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Abstract

Many parameters and improvements have been designed to solve special prob-

lems. However, it is difficult to find techniques which can be used universally. In

my thesis, I will describe a mechanism which should improve the ability to find a

better solution for each genetic algorithm; a complete solution archive based on a

trie data structure.

The idea of the archive is to efficiently store all visited solutions, avoid revis-

its, and have a good and intelligent mechanism for transforming of already visited

solution into a similar unvisited one.

The genetic algorithm can be seen as a separate module which generates

solutions in a specific way. Every created solution is forwarded to the trie. As the

trie accepts the solution, it checks whether it is included in the archive already. If

the solution is not in the archive already, it is simply inserted into the trie. On the

other hand, when the solution is in the trie, it comes to a revisit. Handling of the

revisit can be done in several ways. It is important to find a good balance between

the quality of the changed solution and the effort needed to change it. After insert-

ing or altering a solution, it is sent back to the genetic algorithm module and then

handled as usual.

This thesis presents the implemented algorithms and data structures. The

archive is tested on three problems; Royal Road function, NK landscapes problem,

and MAX-SAT problem. The results of the standard genetic algorithm are com-

pared to the algorithms that use the archive. The results show that in many cases

the archive contributes to the quality of the solutions.
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Chapter 1

Introduction

1.1 Global optimization

One of the biggest challenges for computer science is optimization. Mankind

searches for optimality in every part of life. Everyone wants to get all reachable

goods with minimal effort. Also in nature is a hidden search for the optimal state.

This is described by physical laws. So, there is no need to wonder when we see

that from the beginning one of the main challenges for computer science is opti-

mization of different problems [42, 60].

"Global optimization is the branch of applied mathematics and numer-

ical analysis. The goal of global optimization is to find best possible

elements s∗ from a set S according to set of criteria F = {f1, f2, f3}."[60]

A wide variety of optimization methods has been developed [43]. These

strategies can generally be divided into two classes: exact (or deterministic) and

heuristic (Figure 1.1).

Exact methods do an exactly determinded decision at every step of the algo-

rithm. This kind of algorithms is used efficiently if there is a possibility to explore

the search space in a systematic way.

The simplest exact algorithm is the exhaustive search algorithm. It tries all

possible solutions from a given set and picks the best one. However, this effort is

often undesirable even for small problems [60].
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Figure 1.1: Exact and heuristic algorithm classes - overview

Similar to exhaustive search is Dynamic programming. Its advantage is that it

avoids re-computation by storing the solutions of subproblems. The main problem

of this method can be the formulating of the solution process as a recursion.

The Branch and Bound algorithm belongs also to the class of exact algo-

rithms. It was proposed by Land and Doig in 1960 for linear programming [34].

This method is based on the divide and conquer strategy. It enumerates all the

candidate solutions inside estimated bounds. All other candidates, which are out-

side these bounds, are discarded. The bounds are iteratively optimized. The al-

gorithm stops when the set of candidates is reduced to a single element.

The decision whether to use an exact algorithm or not depends on search

space and possible solution characteristics. The factors which make the applica-

tion of exact methods easier are: lower dimensionality of the search space, clear

relations between solution candidates and their fitness values, etc.

Another estabished strategy class is heuristic algorithms. Heuristics help

the algorithm to decide which one of a set of possible solutions is to be examined

next.

"A heuristic [38, 47, 44] is a part of an optimization algorithm that uses

the information currently gathered by the algorithm to help to decide

which solution candidate should be tested next or how the next indi-
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vidual can be produced. Heuristics are usually problem class depen-

dent." [60]

I will describe some basic algorithms which belong to the heuristic class

closer.

A construction heuristic is an algorithm that generates a solution according

to some construction rules. This method is often fast, but very problem-specific.

Local search algorithms are probably the biggest group of heristic algo-

rithms. They start to work on a single current state and then they transcend only to

neighbors of the current state [51]. Local search algorithms are not systematic but

have two major advantages: they are often able to find solutions in large or infinite

search spaces, and they use often only a constant amount of memory. Their biggest

disadvantage is the processing time. There are many different search strategies:

Depth-First Search, Depth-Limited Search [51], Greedy Search, Random walks [26]

and Adaptive Walks.

Simulated annealing algorithm [4], was invented in 1983. It occasionally ac-

cepts solutions that are worse than the current. The probability of accepting the

worse solution decreases with time.

Tabu search [7] is a method, which uses memory structures to store a number

of last moves or evaluated solutions. It prohibits the repetition of these moves or

re-evaluating of solutions to escape from local optima.

Evolutionary Computation a spectial heuristic class. It is based on iterative

improvement of a selected set of multiple solution candidates. This set of solu-

tion candidates is called population. The most important members of Evolutionary

Computation are Evolutionary Algorithms (EA), which are described later in this

chapter, Memetic algorithms, and Swarm Intelligence [60].

Memetic algorithm is a combination of the Evolutionary algorithm with the

Local earch algorithm [41]. Basically, the approach combines local search heuris-

tics with crossover operators. After creating the initial population randomly or

using a heuristic, a local search is started to improve the fitness of each population

individual.
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Swarm intelligence [13] is a technique based on the study of collective be-

havior in decentralized, self-organized, systems. The most important classes of

this approach are Ant Colony Optimization and Particle Swarm Optimization.

1.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a population-based type of optimization algo-

rithm that use biological principles. These are: mutation, crossover, natural selec-

tion, and survival of the fittest [5, 6]. By applying these principles of Darwinian

evolution, they try to find solutions for difficult problems. Additionally, the EA is

goal-driven, which is a change in semantics compared to typical biological pro-

cesses. The EAs only make a few assumptions about the underlying fitness land-

scape. This is an advantage compared to other optimization methods, because

they consistently perform well in many different problem categories [60].

The principles of the EA can be written in the following four steps:

• Initialize population – create initial population of random individuals

• Evaluation – compute fitness values of the solution candidates

• Selection – select the fittest individuals for reproduction

• Reproduction – create new individuals from the mating pool by crossover and

mutation

The process is started with the initialization step. The next three steps are

repeated until the termination criterion is reached. The EA process is displayed in

Figure 1.2.

Figure 1.2: Four basic steps of the Evolutionary algorithm
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Different schools of EAs have evolved during past decades: Genetic Algo-

rithms, mainly developed by J. H. Holland in the USA [25], Evolutionary Strate-

gies, developed in Germany by I. Rechenberg [48] and H.-P. Schwefel [52], and

Evolutionary Programming [16]. Each of these constitutes a different approach,

however, they are inspired by the described principles of natural evolution. Ev-

ery class of the EAs implement these principles in a specific way. Because I was

focused on Genetic Algorithms, they are described in detail in Section 1.3.

1.3 Genetic Algorithms

Genetic Algorithms (GAs) are one of the most-used dialects based on the prin-

ciples of EAs. They are momentarily widely spread and well-established meta-

heuristic for solving NP-Problems. For them, it is typical that the elements of

their search space are binary strings. The roots of the GAs stretch back to the

middle of the 20th century, but they were not popular or widely recognized until

J.H.Holland published his work [24, 25]. Today the GAs are used in many different

areas like scheduling, chemistry, medicine, data mining and data analysis, geom-

etry and physics, economics and finance, networking and communication, electri-

cal engineering and circuit design, image processing, combinatorial optimization,

etc. [60].

1.3.1 GA structures

Figure 1.3: basic structures of the GA

Let me define the basic element structures used in the GAs. The basic infor-

mational unit is a gene. A number of genes which are together form a genome,
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genotype, or chromosome.

Depending on the genome, a gene can be a bit, a real number, or any other

structure. At any time, the whole genome can be transformed into its real represen-

tation and evaluated with an objective function. An example is given in Figure 1.3.

The genotype, which consists of six genes, represents two binary-coded numbers.

Each number is represented by three genes. After the transformation of the geno-

type, two numbers result (4 and 3). Then, the defined objective function subtracts

the second number from the first one. In the example, the objective value (also

called fitness value) of the given genotype is 1. The maximum objective value

could be reached by the genotype 111000 (7 − 0 = 7). The chromosomes used in

the GA can also have different lengths, but in my work I only used chromosomes

with a fixed length. In Section 1.3.2, the operators usually used in GAs with fixed

length chromosomes are defined.

1.3.2 GA operators

As is shown in Figure 1.2, the whole process of each EA, and therefore also the pro-

cess of the GA, is based on four steps: initialization, evaluation, selection, and re-

production. The evaluation step is usually problem-dependent, so I will describe

it later when I introduce the test functions I used. Initialization, selection, and re-

production can be problem-independent. Moreover, the reproduction step can be

divided into two individual steps: crossover and mutation. These steps are per-

formed repetitively by applying the so-called GA operators, which I define in this

section. There is a variety of each of these operators, but I will define only those

which I applied in my work.

Initialization The GA, just like every other EA, starts with an initialization. In

this step, the first population is created and initialized. Usually, the population

individuals are simply created by random initialization of each of their genes. This

is necessary because no solutions are created yet, so we cannot use them to derive

new ones.
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Selection The second step in the GA is the selection. During this step, some

individuals are picked up according to their fitness values from the population

and placed into the mating pool. Afterwards, in the reproduction step, individuals

are used from this mating pool. Selection may be carried out in several manners,

depending on the algorithm chosen.

In my approach, I used the tournament selection algorithm. The algorithm

holds a tournament among st solution candidates, where st is tournament size.

The winner of the tournament is the individual with the highest fitness value of the

st competitors. Afterwards, the winner is inserted into the mating pool. The mat-

ing pool has a higher average fitness value than the average population. This fit-

ness value difference provides a selection pressure. The selection pressure drives

the GA to improve the population fitness value over succeeding generations. The

convergence rate of the GA is largely determined by the selection pressure. The

higher selection pressure results in higher convergence rates. Increasing the st

parameter increases selection pressure [39].

Figure 1.4: Tournament selection

In Figure 1.4 an example of tournament selection performed on a population

of 8 solutions is displayed. The two spaces in the mating pool have to be filled, so

two tournaments with st = 3 are arranged. The two winners of these tournaments

(the solutions with highest fitness values) are put into the mating pool.
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Crossover The crossover is a recombination of two string chromosomes. It is

an operation which creates a new solution candidate by combining the features of

two existing ones. The crossover is performed in the following way: two parental

chromosomes are split at a randomly determined crossover point. Afterwards,

the new child chromosome is created by joining the first part of the first parent

together with the second part of the second parent. This method is called single-

point crossover and it is shown in Figure 1.5. There are also crossover methods,

where, for example, both parental chromosomes are split at two or more points

(multi-point crossover). For fixed-length strings, the crossover points for both par-

ents are always identical.

Figure 1.5: Single-point crossover

Mutation In contrast to the other classes of EAs, the mutation in the GA is usu-

ally a background operator. However, the mutation is still an important method of

preserving the diversity in the population. Mutation creates a new chromosome by

modifying an existing one. In fixed-length string chromosomes, it can be achieved

by modifying the value of one element of the chromosome, as illustrated in Fig-

ure 1.6. In binary coded chromosomes, the gene bits are simply toggled.

Figure 1.6: Mutation of one gene
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1.3.3 GA parameters

In the area of GAs, there is a wide variety of possible parameter settings. The

performance and success of the GA approach applied to a problem is also given

by parameter settings. In my work I operated with following parameters:

• Tournament size st – size of the tournament when performing the selection

• Crossover rate rc – probability for performing the crossover between two

selected individuals

• Mutation rate rm – probability for performing the mutation

• Archive use ua – defines whether the GA stores visited solutions in the archive

or not

1.4 Complete archive for GAs

Many parameters and improvements have been designed to solve special prob-

lems. However, it is difficult to find techniques which can be used universally. In

my thesis, I will describe a mechanism which should improve the ability to find a

better solution for each GA.

The idea is based on a complete archive, which is capable of storing all vis-

ited solutions and suggesting new, unvisited solutions effectively. With its help,

the GA should be able to escape from the local optima easier, or to find better

solutions which lie next to already visited solutions.

Chapter 2 describes similar approaches, which were already implemented.

I describe the duplicate removal method, memory-based GAs, approach using an

adaptive mutation rate, GA with an archive for solving single objective problems,

and GA with an archive for solving multi-objective problems. Chapter 2 shows that

there have been some particular ideas of the GA archive already implemented, but

none of these approaches implements it in the way that I have done here.

In the next chapter, Chapter 3, I introduce and discuss the implemented

structure of the archive. Its structure is based on the trie data structure. Further-

more, I introduce the special properties and functionality of the ealib archive, such

as randomized structure and handling of revisits.
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Test problems, which I used for performance comparison of the GA with and

without use of archive, are described in Chapter 4. Two of them are special GA

problems (Royal Road function and NK landscapes problem), and the third one is

MAX-SAT problem, which is well known in the area of computer science.

Chapter 5 gives us a more detailed insight into the implementation of the

ealib trie archive by describing the basic packages and object structures.

Performed tests and their results are discussed in Chapter 6. In this chapter,

I compare the results achieved by the standard GA to the results achieved by GAs

which have used the ealib trie archive.

Conclusions and ideas for future work are written in Chapter 7.



Chapter 2

Previous work

2.1 Improvements of traditional GAs

Traditional genetic algorithms use only basic operators. They apply selection,

crossover and mutation repetitively. Using these stochastic principles they try to

find the best solution. Many improvements have been developed to enhance the

efficiency of the GAs. Designing an improvement we must always keep in mind the

universality of the improvement. It might be easier to implement an GA improve-

ment for one one specific problem. Thus approaches which bring better results

for many problems gain even more importance.

The idea of the No Free Lunch theorem (NFL) might be helpful. It shows that

any improved performance over one class of problems is offset by performance

over another class [61]. Many discussions have been held about contribution and

relevancy of this theorem in the area of evolutionary computing.

Weinberg and Talbi [58] point at some limitations of the NFL theorem, which

were described by Woodward and Neil [62]:

• Revisiting of solutions: The NFL hypothesis assumes that any solution may be

visited only one time. This is not realistic, because many heuristic algorithms

do not memorize all the visited solutions during the search.

