this definition only makes sense for acyclic project networks like they appear for
RCPSP/max instances. For RCPSP/max instances on the other hand the appropriate precedence
graph G≺D can be taken into account. The size of the solution space can be reduced to the
number of topological sortings of that graph.

Random Key Representation

Another frequently used representation method is the random key representation [22]. In general
an individual is represented by an array

ρ = (r1, r2, . . . , rn) (3.6)

where ri ∈ R. The interpretation as a priority rule is straightforward and simply reads every
random key as the priority value of the corresponding activity. Formally this can be expressed
as exth∈E π(h) = min (rh|h ∈ E), given that the common convention is followed that lower
random keys mean higher priority.
An advantage of the random key representations is the fact that every solution can be interpreted
as a point in an n-dimensional solution space. This is a precondition for the application of certain
metaheuristics like scatter search and electromagnetism [4].
Nevertheless activity lists are the preferred representation scheme. A probable reason for that is
the study published in [9]. In this paper the authors claim that in general activity lists outperform
other representation schemes, including random keys. In [4] on the other hand the authors
strongly disagree and stress the fact that the study was solely based on computational resources
and no reasons are given to explain the inferior performance. Furthermore they claim that they
found these reasons themselves and propose approaches to overcome the weaknesses.
Since we also consider the random key representation as an alternative representation scheme in
this study a thorough examination of the arguments in [4] follows. The example used throughout
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this section is depicted in figure 3.1 and is taken from the same paper.
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Figure 3.1: RCPSP instance.

The main point of criticism of the claims in [9] is that the solution space of the random key
representation is unnecessarily large. In general both approaches, the activity list and the random
key approach, suffer from the fact that different genotypes may represent the same phenotype.
But it is claimed that the random key approach is much more prone to this. The authors identified
four reasons for the unnecessary enlargement of the solution space, where two of them also apply
to the activity list representation.

We begin with the random key individual ρ1 = (0.9, 1.1, 2.6, 0.7, 2.1, 0.8, 1.0, 1.9, 3.2) that
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Figure 3.2: Possible schedule for the RCPSP instance depicted in figure 3.1.

results in the schedule shown in figure 3.2, when generated with a serial schedule generation
scheme. The following possibilities have to be considered to limit the solution space of the
problem:

1. Scaling in Euclidian space: In general random keys may be arbitrary real numbers. Using
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them that way is of course far too inefficient since it bloats the solution space infinitely.
In this case all the advantages from using a representation in the first place are lost. The
straightforward way to get rid of this problem is to replace the priority values with the cor-
responding rank values. Doing this results in the individual ρ2 = (3, 5, 8, 1, 7, 2, 4, 6, 9)
which is isomorphic to ρ1. Note that the new representation still does not uniquely repre-
sent a single schedule. To obtain this property the issues below also have to be considere.

2. Precedence constraints: Like when accepting every permutation of nodes as an activ-
ity list, random keys are not precedence-feasible in general. This means that it is not
prohibited that an activity has a higher priority value assigned than one of its predeces-
sors. As with activity lists this does not result in any problems when using either the
serial or the parallel schedule generation scheme, since both do not rely on the given rep-
resentation when calculating the eligible set. But it does result in a unnecessary large
solution space. The solution to this problem is to use the serial schedule generation
scheme to obtain the rank values for the activities. In the working example the se-
quence of activities is 1, 2, 8, 5, 3, 4, 6, 7, 9. This results in the random keys individual
ρ3 = (1, 2, 5, 6, 4, 7, 8, 3, 9).

3. Timing anomalies: Whereas the two previous problems do not appear when working with
precedence-feasible activity lists timing anomalies concern them as well. A time anomaly
occurs if an activity might be scheduled earlier than another activity with higher prior-
ity. This is possible because of lower resource requirements and certain precedence con-
straints. In that case there also exist two or more representations for the same schedule.
Consider the example schedule in figure 3.2 and assume that it was generated with a se-
rial schedule generation algorithm. The latest random key representation ρ3 assigns the
values ρ3(5) = 4 and ρ3(8) = 3. So activity 8 has higher priority than activity 5, but it is
started later in the solution schedule. The reason for that is that the activities 1 and 2 are
scheduled first. This results in a resource profile that does not allow the start of activity 8
earlier than in the sixth time slot. Because of the smaller resource consumption of activity
5 is possible to start it right at the beginning. So obviously this means that the random
keys of the two activities may be switched without changing the resulting schedule.
To overcome this problem Debels et al. propose a stronger topological order of the ac-
tivities. Valls et al. [29] defined the topological order representation for activity lists as a
permutation (i1, . . . in) of the numbers 1, . . . , n satisfying the condition that 〈iω, iυ〉 ∈ A
implies ω < υ. This coincides with the notion of precedence-feasibility as discussed in
the previous section. Debels et al. strengthen the condition such that it does not consider
the precedence relations explicitly any more, but instead focuses on the start times. For
the activity list representation this results in the condition S(iω) < S(iυ) implies ω < υ
and for the random keys representation culminates to Si < Sj implies ri < rj .
The application of this principle to the example at hand provides the new solution ρ4 =
(1, 3, 5, 6, 2, 7, 8, 4, 9).

4. Activities with the same starting times: The last problem that facilitates the appearance
of multiple representations for a schedule is the handling of simultaneous starting times.
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Whenever two activities start at the same time priority values may be interchanged with-
out any consequences for the resulting schedule. This problem can be taken care of by
assigning the same random key to the affected activities. Debels et al. assign the lowest
possible rank, which results in the final and unique representation for the schedule in fig-
ure 3.2, namely ρ5 = (1, 3, 4, 6, 1, 7, 8, 4, 9).
It is also worth noting that this last point affects the activity list representation as well, but
cannot be fixed for it.

The implementation of these principles leads to unique standardized random key representation,
where each solution is represented by exactly one representation [4].

Priority Rule Representation

Another possibility is to encode a schedule as a list of priority rules where the number of ele-
ments equals the number of real activities in the problem instance.

π = 〈π1, π2, . . . , πn〉 (3.7)
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Figure 3.3: RCPSP instance.

To obtain a schedule from this representation either a serial or a parallel SGS can be used.
Again the genotype can optionally be extended to encode this choice. The used SGS iteratively
schedules the activities and selects the activity with the highest priority calculated with the rule
assigned for the actual iteration. Consider the example solution for the project in figure 3.4

πE = 〈LFT,MST,LST,MTS,GRPW,LST〉 (3.8)

First the selected SGS assigns start time 0 to the project start dummy activity. In the first real
iteration the priority values of the eligible activities is calculated using the LFT priority rule.
The activity with the highest priority is selected and scheduled. After updating the set of eligi-
ble activities the new priority values are calculated using the MST priority rule. After all real
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Figure 3.4: Example solution for the instance in figure 3.3.

activities are scheduled the project end activity is assigned to the earliest possible point in time.
According to Kolisch and Hartmann [22] the commonly used unary operator for this kind of
representation is the random change of a randomly selected index. A neighboring solution of
πE is for example

πE = 〈MTS,MST,LST,MTS,GRPW,LST〉 (3.9)

Also binary operators like one-point or two-point crossovers can be applied without any modifi-
cations.

Shift Vector Representation

The shift vector representation is another representation scheme designed for local search meth-
ods for the RCPSP (see Sampson and Weiss [25]). A shift vector

σ = (σ1, σ2, . . . , σn) (3.10)

contains n nonnegative integer values with σi representing the shift of activity i relative to its
earliest possible starting time ESi. This approach differs conceptually from the previously men-
tioned methods since it does not use any orders of the set of activities. Instead it encodes the
structure of the schedule in a more explicit way. This implies that no SGS is used in the genera-
tion process.
The shift vector encoding the schedule of figure 3.4 is given by

σE = (6, 0, 1, 0, 0, 0) (3.11)

Since the generation of schedules is not done by an SGS it is not certain that a given shift vector
represents a valid schedule. The point is that for the computation of the earliest start times only
time constraints are taken into account (see algorithm 2.1). For example the shift vector

σI = (4, 0, 1, 0, 0, 0) (3.12)

represents a schedule where activities 1 and 4 are active at the same time, which leads to a re-
source constraint violation. This is a severe drawback for the representation especially for using
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a genetic algorithm, because it lowers the chance to obtain a feasible individual from a crossover
operation. This either forces the use of an additional repair algorithm or lowers the ratio of valid
individuals in the population. Since this work also deals with the MRCPSP/max which might
include complex time constraints leading to infeasible results of crossover operations, it does
not seem advisable to use a representation that adds the burden of resource infeasibility already
on the RCPSP level.
Also in the original work the authors did not use the representation for a genetic algorithm but
for a local search. They proposed a neighborhood for a vector σ as the set of shift vectors with
one different position which also do not violate a given upper bound for the makespan. An
example for a neighbor of σE is

σN = (6, 0, 1, 0, 1, 0) (3.13)

Schedule Scheme Representation

The schedule scheme representation was proposed by Brucker et al. [3] and was initially used
for a branch-and-bound algorithm for the RCPSP. Basically a schedule scheme contains the four
binary relations between the set of activities (C,D,N, F ) which can be described as follows
[22]:

• C - conjunction relation: If (i, j) ∈ C then activity j can only be started if activity i is
finished.

• D - disjunction relation: (i, j) ∈ D implies that the activities may not be active at the
same time.

• N - parallelism relation: Provided that (i, j) ∈ N the corresponding activities have to be
active together at least for one time unit.

• F - flexibility relation: This relation does not impose any restrictions.

With an appropriate decoding algorithm like the heuristic method of Baar et al. [28] it is possible
to construct feasible schedules that satisfy all the restrictions imposed by the conjunction and the
disjunction relation as well as a large number of parallelism restrictions. In general the schedules
that are represented by a given scheme are not necessarily feasible. In the same work the authors
present a neighborhood function where a move consists either of a swap of a relation element
from F to N or the other way around. The considered part of the neighborhood is pruned by
using critical path calculation, which is also used to guide the search heuristically.
Since the representation method was only used for a branch-and-cut and a tabu search imple-
mentation there is no literature on its applicability for a genetic algorithm. Therefore the method
is not considered in detail and the reader is referred to the given material in this section for
further details.
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3.2 Representation of Execution Mode Selections

Since this work is concerned with the multimodal versions of the RCPSP, the genotype of a
solution does not only consist of a priority function encoding an ordering on the set of activities,
but also of a data structure representing the chosen execution modes. The widely accepted form
of doing so is with a vector of modes

µ = (µ1, µ2, . . . , µn), µi ∈Mi (3.14)

This notation expresses the fact that the chosen execution mode of activity i is µi.
Note that this method differs from the notation used in section 2.1, where the mode selection
was defined by a binary vector x = (ximi)i ∈ V,mi ∈Mi satisfying constraint 2.9 that ensures
semantically valid mode selection. This binary representation is well-suited for the formalization
of the problem as a mathematical model, but it is cumbersome for the problem at hand. Because
we intend to use the formulas and definition stated in chapter 2, we define a mapping function
m

m :M1 ×M2 × · · · ×Mn 7→ {0, 1}
∑
i∈V |Mi|

The function can formally be defined as

m(µ) = (x11, . . . , x1|M1|, x21, . . . , x2|M2| . . . xnMn|) : ximi = 1⇔ µi = mi (3.15)

and clearly esatblishes a bijective relation between the two representations. With this mapping
at hand, we use the concepts of chapter 2 without redefinition for the new input parameters. So
for example the processing time of activity i using mode selection µ will be denoted as pi(µ),
which is equivalent to pi(m(µ)).
With that in mind we may define two important features of given mode selections namely the
leftover capacity as used by Hartmann [7, p.132] and the excess of requested resources. The
terminology of the latter used varies in the literature and is adopted in this work from Peteghem
et al. [20].
First we define the leftover capacity of a non-renewable resource as

LFTυ
k(µ) = Rk − rυk(µ), k ∈ Rυ (3.16)

If the leftover capacity is negative for at least one k, the mode selection is infeasible.
The sum of the absolute values of these resource constraint violations is commonly used for
fitness evaluations or repair algorithms (see for example [7, pp.132], [19] and [20]). Therefore
we define the excess of requested resources as

ERR(µ) =
∑
k∈Rυ

max(0, |LFTυ
k |(µ)) (3.17)

Naturally a mode selection µ is resource-feasible if and only if ERR(µ) = 0. Because this value
also describes to which extend a mode selections violates the resource constraints it is applied
especially in fitness functions for the MRCPSP. These are examined in greater detail in section
3.4.
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3.3 Considerations for Population-based Approaches

This section treats issues that arise when dealing with population-based optimization methods.
In the first subsection the basic components of a genetic algorithm are outlines and the concept
of hybridization is presented.
In the following subsections the problem-agnostic issues of how to measure the quality of indi-
viduals and how to organize the population and the sequence of generations are tackled.
The problem-specific implementations of the evolutionary operators are covered in section 3.4
and 3.5.

Hybrid Genetic Algorithms

Genetic algorithms are a widespread method for heuristic optimization. The approach was pro-
posed in the 1970s by Holland [12] and is an area of research since then. The basic idea of the
method is taken from the process of natural evolution, where a population of individuals adapts
to its environment.
The basic operators mimic the reproduction in nature by modeling recombination of individuals
and mutation. The adaption to the objective is implemented by evaluating the individuals of a
population and selecting them for reproduction with a probability that correlates with their fit-
ness. The generic procedure is outlined in algorithm 3.6.
Hybrid genetic algorithms also known as memetic algorithms extend genetic algorithms by typ-

1 t← 0;
2 P (t)← Initialize;
3 Evaluate (P (t));
4 while Terminate 6= true do
5 t← t+ 1;
6 Qs(t)← Select (P (t− 1));
7 Qr(t)← Recombine (Qs(t));
8 P (t)← Mutate (Qr(t);
9 Evaluate (P (t));

10 end
Algorithm 3.6: Algorithm for data reduction proposed by Hartmann [7].

ically applying an additional local search method such as hill climbing. The local search is
usually done before the individual is evaluated, in order to reflect the full potential of an individ-
ual in its fitness evaluation.
An interesting observation of Hartmann in the context of this work is that encoding of the results
of a local search in the considered individual is not always a good idea [7, pp.138]. In a com-
putational study he shows that in the long run encoding the improvements found by local search
methods decrease the genetic diversity of the populations. This is done by defining similarity
metrics between individuals and executing a cluster analysis of the populations. It can be seen
that the number of clusters decrease significantly faster when the local search method modifies
the genotype instead of only modifying the fitness value.
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Fitness Function and Selection Strategy

The goal of a fitness function is to assign a value to each individual that reflects its quality. In
many cases this can not be done directly by computing the objective function value for a given
individual, because populations often handle individuals that do not satisfy every constraint of
the problem instance or the objective function has an inappropriate value range. Therefore two
functions can be distinguished:

• An evaluation function g(I), which offers a direct evaluation of an individual in a value
range that corresponds to the problem domain. An example in the context of the problem
domain at hand is the makespan.

• A fitness function f(I) = s(g(I)), where s(x) denotes a scaling function, transforms
the raw fitness values in a way that they are more appropriate for the selection function
at hand. A fitness function must deliver a non-negative value for all individuals and must
also be computable for every individual. Also a larger fitness value must always imply that
the solution represented by the individual is better with respect to the objective function
of the examined problem.

An important concept in the context of scaling raw fitness values is the selective pressure. This
quantity can be computed for every generation as

S =
fmax
favg

(3.18)

where fmax is the fitness value of the best individual and favg denotes the average fitness value
of the actual population.
A too high selective pressure favors the emergence of superindividuals. These are individuals
that dominate the population because of their much higher fitness values, which leads to a large
replication rate of them. As a consequence, the genetic diversity of the population decreases
rapidly which may result in an early convergence of the algorithm in a local optimum. If the
selective pressure is too low, good individuals are not privileged as they should be and the algo-
rithm behaves like a random search.
The second important topic when choosing a fitness function is how to handle an individual’s
constraint violations. For the problems at hand a number of such constraints have to be con-
sidered. A mode selection might consume to many non-renewable resources or the completion
time of a preceding activity interferes with the start time of its successors. The simplest way
to deal with this, is to assign a fitness value of zero, if the individual is infeasible. This line
of action is often not appropriate. If for example the initialization step cannot produce a large
number of feasible individuals, or the reproduction cannot be designed to generate only feasible
individuals, the algorithm limits itself by excluding too many individuals from the evolutionary
process.
To avoid this problem the fitness value can be adapted via penalization. Depending on the sever-
ity of the violations a weaker fitness value is assigned. Since the actual implementation of this
is rather problem specific, the details will be given in the corresponding sections below.
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When the fitness values of a population are assigned, the individuals for the recombination
operator are chosen based on them. There are a number of strategies that can be selected at this
point:

• Fitness proportional selection: The most commonly known implementation of a fitness
proportional selection strategy is the roulette wheel selection. It has got its name be-
cause it can be pictured as an imaginary roulette wheel, where each individual owns a
segment proportional to its fitness value. If the imaginary ball falls into this segment, the
corresponding individual is chosen for recombination. Another implementation of this ap-
proach is the stochastic universal sampling. In contrast to the roulette wheel selection this
algorithm guarantees that the frequency of selections of an individual corresponds with its
wheel segment.

• Rank selection: The rank selection strategy does not rely directly on the fitness values, but
assigns the selection probabilities based on the position of the ordering based on them.
Relative distances do not play a role, which can be advantageous to avoid the emergence
of superindividuals.

• Tournament selection: This selection strategy selects k random individuals from the popu-
lation and selects the one with the highest fitness value. The size of k controls the selective
pressure within the population. This approach is especially useful, if an individual cannot
be evaluated without another one. This may be the case if the solution represents a player
strategy in a game.

Population Management

Genetic algorithms have also parameters to control the population. An important one is the
population size. For practical applications the termination condition is likely to be some time
limit which must not be exceeded. So the choice of the population size is always a tradeoff
between the size of the genetic pool and the number of generations which can be generated.
Also the replacement policy which determines which individuals perish and which may be taken
into the next generation might influence the performance of the algorithm.
Here are some commonly known examples for such strategies:

• Elitism: This is a commonly known approach to achieve a better efficiency. The idea
is for each generation a predefined number of the best individuals are copied from the
parent generation without any changes. Obviously the value of the overall best solution
is monotonically increasing if this strategy is implemented. The disadvantage here is that
the algorithm tends to generate superindividuals with the side-effects of reduced diversity,
faster convergence and increased chances to get stuck in a local optimum.

• Overlapping population: When implementing the overlapping population strategy, only
a predefined fraction of the population is newly generated. This fraction is the called
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the generation gap. The remainder of the next generation is filled with randomly chosen
individuals from the parent generation. An extreme implementation of this strategy is to
only generate one individual and replace one individual in the population. This is called a
steady-state genetic algorithm.

• Island model: Another strategy is to organize a number of populations independently from
another. Every island may in principle use a differently parameterized genetic algorithm.
After a number of generations or a defined amount of time a migration step is executed
where some individuals change the island and join another population.

• Crowding model: In this model the overall population is again separated in a number of
groups or crowds. If a new individual is generated, one crowd is chosen randomly and the
most approximate individual in this crows is replaced.

Note that the last strategy calls for some similarity or distance measure for individuals. Hartmann
[7, pp. 142] to use the following measure for the mode assignment:

β(I, I ′) =
β′(µI , µI′)

n
(3.19)

where I and I ′ are two individuals and β′ denotes the function that counts the same modes for
the same activities. For the metric for the activity lists he first defines the set Q, holding all the
pairs of activities that are not related with respect to the transitive precedence relation. Then he
defines the function α′ for two activity list as the sum of these pairs with equal orderings. Again
he normalizes the quantity with

α(I, I ′) =
(α′(λI , λI′)

|Q|
(3.20)

The overall similarity measure is then computed as

σ(I, I ′) =
α(I, I ′) + β(I, I ′)

2
(3.21)

This function delivers a quantity in the interval [0, 1], where σ(I, I ′) = 1 expresses equality of
two individuals and σ(I, I ′) = 0 holds for individual with no common feature.
Another approach is used by Debels et al. [4] for a hybrid scatter search algorithm where the
unique standardized random key representation is used (see section 3.1). Here the distance
of two individuals is computed as the Euclidean distance of the random key vectors in n-
dimensional space.

3.4 MRCPSP

This section is concerned with the concepts for genetic algorithms for the resolution of the MR-
CPSP. After the presentation of an algorithm which is capable of pruning problem instances in a
way that the optimal solution is not changed, a more detailed examination of evolutionary oper-
ators is given. These include the initialization algorithms for the population the algorithm starts
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with, methods for recombination and mutation as well as an overview of local search procedures
and different kinds of fitness evaluations.
For the remainder of this section, an individual is a tuple I = (µ, λ), where µ is a mode as-
signment vector and λ is an abstract priority structure that can be used for a schedule generation
scheme as presented in section 3.1, namely either activity lists or random keys.

Preprocessing

For some problem instances it can be possible to prune the solution space by executing a prepro-
cessing step. Sprecher et al. [27] identified the following properties that indicate that a problem
reduction can be done:

• Non-executable modes: A mode is called non-executable if either the associated demand
of renewable or non-renewable resource is exceeded for at least one resource.

• Inefficient modes: Inefficiency of a mode is given, if there exists another mode for the
same activity having an equal or smaller processing time and a lower or equal resource
demand for every renewable and non-renewable resource.

• Redundant resources: Non-renewable resources may also be excluded from an instance,
if the sum of maximum demands for all the activities with respect to their corresponding
modes is lower or equal to the resource limit.

Since the removal of modes or redundant resources may in turn make other modes inefficient or
other resources redundant, Hartmann proposes the following algorithm for data reduction [7, p.
42]:

input : MRCPSP instance
output: reduced MRCPSP instance

1 modified← true;
2 RemoveNonExecutableModes;
3 while modified do
4 RemoveRedundantResources;
5 modified← RemoveInefficientModes;
6 end

Algorithm 3.7: Algorithm for data reduction proposed by Hartmann [7].

Initialization

The first step of a genetic algorithm is the preparation of an initial pool of individuals. In general
this initial population should offer a high degree of diversity, to allow the procedure to explore
a large portion of the search space. Typically, initialization methods rely heavily on randomized
subprocedures, sometimes paired with a local search or some kind of repair method.
Hartmann for example proposes a procedure to create an individual in three steps [7, p.133].
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First a mode assignment µ is generated completely at random. To increase the chance of obtain-
ing a resource-feasible mode assignment a repair method is applied to µ. This repair method
makes use of the excess of requested resources ERR(µ) as defined in equation 3.17.
If it holds that ERR(µ) = 0 the mode assignment at hand is already feasible and the repair step
can be skipped. If this is not the case the mode mj of a randomly chosen activity j is altered,
which leads to the new mode assignment µ′. If ERR(µ) ≥ ERR(µ′) the search continues with
the new mode assignment. So basically the proposed method implements a first-fit strategy on
the one-flip neighborhood structure. The procedure halts if either the mode assignment is feasi-
ble, or a predefined number of attempts is reached. Hartmann suggests limiting the number of
attempts with the number of activities n whereas Van Peteghem and Vanhoucke use 4n [20].
In the last step the priority function λ has to be created. Hartmann suggests a method to obtain
precedence-feasible activity lists by choosing iteratively activities from the set of eligible activ-
ities, as defined in section 3.1. The probability of an activity to be chosen next is calculated by
using regret based biased random sampling based on the values of the latest completion times
(as discussed in section 2.1).
To outline the difference between the used sampling method and the commonly used biased ran-
dom sampling method consider some arbitrary priority value function λ. Then the probability of
every activity j contained in the eligible set E can be calculated with the formula

p(j) =
λ(j)∑
i∈E vi

(3.22)

Regret based biased random sampling does not rely directly on the priority values [7, p.69].
Instead the so called regret values are calculated with

rj = v(j)−min
i∈E

v(i) (3.23)

This results in the fact that for at least one activity rj = 0. To ensure that still every schedule in
the search space can be generated modified regret values can be computed by

r′(j) = (r(j) + ε)α (3.24)

The additional parameter ε > 0 prohibits zero values for the new regret values. Additionally
another parameter α is introduced to control the influence of the bias. The higher the value of
α the more deterministic the selection. An α of zero on the other hand would result in random
selection. Hartmann states that ε = α = 1 provides good results [7, p.69].
In contrast Van Peteghem and Vanhoucke discard this approach and rely on a random generation
of their random key priority function which respects the topological sorting [20].