• Complete space of optimization problems: The NFL result is based on the

predicate that the algorithm runs on the whole space of problems. The NFL

result can vary if there is a restriction on the set of optimization problems to

solve.
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• Overheads: If the algorithm has to memorize all the visited solutions it im-

plies a huge overhead due to the size of search spaces, which is exponential

in general. This is the consequence of the first point.

–quotes???

I tried to take advantage of these weaknesses of the NFL theorem. Despite

that, it is a very important theorem to think about, when designing an improvement

for any metaheuristic.

Now, I will describe some used and established improvements for genetic

algorithms.

2.2 Duplicate removal

Using only the basic GA operators, we do not have any control over the individu-

als in the generation. When creating a new solution, the regular GA does not care

about the other solutions in the population. This process can lead to the occur-

rence of duplicates in one generation. It means that in one generation we could

have two or more individuals with the same genotype. There are three scenarios

how a duplicate solution can be created [50]:

• a duplicate genotype appears in the first (randomly generated) population

• a child is identical with one of its parents, after applying crossover and muta-

tion operators on them

• a child is identical with any other individual in the population

When solving one concrete group of problems, it needs not to be obvious that

the duplicates are hindering. It may look like the duplicate removal preserves the

genetic diversity and inhibits the solution of particular problems. It may also seem

that it is at odds with the schema theorem [25]. The argument is that by allowing

the duplicates it would be easier for the schemata with higher fitness to prevail

in the population. However, this would lead to loss of diversity in the population.

Simon Roland [50] has proven that

"the diversity loss through duplicates is a serious weakness in the steady-

state GA model."
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He also shows that there is no need for the steady-state GA to add or allow dupli-

cates to claim advantage for better schemata. They achieve satisfactory extension

also without them. Therefore, removing duplicates in a steady-state population is

not at odds with the bulding-block hypothesis.

The next argument against the duplicate removal principle could be the com-

putational overhead. Let us assume that we have a population with δ solutions. In

a simple implementation for each new child δ genotype-to-genotype comparisons

would be needed. Naturally, comparison time becomes an unnecessary overhead

in a GA with a large population and a large genotype. However, to identify dupli-

cates we can use a hash tagging duplicate removal algorithm as it is introduced

in [49]. It is an efficient way to deal with the overhead, with irrelevant memory

costs. This approach operates in the following way. After generation of a new

solution, it is looked up in the hashtable, which stores the whole population. If

it is already inside, the new solution is thrown away and the population remains

unchanged.

There are also some other approaches how to use the duplicate removal

mechanism. For example Mauldin in [37] measures the Hamming distance to all

members of the population and introduces a special uniqueness operator, which

allow a new child to be inserted into the population only if this distance is greater

than a certain threshold. This ensures even greater diversity in the population.

Anyway, the practice has showed that the use of duplicate removal mechanism can

have a great influence on the efficiency of the GA.

2.3 Memory based GAs

In the practice, there are also some approaches, which try to profit from the vis-

ited solutions by storing them in a long term memory. This approach is often used

when the objective function changes with time, the so-called changing environ-

ments. In these problems the optimal solution is not fixed. Practice has showed

that storing several best visited solutions can provide a good basis for generating

new generations, even when the landscape and the position of the optimal solution

has been changed [36].
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Another approach presented in [18] is to concentrate on reducing the num-

ber of fitness function evaluations required by a genetic algorithm. It makes the

search more effective and rapidly improves the fitness value from generation to

generation.

"In the standard genetic algorithm, a new population may contain so-

lution candidates that have already been encountered in the previous

generations, especially towards the end of the optimization process.

The memory procedure eliminates the possibility of repeating an anal-

ysis that could be expensive."

The fitness function evaluation is provided with the aid of the binary tree.

After a new generation of solutions is created by genetic operations, the binary

tree is searched for each new solution. If the solution is found, the fitness value

is obtained from the binary tree. The analysis is not necessary. If the solutions

is not in the tree, the fitness is obtained by an exact analysis. This new solution

and its fitness value are then inserted in the tree as a new node. The following

pseudocode outlines this approach:

Algorithm 1 Evaluation of fitness function using binary tree [18].

search for the given solution in the binary tree;

if found then

get the fitness function value from the binary tree;

else

perform exact analysis;

end if

2.4 Adaptive mutation rate

Mutation rate is often taken as a background GA operator. However, many say

that a mechanism of adaptive mutation would help to improve GA performance

and would help them to find the global optimum more efficiently [35, 14]. This

brings the question, whether the principle of the adaptive mutation rate could be

embeded into an archive for GA.

There is a variety of approaches to implement the adaptive mutation into a

GA. Smith and Fogarty [54] add additional genes in the chromosome to encode
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the mutation rates. This approach assigns a individual mutation rate for each chro-

mosome.

Algorithm presented in [22] uses a second GA to adapt the mutation rate.

This approach optimizes the control parameters for GA through another GA in the

meta-level.

Another strategy is presented by Hartono, Hashimoto and Wahde [23]. It is

the Labeled genetic algorithm (LGA), which assigns a specific label to each gene.

This label then traces the consistency of the gene’s contribution. In this model,

an individual mutation rate is assigned to each gene. A consistently fit chromo-

some, which is a chromosome that has higher amount of good genes, will have

low mutation rate. On the other hand, the chromosomes that are less fit will have

the mutation rate set higher. This is very helpful for the exploiting the promis-

ing region in the search space. The rest of the search space is explored by the

less fit chromosomes. The mutation rate in the LGA is embedded as a label. The

experiments of Hartono, Hashimoto and Wahde have shown that

"...the LGA can eventually lose its diversity but is able to spread its pop-

ulation in a wider area compared to the simple GA in the most important

period of the search process. (...) The advantage of the proposed LGA

can be considered to be in its ability to adaptively regulate the mutation

rate with regard to the position of each chromosome in the search space

and the contribution of each gene to the fitness."

The simple GA with mutation rate 1/length of the chromosome performed also

well for most of the tested problems, but the proposed LGA often outperformed

it.

The adaptive mutation operator introduced in [29] provides new solution el-

ements and maintains the best schemata in the old population at the same time.

"The mutation operator is applied in every generation and it works with

a single chromosome as follows:

X(new value of gene) = (1 − θ) ∗ X(rnd value) + θ ∗ X(old value)

Where θ is an adaptive parameter, which varies between 0 and 1. When

θ is very small, the new value is a completely random value. As the
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value of θ increases, the new gene value is based partially on the ran-

dom value and partially on the old value. Finally, when θ approaches

unity, the new solution is the old one. Experiments were conducted with

different values of θ and have found that the optimal value of θ is the av-

erage fitness of the population. At first generations, the average fitness

value is low as we are far from the optimal solution. Thus, the adaptive

mutation provides the search space with new solution elements. The av-

erage fitness is improved as the GA successfully moves towards a better

solution. At last, the average fitness approaches the best fitness and the

adaptive mutation operator maintains the best solution elements."

In my approach I do not use a mutation parameter, which should be adapted.

The principle of non-revisiting archive guarantees automatic mutation, if it is nec-

essary. If the algorithm wants to visit a solution, which has been visited already, it

will be mutated immediately. This adds the conception of the adaptive mutation

into the archive. In the parts of the search space, which are not explored is the

mutation only rare. However, in the parts, where there are only a few unvisited

solutions, the mutation can take place in every new generation.

2.5 GA with archive for solving single-objective

problems

As it has already been mentioned, revisiting may be a serious weakness for ge-

netic algorithms. Presented heuristics like duplicate removal and adaptive muta-

tion rate deal with this issue in a specific way.

Yuen and Chow [63] presented an approach, which combined these ideas

and adds some more improvements to get even better results. It contains a mech-

anism, which ensures that there are no revisits during the whole runtime and a

principle, which helps to seek through the parts of the search space, where the

better solutions are situated. It is the only case, where the use of complete adap-

tive archive for GA was presented. This archive was constructed for continuous

and single objective problems. Also, only real functions were used as test func-

tions for it.
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In my approach I have implemented a similar archive, but I focused on the

discrete combinatorial problems. Therefore, I had to consider the implementation

of a different archive structure. Also, an exact comparison to the results of Yuen

and Chow was impossible, because of the different problem definitions.

Yuen and Chow chose to use a novel dynamic binary space partitioning (BSP)

tree archive for their purposes. It works in the following way:

When the GA generates a solution, the tree is accessed. A leaf node is ap-

pended to the tree, if the solution has not been visited before. In this way all vis-

ited solutions are stored. It guarantees that each solution is visited only once. If

GA generates a solution, which is already in the tree, a search from the leaf is initi-

ated. The tree then searches for the nearest neighbor solution in the search space

that is not visited. In this way a self adaptive mutation mechanism is implemented.

After the GA has visited all leafs of any subtree, the whole subtree may be pruned.

This reduces the memory use during the runtime. Experimental results reveal that

the GA with archive is superior to the standard GA with revisits in performance.

Moreover, the tree archive is not so memory intensive either.

2.5.1 Storing the results

As already mentioned, the complete archive is used for the purposes of storing the

results. This is based on a BSP tree.

The BSP tree is a special kind of the binary search tree, which is often used

in many areas, for example in computer graphics or computational geometry. It

stores the whole space, which is sequently splitted into subspaces. Each node of a

BSP tree splits an area or a volume into two parts along a line or a plane.

"The subdivision is hierarchical; the root node splits the world into two

subspaces, then each of the root’s two children splits one of those two

subspaces into two more parts. This continues with each subspace be-

ing further subdivided, until each component of interest (each line seg-

ment or polygon, for example) has been assigned its own unique subspace."[1]

Figure 2.1 displays how the BSP tree stores the visibility of planes in the

space.
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Figure 2.1: The use of a BSP tree in the computer graphics

Generally, the GA with population size δ produces a sequence of solutions.

Steady state GA produces δ solutions in the beginning and 1 solution in every new

generation. Each solution of these solutions is inserted into the tree. That means

that everytime a new solution is generated, a new end-leaf is created and inserted

into the tree (we do not consider the revisits now). The BSP tree proposed for GA

has the following specific properties [63]:

• It is constructed dynamically using by inserting the solutions generated by

GA. Therefore, each run of GA produces a different tree.

• It stores all solutions s visited by GA.

• For a balanced tree, the mean number of steps to decide whether a search

position sn has been visited is at most O(log(aγ)), where a is number of possi-

ble values for a variable and γ is number of dimensions.

For continuous problems, Yuen and Chow [63], have applied the BSP tree

in the following way. They have defined a resolution d, which divided the search

space and controlled the number of possible real numbers for each genome. High

resolution enlarges the whole search space exponentially. Yuen and Chow [63] say

that, at least for the 14 benchmark functions studied by them, the optimal fitness

is only slightly dependent on the axis resolution (d). Therefore, a proper selection

of the d is not a key factor for the sufficiency of the algorithm with an archive. Each

solution generated by the GA is stored as a single node. In the begining we have

an empty tree. Then a soluton s1 is generated and inserted into the BSP tree as a

root. By a definition of the BSP tree, each node splits its subspace into two parts.
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Thus, when a solution s2 is generated and s1 > s2, it is inserted into the left part of

the tree etc.

Following example helps us to understand the construction principles of the

BSP tree archive:

There is a two dimensional search space S [1, 3] × [1, 3]. We have a genome

with 2 genes. Possible values of the first and second gene are 1, 2, 3. Initally the

archive is empty. As a first solution, a solution [3, 1] is generated and inserted

into the tree. This causes that the whole space S is divided into two subspaces

considering the first dimension (1st gene): left subspace S1 = [1, 2] × [1, 3] and

right subspace S2 = [3] × [2, 3]. The root node [3, 1] united with its subnodes gives

us the whole space. It is shown in Figure 2.2.

Figure 2.2: Solution [3, 1] in the BSP tree

Other nodes are added when further solutions are inserted into the tree. In-

serting solutions [2, 2], [2, 3], [1, 2] and [3, 3] in this order produces the tree displayed

in Figure 2.3. It is obvious that each node represents one solution. Moreover, there

is a difference in the trie structure, which I use. Only leaf nodes represent concrete

solutions. Other nodes serve as splitting points for the search space.

Figure 2.3: Solutions [1, 2], [2, 2], [2, 3], [3, 1], and [3, 3] in the BSP tree

The size of the archive can be also reduced by pruning. Since we want to

know, whether a solution was visited or not, there is no need to store the solutions,
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when a whole subtree under any node was already visited. Hence the entire sub-

tree can be pruned. This helps to keep the tree compact and improves the memory

usage.

If a [2, 1] solution is inserted into the tree displayed in Figure 2.3, there are

no other solutions in the right subtree of the node [2, 2] to be explored. Thus the

entire right subtree of the this node can be deleted. Instead of it there is a Closed

flag inserted, meaning that all solutions of this subtree are stored in the archive

already. The pruned subtree is shown in Figure 2.4.

Figure 2.4: Pruned subtree under the node [2, 2]

2.5.2 Handling the revisits

The handling of the revisits is done in the following manner: When a solution gen-

erated by GA is identical with a solution that is already stored in the archive, a

revisit has occurred. In this case the archive needs to generate a solution that was

not visited before. Generally two cases of a revisit can occur [63]:

• one or both subspaces of the revisited node are not Closed – In this case any

node from the opened subtree is chosen as a new solution. An example of

this case (see Figure 2.5) is the revisit of the [2, 2] solution. The algorithm

steps down through the left subtree and inserts [1, 1] solution instead of the

revisited [2, 2] solution.

• the revisited node and its subtrees are Closed – In this case the algorithm

returns to the parent first and starts the search for the free solution in the

other subtree. This situation occurs when solution [2, 3] is revisited. As the

nearest unvisited solution the [1, 3] solution is found because it is more similar
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Figure 2.5: Revisit of the [2, 2] solution

to the [2, 3] solution than the [1, 1] solution. Their second genes are identical.

Figure 2.6 illustrates this case.