An alternative approach for the generation of mode assignments can be found in [19] by Lova
et al. Instead of starting with a randomly generated mode assignment, the so called minimum
normalized resources (MNR) procedure computes the mode assignment that minimizes

Njm =
∑
k∈Rυ

rjkm
k

(3.25)
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for every activity j and corresponding mode dependent resource demand rjkm.
To obtain a diverse population this MNR mode assignment is randomly changed and then op-
tionally repaired as outlined in algorithm 3.8. It uses the following subprocedures:

• RandomizeModes: Change the mode of up to n/2 activities randomly.

• RepairModewise: Examine every activity in a random order and change to a mode which
reduces the ERR, if such a mode exists.

This procedure is repeated until either a resource feasible mode assignment is found, or a prede-
fined number of attempts is reached (the authors set this limit to 200).

input : attempt limit l, minimal resource mode vector µNMR

output: Valid schedule S

1 for k ← 0 to l do
2 µ← µNMR;
3 µ← RandomizeModes;
4 if µ feasible then
5 break;
6 end
7 µ← RepairModewise;
8 if µ feasible then
9 break;

10 end
11 end

Algorithm 3.8: Initialization method introduced by Lova et al. [19].

Recombination

Commonly used recombination methods are slight variations of the standard operations like one-
point or two-point crossover or uniform crossover. The modifications that have to be added to
these operators are described in the following.

X-Point Crossover

X-point crossovers are one of the standard recombination methods for genetic algorithms and
can be adapted for individuals based on the activity list and the random key representation.
First consider the one-point crossover for two activity list individuals selected as mother IM =
(µM , λM ) and father IF = (µF , λF ). With the usage of a randomly chosen crossover point
q ∈ {1, . . . , n} two child individuals, namely daughter ID = (µD, λD) and son IS = (µS , λS)
can be constructed.
First consider the activity list λD = (iD1 , . . . i

D
n ) of the first child ID. The first q positions are
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directly inherited from the mother’s activity list λM = (iM1 , . . . i
M
n ).

iDj := iMj , 1 ≤ j ≤ q (3.26)

The remaining positions are inherited from the second activity list λF = (iF1 , . . . i
F
n ). To ensure

validity of the resulting activity list, the positions may not be copied directly. Activities already
inherited from the first parent IM are not allowed to be inserted a second time. Instead λF is
examined from beginning to end and only activities not already in λD are inserted next [7, p.87].

iDj := iFk , where k is the lowest index s.t. iFk /∈ λD (3.27)

Given for example the parent activity lists

λM = (1, 3, 6, 4, 2, 5) and λF = (6, 1, 2, 5, 4, 3)

a one-point crossover with q = 3 results in the offspring

λD = (1, 3, 6, 2, 5, 4)

For the generation of the second offspring, it suffices to switch the roles of the parent individuals.
The method can be generalized for more than one crossover point. This is done by segmenting
the activity list into components defined by the randomly chosen crossover points and copying
every other segment directly into the child solution. The other segments are then filled under the
same restrictions as used for the one-point crossover.
An important property of this crossover method is the fact that by recombining two precedence
feasible individuals the resulting offspring is again precedence feasible. The formal proof of that
statement is given by Hartmann [7, pp. 88].

The random key encoding on the other hand allows the standard X-point crossover without
any modifications. For the one-point crossover case there are again the parent solutions IM =
(µM , ρM = (rM1 , . . . , r

M
n )) and IF = (µF , ρF = (rF1 , . . . , r

F
n )). Again let the randomly

chosen crossover point be denoted by q, then the random keys of the daughter solution are
defined as

rDj =


rMj if 1 ≤ j ≤ q

rFj if q + 1 ≤ j ≤ n
(3.28)

The generalization for the X-point crossover is done analogously to the activity list operator.

In both cases the mode assignments are recombined in such a way that the mode selection
of an activity does not change. That ensures that the offspring is more congruent to the parent
solutions, which in turn results in a higher heritability. The use of operators with high heritability
is in general advantageous, because they improve the chances that good features of the parents
will also be found in the children.
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Uniform Crossover

Another commonly known recombination method is the uniform crossover. Assume that again
two activity list encoded solutions IM and IF are given, defined analogously to the previous
section. Instead of a number of crossover points, an n-elementary sequence gi ∈ {0, 1} is
generated randomly.
Then the i-th elements of the daughter’s activity list λD is given by choosing the next, not already
chosen activity from the mother if gi = 1. Otherwise the next not already chosen activity from
the father’s activity list is added. Formally stated:

iDj =


iMk , where k is the lowest index s.t. iMk /∈ λD ifgi = 1

iFk , where k is the lowest index s.t. iFk /∈ λD otherwise
(3.29)

For an illustration consider the example of the previous section with the given parent solutions.
For the binary sequence (1, 1, 0, 0, 1, 0) the following daughter solution is generated.

λD = (1, 3, 6, 2, 4, 5)

Like for the X-point crossover a second child is generated by swapping the roles of the two
parent solutions. Furthermore it is stated in Hartmann [7, p.89] that again precedence feasible
parent solutions generate precedence feasible offspring solutions.

Again for the random keys encoding the standard uniform crossover operator may be used.
So the i-th random key is defined by

rDj =


rMj if qi = 1

rFj otherwise
(3.30)

Also the treatment of the corresponding mode assignments is unchanged.

Mutation

The mutation operator is utilized to diversify the genetic pool inherent in a population. This
is typically done by changing single genes of an individual with a rather low probability. In
this section methods for the mutation of priority structures and mode assignments as well as a
mutation operator for the whole population are presented.

Mutation of Priority Structures

In [20] Peteghem et al. assign a randomly chosen value to a random key with a probability of
4%. In general this operation may result in precedence-infeasibility of the individual. To avoid
this, we implemented a mutation operator that takes the greatest random key of all preceding
and the smallest random key of all succeeding activities into account. By drawing the new value
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from this interval, precedence-feasibility will be preserved. Note also that when using the SRK
representation from Debels et al. [4], the random keys have to be recalculated.
The idea of preserving the precedence-feasibility is also taken into account for the topologically
sorted activity lists, for example used by Lova et al. in [19]. Here an activity is randomly moved
between the greatest index of the predecessors and the smallest index of the successors.
Another mutation operator for activity lists can be found in [7, p. 90]. Here Hartmann swaps
two consecutive activities in the list with a given probability, if the resulting list stays precedence
feasible. In both works the probability for such a mutation is fixed with 5%.

Mutation of Mode Assignments

A commonly used mutation scheme for the mode assignment vector is to assign a random mode
to an activity with a given probability [7, p. 135]. This operator is executed after the mutation
of the priority structure and may result in violations of the non-renewable resource constraints.
Note that this independence allows using a different probability value for this mutation. For
example Peteghem et al. implements a lower rate of 2% for the mode assignment mutation
(compared to the 4% for the random keys) [20].
Lova et al. extend the mutation operator by using different mutation for the resource-feasible
and resource-infeasible mode assignments [19]. If a mode assignment is feasible the mentioned
random mode is used with a probability of 5%. But if the mode assignment is infeasible the so
called massive mutation operator is used.
This operator assigns a random mode which may also be the actual one until either the mode as-
signment is feasible or every activity has been considered. Also the order in which the activities
are considered is randomized. In their computational study the authors claim that the usage of
this operator improves the results significantly.

Population Diversification

For further diversification of the search Lova et al. [19] implement an additional operator which
replaces a part of the population with new individuals. This operator is parameterized by two
probability values. The first one controls the probability with which the operator is activated and
was set to 70%. The second defines for each individual with which probability it is replaced by
a newly generated individual. For this parameter the authors suggest 10%. If an individual is
replaced, the new solution is generated with the initialization method setting the limit of attempts
to 1.

Local Search

As described in section 1.3 it is a common practice to extend a genetic algorithm with a local
search that explores the search space of a solution depending on a neighborhood function.
The typical approach for the MRCPSP is to provide a procedure that enhances the phenotype
that is the schedule. In Hartmann [7, pp.135] a description of two commonly used procedures
can be found. The basic operation of both is the multi-mode left shift. This operation examines
the valid modes of a given activity. Validity in this context means that switching from the actual
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mode to the new one does not violate any non-renewable resource constraints. For all of these
modes it is tested, if the change may result in a decrease of the activity’s completion time. For
example the new mode has a smaller duration or its renewable resource profile enables it to be
scheduled earlier.
It is important to note that all changes done in this operation do not interfere with the feasibility
of the input schedule. Neither may the new mode violate any non-renewable resource constraints
nor does the new renewable resource profile and the possibly changed start time exceed the re-
source limits. Furthermore this procedure never increases the makespan of a solution.
The first procedure applied by Hartmann is the single pass improvement. Here for each activ-
ity of the input schedule the modes are examined ordered by their duration in a non-decreasing
fashion. The activities thmselves are processed in their natural ordering. If a multi-mode left
shift can be performed, the schedule is changed and the next activity is handled. This is an im-
plementation of the first-fit strategy. After every activity has been covered the fitness value of
the given individual is set to the new makespan. This procedure is applied for every individual
of every generation.
An important observation is that the single pass improvement does not exploit the full potential
of the given neighborhood, because every activity is examined exactly once. But it is possible
that the mode change or the start time shift of some activity enables another improvement for an
activity that is already processed. In other words the single pass improvement does not deliver
tight schedules.
The natural way to overcome this problem is the repeated application of the single pass im-
provement, which is called the multi pass improvement. In contrast to the single pass version
this approach always leads to an local optimum with respect to the multi-mode left shift neigh-
borhood. That means the resulting schedule cannot be improved any more by applying this
operation.

An extension of these two operators is presented by Lova et al. in [19]. In this work the au-
thors enrich the procedures of Hartmann with the concept of double justification introduced by
Valls et al. [29]. This work is concerned with the RCPSP and a local search method which basi-
cally executes a left shift and a right shift for the schedule at hand. The computational study in
the paper shows that this extension pays off for a number of heuristic optimization algorithms.
Lova et al. modified this local search method for the MRCPSP. For that reason they define the
two following operators:

1. Multi-Mode Backward Pass (MM-B): The activities are processed in a non-increasing
order with respect to their completion times. Then for all feasible modes of an activity j
it is tested whether or not a right shift can be executed without violating any constraints.
In other words the latest possible starting time in the time window defined by the actual
starting time and the starting times of j’s successors are assigned. Ties between modes
are decided in favor of the mode with the smaller processing time.
This backward pass might result in a new schedule where S0 = ∆ > 0. In that case all the
start times can be shifted to the left by calculating the new schedule S′ with S′i = Si −∆
for all activities i.
Obviously this results in an improvement of the project’s makespan by ∆.
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2. Multi-Mode Forward Pass (MM-F): The forward pass simply inverts the ideas of the back-
ward pass. Namely the activities are processes in non-decreasing order of their start times
and the goal is to find a new start time results in the earliest feasible completion time.
Again all the modes a best-fit strategy is used, so every mode is examined and ties are
resolved by processing times. The time window where a precedence feasible new start
time might be found is bounded by the latest completion time of all the predecessors of an
activity and its own completion time.

These two procedures apply the concepts of right justification and left justification of Valls et
al. [29] to the MRCPSP. Double justification is achieved by applying both methods to a given
schedule. Since applying the forward pass after the backward pass may lead to a different result
than applying the forward pass first Lova et al. extended the genotype of their individuals by
one gene holding either a B or an F defining which procedure is executed first. The property
is also inherited via the crossover operator. Note also that like the multi pass improvement of
Hartmann, this search procedure is applied until no further improvement can be achieved.
A different approach is proposed by Van Peteghem and Vanhoucke. In [20] they present an ex-
tended serial generation scheme which basically combines the schedule generation scheme with
the local search procedure.
Instead of dealing with a complete schedule the extended generation uses a mode improvement
procedure during scheduling time. With a predefined probability the mode improvement pro-
cedure is executed while scheduling an activity j. Then for every mode of j the corresponding
ERR is calculated. If this value does not increase for the new mode, it is checked if the new
mode enables a start time that leads to a smaller completion time. Remember that ERR(µ) = 0
for feasible mode assignments µ. So therefore feasibility is preserved in this procedure. After
every feasible mode is checked the one that results in the smallest completion time of j is chosen
and the corresponding start time is used in the schedule. The computational study of the authors
showed that a probability value of 30% delivers good results.
Algorithm 3.9 outlines the principle in pseudocode.

Evaluation

The fitness function is a crucial component of a genetic algorithm, since it determines which
individuals are selected for building the next generation of the population. Typically this func-
tion is strongly related to the objective function of the problem at hand, which is the project’s
makespan in the classical MRCPSP.
But for the MRCPSP considering only the makespan is not sufficient, since the resource con-
straints might be violated by the mode assignment. The common approach to enforce the satis-
faction is these constraints is the penalization of individuals violating them, by assigning a lower
fitness value to them.
Hartmann for example proposed the following fitness function in [7, p.132]

fH(µ, λ) =

{
Cmax(µ, λ) if ERR(µ) = 0

d+ ERR(µ) otherwise
(3.31)
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input : activity j, mode vector µ
output: Valid schedule S

1 r ← CalculateERR;
2 f ← ComputeFinishTime;
3 for k ← 0 to |Mj | do
4 µi ← k; rk ← CalculateERR;
5 if rk ≤ r then
6 f ′ ← ComputeFinishTime;
7 if f ′ < f then
8 µ← µ′;
9 r ← rk;

10 f ← f ′;
11 end
12 end
13 end
Algorithm 3.9: Extended schedule generation scheme introduced by Van Peteghem and Van-
houcke [20].

So if the individual is feasible the makespan is used, whereas an infeasible individual is pun-
ished with the project’s upper bound calculated with the maximum durations and the amount of
missing resources. As Alcaraz et al. stated in [13], this simple fitness function suffers from two
major drawbacks:

1. The punishment for infeasibility seems too hard, because the upper bound d is poor. In-
feasible individuals are practically excluded from the process, which is not desirable.

2. The fitness value of an infeasible individual is independent of the resulting project’s
makespan.

So Alcaraz et al. formulated an alternative function:

fA(µ, λ) =

{
Cmax(µ, λ) if ERR(µ) = 0

Cmax(µ, λ) + Ĉmax − LB + ERR(µ) otherwise
(3.32)

Here two new expressions are used for the calculation of the fitness for infeasible individuals.
First Ĉmax denotes the maximum makespan of all feasible individuals in the current generation.
This is obviously a stronger upper bound than d and it is further strengthened by subtracting
LB which denotes the length of the project’s critical path calculated with minimum processing
times.
In [19] Lova et al. pointed out that the fitness value of infeasible individuals is composed of a
mixture time units and resource units without any normalization. To overcome this weakness,

69



they suggested the following formula:

fL(µ, λ) =


1− Ĉmax−Cmax(µ,λ)

Ĉmax
if ERR(µ) = 0

1 + Cmax−LB
Cmax

+ ERR(µ) otherwise
(3.33)

where ERR(µ) denotes the normalized value of missing resources, calculated as

ERR(µ) =
∑
k∈Rυ

max

(
0,
|LFTυ

k |(µ)

Rυ

)
(3.34)

The fitness value of feasible individuals with the generation’s maximum makespan of all feasible
individuals will be 1. The better the makespan of another feasible individual is, the closer will
the corresponding fitness value to 0. Infeasible individuals on the other hand will always have a
fitness value greater than 1, which ensures that infeasibility always implies a lower fitness value.
Lova et al. also presented a computational study that showed a significant improvement by using
fL instead of fH and fA [19].

3.5 MRCPSP/max

In comparison to the MRCPSP the MRCPSP/max has received a rather small amount of at-
tention lately. The recent survey of Weglarz et al. [30] state that the double genetic algorithm
of Barrios et al. [1] outperforms all the previous approaches for medium and large instances.
Therefore this section is predominantly concerned with this solution method.
The basic course of action of Barrios et al. is to deal with the increased complexity of the MR-
CPSP/max in comparison to the MRCPSP is to decompose the problem into two parts. At a first
stage a reformulated version of the MRCPSP/max is considered which is concerned with the
search for a number promising mode assignments for the solution of the problem.
Based on these mode assignments a second phase is executed where the complete schedule is
constructed. Both problems are tackled with genetic algorithms as the name of the approach
suggests. The basic idea of the first phase is to supply the initialization method of the second
algorithm with a number of mode assignments to increase the chance of finding high quality
solutions.
Therefore this section is divided into two subsections. First we examine the design and the in-
dividual operators of the algorithm concerned with the search for promising mode assignments.
In the second subsection the solution methods for the overall problem are elaborated.

The Best Mode Assignment Problem

The idea of decomposing the MRCPSP/max into subproblems was also presented other authors.
First the problem of finding feasible mode assignments is solved. Then these mode assignments
are used to solve the scheduling problem itself. In principal there is a distinction between two
decomposition strategies:
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1. Decomposition: Algorithms implementing this approach realize a strict division of the
problem. After the feasible mode assignment is found, the modes are fixed and the MR-
CPSP/max instance is transformed into an RCPSP/max instance. An implementation that
proceeds this way is the tabu-search of de Reyck and Herroelen [23].

2. Integration: The integration approach does not divide the two phases as strictly. The
mode assignment calculated in the first phase might be changed in the second phase. This
increase of flexibility results in general in better results. Aside from the double genetic
algorithm the branch-and-bound and the priority rule algorithms of Heilmann uses this
approach (see [10] and [11]).

In his priority rule algorithm Heilmann states the mode assignment problem (MAP) which is
concerned with the search for resource feasible mode assignments. The problem of time fea-
sibility is tackled when solving the RCPSP/max by using a feasibility check and performing
backplanning if necessary.
For the double genetic algorithm Barrios et al. extended the MAP stated by Heilmann in order to
transform it into an optimization problem, called the best mode assignment problem (BMAP).
In this problem the set of decision variables is reduced to the mode assignments for the differ-
ent activities. The start times are not directly taken into account, but the problem of choosing
them is transferred into the objective function which is denoted as the makespan of the optimal
schedule associated to a mode assignment. Of course this mode assignment has to be resource
and time feasible.
This new problem can also be seen as a transformation of the whole MRCPSP/max which im-
plies that it is of the same complexity and therefore cannot be solved by integer programming.
In fact the calculation of the objective function for a given mode assignment is the resolution of
an RCPSP/max problem which implies NP-hardness.
The key idea of this reformulation is to approximate the incomputable objective function of a
mode assignment by a function that can be calculated by simpler means. The natural way of
replacing the strict objective function is to use an upper or a lower bound for the problem.
As an upper bound Barrios et al. suggest to solve the RCPSP/max instance with a simple heuris-
tic like priority rule scheduling. For the double genetic algorithm the authors implemented an
approximation by using the critical path of the associated RCPSP/max instance’s AoN network.
The critical path of the network is the longest path between the two dummy nodes.
Since a time feasible mode assignment results in an AoN network without any cycles of positive
length, it is possible to use a label-correcting algorithm which can be implemented to run with
complexity O(|V ||E|). The authors justified their choice of approximation with this advanta-
geous runtime behavior. This results from the fact that the calculation of the critical path does
not need to take the renewable resource constraints into account.
As described above Barrios et al. use a genetic algorithm for the resolution of the approximated
BMAP. They argue that a transformation of the MAP into an optimization problem results in
the generation of mode assignments with high quality. Furthermore it is stated that the use of a
genetic algorithm ensures a high diversity of the resulting population. A detailed examination
of the evolutionary operators is given in the following subsections.
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Population Management

An individual in this first phase of the algorithm is represented by an mode vector µ and the
corresponding vector of remaining non-renewable resources ERR(µ).
The algorithm uses a steady-state strategy, which means that in every generation only two indi-
viduals of the population are selected to build two candidates for the next generation. Note that
the new candidates are only added to the population if the following conditions hold:

• There exists an individual with a worse fitness value in the population.

• There is no individual in the population that has the same fitness value and remaining
resources vector.

If both conditions hold a new individual replaces the worst individual in the population.
The individuals for crossover are selected by using regret based biased sampling. This sampling
strategy is outlined in section 3.4.
We also implemented an alternative approach with different population management and selec-
tion strategies. Instead of a steady-state algorithm a standard genetic algorithm with elitism is
used. To provide a population with high diversity two additional selection strategies can be used:

• SimilarityTournament: This selection strategy randomly picks three candidates from the
population. After that the edit distances for the three possible pairs are calculated. This is
the number of activities which have a different execution mode assigned. The score of a
candidate is calculated by the sum of the edit distances to the two other candidates. Then
the candidate with the highest score is picked for the next generation.

• SimilarityRoulette: The similarity roulette combines a fitness-based roulette-wheel se-
lection with the similarity tournament. Instead of picking the three candidates for the
tournament randomly, they are selected by roulette-wheel selection with a probability in-
versely proportional to the length of their corresponding critical path. Again, in the end
the candidate with the highest edit distance is selected.

Obviously the pure tournament approach is not really focused on the BMAP anymore. Instead
the focal point is shifted to the task of providing a more diverse initial population for the second
phase of the genetic algorithm. The second policy is designed to achieve a compromise between
the concerns of finding solutions with short critical paths and maintaining a diverse pool of
chromosomes in order to realize a flexible search procedure.
A comparison between all the different approaches is given in section 4.2.

Initialization

Now the initialization method of Barrios et al. for the BMAP is considered. For generating an
initial population of mode assignments the greedy method of De Reyk et al. was randomized
[23]. The original method was used for the generation of a starting solution for a tabu search and
assigned modes based on the relative resource consumption. The basic idea behind this method
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is to maintain a vector of remaining non-renewable resources for a partial mode assignment. So
let x = (ximi)i∈V,mi∈Mi be a partial mode assignment that not necessarily satisfies the condition
in equation 2.9 but instead ∑

mi ∈Miximi ≤ 1, i ∈ V (3.35)

Then we can use the concepts of non-renewable resource consumption of modes of a single
activity rυik(x) and when considering a (partial) mode assignment rυk(x) as defined in earlier.
With that in mind the definition of remaining or residual nonrenwable resources can be defined
as

rresk (x) = rsυk − rυk(x), k ∈ Rυ (3.36)

and the average relative non-renewable resource consumption of each mode and each activity is
given by

ravgimi
=

|Rυ |∑
k=1

rikmi
rresk (x)

i ∈ V,mi ∈Mi (3.37)

The mode with the minimum average relative non-renewable resource consumption for an ac-
tivity i is denoted as m∗i . If this procedure does not lead to a unique result the mode with the
smallest processing time is chosen.
Since the remaining vector changes with every assignment the order in which the activities are
considered influences the outcome of the procedure. In [23] the order of the activities is also
defined by ravgimi

. In every iteration the activity with the highest value is chosen. This procedure
should ensure that the problematic activities are assigned as early as possible to increase the
probability of generating a feasible solution in the end.
For the double genetic algorithm this method had to be randomized to produce a broad initial
population. The authors state that three different randomization strategies were evaluated:

• Randomization of the next activity selection.

• Randomization of the mode selection.

• Randomization of both selections.

It was stated that the first option lead the best results.

Evaluation

As stated in the introduction of this section, Barrios et al. use the critical path of the correspond-
ing RCPSP/max instance to evaluate a mode assignment. The evaluation procedure also makes
use of stochastic subprocedures to repair time or resource invalid individuals.
In a first step mode assignments that violate the resource constraints are repaired. If the repair
algorithm fails, the fitness value of the individual is set to a large constant C. Then the individ-
ual is checked for time feasibility. This is done by checking the AoN network of the associated
RCPSP/max instance for positive cycles. If such cycles occur another stochastic subprocedure
is called to change the affected modes.
Only if the individual is feasible with respect to time and resource constraints, the fitness value
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input : desired population size n, large constant for worst fitness C
output: population of BMAP solutions

1 P = ∅;
2 for k ← 0 to 2 ∗ n do
3 µ← GenerateSolution;
4 if µ is not resource feasible then
5 µ← RepairResources;
6 end
7 if µ is resource feasible then
8 f(µ)← EvaluateBMAPSolution;
9 end

10 else
11 f(µ)← C;
12 end
13 P ← P ∪ {µ};
14 end
15 P ← {µ : µ one of fittest n};

Algorithm 3.10: Initialization algorithm for the BMAP used by Barrios et al. [1].

is set to the length of the longest path between start and end node. If time feasibility can not be
achieved, the value is set to C/2.