Figure 2.6: Revisit of the [2, 3] solution

By using the described backtracking mechanism in the archive it is not as-

sured that the newly suggested solution is the one with minimal distance to the

revisited one. If we define the distance between two solution as the number of

places in which are the solutions different, the following exaple shows the weak-

ness of the archive solution suggestion mechanism. In Figure 2.5 the revisit of

the [2, 2] solution is displayed. The revisits handling mechanism suggests the [1, 1]

solution as the nearest, but the suggestion of the [3, 2] solution could be better, be-

cause its genome differs from the [2, 2] only on one place. This problem can be

solved by implementing nearest neighbor search, which can add a computational
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time to the algorithm. In my solution I try to find a mechanism, which can make the

process of suggesting new solutions globally better.

Another important aspect of the revisits handling mechanism is that no mu-

tation operator has to be used. When a solution is revisited, it will be mutated

automatically. There is also no need to have a mutation rate parameter. The more

often a part of a tree is visited, the more mutations will be performed.

2.5.3 Experimental results

The described non-revisiting GA (NGA) was compared with standard GA (with

revisits). For performing the tests the following set of functions, which should be

minimized, was used [63]:

• Linear function f1(x) = − 2
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The functions f1, f2 and f3 are uni-modal, whilst the other three functions (f4,

f5 and f6) are multi-modal. The function f1 is pseudo-boolean function, whereas

the other functions are real. This shows that the concept can be applied to both

real and pseudo-boolean functions. In the search space for f2 - f6 100 was chosen

as a division number for each dimension of x. This makes the whole searchspace

naturally smaller and thus more suitable for the GA. Tests were performed using

standard parameters: 1-point crossover, 1-point mutation and elitism selection.
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The population size was 30 chosen. Yuen and Chow [63] compared the perfor-

mance of the NGA and standard GA focusing on two quantities.

• Accuracy - It is a search power within a fixed number of generations. In their

case they picked up the best fitness reached in the 60th generation. The re-

sults were extracted from 100 independent runs. The improvement rate of

the NGA related to the GA showed that the NGA brought significantly better

results than the GA.

• Probability of success - success of a run was achieved, when the algorithm

met target fitness (Fg) within defined number of generations (500). The Fg

was defined as the corresponding best fitness found in accuracy test. Also in

this case 100 runs were performed to obtain the PoS-rate. For all test func-

tions, the PoS of the NGA was superior to that of the GA.

Yuen and Chow conclude that the NGA brings better results due to the fol-

lowing:

"When the GA comes into the basin of attraction of a local or global opti-

mum, the chance of generating a revisiting offspring is higher. The ran-

dom crossover and mutation then constitute a random, revisiting search

within the basin. For a global optimum, it facilitates the location of

the optimum more quickly. For a local optimum, it facilitates the com-

plete search of the basin, so that the NGA may escape out of the basin

sooner." [63]

The size of the archive was also observed. The test showed that it remains

small even for large search spaces.

2.5.4 Differences between the BSP tree and trie archive

In my work I have tried to use simmilar principles as those of the BSP tree archive.

A primary difference is that I consider binary search spaces. I could have taken

the advantage of it because, the problems could be coded as binary strings. This

allowed me to use another structure (trie), which could provide even better search

times as the BSP tree archive did. I also focused on the handling of revisits and I

have implemented different possibilities of suggesting of a new solution.
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2.6 GA with archive for solving multi-objective

problems

Solution archives also have already been used in context of multi-objective opti-

misation, although they were usually of a limited size [32]. The idea is to store

set of solutions called nondominated solutions (NDS) in an archive. This is used

then as a repository for all important NDS solutions and provides a pool of possi-

ble parents, which are additional to the actual population. This is a key issue in

the multi-objective optimization. An improvement of this approach has been pre-

sented later in [15]. Even if this approach was the first to introduce a combination

of archives an genetic algorithms, it was considered to be unnecessary to adapt it

on single objective problems. The difference is that the archive for multi-objective

problems does not store all visited solutions, but only several chosen ones, which

should later help to drive the GA further. Even though the contribution of these

papers to research of using the archive with a single-objective GA was very little,

the idea was important.



Chapter 3

Trie

3.1 Motivation - why to use a trie?

My goal was to improve the ability of a GA by a solution archive to find the best pos-

sible solution without changing the properties and algorithmic flows of the given

GA. As already mentioned before, the GA search space is usually binary strings.

Therefore the implemented archive should be designed for discrete problems,

especially to store binary vectors. The idea was to efficiently store all visited solu-

tions, avoid revisits, and have a good and intelligent mechanism for transforming

of already visited solution into a similar unvisited one. Achieving this goal was

possible only through finding an appropriate structure for storing the solutions.

The archive structure should sufficiently fulfill the following specifications:

• relatively low memory consumption

• fast solution insertion

• fast check, whether a solution is in the archive already

• fast transforming of an already visited solution into a similar unvisited one

Considering these requirements, I took following well-known structures into

account: the hash table, binary search tree, and trie. A short description of these

structures is given in the next part.
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Figure 3.1: Hash table - insertion

3.1.1 Hash table

An appropriate structure for storing the solutions could be the hash table. It is

a data structure in which keys are mapped to array positions by hash functions

(Figure 3.1). Using a hash table with appropriate hash function, the time for the

inserting or recalling of the visited solutions could be O(l), where l is the length of

the stored binary string [33], [12]. However, finding the algorithm for transforming

the visited solutions is very complicated and could cost, in the worst case scenario,

2l steps. Secondly, the hash table does not always provide optimal memory usage.

Also, it is generally better to use a hash table, when the data is searched more often

than inserted or deleted. This could be another argument against the use of the

hash table as a suitable data structure for my problem. There are also additional

algorithm steps needed, if we consider collisions. There are diffent strategies,

how to resolve them. Most popular are chaining and open addressing.

3.1.2 Binary search tree

Trees are structures for representing certain kinds of hierarchical data. The tree

consists of a set of nodes and a set of arcs. Each arc links a parent node to one of

the parent’s children. Every node (except the root node) has exactly one parent. It
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is possible to reach any node by following a specific set of arcs from the root. The

simplest kind of tree is a binary tree where each parent has at most two children.

In the binary search tree, each left pointer points to nodes containing ele-

ments that are smaller than the element in the current node and each right pointer

points to nodes containing elements that are greater than the element in the cur-

rent node.

Figure 3.2: Binary tree - insertion

Two binary trees with same elements can be different. It depends on the

order of insertion of the elements. Some insertion orders can cause the binary

tree to be unbalanced. Therefore a tree type was introduced which contains a

rebalancing mechanism. It is called AVL-Tree and it was introduced in [2].

The binary search tree has several important properties of great practical

value. One of these properties is the searching speed. Let us consider now the cost

of insertion into the tree. Again we insert a binary string with length l into a tree

with n nodes. If the tree is perfectly balanced, the cost of inserting is proportional

to l. log2(n) steps. Rebalancing the tree after an insertion may take only a few steps,

but at most it will take log2(n) steps. Thus, the total time is of the order O(l. log2(n))
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[8], [33], [12]. For the data retrieval, modification and transformation are the costs

of the same order.

Comparing the binary tree with the hash table, the binary search tree as

a structure for storing the solutions may seem to be a better choice because of

faster implementation of the transformation mechanism and better memory usage.

However, considering that the solutions in the GA are coded as binary strings,

it forced me to speculate about other structures. There is no need to store all

solutions or to have the whole solution key stored in each tree node. This is a

serious weakness of the binary search tree, when compare it to the trie. With high

amounts of stored solutions, the binary tree demands high amounts of memory

usage. However, the implementation of the pruning mechanism, which saves a

lot of memory and time, could be complicated because of rebalancing. The time

needed to suggest a new unvisited solution, which has to be similar to a concrete

revisited solution, could be shorter when using another structure.

3.1.3 Trie

A trie (from retrieval), is a specific tree structure useful for storing strings over an

alphabet. It is typically used to store large dictionaries of natural words in spell-

checking programs and in natural-language understanding applications. Its con-

struction is well designed for the determination of whether a given word is stored

in the trie or not. The idea of the trie is that all strings sharing a common stem or

prefix hang off of a common node [17].

A trie example is displayed in Figure 3.3. We have a four-character alphabet

{a, b, c, d}. From these characters we are able to create words and store them in the

trie. Each of its nodes can store two types of information for each character. The

first information is whether the character is also an end of a word. The second is a

pointer to the successor node. In the example trie the following words are stored:

a, ba, bda, bdc, c, cb, cba, cc.

A problem for the trie structure can be the effective use of memory. For

example, in Figure 3.3 are nodes which contain many NULL-pointers. This causes

the whole structure not be as compact as possible. Several approaches have tried
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Figure 3.3: Trie example

successfully to solve this problem. The linked trie, indexed trie, packed trie and

trie with a suffix compression were developed.

In contrast to a binary search tree, each node of a digital search trie can only

hold one character of the keyword. If the keyword is longer than one character,

then the node containing the first character of the keyword points to the node con-

taining the next character, and so on. The height of the search trie equals the

length of the longest keyword stored. For the inserting and searching a solution

O(l) steps are needed, where l is the length of the keyword. This is slightly faster

than in binary trees.

I needed to adapt the trie structure for binary problems only, as I have tested

it only with functions where the solutions can be encoded as binary strings. Seeing

each character of the binary string as a character of a word, the classical trie struc-

ture looked like a good starting point. Each node of the trie could possibly require

a large amount of memory storage because there could be many NULL-pointers in

each node. But in my case I have only two pointers in each node (0,1). Addition-

ally, my trie always stores strings of the same length, which makes the end-flags

in each node unnecessary and also saves memory. These attributes eliminate a

serious disadvantage of tries - memory usage. Having an opportunity to prune the

subtries additionally, it is possible to achieve an ideal memory usage.

The pruning mechanism would additionally help to transform a visited solu-
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tion into an unvisited one more quickly because it would be easier to determine

which parts of the search space are not yet explored.

3.1.4 Comparison

Let us consider once again all pros and cons of the discussed structures.

An important decision factor is speed. Combining the searching, inserting

and suggesting of unvisited solutions can be done very efficiently with the trie

structure. Also, the usage of memory in binary string tries is better than the mem-

ory usage of the other two structures. It could be even better when enhanced by a

pruning algorithm. All these arguments are summarized in Table 3.1. Additionaly

the trie provides an effcient storing of solutions and their keys. Because of these

attributes, I have decided to implement a special structure derived from the trie

as an archive for storing all solutions produced by the GA. It is called ealib trie.

Table 3.1: Comparison of the data structures

structure memory insertion check suggestion

hash table O(l.n) O(l) O(l) O(2l)
binary tree O(l.n) O(l. log2(n)) O(l. log2(n)) O(l. log2(n))
trie O(l.n) O(l) O(l) O(l)

3.2 Trie with genetic algorithms

An important question to answer is the following: How will the ealib trie cooperate

with a genetic algorithm?

Figure 3.4 describes the GA–Trie cooperation principle. The GA can be seen

as a separate module which generates solutions in a specific way. The parameters

used for the GA configuration are not relevant for the trie. After creation of a so-

lution, the solution is forwarded to the trie. As the trie accepts the solution, it

checks whether it is included in the archive already. This is done with the cost of

O(l) steps, where l is the length of the inserted binary string. If the solution is not

in the archive already, it is simply inserted into the trie. The effort for inserting
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is again, O(l). On the other hand, when the solution is in the trie, it comes to a

revisit. Handling of the revisit can be done in several ways. These are described

in Section 3.4.4. It is important to find a good balance between the quality of the

changed solution and the effort needed to change it. After inserting or altering a

solution, it is sent back to the GA module and then handled as usual.

Figure 3.4: The cooperation between GA and trie

It is also possible to describe this interaction in a mathematical way, as it is

done in [63]. The GA module generates a sequence of solutions. sq = (s(1), s(2), ...)

and then passes it to the trie. The purpose of the trie is to return the amended

sequence sq′ = (s(1)′, s(2)′, ...), where two solutions s(i)′ and s(j)′ satisfy s(i)′ 6= s(j)′

unless i = j.

3.3 General description of the ealib trie

In this chapter, I will try to describe the structure of the ealib trie in detail. Here,

only binary strings with the same length l are inserted into the archive . Thus, the

non-empty trie always has l levels.

The root represents level 0 and points at the 1st level node. Each node consists

of 2 pointers. The left pointer represents a 0. Concerning the 1st level node, all

binary strings stored under this pointer begin with a 0. In the same way, the right

pointer represents a 1 and all binary strings stored under this pointer begin with

a 1. Each node in level n has two pointers, which represents a 0 or a 1 on the

nth position in the binary string. The node on the lth position (the last position of

the binary string) is a special case. This node does not contain any pointer. It

can contain only the endflag (X), which means that the 0 or 1 on the lth position

(depending on whether it is stored under the left (0) or right (1) part of the node)
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is included. Figure 3.5 shows how the solution 010 is stored in the trie. Another

important thing to introduce is the emptyflag (/), which means that a solution, or

the whole subtrie, was not yet explored. This leaf is inserted in all places where

a single solution (in Figure 3.5, the solution 011), or a whole subtrie (in our case,

subtrie 1__ or 00_), is not present in the trie.

Figure 3.5: 010 solution in the trie

Figure 3.6 displays the same trie as a plane with the solution (010) inserted.

Figure 3.6: 010 solution in the trie - plane

The search algorithm that checks whether a solution is stored in the trie or

not works as follows. Starting with the first node, it steps down the trie according

to the binary string. On each level n, a check is performed. If the character on

the nth position the binary string is 0, the algorithm steps down to the left subtrie

and vice versa. The algorithm continues recursively until it comes to the endflag or
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emptyflag. When we consider the trie without pruning, the endflag can only be on

the bottom of it (lth level). Therefore, it needs exactly l steps to reach the solution,

which is already in the trie. If the solution is not in the trie, it can happen that the

algorithm finds the emptyflag sooner. This means that it needs less then l steps if

a whole subtrie is not included in the trie. Written in the O-notation, to find out

whether a solution is in the trie or not costs O(l) steps. In Figure 3.7, we see that

we need 3 steps to find the 010 solution, but only 2 steps to find the 001 solution,

because the whole 00_ subtrie does not exist.