The repair procedure for mode assignments violating the resource constraints works as fol-
lows: To fix an infeasible mode assignment a random number of modes are deleted from the
solution. With this partial solution the initialization procedure is repeated. Such a restart can be
executed a predefined number of times. The authors suggest the value ntimes = max (10, n5 ). In
general this method can also be used as a local search procedure, but since in this case it is used
as a repair method, it is stopped when a feasible solution is generated.

The algorithm for the repair procedure for the resolution of timing constraint violations is
outlined in listing 3.12. Every cycle structure of the AoN network is tested for positivity. If the
cycle structure is indeed positive a subprocedure is called to fix the modes for the activities in
the cycle. If this subprocedure succeeds, these modes are marked as fixed which makes them
unchangeable for subsequent subprocedure calls. Otherwise the method returns false to indicate
that the mode assignment could not be fixed.

The subprocedure for the repair of a single cycle structure proceeds as follows:

1. The modes of the activities of the cycle are randomly changed if they are not marked as
fixed.

2. If the cycle structure is not positive anymore, calculate the new excess of requested re-
sources value (ERR). If ERR = 0 the procedure is stopped and the new mode assignment
is returned.
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input : resource feasible BMAP solution µ, large constant for worst fitness C
output: population of BMAP solutions

1 if µ is not resource feasible then
2 µ← RepairResources;
3 end
4 if µ is not resource feasible then
5 f(µ)← C;
6 end
7 if µ is not time feasible then
8 µ← RepairPositiveCycles;
9 end

10 if µ is time feasible then
11 f(µ)← Cmax;
12 end
13 else
14 f(µ)← C/2;
15 end
Algorithm 3.11: Evaluation algorithm for BMAP solutions introduced by Barrios et al. [1].

input : BMAP solution µ
output: repaired BMAP solution, success indicator success

1 {C1, C2, . . . , Ck} ← DetermineCycleStructures;
2 fixed(i) = 0,∀i ∈ V ;
3 for i← 0 to k do
4 if ∃C ⊆ Ck, C positive cycle then
5 success← RepairPositiveCycle;
6 end
7 if success = 0 then
8 return false;
9 end

10 else
11 fixed(i) = 1, ∀i ∈ C;
12 end
13 end
14 if success = 1 then
15 return true;
16 end
17 else
18 return false;
19 end
Algorithm 3.12: Repair routine for time infeasible BMAP solutions used by Barrios et al. [1].
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3. Otherwise examine all activities which are not contained in the cycle structure and which
are not marked as fixed, if a mode change decreases the ERR.

4. If the resulting mode assignment is resource valid it is returned. Otherwise the procedure
is repeated a predefined number of times.

Recombination

Barrios et al. also proposed a new crossover operator to regard the cycle structures within the
MRCPSP/max AoN network. The cycle structure-based crossover operator considers the fact
that time feasibility is a crucial feature of a mode assignment individual.
To obtain a new individual from two given individuals, the procedure works as follows:

1. For every cycle structure in the AoN network all the contained mode assignments are
inherited from one randomly chosen parent individual.

2. The modes of the remaining activities are also taken from only one of the parents.

For an example consider the MRCPSP/max instance from figure 2.5. This instance contains the
cycle structures {2, 4} and {3, 5}. Assume that the following two individuals were selected for
crossover:

µ1 = (1, 1, 1, 1, 2, 2, 3, 1) (3.38)

µ2 = (1, 3, 3, 2, 3, 2, 1, 1) (3.39)

If the first cycle is inherited from µ1, the second one from µ2 and the remaining modes also from
µ2, the resulting individual is

µ = (1, 3, 1, 2, 2, 2, 1, 1)

Mutation

After the creation every individual is mutated. The used mutation operator changes the mode of
every activity with a given probability. If this mutation results in a resource constraint violation,
the resource repair procedure from the previous section is called.

Integration Approach

In its second stage the double genetic algorithm relies on the integration approach. This means
that the mode assignment and the priority structure which controls the scheduling algorithm
are modified in parallel. The alternative of finding a mode assignment first, transforming the
MRCPSP/max into a RCPSP/max instance and solving the non-modal problem only proved to
be the inferior approach [1].
In this subsection we examine the evolutionary operators of the double genetic algorithm.
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Representation and Encoding

For representation Barrios et al. choose the activity list scheme as already outlined in section 3.1.
An individual is a tuple (µ, λ), where µ denotes the mode assignment vector and λ represents
the activity list.
For the decoding of the genotype the authors rely on the serial schedule generation scheme for
RCPSP/max instances which is also presented in the same section. As in the approaches for the
MRCPSP the multimodal MRCPSP/max instance is transformed into its uni-modal counterpart
using the mode assignment vector µ.
Note however that in contrast to the RCPSP, where it can be guaranteed that some schedule can
be found, a call to the RCPSP/max scheduler might fail to create a schedule. This occurs, if the
time constraints inhibit the generation because of positive cycle structures or because the time
windows for some activities are too narrow for scheduling them without violating the limits of
some renewable resource.

Population Management

In contrast to the first phase, where a steady-state genetic algorithm is used, Barrios et al. use
a generational implementation for the second stage. After the initial population is generated
as described in the next subsection, the following procedure is repeated until a predefined time
limit is reached:

• All the individuals in the current population are randomly paired up.

• For every pair two offspring solutions are generated. Every new individual is mutated,
enhanced by the local search procedure and finally evaluated.

• The population for the next iteration is built from the union of the old generation and the
generated offspring by selecting the best n individuals, where n denotes the size of the
initial population.

This procedure results in a monotonic decrease of the best fitness value and the average fitness
value of the generations. The best solution in the final generation is therefore also the best
solution found so far.

Initialization

The input for the initialization method consists of the best BMAP solutions delivered from the
first phase of the double genetic algorithm. From these individuals only the feasible ones are
considered and their corresponding RCPSP/max instance is calculated.
This instance is fed into the serial RCPSP/max scheduler which computes a generates an activity
list based on the following constraints:

• At most 50 generations are executed for a given BMAP solution µ. If a valid schedule
can be generated, it is converted into an activity list λ and the individual is ready for the
second phase.
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• The first try for the individual is deterministically calculated with the LST (smallest latest
start time first) priority rule. If this approach fails, subsequent tries use regret based biased
random sampling with the same priority rule values.

If the initialization method succeeds, both local search methods which are presented later in
this section, are executed for further enhancement of the individual. The authors stress the fact
that this operator is the only one in the second phase that implements a decomposition strategy,
because it is the only one that does not change the mode assignment and only operates on the
priority structure of the individual.

Evaluation

For the evaluation of the individuals Barrios et al. use the same fitness function as for the BMAP.
If resource feasibility is not given and can not be established by the resource repair procedure
the value is set to a maximum value (lowering their chances to get to the next generation, since
the fitness value is not natural). Also if the individual contains positive cycle structures and the
repair procedure fails, the evaluation function delivers half of the maximum value.
The only modification with respect to the first phase is that for a feasible individual the makespan
of the schedule can be used instead of the approximation with the critical path.

Recombination

Barrios et al. [1] claim that a two-point crossover delivers the best results for the second phase.
A detailed examination of x-point crossover operators for the MRCPSP has already been given
in the corresponding section. Barrios et al. do not use any modifications for the MRCPSP/max.
In this work we also consider an operator tailored for the MRCPSP/max which is based on the
observation that the assignment and scheduling of cycle structures is an important feature of a
MRCPSP/max solution and the cycle structure -based crossover operator used by Barrios et al.
for the BMAP [1] which is outlined above. There we also provide an example for a crossover
operation of two mode assignment vectors. Consider again the example in figure 2.5 which
contains the cycle structures {2, 4} and {3, 5} and the two activity lists

λM = (0, 1, 3, 5, 2, 4, 6, 7) and λF = (0, 2, 4, 6, 1, 3, 5, 7).

To construct two new lists proceed as follows:

1. Initialize the new lists by copying the original ones.

2. Choose a random subset from the set of cycle structures.

3. For every cycle in this subset move the contained activities to the positions they have
assigned in the parent solution from which they are not copied.

For the example at hand and assuming that only the cycle structure {2, 4} is taken into account
the following solution is constructed:

λD = (0, 2, 4, 1, 3, 5, 6, 7)

78



When using random key encoding the priority value of the activities in the cycle structures are
replaced by the one’s from the second parent. Note however that this procedure does not result
in unique random key representations as described in section 3.1.

Mutation

The mutation operator of the second phase is a combination of two components:

1. Mutation of mode assignment: First the mutation operator of the first phase is called. Note
that this operator includes an invocation of the repair procedure presented in the previous
section, if the modification of the mode assignment vector results in a violation of the
resource constraint or the occurrence of a positive cycle structure.

2. Mutation of the activity list: After that, the activity list is mutated as presented by Hart-
mann [7, p. 90]. Two consecutive activities are swapped with a certain probability, if the
resulting activity list does not violate the precedence relation.

Local Search

As for the MRCPSP algorithms the double genetic algorithm uses local search methods to im-
prove individuals. Based on the double justification procedure by Valls et al. [29] which is
presented in section 3.4, Barrios et al. propose two search methods that take the additional con-
straints of the MRCPSP/max into account.
The first one is called MMDJmax and when given a mode assignment µ and a schedule S as
input parameters the procedure executes the following steps for every activity i (the activities
are examined in non-increasing order with respect to their completion times):

1. Delete i from the schedule and update the resource profile.

2. For every execution mode m ∈Mi calculate

• if the mode is resource feasible,

• the resulting time window [ESmi ,LSmi ] and

• the latest possible start time t∗ that does not result in a violation of the renewable
resource constraints.

3. Modify the schedule such that the new start time of i is the latest t∗ found in the previous
step for a feasible mode and set µi to the mode corresponding to the latest t∗

This procedure roughly corresponds the multi-mode backward pass (MM-B) which was dis-
cussed in the section of the local search methods for the MRCPSP. As the MM-B the MMDJmax
in this version may deliver a schedule where S0 = ∆ > 0. This indicates that a global left shift
may be performed which results in a schedule with a smaller makespan.
The second version of the MMDJmax corresponds to the multi-mode forward pass (MM-F)
and searches for the earliest start time of activity i. Also the activities are examined in a non-
decreasing order of their start times instead of the non-increasing order of their completion times.

79



The subsequent execution of these two versions results in double justification as presented by
Valls et al. [29].
Note that the MMDJmax has the property that a feasible input always results in a feasible out-
put. The mode of an activity is only modified if the change does not result in a violation of the
non-renewable resource constraint. Also the search for a new start time of an activity takes the
renewable resource constraints and the time windows into account. And if the input is feasible
there is always a feasible solution for every activity, namely the actual one.
Furthermore the implementation also guarantees that the resulting schedule has either the same
or a better makespan than the input schedule.

The second local search procedure is called MMDJU and is based on the observation that
MMDJmax limits the time windows for the search of new possible start times rather restric-
tively. This prohibits movements in the presence of restrictive maximum time lags which may
be feasible when other activities are adjusted later on.
The proposed resolution of this problem is to only consider time restrictions that are based on ac-
tivities which are already processed by the method for the calculation of the time window. This
course of action may lead into a dead end as it does in the serial schedule generation scheme
for the RCPSP/max. By using the unscheduling subprocedure of the schedule generator it is
possible to perform a number of trials until the unscheduling limit is met. The only difference
compared to the unscheduling procedure implemented in the schedule generator is that the mode
of unscheduled activities is set to their original values.
If the unscheduling limit is reached during a local search, the MMDJU switches to an MMDJ-
max which guarantees that a feasible input also results in a feasible output.
Note that the procedures presented in this section modify both the mode assignment and the
schedule (and therefore the activity list) in parallel, which makes the integration methods.
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CHAPTER 4
Results

This chapter is divided into three parts: First the results obtained by solving the MRCPSP and
the MRCPSP/max with a state of the art MIP solver are presented. This first step was executed
to test the limits of such an approach and to verify that a heuristic optimization technique is
needed.
The remaining two sections of this chapter is focused on the MRCPSP/max because of three
reasons. First the extension with maximum time lags is considered to be a useful enrichment
to model the problems within the domain. In section 2.1 we presented a workaround to avoid
maximum time lags by modifying the fitness function. But this method seems not only unintu-
itive, but also complicates the usage of the objective function to optimize not only the makespan
of a project but for example costs that arise because of missed deadlines. The resulting objec-
tive function is also nonregular which prohibits the usage of our common local search methods.
Additionally the MRCPSP received much more attention in the scientific community and recent
works already deliver results which are very close to the lower bounds (see for example Lova et
al. [19] and van Peteghem and Vanhoucke [20]). Also since every MRCPSP instance is in fact a
special case of the of a MRCPSP/max instance it is always possible to solve both with a library
which is capable of solving the latter.
The benchmark tests of this chapter are taken from the PSPLib 1. This library of project schedul-
ing problems was introduced by Kolisch and Sprecher [18] with the goal of providing common
test sets to enable the comparison of algorithms within the scientific community. The instances
are generated with ProGen, a problem generator which can be parameterized to control instance
properties like the complexity of the underlying AoN network or the availability of resources.
The library contains instance sets for not only the MRCPSP and the MRPSP/max but also for
RCPSP and the RCPSP/max. The sets are designed to cover diverse instances in order to facil-
itate robust testing (see Kolisch, Schwindt and Sprecher [17]). Together with the data files the
website also provides benchmark files which contain lower and upper bounds for every instance.
These data are the basis of the following analysis.

1http://129.187.106.231/psplib/main.html
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4.1 Mixed Integer Linear Programming Results

As already mentioned in section 2.2 this work is started with a preliminary study to evaluate
the possibility of solving problem instances optimally. For the experiments we implemented a
Java interface for the IBM ILOG CPLEX Optimizer in the version 12.2, which is a state of the
art solver for mixed integer linear programs. Furthermore IBM provides its so called CPLEX
Concert to enable users to control the solver from external programs. It also provides a Java
library which provides the modules to either load CPLEX models from text files or build them
up directly within the code.
With this equipment the mixed integer linear program formulated in section 2.2 was imple-
mented. Note that the formulation is valid for both the MRCPSP and the more general MR-
CPSP/max. For the experiments we considered both problems, also to estimate the complexity
introduced by the generalized precedence relations of the MRCPSP/max.
The test runs were executed on a 2x Dual Core AMD Opteron Processor 270 with 8 GB of
memory and constrained with a time limit of ten minutes CPU time. Solutions fall in one of the
three categories:

• Optimal: An optimal solution was found within the time limit.

• Suboptimal: There is a solution available, but it is not proven to be optimal.

• No Solution: No solution found at all.

The results of the test runs are summarized in figure 4.1. The first three bars visualize the results
for the MRCPSP benchmarks with 10, 30 and 50 activities respectively. The latter two were
generated for the MRCPSP/max with 10 and 30 activities. Note the mark at the column for the
MRCPSP/max-30, indicating that for these instances the time limit was tripled and set to half
an hour. This was necessary because no instance was solved within the ten minutes time limit.
This also holds for larger instances of the MRCPSP/max.
The graph also shows the rather high impact of the generalization of the precedence relations.

The solver was able to solve nearly a third of the MRCPSP-50 instances, more than 40% of the
MRCPSP-30 instances and more than 90% of the MRCPSP-10 instances optimally. Also the
average time it took to find such an optimal solution if it was found ranged from 30 seconds for
the smallest to 171 seconds for the largest instances.
So obviously the use of heuristic methods is necessary when solving larger instances of the
MRCPSP and the MRCPSP/max. Note that there exist more sophisticated formulations of the
problem in the literature. Nevertheless there still exist instances, even in the MRCPSP-30 set,
where the optimal solution is still not found [30].

4.2 Best Mode Assigment Problem Results

In this section an evaluation of the approaches for solving the Best Mode Assignment Problem
(BMAP) as stated by Barrios et al. [1] is given. The resulting mode assignment vectors are used
to initialize the population of MRCPSP/max solutions for the second phase of the DGA. As
outlined in section 3.5 we implemented alternative approaches to improve the results. Next to
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Figure 4.1: Test results for the IBM ILOG CPLEX Optimizer with a time limitation of 10
minutes (* 30 minutes).

the straightforward goals of obtaining populations with a high ratio of valid mode assignments
having a short critical path value, we also take into account that high diversity is generally
a desirable feature of initial populations when using genetic algorithms. This holds because
features that are not present in the initial genotype pool can only enter the population through
mutation. Because of the necessary limitation of mutation rates, the probability of introducing a
good scheme degrades with its complexity.
For the quantification of the diversity in the result population of a BMAP run the so called
Simpson index is used [26]. This coefficient is utilized in ecology to characterize the biodiversity
of a habitat. Given a sample of a population consisting of N individuals of S species, the
Simpson index is defined as

D = 1−
∑S

i=1 ni(ni − 1)

N(N − 1)
(4.1)

The resulting value corresponds to the probability of choosing two individuals of different
species randomly. If every individual is from the same species, this value will be zero and if
there is one individual of every species, it will be 1. So the higher the diversity of a population,
the higher the value of D.
However the following considerations do not consider the diversity on the individual level but
on the level of discrete alleles. This is due to the fact that the Simpson index on the individual
level - meaning that two individuals are of the same species only if their genotype is exactly the
same - is close to 1 for nearly every approach, especially when the genotype length exceeds 30.
Instead the index is calculated for every allele that is the mode assignment for every activity.
So S corresponds to the number of execution modes of the activity and N equals the number
of individuals in the population. The average Simpson index is calculated as the mean over all
populations of the 270 problem instances and activities.
The second metric used for the description of the diversity of the population is the average edit
distance. This quantity is calculated by summing up the edit distances of every pair of indi-
viduals in the final generation and dividing it by the number of pairs. Again this value is also
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averaged over the entire problem instances.
Note that for the calculation of these two quantities only the valid individuals of the population
are taken into account. This results in the fact that the values cannot be compared directly when
examining two approaches. The value of the similarity metrics are naturally influenced by the
validity ratio in an inverse manner.
In the tables 4.1, 4.2 and 4.3 the results for the MRCPSP/max-30, MRCPSP/max-50 and
MRCPSP/max-100 instances are summarized. Tests were executed for a steady-state genetic
algorithm inspired by the solution procedure of Barrios et al. as presented in section 3.5, but
with changed selection modes and a classical generational genetic algorithm with elitism.
The initialization, repair and mutation procedures are taken from Barrios et al. and are also out-
lined in section 3.5. The depicted results are taken from the runs executed with the cycle-based
crossover. Nevertheless the algorithms were also tested with one-point, two-point and uniform
crossover operators which did not lead to significantly different results.
All experiments were conducted with a population size of 100 individuals. As an implementation-
independent stopping criterion the limitation of generated solutions was chosen to be 1000. An
execution step of the repair algorithm was not counted as a generation step. The elitist count for
the generational genetic algorithm was set to 10. Furthermore the mutation operator of Barrios
et al. was used with a mutation probability of 4%.
So the differences between the six examined implementations are limited to aspects of the pop-
ulation management (steady-state vs. generational with elitism) and the selection policies. The
original version of Barrios et al. is also a steady-state algorithm which chooses the individuals
for reproduction based on their critical path length values by regret-based biased random sam-
pling. For the experiments at hand selection with roulette wheel, similarity roulette wheel and
similarity tournament were used. The replacement policy of the steady-state algorithm is the
same as in the implementation of Barrios et al..

Evolution Selection Valid CP Edit Distance Simpson
Roulette 87.03 (534.73) 62.27 8.72 0.29

Steady-State Sim. Roulette 81.11 (801.85) 63.86 11.20 0.37
Sim. Tournament 84.86 (485.57) 66.76 12.67 0.42

Roulette 91.17 (239.25) 77.17 12.27 0.41
Generational Sim. Roulette 79.53 (731.16) 80.14 16.22 0.54

Sim. Tournament 74.95 (920.06) 87.12 17.34 0.58

Table 4.1: Results for the BMAP for the MRCPSP/max-30 instances after 1000 generated so-
lutions. For six different evolution scheme/selection strategy combinations the table shows the
corresponding average percentage of valid solutions (with variance), the average length of the
critical path, the average edit distance and the average value of the simpson index.

Looking at the results for the MRCPSP/max-30 instances depicted in table 4.1, we see most
of our expectations to be confirmed. In general the steady-state approach is less explorative than
the generational implementations. This leads to better values for the resulting critical paths, but
generally less diversity in the resulting population. The second parameter - the selection policy
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- is also of high importance. So a steady-state algorithm with similarity tournament selection
policy delivers similar results to an algorithm implementing the generational population policy
with roulette selection. Nevertheless the latter performs the best with respect to validity finding
on average 91 with a rather low variance of 239.25.
With respect to diversity the generational algorithm with similarity tournament selection deliv-
ers the best results for both metrics. Of course these results should be interpreted with caution,
because they have to be paid with the lowest average validity and the highest variance on this
value. Nevertheless the edit distance and the Simpson index improved by a factor of 2 compared
to the most conservative implementation - steady-state with roulette selection.

Evolution Selection Valid CP Edit Distance Simpson
Roulette 88.11 (509.85) 105.82 13.69 0.27

Steady-State Sim. Roulette 81.82 (782.60) 105.74 17.50 0.35
Sim. Tournament 85.08 (543.51) 111.01 20.47 0.41

Roulette 89.43 (340.97) 120.99 21.06 0.42
Generational Sim. Roulette 77.72 (968.43) 124.41 26.29 0.53

Sim. Tournament 74.99 (1091.60) 131.72 28.26 0.57

Table 4.2: Results for the BMAP for the MRCPSP/max-50 instances after 1000 generated so-
lutions. For six different evolution scheme/selection strategy combinations the table shows the
corresponding average percentage of valid solutions (with variance), the average length of the
critical path, the average edit distance and the average value of the simpson index.

The results for the MRCPSP/max-50 instances (see table 4.2) confirm the observations from
the smaller problem. Still the generational algorithms deliver more diverse populations and the
steady-state implementation obtains better critical paths.

Evolution Selection Valid CP Edit Distance Simpson
Roulette 88.06 (568.73) 242.05 23.12 0.23

Steady-State Sim. Roulette 81.30 (986.64) 240.35 29.27 0.29
Sim. Tournament 79.58 (963.73) 250.06 40.26 0.40

Roulette 79.75 (695.67) 256.80 38.06 0.38
Generational Sim. Roulette 72.57 (998.16) 260.55 45.54 0.46

Sim. Tournament 47.22 (1625.72) 265.16 50.71 0.51

Table 4.3: Results for the BMAP for the MRCPSP/max-100 instances after 1000 generated
solutions. For six different evolution scheme/selection strategy combinations the table shows
the corresponding average percentage of valid solutions (with variance), the average length of
the critical path, the average edit distance and the average value of the simpson index.

For the large MRCPSP/max-100 instances (see table 4.3) we observe a change in the perfor-
mance of the algorithms. Here the steady-state algorithm shows better validity result for every
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selection policy including the roulette wheel. Also the generational implementation performs
poorly when combined with the similarity tournament selection leading to an average validity
rate of only 47.11% with an enormous variance of 1625.72. Note also that the diversity metrics
in this context cannot be compared to the other results directly, because the number of valid
individuals is significantly smaller.

In conclusion we may summarize that the different implementations work generally as ex-
pected. The generational implementation delivers more diverse but less fit populations, while
this effect may be controlled with the choice of the selection policy. The extreme points of the
configurations are the steady-state algorithms with roulette wheel selection on the one hand and
the generational implementation with similarity tournament selection on the other. While the
latter fails to provide valid individuals, at least for large instances, the first results in populations
with a rather small genotype pool.
Obviously there exists a tradeoff between validity, fitness and diversity when solving the BMAP.
The influence of the different solution approaches on the MRCPSP/max itself is evaluated in the
next section.