Figure 3.7: search for the 010 and 001 solution

The inserting of a solution into the trie always costs l steps, where l is the

length of the inserted binary string. This is because (when we do not consider

pruning) all endflags are stored on the bottom of the trie (lth level) and the insertion

algorithm needs l steps to get there.

The concrete implemented insertion algorithm enhanced with the pruning

mechanism is described in Section 3.4.2.

Using this structure we can store all visited solutions in the memory in a rela-

tively efficient way. Another benefit of the trie is very fast searching of the visited

solutions. In the next section we will have closer look at the special properties of

a ealib trie for genetic algorithms.
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3.4 Specific functionality of the ealib trie

3.4.1 Pruning of the subtries

An important principle which helps us to keep the trie smaller is the pruning of

whole subtries. If all solutions under one node are marked as visited, they will be

pruned (deleted) and the whole node will be marked as visited. This is possible

because we only need the information of whether a solution was visited or not. We

do not have to keep specific information for the solutions, such as each solution’s

fitness. Thus we know if a node is marked as visited, all solutions which belong to

this node are visited. This pruning principle can help us to keep the trie smaller

and the searching time shorter.

Figure 3.8: 010 and 011 solution in the trie

This is demonstrated in my example Figure 3.8, where the solution 011 is

added into the trie.

By backtracking, it can be elicited that the whole 01_ subtrie has been vis-

ited. Consequently, the whole subtrie will be marked with endflag (X) (Figure 3.9).

The normal node with the 0 and 1 pointers will then be replaced with an endflag (X).

Two benefits of pruning are obvious in this example. You can note that the

whole trie now consumes less memory. The second benefit is that instead of 3

steps, we need only 2 to figure out whether solution 010 or 011 is in the trie or not.

This helps us to keep the trie access times shorter.
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Figure 3.9: 010 and 011 solution in the trie pruned

3.4.2 Algorithm for the inserting of the solution into the

trie and deleting of the completely visited parts

First, I will introduce some variables which are used in my algorithms. This is

necessary for the further understanding of the algorithms:

• binary string s - solution which is inserted or modified

• pointer p - pointer on a certain node of the trie

• p.next[2] - array of two pointers which point to the left or right subtrie, they

can also contain COMPLETED flag or NULL

• integer pos - indicates to which position of the solution the p-pointer is point-

ing

• COMPLETED - if any pointer points to this flag, it means that a concrete solu-

tion, or a whole subtrie, was inserted into the trie (the same as endflag (X))

• NULL - if instead of any pointer there is a NULL stored, it means that the

concrete solution or a whole subtrie were not inserted into the trie yet (the

same as emptyflag (/))

Now I will describe, how the algorithm for the inserting of a solution into the

trie works (Algorithm 2). First, the method try_insert() with the new solution as a

parameter is called. This steps down the trie progressively, searching for the so-

lution. If a NULL-pointer is found, which means that the solution is not yet in the

trie, it is inserted, deriving benefit from the previous search. This is a task for the

insert_with_position_found() method. The method try_insert() returns true after-

wards. On the other hand, when the search ends with a revisit, false is returned.
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In this case, the solution is changed into an unvisited one and inserted into the

trie with the same insert_with_position_found() method. Suggesting of unvisited

solutions is discussed in Section 3.4.3 and in Section 3.4.4.

Algorithm 2 trie - try_insert(solution s) method

// checks whether a solution is in the trie already

// calls insert_with_position_found() method and returns true if it is not

// returns false if the solution is in the trie already

p = root pointer;

for pos = 0 to l do

if p == NULL then

create new node;

p = p.next[s[pos]];
else if p == COMPLETED then

return false;
else

p = p.next[s[pos]];
end if

end for

insert_with_position_found(pos, p, s);
return true;

After the method insert_with_position_found() inserts the solutions into the

trie it checks whether its neighbour has also been visited. If so, pruning of the

whole subtrie takes place (Algorithm 3). The same step is then done recursively

with all parent nodes. This pruning mechanism helps us to keep the memory usage

of the trie optimal.

3.4.3 Revisits and the suggesting of an unvisited solution

The second most important characteristic of the ealib trie is that you can never in-

sert two of the same solutions in it. If you try to do so, a revisit will occur. The ealib

trie then changes the revisited solution automatically into another solution, which

has not been visited yet. It is immediately inserted into the trie and returned back

to the sender. The suggestion of an unvisited solution can be done in several ways.

Discussion about these techniques is done in Section 3.4.4. The main problem is

that the unvisited solution, which is nearest in the trie, does not have to be the one
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Algorithm 3 trie - insert_with_position_found(pos, p,s) method

// inserts a solution into the trie

// and prunes completed subtrie of the trie

p = COMPLETED;
p = p.parent;

while pos > 0 do

if p.next[(1 − s[pos])] == COMPLETED then

p = COMPLETED;
p = p.parent;

else

exit for;

end if

pos = pos − 1;
end while

which has the minimal Hamming distance to the revisited solution. However, find-

ing an unvisited solution with a minimal Hamming distance to the revisited solution

can cause unnecessary computational costs.

I can illustrate it in following example. Here, we have the same trie as in

Figure 3.5. There is only one solution (010) inserted into it. Let us assume that

another 010 solution is inserted into the trie. Now a revisit occures, as it is shown

in Figure 3.10.

Figure 3.10: attempt to insert the 010 solution into the trie for the 2nd time

A primitive suggestion works in the following way. It finds the next unvisited
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solution by backtracking. In our case the closest solution is the 011 solution. Af-

ter that, it is automatically inserted into the trie and returned back to the sender

(Figure 3.11). The tree is also pruned immediately, as is shown in Figure 3.9.

Figure 3.11: 010 solution revisit, suggestion of 011 solution

The aforementioned problem in suggesting solutions can be explained by

the following. When we try to insert a 011 solution into the trie shown in Figure 3.9

again, the primitive algorithm finds a revisit and suggests, with the help of back-

tracking, a 000 solution as the next possible unvisited solution. This has a Hamming

distance of 2 to the ancestral solution because it differs from it by 2 places. But, as

we see, there are also two unvisited solutions with a Hamming distance of 1 (001 or

111). If the trie held more solutions it could cause some problems in the general

performance of the GA.

3.4.4 Algorithms for the suggesting of new solutions

When the GA algorithm inserts certain solution into the trie for the second time, a

revisit occurs. The handling of these revisits is crucial for the trie. This avoiding of

the revisits brings us two advantages.

First is that the number of visited solutions within a certain number of gen-

erations is bigger. Logically, when I explore a new solution instead of exploring a
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revisited solution, the total amount of explored solutions is higher than in an algo-

rithm with revisits.

The second advantage is in the saving of the computational time needed for

evaluation of visited solutions. We do not need to evaluate any solution twice.

This issue can bring significant benefits when we have a problem which is very

expensive for computation.

After a revisit occurs, the method change_to_unvisited_fast() is called. It has

two obligatory parameters: s, which stores solutions that should be changed and

modelSol, which represents a template for the new created solution to be modeled

after.

Figure 3.12: The solutions 0100, 0101 and 0111 in the trie, 0101 revisited

To illustrate how the revisits are handled I will introduce some examples. In

all of the following examples, the same initial situation will be considered. There

is a trie, displayed in Figure 3.12, which stores three solutions (0100, 0101 and

0111). Let us say that the best found solution is the 0111 (this is needed for the

transformation algorithm, which uses the best solution). A revisit of the 0101 so-

lution has occured, and the trie transforms it into another yet unvisited solution.

This transformation depends on the chosen suggestion algorithm. In my project I

implemented these three algorithm types for the transforming of the solution after

a revisit into an unvisited one:

• Default suggestion

• Suggestion changed in a random place
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• Suggestion using the best solution as a template

Default suggestion

Algorithm 4 trie - default suggestion method

var s // solution, which should be changed

var modelSol;

pos = depthsOfUncompleted.back();
p = pointer to the node on s[pos];

while pos < s.length do

if p.next[modelSol[pos]] == NULL then

create new node;

else if p.next[modelSol[pos]] == COMPLETED then

s[pos] = (1 − modelSol[pos]);
p = p.next[s[pos]];

else

s[pos] = modelSol[pos];
end if

p = p.next[s[pos]]
pos + +;

end while

insert_with_position_found(pos, p, s);
return true;

The default suggestion works in the following way (Algorithm 4). ModelSol is

the same as solution that is stored in s. This means that the new solution should be

as similar to s as possible. All nodes where there is a possibility to find an unvisited

solution are stored in the array depthsOfUncompleted. In the default suggestion

algorithm, the last node of this array is chosen as a deviation point. The solution

is mutated in this place. Afterwards, the algorithm tries to follow the pattern of the

ancestral solution wherever possible.

A concrete example is shown in Figure 3.13. After a revisit of the 0101 so-

lution has occured, the algorithm searches for the first uncompleted subtrie. The

transformation into the 0100 solution is not possible, because it is in the trie al-

ready. So, the first transformation is done at the 3rd level. The algorithm now has

the 011_ solution and continues to search for an unvisited solution in the 011_ sub-

trie. First it tries to transform it into the 0111 solution, because this solution is more
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Figure 3.13: Default suggestion

similar to the 0101 solution than the 0110 solution. The 0111 solution differs from

the 0101 in only one place, however the 0110 solution differs from it in two places.

But the 0101 solution is in the trie already, so the algorithm must take the second

possibility and, finally, transform the revisited solution into the 0110 solution.

Suggestion changed in a random place

This suggestion mechanism is very similar to the default suggestion mechanism,

but instead of choosing the last node from depthsOfUncompleted array as the devi-

ation point, it chooses a random node. Afterwards, the algorithm continues in the

same way as the default suggestion algorithm.

In Figure 3.14 the 2nd level node is chosen as the deviation point. The algo-

rithm performs the transformation on the 2nd place of the binary string and steps

down the 00__ subtrie. Then it tries to add all the remaining characters from the

ancestral solution, which are 0 and 1 in our case. So the revisited 0101 solution will

be transformed into the 0001 solution. Note that it differs from the 0101 solution in

only one place.

Another example of the random suggestion algorithm is shown in Figure 3.15.

Here we have the same situation, but this time the 1st level node was chosen as the

deviation point. The algorithm performs the transformation on the 1st place of the

binary string and steps down the 1___ subtrie. In this case, the revisited 0101 solu-
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Figure 3.14: Random suggestion

tion will be transformed into the unvisited 1101 solution. Note that it again differs

from the 0101 solution in only one place.

Figure 3.15: Random suggestion 2

Comparing random and default transformation algorithms, the main benefit

of the random transformation algorithm is that there is a better chance to find a

solution which has a shorter Hamming distance to the ancestral solution.

Suggestion using the best solution

The next suggestion algorithm uses the same principles as the random suggestion

algorithm. The only difference is that instead of the most recently found solution,
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the best found solution is given to the modelSol parameter. This means that the

suggested solution tries to be more similar to the best found solution than to the

ancestral solution.

An example of this algorithm is displayed in Figure 3.16. The 2nd level node

was randomly chosen as the deviation point. Afterwards, the characters 11 were

added into the 00__ subtrie, because, as mentioned previously, 0111 was the best

found solution.

Figure 3.16: Suggestion using the best solution

Both modifications of the default suggestion algorithm (suggestion changed

in a random place and suggestion using the best solution) were meant to help

the default algorithm to get out of the local optima. In Chapter 6 the presented

suggestion mechanisms are evaluated with different test problems.

In the following section I present another mechanism, which helps to avoid

becoming stuck in the local optima. However, it is not based on changing the

algorithms, but its base consists in altering the trie stuctures.

3.5 Structure implementation

In this section I would like to introduce the concrete structure implementation of

the ealib trie. First, I introduce the implementation of a normal structure. In the

second subsection we will have a closer look at a randomized ealib trie structure,

which helped me to achieve better results in the tests.
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3.5.1 Normal trie structure

As I have already described in Section 3.3, the whole ealib trie implements the

concept of the classical trie. The basic building unit of the tree is a node named

TrieNode. Each node has two pointers. These can point to the next node, or

they can end in a NULL-pointer or COMPLETED-pointer. NULL-pointer means

that a solution or a whole subtrie has not yet been visited. On the other hand,

COMPLETED-pointer means that a solution or a whole subtrie has already been

visited. Each node on the nth level represents a gene on the nth position.

Using this classical structure, the tests have discovered, in my opinion, a se-

rious weakness. Note that the method change_to_unvisited_fast(), which suggests

unvisited solutions, has the disadvantage of placing a significant bias on certain

genes to be changed more frequently. If the ealib trie encounters a revisit, the first

gene which is attempted to be changed is the gene on the last position. This causes

the "mutations" of the chromosomes to be done more often on the last positions.

This can lead to a case where we can observe rigid structures of the visited solu-

tions in the search space. It is often coupled with solution diversity loss and finally,

what is most troubling, loss of GA performance. An example of this rigid struc-

ture in the search space is shown in Figure 3.17. All visited solutions of this search

space are listed in Table 3.2. We can clearly see that the genes in the positions

6, 7 and 8 are changed more often than the others. The suggestion of new solu-

tions, which follows these rigid structures can therefore also cause the identified

unvisited solution to be relatively far away. For instance, a revisit of the 11000000

solution would suggest the 11000111 solution as the next unvisited solution. Note

that 11000111 differs from 11000000 in three places. However, there is still an un-

visited solution, which differs from it in only one place (11001000). Therefore,

more sophisticated techniques were developed. These techniques are described

in Section 3.5.2 and Section 3.4.4.

3.5.2 Randomized trie structure

This section describes a special randomized structure of the ealib trie. It defines

different geneorder for each chromosome sequence. That means that the nth chro-

mosome gene is no longer stored in the nth level of the trie, but that the order of
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Figure 3.17: rigid structure of visited solutions

Table 3.2: Visited solutions of the searspace shown in Figure 3.17

00000000 01000000 10000000 11000000

00000001 01000001 10000001 11000001

00000010 01000010 10000010 11000010

00000011 01000011 10000011 11000011

00000100 01000100 10000100 11000100

00000101 01000101 10000101 11000101

00000110 01000110 10000110 11000110

00000111 01000111 10000111

the genes is random. Figure 3.18 displays this condition.