4.3 Results for the MRCPSP/max

The final algorithm for the resolution of the MRCPSP/max is basically an extended version of
the DGA by Barrios et al. [1]. To evaluate the performance of the library, a number of test runs
were executed with varying parameters to explore the impact of the different concepts presented
throughout this work. Namely the following parameterizations were taken into account:

• BMAP solution algorithm: Based on the results from the previous section three BMAP
solution algorithms were taken into account. The conservative steady-state algorithm with
roulette selection (SSR) and the two more explorative generational implementations with
similarity roulette (GSR) and similarity tournament selections (GST) respectively. For a
detailed treatise of the concepts refers to section 3.5. The parameter settings for the runs
correspond to the settings used in the previous section.

• Initialization: Next to the initialization method for the prioritization of the activities pre-
sented in section 3.5 which is based on the latest start time priority rule (LST) we also
implemented a completely randomized version (RND). In this implementation the chance
of every eligible activity to be chosen next is uniformly distributed, which was thought to
result in more variability in the genotype pool.

• Encoding and SGS: The implementation allows also the configuration of the chosen en-
coding scheme. As an alternative to the activity list representation (AL) used in the orig-
inal DGA, we also implemented the random key encoding (RK) to represent the prior-
ity structure (see section 3.1). Furthermore there exists the possibility to use different
schedule generation schemes. In addition to the serial SGS (SS) we provide a mixed ver-
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sion (MXD) where the SGS of an individual is fixed during initialization (either serial or
mixed). Then the SGS is inherited during the recombination step.

• Selection: For selecting individuals for recombination we used stochastic universal sam-
pling (SUS), tournament selection (TS) and rank-based selection (RS).

• Recombination: Aside from the one-point (PX1), two-point (PX2) and uniform (UX)
crossover we also tested the cycle-based crossover (CYC) for priority structures which is
also outlined in section 3.5.

• Population Size: Tests also included running the algorithm with different population sizes
(P100, P200 or P500).

For the introduction of mutation we used the procedure from the original DGA with a mutation
probability of 4%. We also used the local search procedure MMDJ proposed by Barrios et al. [1].
The number of rescheduling steps of the MMDJU subprocedure and the SGS was limited to the
number of activities in the problem instance.
Recently Kolisch et al. suggested that benchmarks should be computed with respect to the count
of generated schedules to enable a fair comparison of different approaches unbiased by imple-
mentation details and hardware configurations [16]. Therefore we present results after 1000,
5000 and 10000 generated schedules instead of a limitation of CPU time. Note that a schedule
counts if it is generated successfully by an SGS. A modification in course of the execution of a
local search procedure does not count as a schedule generation.

The following tables show the results for the MRCPSP/max-30, MRCPSP/max-50 and
MRCPSP/max-100 instance sets. We tested the library with a large number of different param-
eter settings but only provide the most important here. Every table starts with parameter setting
which is the best-performing (after the generation of 10000 solutions) found in course of the
analysis. The following 12 settings change exactly one of the parameters of the best perform-
ing setting. This way it is assured that at least a local optimum with respect to this one-switch
neighborhood has been found.
The following six columns show the mean %-gap relative to the lower bounds and the cor-
responding variance which are determined over all the 270 instances for the three benchmark
checkpoints. The last column indicates the statistical significance of the results. The test for
statistical significance checked the null hypothesis claiming that the given parameter setting per-
forms the same as the best one with respect to the relative makespan deviation by using the
Student’s t-test. The P-value denoted as ρ in the last column shows the probability of the null
hypothesis being true. So the smaller the value the stronger is the evidence that the correspond-
ing parameter setting is worse than the best one.
For the MRCPSP/max-30 instances (see table 4.4) the best performing combination was

BESTi30 = (SSR, LST, CYC, AL, P200, MXD, SUS)

which uses a steady-state roulette BMAP algorithm using the LST initialization rule, the activity
list representation with mixed scheduling and the cycle-based crossover operator. The popula-
tion size was set to 200 and for selection the stochastic universal sampling method was used.

87



This parameter setting delivered the best results after 5000 and 10000 generated schedules. Af-
ter 1000 schedules the configuration using a random key encoding showed the best results. It is
also interesting to see that the selection method had a large impact on the long run. Both the rank
and the tournament selection outperformed the sampling method after 1000 schedules, but yield
no convincing results in the end. By far the most negative impact on the performance has the
switch from the cycle-based to the uniform crossover method which resulted in the worst results
in the test set. Also the incorporation of the 2-point crossover, which is the chosen crossover
operator of the original DGA, leads to slight decrease of performance. The results of the statisti-
cal significance test also show that the best setting performs significantly better than the version
with the GSR, RND, UC and PX1. These have a P-value of < 5%. For the other settings the
result is not as clear, but still no P-value reaches more than 30%.

Instance Percentage Gap ρ [%]
1000 Schedules 5000 Schedules 10000 Schedules
Avg Variance Avg Variance Avg Variance

BESTi30 14.08 269.85 11.86 209.26 11.29 187.77 -
GSR 14.07 270.02 12.35 226.57 11.88 204.56 0.37
GST 13.66 268.87 11.95 199.50 11.47 187.71 29.91
RND 14.36 264.46 12.43 209.03 11.90 193.19 0.90
UX 14.75 272.02 13.02 242.61 12.37 219.78 0.90
PX1 14.37 275.43 12.12 210.28 11.81 193.13 2.42
PX2 13.74 280.28 11.97 211.41 11.53 190.50 12.93
RK 13.59 248.64 12.21 212.15 11.60 188.26 12.93
P100 14.27 265.25 12.50 215.29 11.82 188.37 14.43
P500 13.88 265.90 12.21 211.07 11.75 198.67 5.28
SS 13.85 274.92 12.12 206.70 11.57 188.23 24.84
TS 14.02 253.72 12.26 200.50 11.94 195.84 5.44
RS 14.02 264.60 12.18 206.19 11.91 195.26 16.22

Table 4.4: Results for the MRCPSP/max-30 instances solved with different parameter settings.

Now consider the results for the MRCPSP/max-50 instances depicted in table 4.5. For
this instance set the best found configuration included the usage of the generational similarity-
tournament BMAP algorithm and LST initialization combined with the activity list encoding,
the classical serial SGS and again the cycle-based crossover operator. This time a population of
500 individuals proved to be advantageous, but again the stochastic universal sampling method
was used.

BESTi50 = (GST, LST, CYC, AL, P500, SS, SUS)

In contrast to the previous test set, the best performing configuration here delivered the best so-
lutions consistently for all three checkpoints. Again the incorporation of the uniform crossover
operator deteriorates the results significantly, whereas the 1-point and 2-point crossovers are
closely behind. Another configuration change with a negative influence is the change of the ini-
tialization method to random. This change results in the worst performance after 1000 schedules.
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Instance Percentage Gap ρ [%]
1000 Schedules 5000 Schedules 10000 Schedules
Avg Variance Avg Variance Avg Variance

BESTi50 16.81 293.66 13.97 211.88 13.18 184.54 -
SSR 17.03 292.77 14.14 217.75 13.46 196.53 29.23
GSR 17.08 294.96 14.45 222.58 13.78 211.08 3.05
RND 18.17 314.37 14.41 211.42 13.95 196.96 < 0.01
UX 17.27 293.71 14.88 239.49 14.02 214.69 0.26
PX1 17.11 280.73 14.07 214.98 13.23 191.52 87.43
PX2 17.36 297.12 14.15 201.89 13.36 180.29 53.21
RK 16.92 281.40 14.04 210.49 13.68 202.88 6.18
P100 17.82 311.79 14.27 218.32 13.60 207.86 16.64
P200 17.83 307.99 14.05 212.12 13.29 196.27 66.48
MXD 17.11 297.17 14.14 216.54 13.59 196.08 21.10
TS 16.86 286.98 14.17 222.11 13.62 204.14 16.62
RS 16.82 275.72 14.15 214.23 13.64 201.04 8.34

Table 4.5: Results for the MRCPSP/max-50 instances solved with different parameter settings.

The caused damage seems to be repaired in the course of the run, but still leading to mediocre
results.
With respect to statistical significance these results are much closer. The 1-point and 2-point
crossovers show a high probability of performing equally well as the best setting. Also a de-
crease of the population size to 200 does not result in too worse results.

The last test set is concerned with the MRCPSP/max-100 instances (table 4.6) and is also the
most interesting one, because the library must be able to deal with large problems in practice.
The best configuration for this problem class was

BESTi100 = (SSR, LST, CYC, RK, P200, SS, SUS)

This is a steady-state roulette BMAP procedure again with the LST initialization implementa-
tion. This time the random key representation combined with a serial SGS proved to be the best
choice for the encoding/decoding scheme. Again the cycle-base crossover and the stochastic
universal sampling method outperformed the alternative approaches. The population size was
set to 200 candidate solutions. Note however that the victory in this test set was not undis-
puted. By far the best start was executed by the configuration using the generation similarity-
tournament BMAP algorithm we proposed earlier in this work. For the checkpoint after 5000
generated schedules the configuration using a mixed SGS outperformed the others. Both con-
figurations finished as runner-ups, being only 0.05% behind the best configuration. The change
of the crossover operator also resulted in significantly deteriorated results. Again the uniform
crossover performed worst consistently over all checkpoints.
The results from the statistical test show similar results with P-values of more than 80% for the
generation similarity-tournament BMAP and the mixed scheduling approach. The other settings
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Instance Percentage Gap ρ [%]
1000 Schedules 5000 Schedules 10000 Schedules
Avg Variance Avg Variance Avg Variance

BESTi100 27.06 419.43 21.12 280.12 19.76 251.85 -
GSR 27.12 422.54 21.44 285.05 20.25 259.64 11.49
GST 26.58 407.13 21.16 278.89 19.82 253.67 84.05
RND 28.41 414.91 22.13 291.97 20.60 266.30 0.52
UX 29.41 458.77 24.38 310.71 23.03 281.02 < 0.01
PX1 28.25 436.64 22.63 283.81 21.09 251.05 < 0.01
PX2 28.14 436.29 22.59 297.30 21.25 263.14 < 0.01
AL 27.18 379.23 21.62 297.07 20.09 264.81 10.68
P100 27.32 398.89 21.72 295.56 20.21 262.03 7.81
P500 27.36 410.83 21.74 289.97 20.60 265.11 2.16
MXD 27.31 424.95 21.11 275.86 19.82 243.36 80.41
TS 27.30 429.29 22.46 342.85 20.84 311.75 0.16
RS 27.51 490.02 22.24 347.09 20.79 307.92 < 0.01

Table 4.6: Results for the MRCPSP/max-100 instances solved with different parameter settings.

reach values way below 20%.

For a comparison with recent results from the literature refer to table 4.7. It provides a
summary of the results for the benchmarks as reported by Barrios et al. [1] for their DGA, which
are to our knowledge the best results obtained so far.
It can be seen that the implementation presented in this work is outperformed by the DGA for
the small MRCPSP/max-30 instances, but improves the results for the larger MRCPSP/max-50
and MRCPSP/max-100 instances. Note however that the results are not directly comparable
because the stop condition of the DGA is a limitation of CPU time. We still may conclude that
the procedure implemented in the course of this work is indeed competitive

Instances CPU time (s) Deviation
MRCPSP/max-30 1 15.98
MRCPSP/max-30 5 11.61
MRCPSP/max-30 100 10.46

MRCPSP/max-50 4 15.53

MRCPSP/max-100 4 37.31
MRCPSP/max-100 100 22.05

Table 4.7: Results reported for the DGA by Barrios et al. obtained with a 1.4 GHz PC [1].
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4.4 Conclusion

The first important conclusion to infer from the tests in this chapter is that a large portion of the
scheduling problems that arise in the considered domain is not solvable optimally. Therefore the
usage of heuristic optimization algorithms is indeed necessary. This deduction follows directly
from the results obtained in the first section of this chapter. Even a sophisticated MIP solver like
CPLEX is not able to solve MRCPSP/max instances optimally or often to find a solution at all.
The second section is concerned with the solution of the best mode assignment subproblem that
occur in multimodal scheduling problems. We suggested algorithms that do not only take the
validity and the duration of a underlying project into account, but also consider the fact that in
general a more diverse population leads to better overall results when genetic algorithms are
used. It was shown that the methods indeed increase the diversity in the resulting population.
This directly results in more variability for the initial population in the second stage of the
algorithm.
This second stage is examined in the third section of this chapter. There we present the results of
the best configuration of the algorithm that has been found in the course of this work and show
that these configurations cannot be improved by changing a single parameter. The following
observations may be stated concerning a good parameter and operator selection:

• There are some operators that consistently deliver better results than their alternative. First
of all the initialization method using the LST rule to generate the candidate’s priority struc-
ture is clearly preferable to choosing the priority randomly. The idea to further diversify
the initial population did not pay off.
Also the stochastic universal sampling method seems to be a robust choice for the se-
lection strategy. Neither rank nor tournament selection could increase the quality of the
solutions.
However the strongest impact on performance had the choice of the recombination method.
The proposed cycle-based crossover clearly outperformed the X-point methods. The worst
choice being the uniform crossover which obtained the weakest results consistently.