The order of the genes is determined with help of the pseudorandom function

random_intfunc() and the function determine_next_gene_for_branching(). These

two functions always return the same randomized order of genes for a given chro-

mosome sequence. There is also another special characteristic. A path to a subtrie

always has the same geneorder. Only the subtries are randomized. Concerning

our example, we can see the following. The randomization is constructed so that all

pseudorandom chromosome sequences stored in the trie displayed in Figure 3.18
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Figure 3.18: 01010 solution in the randomized trie structure

Figure 3.19: solution 01010, 10010, 01111 and 11111 in the randomized trie struc-

ture

will begin with the 4th gene. All genes that conform to the 0*01* pattern have

the random genorder with a 100** pattern. The subtrie of a 100** geneorder can

have the last two genes randomized in any way. To better illustrate this issue, I

have added three more solutions into the trie (10010, 01111, 11111). Figure 3.19

shows the randomized order of the genes.

The revisiting of the solutions fills up the lower levels of the trie. Note that in

the randomized trie structure, revisiting no longer produces the rigid structure that
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the normal trie did. Comparing Figure 3.20 to Figure 3.17, we can clearly see that

there are no such patterns of visited solutions in the search space as before. This is

even more obvious when displaying a search space with longer chromosomes.

Figure 3.20: nonrigid structure of visited solutions

The implementation of the randomized trie structure adds the following at-

tributes to the normal structure:

• vector geneorder – Stores indices of genes in the order they are used on the

current search path in the trie. After these genes, all others that are so far

unused follow in an arbitrary order.

• vector rand_order_pattern – Vector of integers used as an input parameter for

the randomized gene ordering.

• unsigned randorder_seed – Seed value for random odering of genes.

Using the normal trie structure, the vector geneorder contains the default

order of genes (12345). The geneorder for the solution displayed in Figure 3.18

is (43152). As already mentioned, for each chromosome a unique genorder is

initiated. For this purpose there are the following methods in combination with the

pseudorandom function random_intfunc():

• determine_next_gene_for_branching() – Helper function which determines the

index of the next gene to branch over to. The index is returned and gene-

order (eventually) updated.
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• geneorder_reset() – Resets gene indices not yet used, starting from position

d to standard order. Used when resetting the search path to a prior position.

Using these methods allows us to have randomized trie structure without hav-

ing significant performance loss. The initializing of the structure rand_order_pattern

and the calling of the method determine_next_gene_for_branching() is done in the

method try_insert(), which is described in Section 3.4.2.

3.6 Main algorithmic flows

3.6.1 main() method

The whole program starts with a simple main() method shown in Algorithm 5. A

set of parameters defines which problem should be solved and which kind of GA

will be called. Depending on the solved problem, the specific chromosome class

will also be instanced.

Algorithm 5 main() method

generate a template chromosome of the problem specific class

generate a population of such chromosomes

generate the GA

run the GA until termination condition

write result and statistics

3.6.2 run() method of the steady-state GA

I have used a steady-state GA for my test runs. Thus Algorithm 6 describes the

run() method of the steady-state GA. It is important that a chromosome method,

locallyImprove(), is called from run() method. This locallyImprove() method then

communicates then with the ealib trie.
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Algorithm 6 steady-state GA - run() method

checkPopulation

if NOT terminate condition then

{create a new solution}

select solution p1 from the population

select solution p2 from the population

perform crossover with p1 and p2 to generate tmpSolution

{insert the new solution into the trie, respectively change it into an unvisited

one}

perform locallyImprove() with tmpSolution

put the tmpSolution into the population

end if

3.6.3 Insertion into the trie

Further, we will have a closer look on the cooperation between the ealib trie and

the GA. The locallyImprove() method of the chromosome is called within the run()

method of the GA, as we have seen it in Algorithm 6. The appropriate trie method

locallyImprove_move_to_unvisited(), which is shown in Algorithm 7 is called from

the chromosome locallyImprove() method.

Algorithm 7 trie - locallyImprove_move_to_unvisited() method

try to store current solution

if solution is in the trie already then

change to unvisited solution

{several strategies of changing of the solution can be used}

if the whole trie is completed then

terminate

end if

end if

In the steady-state GA a new solution is created in every generation. This is

then forwarded to the ealib trie. If the solution is not in the trie (i.e. it has not yet

been visited), it is inserted into the trie normally. If a revisit occurs, the automatic

mechanism changes the solution and inserts it into the trie. When all solutions

have been visited, the whole program is terminated.



Chapter 4

Test problems

4.1 Overview

To test the new approach I needed to find proper test functions. First, I optimized

these functions using the GA with the archive. Afterwards, I optimized the same

functions using the same GA, but without the archive. Consequently I compared

the results.

I needed to choose the test functions carefully to obtain relevant results. Nat-

urally I searched functions which solutions could be coded in binary strings. The

first criterion was that the use of the test function in the area of GAs should be rel-

atively common. The second criterion was practical relevancy and the possibility

to parametrize the function in different ways, to obtain more general results.

Considering these requirements I chose following functions for testing:

• Royal Road function

• NK landscapes

• MAX-SAT problem

4.2 Royal Road function

The Royal Road function was specially designed for evaluating GAs by Mitchell,

Forrest and Holland [40]. Their intention was to create a specific function which
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could help to better understand and examine the role of the crossover operator

and the building-block hypothesis in GAs. These are the key features which lead

the GA to successful performance. Their other goal was to better understand the

interference between fitness landscape features and the performance of the GA.

Therefore the Royal Road function defined a fitness landscape, on which the GAs

should carry out better results than other approaches. An opposite class of func-

tions was defined earlier by Goldberg in [20, 21] and is called GA-deceptive func-

tions. However, to define whether a function is deceptive or non-deceptive for the

GA can be complicated. To make it clearer, Watson, Hornby and Pollack explored

building-block interdependency in [57].

The Royal Road function is defined for binary strings with fixed length. There

is a defined set of schemata S = s1, s2, . . . , sn, which can be indentified in the string

and the objective function, which should be maximized. The objective function is

defined as

f(x) =
∑

∀s∈S

csσs(x)

where x ∈ X is a binary string and cs is the value assigned to schema s. All

schemata are stored in the schema table. The binary string belogs to schema s,

if it contains several consecutive ones on the defined positions. The amount of

necessary ones is equal to the defined rrbase parameter or its multiplications with

power of 2. An example of defined schemata is given in Table 4.1.

The value of each schema cs is equal to the number of ones included in the

schema s.

The σs(x) is another function, which practically adds the cs value to the ob-

jective value, if the binary string corresponds to schema s. It is defined as

σs(x) =



















1 if x is an instance of s

0 otherwise

Let me illustrate how it is possible to construct the Royal Road function. I

defined a set of schemata, which are listed in Table 4.1.

The defined set of schemata has a basic building block of size 4. This can
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Table 4.1: Example Royal Road function schemata

# s schema value

1 s1 = 1 1 1 1 * * * * * * * * * * * * cs1 = 4
2 s2 = * * * * 1 1 1 1 * * * * * * * * cs2 = 4
3 s3 = * * * * * * * * 1 1 1 1 * * * * cs3 = 4
4 s4 = * * * * * * * * * * * * 1 1 1 1 cs4 = 4
5 s5 = 1 1 1 1 1 1 1 1 * * * * * * * * cs5 = 8
6 s6 = * * * * * * * * 1 1 1 1 1 1 1 1 cs6 = 8
7 s7 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 cs7 = 16

be clearly seen in the schemata s1,s2,s3 and s4. During the test run of the GA the

size of this block can be defined by the parameter named rrbase. The second

parameter, which specifies the Royal Road function is rrmultiplier. This defines

how many sequential repetitions of the basic building block appear in the final

combined schema. In the given example, the rrmultiplier is 4. There are also

intermediate steps on the levels between the basic level and the final level. These

always combine two blocks from the lower level into a new schema. Schemata s5

and s6 are the intermediate levels in our example. To ensure a proper number of

intermediate levels, the rrmultiplier parameter must be a number which is a power

of 2. In [40] there was a discussion about the contribution of the intermediate

levels. Surprisingly, it was proven that the intermediate levels do not speed up

the process of finding the optimum. They act oppositley. Since my goal was to

compare the GAs with and without the use of the ealib archive, I ignored these

discussions and always used the same parameters for the GAs. I did not use other

parameters or bits (like introns) either.

For the testing I used Royal Road function with the rrbase values 2, 3, 4, 5

and 6 and rrmultiplier values 4, 8, 16 and 32. I combined every rrbase value with

every rrmultiplier value and optimized them using the GA with and without the

archive. Therefore, the simplest test case was rrbase value 2 and rrmultiplier value

4 (chromosome length 8). On the other hand, the most complicated testcase was

rrbase value 6 and rrmultiplier value 32 (chromosome length 192).
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4.3 NK fitness landscapes

The NK fitness landsape is another model designed for evaluating GAs. It was first

introduced by Kauffman in [31]. A special feature of the NK landscapes is that the

ruggedness of the landscape is controlled by a single parameter.

NK landscapes work with binary strings. A stochastic fitness function is de-

fined, which assigns a fitness value between zero and one to each binary string

(F (x) : (x1, x2, . . . , xN ) 7→ [0, 1], xi ∈ {0, 1}). This function has the following mathe-

matical definition:

F (x) =
1

N

N
∑

i=1

fi(xi, xi1 , xi2 , . . . , xiK )

Each gene (xi) combinates a different fitness value (fi) between zero and

one, which is determined by the gene on the ith position itself, and by its K clos-

est neighbor genes xi1 , xi2 , . . . , xiK with i1, . . . , iK ∈ {1, N}. The total fitness value

is then computed as the average of all N fitness values. Theses fitness values are

randomly chosen and stored in the stochastic tables. Generally, there are N ta-

bles with a size of 2K+1. For each gene there is a fitness table, which stores 2K+1

uniformly distributed values. From this table the fitness value fi is then read out.

Figure 4.1 shows a concrete example of the NK landscape structure [3].

Parameter N is set to 7, so the binary string has length 7, paramater K equals

2. That means that the fitness value of each gene depends on two additional neigh-

bor genes. There are also seven fitness value tables, one for each gene. Each table

has 8 (= 2K+1) values stored. The corresponding fitness value is picked up for each

gene. The average of these values is the final fitness value of the whole chromo-

some.

There have been several discussions about the computational complexity of

this problem [3, 59, 56]. We can say that the complexity depends on parameter K

and the choosing method of the K neighbors. It is obvious that with increasing K,

the problem becomes more complex. First, the computation of the objective value

takes more time, and second, when the value of K is high, coupling between par-

ticular genes also rises. This makes the finding of the optimum more complicated.
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Figure 4.1: NK landscapes (N = 7, K = 2) - Fitness computation

Practice shows that the choosing method for the neighbor genes determines the

computational complexity. There are two such methods:

• adjacent neighbors – the fitness function for one gene (fi) is influenced by the

nearest K genes

• random neighbors – K genes, which influence the fitness value fi, are chosen

randomly

Concerning these properties, the following theorems about computational com-

plexity were presented [3, 59, 56]:

• NK landscape with adjacent neighbors – can be solved in polynomial time –

O(2KN) steps

• NK landscape with random neighbors and K ≥ 2 – this is an NP-complete

problem

• NK landscape with random neighbors and K = 1 – can also be solved in

polynomial time
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The influence of the concrete N and K parameter values on the global opti-

mum height was discussed in [53]. It was shown that

"the expected global optimum value increases with K, despite the fact

that the average fitness of the local optima decreases."

It was proven that the highest values are in the NK landscapes, where K = N − 1.

The increasing ruggedness also makes the finding of the global optimum more

difficult.

I compared the performance of the GA with and without use of the arichve

on different NK landscapes. For the N parameter I used values 20, 50, 100 and 300,

and combined them with K parameter values 1, 2, 5, 6, 7, 8, 9 and 10. The concrete

parameter values were not so important because I compared the performances of

the GAs on different NK landscapes.

4.4 MAX-SAT problem

Unlike the Royal Road function and the NK landscapes, the Maximum satisfiability

(MAX-SAT) problem is more general. The previously described functions were

constructed especially to evaluate GAs. The MAX-SAT problem is an optimisation

variant of the satisfiability (SAT) problem, which is a one of the main challenges in

computer science.

The satisfiability (SAT) problem has alway played an important role in the

computer sciences. It was proven that SAT is an NP-complete problem. To de-

scribe the SAT problem a conjunctive normal form (CNF) is used. Formally, there

is a collection of m clauses, which contain n Boolean variables (x1, x2, . . . , xn). Each

clause Ci contains 1 to n literals that are disjuncted. The literal can be any variable

or its negation. The clause is satisfied if the disjunction of its literals elevates true.

If every clause elevates true, the whole CNF formula is satisfied. So the SAT prob-

lem is to find at least one assignment of boolean values to the variables which

satisfies all clauses [11].

There are many variations of SAT. MAX-SATis one of them. Its goal is to max-

imize the number of satisfied clauses or minimize the number of unsatisfied ones.

The MAX-SATis also an NP-complete problem [28, 19].
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Andjusting the MAX-SAT problem for the GA is not very complicated. Each

variable is represented by one gene in the binary string chromosome. The results

achieved by pure GAs are not very good. However, when the GA was enhanced

by a special meta-heuristic, like local search, the achieved results were better [9,

45, 46, 55].

This was the main impulse for comparing the performances of the GAs with

and without the ealib archive for this problem. I implemented the same encoding

as it was described. Each variable was stored in one gene of the chromosome. For

the tests I used two test sets published on the DIMACS (Discrete Mathematics and

Theoretical Computer Science) website:

Asahiro, Iwama and Miyano (AIM) instances1 were generated with a particu-

lar Random-3-SAT instance generator [27]. These instances can be described by

three parameters:

• yes- / no- instance (solvable or not)

• number of variables (50, 100 and 200)

• the clause / variable ratio, (1.6, 2.0 for no-instances) and (1.6, 2.0, 3.4 and 6.0

for single-solution yes-instances)

In the whole set there are 4 instances for each parameter combination. So, together

there are 72 AIM instances, bud I used only 8 of them. These instances are not

considered as intrinsically hard. The complete algorithms show very good perfor-

mance on these instances, however some local seach algorithms perform poor on

the instances with low clause / variable ratio. But, enhancing the local search algo-

rithms with clause weighting appears to make the instances solvable easily [10].

The reason for this could possibly be the occurance of very large plateaus in the

search space of the problems with low clause / variable ratios.

For testing, I have picked up 8 of these instances. Four different solvable

instances with 100 variables and 1.6 ratio, and four different unsolvable instances

with the same parameters.

1http://www.cs.ubc.ca/ hoos/SATLIB/Benchmarks/SAT/DIMACS/AIM/descr.html
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Inductive inference (II) instances2 are discribed in [30]. I picked 9 easiest in-

stances of 41 benchmark instances of this problem type. The selected instances

contain 66 to 510 variables and 186 to 3065 clauses. These instances appear to be

rather easy for local search algorithms. However, complete algorithms had more

difficulties to solve these instances, which is quite rare.

2http://www.cs.ubc.ca/ hoos/SATLIB/Benchmarks/SAT/DIMACS/II/descr.html



Chapter 5

Implementation

5.1 General description

The concrete implementation of the trie is embedded in the ealib library - version

2.0. This library is intended to be a problem-independent C++ library suitable for

the development of efficient metaheuristics for combinatorial optimization prob-

lems. Currently, it includes in particular classes for evolutionary algorithms, but it

is intended to extend it also to other metaheuristics. The library is in development

since 1999 at the Vienna University of Technology, Institute of Computer Graphics

and Algorithms, Vienna, Austria.

Figure 5.1: general ealib package architecture

The general structure of the ealib is described in Figure 5.1. The package

architecture has following design:
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• ea-base – a package, which contains all base classes of ealib. All metaheuris-

tic algorithms and basic data structures are implemented in the classes of this

package.

• problems – a package, which contains all classes of testproblems, which are

used for testing of the algorithms.

• qap – a special package for solving the qap (Quadratic assignment problem).

• trie – package, which contains the classes of the trie structure.

I will ignore the QAP-package, because it does not relate to my work.

5.2 ea-base package - structure

Figure 5.2: general ea-base package architecture

In this section I would like to describe parts of the ea-base package, which

are relevant for the ealib trie. The ea-base contains genereally the main structures

and algorithms for running programs based on Evolutionary algorithms (EA). This

basic module can be parametrized with a set of parameters and extended by new

packages, which can have their own packages as well. The relevant classes, which

are displayed in Figure 5.2 are:

• ea_base – This is the most abstract base class for all EAs. This abstract base

contains only the constructor, pure virtual run() method parameter attributes
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that might be needed in any EA and logging object. If a new EA is derived it

uses the ea_base as the base class.

• ea_advbase – The more advanced abstract base class for EAs. This abstract

base contains methods and attributes that are needed also in order to use an

EA as sub-EA in an island model, for example. The new EA can be derived

using the ea_advbase as the base class also.

• generationalEA – This is the base for running the generational EA. During

each generation, all solutions are replaced by new ones generated by means

of variation operators (crossover and mutation).

• islandModelEA – This GA uses the island model and contains several sub-

GAs. During each generation, the performGeneration-function is called for

each island, afterwards migration between the islands is performed.

• lsbase – This is an abstract base class for local search alike algorithms such

as, GRASP, guided local search, simulated annealing etc.

• steadyStateEA – In the Steady-State EA during each generation, only one new

solution is generated by means of variation operators (crossover and muta-

tion). The new solution replaces an existing solution (e.g. the worst of the

population). Usually, generated duplicates are discarded using duplicate re-

moval principle (duplicate elimination).

5.3 ea_advbase and steadyStateEA

Figure 5.3: attributes and methods of the ea_advbase class
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I will describe now the ea_advbase and steadyStateEA classes in more de-

tailed way. The reason, why I am doing it is, that the trie extension was compared

to classical Steady-state EA, but also comparison to other approaches will be done

in the future.

The main purpose of the ea_advbase class is the running of the EA. It has

constructors, which create the generation and insures the right application of the

genetic operators such as selection, mutation and crossover. It has also a pure

virtual function performGeneration(), which is implemented specifically in each

non-abstract descendand class.

The steadyStateEA class is inherited from the ea_advbase class. It implements

own performGeneration() method. Its implementation corresponds to the princi-

ples of steady state EA. It selects two parent structures, recombines them, evalu-

ates them, and adds them to the population, replacing some older. There are many

different known strategies for selection, recombination and replacement. Each has

its own pros and cons.

In Figure 5.3 we can see some selected attributes and methods of the ea_advbase

class.

5.4 problems package

Next important structures are the classes that describe the problems, which ealib

can solve. Which are more general and describe the structures for storing of the

solutions (chromosome, gene, etc.), are still part of the ea_base package. On the

other hand, the more concrete classes are in the problems package already.

The most general structure used in the GA for problem and solution encod-

ing is a chromosome. Every single solution is stored as one chromosome in the

population. Each individual contains one chromosome. The basic unit of the chro-

mosome is a gene. Each gene encodes one property of the individual (solution).

The chromosome, which corresponds with one specific solution, contains a num-

ber of genes. In our implementation there is a abstract class called chromosome.

Afterwards comes a template class stringChrom<T>, which defines the behavior

of the chromosome closer. This class is inherited by several subclasses, which are
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Figure 5.4: chromosome class and its descendants

differenced by the type of the gene. For example the gene type in the class bin-

stringChrom is char, whereas the class permChrom contains unsigned int genes.

The concrete problem classes in the package problems only define the eval-

uation (objective) function and some other utility functions for the problems. These

are for example SortPermChrom, MaxSatBinStringChrom, RoyalRoadBinStringChrom

etc. These classes also know, how to decode the chromosome and what the genes

mean.

The basic architecture of chromosome class and its descendants is displayed

in Figure 5.4.

Detailed view of chromosome architecture is shown in Figure 5.5. It displays

the important methods, dependencies and inheritances.

The abstract class chromosome defines the basic chromosome behavior and

its related utilities. Typical utility functions are the functions isBetter() and is-

Worse(). Very important are procedures mutate(), crossover() and the function ob-

jetive(). In the chromosome class they are pure virtual.

The template class stringChrom<T> represents next level of the hierarchy.

Methods mutate() and crossover() are implemented here. Depending on the set

parameters they can call different mutation or crossover modifications, like mu-

tate_flip(), mutate_exchange, crossover_1point() or crossover_multipoint(). Also the
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Figure 5.5: detailed view of chromosome architecture

basic gene handling is defined in this class. As it use a generic type, it can de-

fine it for all subclasses. The genes are stored in the data vector and handled by

procedures set_gene(), get_gene() or get_size().

In the example I use, there is a class binStringChrom, which is used to in-

stantiate the template class stringChrom<T> with a concrete type (char). For each

concrete problem there is always even more specific derived class. This class is

mostly, but not completely independent of the used EA.

The concrete implementation classes for each specific problem can be found

in the problems package. Every class in the problems package implements the ob-
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jective() function, which defines, how to evaluate the objective value of the chro-

mosome. For my work I have defined three specific problem classes (RoyalRoad-

BinStringChrom, MaxSatBinStringChrom and NKLandscapesBinStringChrom). Ad-

ditionally there can be some utility functions, which encode or decode the chro-

mosome genes like getNumOfClauses() or getNumOfVariables() in the MaxSatBin-

StringChrom class for instance.

5.5 trie package

Figure 5.6: structure and dependencies in the trie package

The general structure of the trie package is displayed in Figure 5.6. The

package is divided into two parts. First part comprises classes, which define the

trie structure. These are TrieNode and BinStringTrie. Other classes (second part of

the trie package) are extensions of the problem-classes from the problems pack-

age. The extension is mandatory, because the chromosome classes have to com-

municate with the trie somehow. The responsibility for the communication lies in

the method locallyImprove(), which is implemented in the trie-problem classes.
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However, it defined in the chromosome class already and used by other local im-

provement strategies. Detailed view of the important methods of the trie structure

is shown in Figure 5.7.

Figure 5.7: important methods and functions in the trie package

5.6 BinStringTrie and TrieNode

As Figure 5.6 displays, there are two basic classes used by the trie. BinStringTrie

class, shown in Figure 5.8, and trienode class, shown in Figure 5.9.

Figure 5.8: BinStringTrie class - attributes and methods

The binStringTrie class contains following basic attributes:

• BinStringTrieNode *root – Root pointer of trie.
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• vector<BinStringTrieNode *> parents – Stores pointers to all nodes on the

path of the current (last) search.

• vector<int> depthsOfUncompleted – Stores depths (index) of nodes in par-

ents vector, for which the alternative next pointer (i.e. not the one traversed

in the last search) is not yet completed.

The *root points on the first TrieNode of the trie. Vectors parents and depth-

sOfUncompleted are two helper vectors used to speed up basic trie operations

(insertion of a new solution and suggesting of an unvisited solution).

The basic binstringtrie class methods are:

Figure 5.9: trienode class - attributes and methods

• BinStringTrie() – Constructor. Initializes empty trie.

• bool isCompleted() const – Returns true if the whole trie has been completed,

i.e. the whole search space has been evaluated.

• void locallyImprove_move_to_unvisited(binStringChrom *chrom) – Local im-

provement function to be called within locallyImprove() of the specific chro-

mosome. It includes the mechanism of using the trie, eventually modifying

the solution.

• bool try_insert(const binStringChrom *) – Try to insert a new chromosome.

Returns false if the chromosome is already in the trie, i.e. the solution has

already been visited. It keeps the information about the search path to the

solution in vectors parents and deptshOfUncompleted.

• void insert_with_position_found(int d,BinStringTrieNode **pp, const binString-

Chrom *chrom) – Helper function for inserting a new solution in the trie when

its final pointer has already been identified. It marks the final next-pointer

corresponding to the new solution as completed and then goes up the trie
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propagating the completion of a subtrie and removing any nodes in which

both subtrees are completed.

• void change_to_unvisited_fast(binStringChrom *chrom, const binStringChrom

*modelChrom, bool bJustSearched=false) – Changes given solution into a sim-

ilar to a modelChrom but yet unvisited solution. If bJustSearched is true, the

given chromosome has just been searched in the trie, i.e., the search path is

stored in vector parents. This version of this operator is the fast and simply

way, in which we go back to the last uncompleted parent node and then down

at the alternative (still uncompleted) side, following further the given chro-

mosome as far as possible but avoiding running into a completed subtrie.



Chapter 6

Experiments

In Chapter 3 I introduced the ealib trie structure, which can be added to any GA

helping them to find better solutions by storing the visited ones and avoiding re-

visits. To study the performance of the GA with and without the use of the trie I

performed several tests. First, I chose the test functions, which are described in

Chapter 4, and then I made test runs using different sets of parameters. After-

wards, I statistically evaluated the acquired results.

In this Chapter, I describe the GA parameters first. These are the parame-

ters which I use in all test runs independent from the test problem. Afterwards,

I describe the performed experiments. There are also some special parameters

for each test problem. These are described in the corresponding test problem’s

section.

6.1 Parameters for test problems

The parameter types described in this section can be divided into two groups. The

first group is the set of parameters which can be used by each GA, and the second

group is the parameter set related to the ealib trie use.

Here is a brief description of relevant GA parameters:

• popsize – The population size. Depending on the problem solved, I used the

values 20, 50, 100, 200, 500 and 1000.

• tselk – Group size for tournament selection. I used the values 2, 4 and 10.
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• tgen – The number of generations until termination. These parameter values

were set to 1000, 10000 or 100000, depending from the problem solved.

• pcross – The crossover rate. This parameter was always set to the value of 1.

• pmut – The mutation rate for new chromosomes. This parameter was always

set to the value of 1 per chromosome.

• dupelim – Default duplicate elimination. This parameter has effect only for

the GA without the use of the trie and was always set to 1.

The following is a description of the parameters that influence the ealib trie

functioning:

• trie_use – Tells the GA to use the ealib trie to store the visited solutions. Ex-

cept for the tests using the standard GA, it was always set to 1.

• randomDepthOfUncompleted – If set to 0, the deepest alternative is always

used for moving to an unvisited solution. If set to 1, a random choosing algo-

rithm is used, described in Section 3.4.4.

• randomizedGeneOrder – When set to 1, is organizes the structure of the trie

randomly according to Section 3.5.2. Otherwise, the trie structure is built up

as described in Section 3.5.1.

For better human readability and orientation in the parameters of each test

run, I have defined some abbreviations. Each abbreviation defines how the param-

eters trie_use, randomizedGeneOrder and randomDepthOfUncompleted are set.

Table 6.1 displays the parameter settings.

Table 6.1: Possibilities of the ealib trie parameter settings
abbreviation trie_use randomizedGeneOrder randomDepthOfUncompleted

std do not use (0) — —

tnd use (1) normal (0) default (0)

tnr use (1) normal (0) random (1)

tnr use (1) random (1) default (0)

tnr use (1) random (1) random (1)
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6.2 Experiments with Royal Road function

First, I used the Royal Road function for the tests. This is a function that was spe-

cially designed for evaluating GAs. Closer description of this function is written in

Section 4.2.

6.2.1 Paramaters for Royal Road function

For Royal Road function there are two special parameters defined:

• rrbase – defines the size of the basic Royal Road function building block

• rrmultiplier – defines how many multiplications of the basic building block

there are in the final schema

6.2.2 Testresults - Royal Road function

Test 1 - comparison of the quality of the solutions

My first goal was to examine the fitness value achieved by the algorithms within

1000 generations. Table 6.2 lists which values I used for each parameter. 100 test

runs were then performed for each possible parameter combination.