• The best choice of the encoding/decoding scheme on the other hand is not an obvious one.
The activity list representation performed best in two of the three cases, but the random
key representation outperfomed it for the largest instances. Also the choice of the SGS
is not trivial. Especially because the mixed scheme achieved good results for the large
instances and even the best ones after a medium runtime (5000 generated schedules).

• The same holds for the used BMAP algorithm. Here the steady-state roulette approach
inspired by the original DGA performed good, but was outperformed by the generation
similarity-tournament algorithm proposed in this work. The similarity-roulette implemen-
tation that was meant as a tradeoff between the two could not achieve the same results.

In summary it can be said that the survey showed that the optimization library implemented
in the course of this work fulfills the requirements. It is parameterizable in many ways which
should allow the user to solve a variety of scheduling problems with different characteristics. It
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was also shown, that the results delivered by the library are competitive, compared to the most
sophisticated implementations in the literature.
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CHAPTER 5
Summary

5.1 Summary

This thesis is concerned with the resolution of scheduling problems that arise in the context of
IT automation. The concrete use case at hand is the domain of the UC4 Operations Manager.
The first chapter is started with an introduction of the objects and concepts within the UC4 OM.
After that we state the desired result of this work, which is the creation of a software library
that is capable of generating high quality solutions for the scheduling problems. Currently this
step is executed by hand as the UC4 OM provides only rudimentary mechanisms of automated
scheduling. This manual scheduling gets tedious when the controlled procedures reach a certain
level of complexity. For these cases it is desirable to move this task to an optimization program.
In order to create such an optimization program it is mandatory to formalize the problem do-
main in a mathematical model. The decision process that resulted in the actual formalization is
documented in section 1.3. Together with experts from UC4 the problem domain described in a
number of machine scheduling problems from the literature. Since these are not flexible enough
to model all the concepts, it was decided to use more complex multi-mode resource-constrained
project scheduling problems.
The second chapter provides a thorough mathematical discussion of various versions of this
problem, a description of different objective functions to evaluate their performance and a pro-
cedure to translate the actual scheduling problems into the mathematical formulation. After that
we outline exact and heuristic optimization approaches of the problem from the literature. This
research and a preliminary study strongly suggest that only a heuristic optimization method is
capable of solving problem instances with the size and complexity that are inherent in a typical
UC4 OM system. The decision to use the a genetic algorithm approach is based on the fact
that this solution approach is chosen and documented in a number of scientific papers. Also the
approach has been proven to be very successful for similar problems. Furthermore the fact that
objective functions are relatively flexible is appealing, because in IT environments which often
are regulated by legal service level agreements, the measure of quality is not only overall time.
It may be a more complex cost function based on missed deadlines.
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After the identification of the MRCPSP/max as the most suitable problem formalization, a sur-
vey of the concepts for genetic algorithms to tackle this problem is given. Because it is possible
to reduce the MRCPSP/max to an MRCPSP instance we also provide an overview of works
on this problem. Furthermore do not examine the operators alone, but examine different possi-
bilities for the representation and the population management of such algorithms. Namely we
present different approaches to solve the BMAP, introduce a crossover operator based on the
cycle-based crossover of Barrios et al. [1] and evaluate the random keys representation.
In the last section we present a number of results obtained in the course of this work. First of all
the findings of the preliminary study are shown. These support our decision to discard the idea
of using an MIP solver to generate optimal solutions.
After that we present the results for the best mode assignment problem (BMAP) which is a sub-
problem of the MRCPSP/max. There we evaluate the modifications we proposed in this work
with respect to solution quality and diversity. It could be shown that the introduced changes have
desirable effects on the obtained solutions.
For the results in the last section a number of runs were executed with benchmarks used in the
scientific community. With these standardized test instances we could verify that our imple-
mentation is suitable for problem instances showing a variety of different characteristics. This
verification is important, because there is no typical UC4 OM scheduling problem since the
clients use the software in very different ways. Furthermore these tests allowed us to compare
our work with the state of the art implementations, where they proved to be competitive.

5.2 Future Work

To fully exploit the possibilities of the optimization library created in the course of this work,
two weaknesses of the UC4 OM have to be challenged. The first one is that runtimes of exe-
cuted UC4 objects may vary strongly. At this point in time the product predicts these runtimes
with rather simple time series approaches using either sliding mean or linear regression. It only
provides a simple outlier detection filter which also must be parameterized manually for every
object. These runtime predictions are going to be improved by the introduction of more sophis-
ticated regression algorithms. There is data already present in the system which can be used to
refine runtime prediction. Run attributes like the host, the user, the presence of certain command
line parameters can be used for machine learning algorithms like regression trees or neural net-
works.
The second topic is concerned with an appropriate representation of hardware resources. Cur-
rently it is up to the client to assign a certain amount of resource supply to agents and demand to
objects. This task may be executed automatically by running benchmarks or reading out system
information from the host machine. Until this information is incorporated in the UC4 system,
the library relies on abstract concepts as queues, UC4 resources and restrictions of parallel runs.

94



Bibliography

[1] A. Barrios, F. Ballestin, and V. Valls. A double genetic algorithm for the mrcpsp/max. Com-
puters & Operations Research, 38(1):33 – 43, 2011. Project Management and Scheduling.

[2] P. Brucker. Scheduling Algorithms. Springer Publishing Company, Incorporated, 5th edi-
tion, 2007.

[3] P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algorithm for the
resource-constrained project scheduling problem. European Journal of Operational Re-
search, 107(2):272 – 288, 1998.

[4] D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke. A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling. European Journal of Op-
erational Research, 169(2):638 – 653, 2006.

[5] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5:345–, June 1962.

[6] M. Habib, M. Morvan, and J.-X. Rampon. On the calculation of transitive reduc-
tion—closure of orders. Discrete Mathematics, 111(1-3):289 – 303, 1993.

[7] S. Hartmann. Project scheduling under limited resources: models, methods, and applica-
tions. Number Nr. 478 in Lecture notes in economics and mathematical systems. Springer,
1999.

[8] S. Hartmann and A. Drexl. Project scheduling with multiple modes: A comparison of exact
algorithms. Networks, 32(4):283–297, 1998.

[9] S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art heuristics for
the resource-constrained project scheduling problem. European Journal of Operational
Research, 127(2):394 – 407, 2000.

[10] R. Heilmann. Resource–constrained project scheduling: a heuristic for the multi–mode
case. OR Spectrum, 23:335–357, 2001.

[11] R. Heilmann. A branch-and-bound procedure for the multi-mode resource-constrained
project scheduling problem with minimum and maximum time lags. European Journal of
Operational Research, 144(2):348 – 365, 2003.

95



[12] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, USA, 1975.

[13] Alcaraz J., Maroto C., and Ruiz R. Solving the multi-mode resource-constrained project
scheduling problem with genetic algorithms. Journal of the Operational Research Society,
54(6):614–626, 2003.

[14] J. Zimmermann K. Neumann, C. Schwindt. Project Scheduling with Time Windows and
Scarce Resources. Springer-Verlag Berlin Heidelberg New York, 2002.

[15] R. Kolisch. Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation. European Journal of Operational Research, 90(2):320 – 333,
1996.

[16] R. Kolisch and S. Hartmann. Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Research,
174(1):23 – 37, 2006.

[17] R. Kolisch, C. Schwindt, and A. Sprecher. Benchmark instances for project schedul-
ing problems. In Handbook on Recent Advances in Project Scheduling, pages 197–212.
Kluwer, 1998.

[18] R. Kolisch and A. Sprecher. Psplib - a project scheduling problem library: Or software -
orsep operations research software exchange program. European Journal of Operational
Research, 96(1):205 – 216, 1997.

[19] A. Lova, P. Tormos, M. Cervantes, and F. Barber. An efficient hybrid genetic algorithm for
scheduling projects with resource constraints and multiple execution modes. International
Journal of Production Economics, 117(2):302 – 316, 2009.

[20] V. Van Peteghem and M. Vanhoucke. A genetic algorithm for the preemptive and non-
preemptive multi-mode resource-constrained project scheduling problem. European Jour-
nal of Operational Research, 201(2):409 – 418, 2010.

[21] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.

[22] S. Hartmann R. Kolisch. Heuristic algorithms for solving the resource-constrained project
scheduling problem: Classification and computational analysis. In J. Weglarz, editor,
Project scheduling: Recent models, algorithms and applications, page 147–178. Kluwer,
1999.

[23] B. De Reyck and W. Herroelen. The multi-mode resource-constrained project schedul-
ing problem with generalized precedence relations. European Journal of Operational Re-
search, 119(2):538 – 556, 1999.

[24] F. Rothlauf. Representations for genetic and evolutionary algorithms (2. ed.). Springer,
2006.

96



[25] Scott E. Sampson and Elliott N. Weiss. Local search techniques for the generalized re-
source constrained project scheduling problem. Naval Research Logistics NRL, 40(5):665–
675, 1993.

[26] E. H. Simpson. Measurement of diversity. Nature, 163(4148), 1949.

[27] A. Sprecher, S. Hartmann, and A. Drexl. An exact algorithm for project scheduling with
multiple modes. OR Spectrum, 19:195–203, 1997.

[28] S. Knust T. Baar, P. Brucker. Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, chapter Tabu-search algorithms and lower bounds for the
resource-constrained project scheduling problem, pages 1–8. Kluwer Academic Publish-
ers, Boston, 1998.

[29] V. Valls, S. Quintanilla, and F. Ballestin. Resource-constrained project scheduling: A crit-
ical activity reordering heuristic. European Journal of Operational Research, 149(2):282
– 301, 2003.

[30] J. Weglarz, J. Józefowska, M. Mika, and G. Waligóra. Project scheduling with finite or
infinite number of activity processing modes - a survey. European Journal of Operational
Research, 208(3):177 – 205, 2011.

[31] G. Zhu, J. F. Bard, and G. Yu. A branch-and-cut procedure for the multimode resource-
constrained project-scheduling problem. INFORMS J. on Computing, 18(3):377–390, Jan-
uary 2006.

97


	Introduction
	Motivation
	Problem Statement
	The UC4 Operations Manager
	UC4 Objects
	Desired Results

	Methodological Approach
	Machine Scheduling Problems
	Formulation as Machine Scheduling Problem
	Project Scheduling Problems
	Benchmarking


	Methodology
	Problem Formalization
	The Resource-Constrained Project Scheduling Problem
	The Multi-Mode Resource-Constrained Project Scheduling Problem
	General Time Constraints
	General Objective Functions
	Problem Translation

	Solution Approaches and Related Works
	Exact Methods
	Heuristic Methods
	Chosen Method


	Concepts for Genetic Algorithms
	Representation of Schedules
	Orderings of Activities
	Schedule Generation Schemes
	Activity List Representation
	Random Key Representation
	Priority Rule Representation
	Shift Vector Representation
	Schedule Scheme Representation

	Representation of Execution Mode Selections
	Considerations for Population-based Approaches
	Hybrid Genetic Algorithms
	Fitness Function and Selection Strategy
	Population Management

	MRCPSP
	Preprocessing
	Initialization
	Recombination
	Mutation
	Local Search
	Evaluation

	MRCPSP/max
	The Best Mode Assignment Problem
	Integration Approach


	Results
	Mixed Integer Linear Programming Results
	Best Mode Assigment Problem Results
	Results for the MRCPSP/max
	Conclusion

	Summary
	Summary
	Future Work

	Bibliography