Table 6.2: Royal Road function test - parameter settings

paramater name possible values

algorithm type std, tnd, tnr, trd, trr

tgen 1000

tselk 10

popsize 50, 100, 200, 500

rrbase 2, 3, 4, 5, 6

rrmultiplier 4, 8, 16

The achieved results (Table 6.3) are separated according to algorithm type

(std, tnd, tnr, trd, trr) and maximal achievable fitness value (= rrbase∗rrmultiplier∗
log2(rrmultiplier) + 1). For every algorithm type there are two values; mean value,

and stadard deviance value.
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Table 6.3: Testresults: Royal Road function, 1000 generations (std, tnd, tnr, trd, trr)
std tnd tnr trd trr

rrb rrm max mean sd mean sd mean sd mean sd mean sd

2 4 24 24.00 0.00 24.00 0.00 24.00 0.00 24.00 0.00 24.00 0.00

3 4 36 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00

4 4 48 48.00 0.00 48.00 0.00 48.00 0.00 48.00 0.00 48.00 0.00

5 4 60 59.48 4.25 59.83 2.47 59.65 3.48 59.65 3.48 60.00 0.00

2 8 64 64.00 0.00 64.00 0.00 64.00 0.00 64.00 0.00 64.00 0.00

6 4 72 63.00 17.54 64.50 16.34 66.21 14.71 62.76 17.72 64.95 16.29

3 8 96 95.78 3.17 95.78 3.17 95.78 3.17 96.00 0.00 96.00 0.00

4 8 128 116.88 23.34 119.88 20.56 119.12 21.62 115.88 24.26 121.38 18.83

2 16 160 156.27 14.76 157.19 12.95 159.07 7.54 158.14 10.58 158.45 9.68

5 8 160 97.63 40.17 105.13 42.19 102.58 41.32 98.78 40.91 105.85 43.71

6 8 192 69.87 29.83 74.43 34.56 74.10 35.87 62.57 40.49 75.30 34.59

3 16 240 187.07 51.30 188.40 52.07 200.15 50.47 189.09 51.24 196.80 51.71

4 16 320 140.48 45.52 140.18 51.54 147.44 59.65 149.56 55.90 143.56 58.38

5 16 400 100.95 32.83 95.00 33.47 101.13 35.76 99.08 33.92 98.85 35.52

6 16 480 74.43 28.93 73.41 31.26 71.43 26.38 73.13 28.06 76.32 34.09
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Figure 6.1: RR, 1000 generations - comparison of fitness value means for each RR

configuration

The same results are displayed in Figure 6.1. The Y-axis represents the per-

centage values. The results are ordered according to the maximum possible fit-

ness value. Results for the parameter setting rrbase = 2 and rrmultiplier = 4 (max-

imum fitness value 24) are represented by the values on the leftmost side of the

graph, and results for the parameter setting rrbase = 6 and rrmultiplier = 16 (max-

imal fitness value 480) are represented by the values on the rightmost side of the
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graph.

For example, for parameter values rrbase = 2 and rrmultiplier = 4, all algo-

rithms reached the maximal fitness value (24) within 1000 generations in each run.

So, the percentage for this setting is 1.0 for each algorithm type.

For parameter values rrbase = 3 and rrmultiplier = 16 (maximal fitness value

= 240) the average result of the std algorithm was 187.1 (0.78%) and the average

result of the trr algorithm was 196.8 (0.82%). Therefore the trr-line is higher then

the std-line in this case.
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Figure 6.2: RR, 1000 generations - difference between mean and average mean

value of all algorithms

Furthermore, I compared the difference between the average achieved re-

sults for each combination of the parameters rrbase and rrmultiplier and algorithm

type to the the average value of all algorithm types (Figure 6.2). I expressed these

differences in percents again.

From these results we can see that the std algorithm never achieved the best

result among all the other algorithms. Another important thing to notice is that the

standard GA parameters influenced the achieved results much more than the use

of the archive. But this was not a problem, because my goal was to compare the
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runs with or without the use of the trie. From the graphs it is not obvious which

algorithm achieved the best results in the summary, or which algorithm has better

performance than the others. To examine this, I have put all achieved results for all

possible parameter combinations into one table. After this, I compared each type

of algorithm with the others using the Wilcoxon test. Table 6.4 shows the results

(p-values) of the comparison.

Table 6.4: Wilcoxon test - fitness value comparison: Royal Road function 1000 gen-

erations
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 88.921 51.337 0.02 0.8551 0.9997 0.7696 0.9996

tnd 89.714 52.288 0.03 272 0.1449 0.9909 0.3316 0.9943

tnr 91.243 54.763 0.03 271 0.0003 0.0091 0.0078 0.4971

trd 89.776 53.466 0.05 262 0.2304 0.6685 0.9922 0.9955

trr 91.297 54.326 0.05 268 0.0004 0.0057 0.5029 0.0045

Looking at this comparison we can see that all algorithms with the use of the

archive have achieved better results than the standard GA without the use of the

archive. However, significantly better results were achieved only by the algorithms

which were using the suggestion changed in a random place algorithm (tnr and

trr). This result depends probably on the structure of the Royal Road function. It is

easier to build a block of ones when this block builds one subtrie of the trie.

The main advantage of the ealib trie is that it visits more solutions within

same number of generations. The GA can profit out of this property when the

ratio between the number of visited solutions and solutions in the search space is

relevant. The second advantage of the ealib trie archive is higher mutation rate

in the most visited parts of the search space. The GA can take advantage out of

this when the mutation has higher chances to influence the fitness value of the

solution. This can be influence can observed in the test result with lower rrbase

parameter.

Test 2 - comparison of the number of generations needed to reach the

optimum

Table 6.5 displays the parameter settings for Test 2. In this test, I left out the most

difficult rrbase and rrmultiplier combinations and increased the number of gen-

erations in each run, because for this comparison it was always necessary for all

algorithms to achieve the maximum fitness value.
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Table 6.5: Royal Road function Test 2 - parameter settings

paramater name possible values

algorithm type std, tnd, tnr, trd, trr

tgen 10000

tselk 10

popsize 50, 100, 200, 500

rrbase 2, 3, 4, 5

rrmultiplier 4, 8, 16

After running 100 testruns for each possible parameter combination, I com-

pared for each in which generation the optimum was reached. Figure 6.3 displays

the number of generations needed to reach the optimum for each algorithm type.

The maximum possible fitness value rises from left to right.

 0

 200

 400

 600

 800

 1000

 1200

24 36 48 60 64 96 128 160 160 240 320 400

nu
m

be
r 

of
 g

en
er

at
io

ns
 n

ee
de

d 
to

 r
ea

ch
 

 th
e 

op
tim

al
 fi

tn
es

s 
va

lu
e

complexity

std
tnd
tnr
trd
trr

Figure 6.3: RR 10000 generations - means of the generations needed to reach the

optimum

In Figure 6.4 there is another comparison of the results. The value 1 repre-

sents the maximum number of generations of all algorithm types. All other algo-

rithm type values are computed proportional to this maximum value. The maxi-

mum possible fitness value rises again from left to right.

Then I summarized all the results and performed the Wilcoxon test again (Ta-

ble 6.7). This test showed that all algorithms using the archive found the optimum
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Figure 6.4: RR, 10000 generations - comparison of the number of generations

needed to find the optimal fitness value

significantly earlier than the standard algorithm without the use of the archive.

From the table we can also read that the performance of the algorithm which used

the archive without any improvement (tnd) was significantly worse than the per-

formance of other algorithms with the archive. Other comparisons have not shown

significant differences, but the results of the archives with the suggestion changed

in a random place algorithm were better than the results of the other ones.

Table 6.6: Testresults: Royal Road function, 10000 generations (std, tnd, tnr, trd,

trr)
std tnd tnr trd trr

rrb rrm max mean sd mean sd mean sd mean sd mean sd

2 4 24 12.8 19.9 6.3 10.5 6.0 10.3 7.9 14.2 6.8 10.6

2 8 64 154.8 103.2 139.9 78.4 137.5 86.9 138.2 88.9 139.1 83.9

2 16 160 522.4 249.9 488.1 240.3 461.2 242.5 484.9 236.2 463.6 252.1

3 4 36 94.2 78.9 73.8 55.3 71.1 57.6 75.2 54.1 75.1 54.3

3 8 96 379.2 187.0 355.0 173.3 338.6 185.8 339.7 184.4 331.0 190.9

3 16 240 1080.7 483.9 1100.8 431.1 998.0 441.8 1044.5 435.6 981.5 458.3

4 4 48 214.6 118.5 189.4 114.6 189.1 110.5 185.8 111.8 189.2 119.9

4 8 128 746.6 347.7 710.7 316.5 641.5 325.1 672.2 311.0 674.2 332.6

4 16 320 2097.5 817.8 2154.9 756.0 1991.2 741.4 2126.1 796.1 1978.1 832.8

5 4 60 394.8 215.8 375.5 213.6 353.1 191.7 363.7 185.1 349.3 184.3

5 8 160 1282.4 558.8 1431.4 763.0 1298.6 695.5 1359.7 680.3 1348.3 690.0

5 16 400 4496.3 1701.8 4949.9 1885.0 4828.1 1950.6 4688.6 2066.9 4665.5 1959.5

These results also confirmed my conclusions from the Test 1. The main ad-
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Table 6.7: Wilcoxon test - number of generations comparison: Royal Road function

10000 generations
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 956.36 1356.43 0.05 0.3104 0.0000 0.0000 0.0000

tnd 997.97 1491.25 0.08 5180 0.6896 0.0000 0.0004 0.0000

tnr 942.83 1458.21 0.07 5328 1.0000 1.0000 0.9613 0.4904

trd 957.21 1450.72 0.11 5100 1.0000 0.9996 0.0387 0.0093

trr 933.48 1427.85 0.11 5298 1.0000 1.0000 0.5096 0.9907

vantage of the ealib trie is in the count of visited solutions within the same number

of generations and higher mutation rate in the most visited parts of the search

space. We see that with raising size of the search space and higher rrbase param-

eter achieves the ealib trie even worse results. (see Table 6.6, rrbase = 5).

6.3 Experiments with NK landscapes problem

For the next test function I used the NK fitness landscape function. A closer de-

scription of this function is written in Section 4.3. This function was also created to

examine and prove the features of GAs.

6.3.1 Paramaters for NK landscapes problem

For NK landscapes there are three special parameters defined:

• nk_n – defines the length of the landscape and of the chromosome

• nk_k – defines by how many other genes the gene value is influenced

• nk_seed – seed used from the random function generator, determines the

structure of the NK landscape

6.3.2 Testresults - NK landscapes problem

Test 1

My first goal was to examine the fitness value achieved by the algorithms within

10000 generations. Table 6.8 lists which values I used for each parameter. 50 test
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runs were then performed for each possible parameter combination, each run with

a different nk_seed value. Every landscape is determined by the combination of

three nk parameters (nk_n, nk_k and nk_seed). Thus each algorithm ran on each

of the 1600 landscapes 4 times (once with every popsize).

Table 6.8: NK landscapes Test 1 - parameter settings

paramater name possible values

algorithm type std, tnd, tnr, trd, trr

tgen 100000

tselk 10

popsize 50, 100, 200, 500

nk_n 20, 50, 100, 300

nk_k 1, 2, 5, 6, 7, 8, 9, 10

nk_seed 1 - 50

Figure 6.5 displays the results of the first test run. Each point represents the

average achieved fitness value over all nk_seed values for one popsize, nk_n and

nk_k. The results are ordered from left to right by nk_k, then nk_n, and then pop-

size. In the displayed graph it can be seen that the std algorithm achieved the

lowest fitness value in most cases. Detailed results are displayed in Table 6.9 and

in Table 6.10. Both tables display the same results, but Table 6.9 summarizes all

nk_n values for each nk_k value. The column % max shows the ratio between each

mean and maximum mean among all.

Table 6.9: Testresults: NK landscapes, 100000 generations, tselk 10
std tnd tnr trd trr

k mean sd mean sd mean sd mean sd mean sd

1 0.7624 0.0242 0.7635 0.0251 0.7650 0.0241 0.7646 0.0240 0.7656 0.0239

2 0.7603 0.0262 0.7620 0.0266 0.7637 0.0253 0.7630 0.0254 0.7647 0.0253

5 0.7413 0.0310 0.7420 0.0308 0.7444 0.0313 0.7435 0.0311 0.7445 0.0312

6 0.7557 0.0272 0.7567 0.0273 0.7599 0.0266 0.7578 0.0258 0.7596 0.0261

7 0.7518 0.0278 0.7550 0.0283 0.7567 0.0279 0.7564 0.0275 0.7580 0.0268

8 0.7504 0.0284 0.7531 0.0304 0.7538 0.0297 0.7530 0.0295 0.7551 0.0301

9 0.7221 0.0219 0.7224 0.0217 0.7236 0.0212 0.7231 0.0213 0.7238 0.0212

10 0.7494 0.0283 0.7502 0.0279 0.7511 0.0277 0.7508 0.0276 0.7513 0.0274

To display the differences between the algorithms, I created the next two

figures. Figure 6.6 displays averaged results achieved by each algorithm. The

values are ordered in the same way as in the previous figure, but each next value

is added to all previous values, and the result is averaged. Thus, each added value

contributes to the previous computed average. This average is computed by the

following formula:
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Figure 6.5: NK, 100000 generations, tselk 10 - fitness values for each combination

of popsize, nk_n and nk_k

F (i) =
1

i

i
∑

j=1

fj(nk_nj, nk_kj , popsize, all nk_seed values)

The next figure (Figure 6.7) was also created to demonstrate the differences

between the algorithm types. I ordered all achieved result from least to greatest

and put them into the graph.

Figure 6.6 and Figure 6.7 show that there is a certain gap between different

algorithm types. They show that the use of the ealib trie influences the achieved

results in a positive way. Table 6.11 displays the results of the Wilcoxon test, which

compared all achieved results. Using the results of this table we can order all

algorithms by the quality of achieved results from best to worst (1. trr, 2. tnr, 3. trd,

4. tnd, 5. std). Again we can see that the implemented ealib trie improvements

have brought us significant betterment of the results.

The main reason for it is higher relevance of mutation rate in this problem.

Even in large search spaces a mutation of a single gene causes the change of the

fitness value. That makes the finding of a better solution easier. This explains

also the differences between the algorithms which use ealib archive. Random-
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Table 6.10: Testresults: NK landscapes, 100000 generations, tselk 10
std tnd tnr trd trr

k n mean sd mean sd mean sd mean sd mean sd

20 1 0.7723 0.0151 0.7746 0.0155 0.7759 0.0162 0.7755 0.0152 0.7764 0.0152

50 1 0.7587 0.0135 0.7592 0.0135 0.7613 0.0132 0.7595 0.0127 0.7616 0.0141

100 1 0.7332 0.0090 0.7327 0.0093 0.7358 0.0082 0.7358 0.0085 0.7369 0.0084

300 1 0.7856 0.0187 0.7874 0.0186 0.7870 0.0188 0.7876 0.0182 0.7873 0.0190

20 2 0.7711 0.0141 0.7725 0.0144 0.7737 0.0149 0.7735 0.0146 0.7754 0.0140

50 2 0.7561 0.0123 0.7576 0.0124 0.7586 0.0119 0.7575 0.0126 0.7607 0.0129

100 2 0.7271 0.0083 0.7284 0.0095 0.7330 0.0087 0.7319 0.0077 0.7330 0.0084

300 2 0.7868 0.0198 0.7895 0.0191 0.7896 0.0195 0.7891 0.0191 0.7897 0.0194

20 5 0.7713 0.0152 0.7715 0.0150 0.7741 0.0141 0.7732 0.0142 0.7744 0.0141

50 5 0.7522 0.0132 0.7536 0.0121 0.7571 0.0129 0.7556 0.0122 0.7566 0.0127

100 5 0.7174 0.0384 0.7174 0.0384 0.7174 0.0384 0.7173 0.0385 0.7174 0.0384

300 5 0.7244 0.0087 0.7255 0.0088 0.7292 0.0086 0.7277 0.0082 0.7297 0.0077

20 6 0.7830 0.0147 0.7866 0.0140 0.7876 0.0131 0.7856 0.0136 0.7870 0.0140

50 6 0.7692 0.0161 0.7685 0.0140 0.7726 0.0153 0.7692 0.0151 0.7709 0.0151

100 6 0.7504 0.0135 0.7506 0.0132 0.7545 0.0129 0.7519 0.0122 0.7554 0.0120

300 6 0.7200 0.0086 0.7212 0.0089 0.7249 0.0085 0.7246 0.0085 0.7252 0.0083

20 7 0.7812 0.0160 0.7865 0.0143 0.7859 0.0153 0.7854 0.0146 0.7856 0.0144

50 7 0.7645 0.0155 0.7664 0.0155 0.7698 0.0148 0.7698 0.0158 0.7715 0.0144

100 7 0.7452 0.0134 0.7485 0.0131 0.7514 0.0136 0.7492 0.0124 0.7516 0.0136

300 7 0.7164 0.0093 0.7185 0.0093 0.7200 0.0086 0.7212 0.0096 0.7232 0.0084

20 8 0.7773 0.0166 0.7826 0.0182 0.7820 0.0171 0.7826 0.0159 0.7837 0.0166

50 8 0.7183 0.0246 0.7183 0.0246 0.7184 0.0245 0.7183 0.0246 0.7184 0.0245

100 8 0.7619 0.0152 0.7669 0.0155 0.7662 0.0154 0.7651 0.0135 0.7696 0.0147

300 8 0.7439 0.0132 0.7447 0.0136 0.7485 0.0127 0.7460 0.0125 0.7487 0.0110

20 9 0.7136 0.0083 0.7150 0.0081 0.7176 0.0084 0.7164 0.0078 0.7182 0.0088

50 9 0.7211 0.0180 0.7209 0.0178 0.7213 0.0175 0.7211 0.0177 0.7213 0.0176

100 9 0.7116 0.0091 0.7117 0.0089 0.7132 0.0090 0.7129 0.0089 0.7137 0.0090

300 9 0.7421 0.0293 0.7420 0.0293 0.7421 0.0292 0.7421 0.0292 0.7421 0.0292

20 10 0.7457 0.0202 0.7462 0.0200 0.7469 0.0199 0.7465 0.0197 0.7466 0.0202

50 10 0.7405 0.0171 0.7412 0.0168 0.7417 0.0169 0.7415 0.0172 0.7419 0.0169

100 10 0.7271 0.0105 0.7282 0.0095 0.7301 0.0102 0.7300 0.0097 0.7313 0.0094

300 10 0.7843 0.0242 0.7852 0.0232 0.7855 0.0234 0.7853 0.0234 0.7855 0.0234

Table 6.11: Wilcoxon test - fitness value comparison: NK landscapes 100000 gen-

erations, tselk 10
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 0.7492 0.0295 10.90 1.0000 1.0000 1.0000 1.0000

tnd 0.7506 0.0301 13.22 56407 0.0000 1.0000 1.0000 1.0000

tnr 0.7523 0.0297 14.14 59074 0.0000 0.0000 0.0000 0.9999

trd 0.7515 0.0294 18.11 56477 0.0000 0.0000 1.0000 1.0000

trr 0.7528 0.0295 20.07 58754 0.0000 0.0000 0.0001 0.0000

ized structures and solution suggestions cause mutations on different places of the

chromosome and make the mutation more efficient. Also the count of visited so-

lutions within the same number of generations influence the results in a positive

way.
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Figure 6.6: NK, 100000 generations, tselk 10 - average fitness value after finishing

certain number of test runs
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Figure 6.7: NK, 100000 generations, tselk 10 - average fitness value after finishing

certain number of test runs -ordered by fitness value

Test 2

To study the influence of the GA parameters on the test results I performed the

same tests again with only the tselk parameter changed. Instead of the value 10,
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I used the value 2. All other parameters were same as before. With the obtained

results I did the same comparisons, plotting the same graph types. In these graphs

there can also be seen the difference between the particular algorithm types. Fig-

ure 6.8 displays the achieved results, Figure 6.9 diplays their averaged values, and

Figure 6.10 displays these averaged values ordered from least to greatest.
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Figure 6.8: NK, 100000 generations, tselk 2 - fitness values for each combination of

popsize, nk_n and nk_k

Detailed results of this test are displayed in Table 6.12 and in Table 6.13. Both

tables display the same results, but Table 6.12 summarizes all nk_n values for each

nk_k value. The mean value and the standard deviation value is displayed in the

columns.

Table 6.12: Testresults: NK landscapes, 100000 generations, tselk 2
std tnd tnr trd trr

k mean sd mean sd mean sd mean sd mean sd

1 0.7670 0.0230 0.7678 0.0227 0.7686 0.0225 0.7676 0.0228 0.7688 0.0227

2 0.7652 0.0251 0.7656 0.0252 0.7666 0.0252 0.7664 0.0246 0.7671 0.0247

5 0.7436 0.0309 0.7435 0.0308 0.7449 0.0315 0.7441 0.0308 0.7452 0.0312

6 0.7582 0.0272 0.7590 0.0279 0.7607 0.0271 0.7596 0.0265 0.7607 0.0272

7 0.7554 0.0287 0.7550 0.0290 0.7571 0.0284 0.7569 0.0291 0.7573 0.0291

8 0.7525 0.0304 0.7537 0.0314 0.7548 0.0311 0.7541 0.0316 0.7545 0.0314

9 0.7226 0.0218 0.7224 0.0218 0.7233 0.0216 0.7233 0.0214 0.7233 0.0214

10 0.7518 0.0272 0.7522 0.0270 0.7525 0.0266 0.7524 0.0269 0.7527 0.0266

I summarized all achieved results again and performed a Wilcoxon test to
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Figure 6.9: NK, 100000 generations, tselk 2 - average fitness value after finishing

certain number of test runs
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Figure 6.10: NK, 100000 generations, tselk 2 - average fitness value after finishing

certain number of test runs -ordered by fitness value

compare them. Table 6.14 displays the results of the comparison. In this case, we

can also order all algorithms by the quality of achieved results from best to worst
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Table 6.13: Testresults: NK landscapes, 100000 generations, tselk 2
std tnd tnr trd trr

k n mean sd mean sd mean sd mean sd mean sd

1 20 0.7757 0.0158 0.7767 0.0146 0.7775 0.0151 0.7770 0.0159 0.7795 0.0147

1 50 0.7638 0.0122 0.7642 0.0134 0.7665 0.0134 0.7638 0.0129 0.7655 0.0132

1 100 0.7400 0.0104 0.7412 0.0104 0.7419 0.0101 0.7412 0.0099 0.7416 0.0095

1 300 0.7884 0.0181 0.7889 0.0179 0.7884 0.0181 0.7886 0.0180 0.7886 0.0179

2 20 0.7744 0.0144 0.7759 0.0136 0.7764 0.0142 0.7765 0.0131 0.7778 0.0133

2 50 0.7607 0.0123 0.7600 0.0126 0.7623 0.0123 0.7617 0.0128 0.7623 0.0117

2 100 0.7348 0.0091 0.7351 0.0091 0.7357 0.0088 0.7363 0.0087 0.7367 0.0095

2 300 0.7911 0.0194 0.7915 0.0193 0.7921 0.0195 0.7911 0.0193 0.7919 0.0191

5 20 0.7722 0.0138 0.7727 0.0136 0.7756 0.0128 0.7726 0.0137 0.7747 0.0132

5 50 0.7569 0.0116 0.7559 0.0113 0.7578 0.0114 0.7573 0.0115 0.7582 0.0128

5 100 0.7174 0.0384 0.7174 0.0384 0.7174 0.0384 0.7174 0.0384 0.7174 0.0384

5 300 0.7278 0.0088 0.7278 0.0091 0.7286 0.0083 0.7291 0.0088 0.7307 0.0083

6 20 0.7876 0.0135 0.7888 0.0134 0.7895 0.0136 0.7884 0.0136 0.7891 0.0133

6 50 0.7706 0.0148 0.7720 0.0135 0.7738 0.0135 0.7719 0.0136 0.7734 0.0141

6 100 0.7521 0.0125 0.7542 0.0127 0.7553 0.0110 0.7533 0.0122 0.7556 0.0136

6 300 0.7226 0.0088 0.7212 0.0090 0.7243 0.0092 0.7249 0.0083 0.7244 0.0089

7 20 0.7867 0.0141 0.7879 0.0138 0.7878 0.0139 0.7882 0.0146 0.7899 0.0139

7 50 0.7697 0.0146 0.7690 0.0133 0.7710 0.0137 0.7712 0.0151 0.7710 0.0137

7 100 0.7473 0.0127 0.7448 0.0132 0.7500 0.0122 0.7495 0.0130 0.7489 0.0125

7 300 0.7181 0.0095 0.7182 0.0089 0.7196 0.0097 0.7188 0.0098 0.7194 0.0092

8 20 0.7852 0.0162 0.7876 0.0170 0.7866 0.0163 0.7880 0.0167 0.7880 0.0160

8 50 0.7185 0.0245 0.7184 0.0246 0.7185 0.0245 0.7185 0.0245 0.7185 0.0245

8 100 0.7632 0.0140 0.7654 0.0151 0.7685 0.0136 0.7663 0.0151 0.7679 0.0144

8 300 0.7430 0.0145 0.7434 0.0138 0.7454 0.0143 0.7435 0.0142 0.7438 0.0132

9 20 0.7130 0.0103 0.7121 0.0094 0.7151 0.0106 0.7150 0.0093 0.7146 0.0095

9 50 0.7214 0.0177 0.7215 0.0178 0.7215 0.0176 0.7217 0.0175 0.7216 0.0176

9 100 0.7138 0.0091 0.7140 0.0090 0.7144 0.0090 0.7145 0.0091 0.7149 0.0088

9 300 0.7421 0.0292 0.7421 0.0292 0.7421 0.0292 0.7421 0.0292 0.7421 0.0292

10 20 0.7471 0.0197 0.7471 0.0193 0.7474 0.0193 0.7472 0.0194 0.7473 0.0198

10 50 0.7423 0.0170 0.7427 0.0162 0.7430 0.0166 0.7427 0.0170 0.7429 0.0166

10 100 0.7325 0.0103 0.7327 0.0100 0.7340 0.0091 0.7337 0.0097 0.7348 0.0092

10 300 0.7854 0.0235 0.7861 0.0230 0.7858 0.0233 0.7860 0.0232 0.7859 0.0230

Table 6.14: Wilcoxon test - fitness value comparison: NK landscapes 100000 gen-

erations, tselk 2
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 0.7520 0.0300 11.29 0.9799 1.0000 1.0000 1.0000

tnd 0.7524 0.0303 13.84 41658 0.0201 1.0000 1.0000 1.0000

tnr 0.7536 0.0301 14.45 43072 0.0000 0.0000 0.0003 0.8542

trd 0.7531 0.0300 18.97 41343 0.0000 0.0000 0.9997 1.0000

trr 0.7537 0.0302 20.30 42766 0.0000 0.0000 0.1458 0.0000

(1. trr, 2. tnr, 3. trd, 4. tnd, 5. std). However, the difference between the trr and

tnr algorithm is no more significant, but the trr algorithm still achieves the better

results. In this case, it seems that the randomized structure begins to loose its

advantage.

The tests have shown relevance of mutation rate also for this parameter set-

tings. However, the contribution of the ealib trie is no more so high. This is prob-

ably caused by the lower selection pressure (tselk = 2 instead of 10). Lower se-

lection pressure makes the revisits more rare. Therefore also the count of visited
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solutions within the same number of generations influence cannot influence the

results with the same relevance.

Looking at the mean values of the results, I have realized that there is a sig-

nificant difference compared to Test 1. Because of this, I have put results of both

test runs into same graphs to be able to compare the differences between them.

Test comparison

First, I compared the achieved results of both std algorithm types. This is displayed

in Figure 6.11. In this figure we can see that the std algorithm with tselk 2 achieved

better results in most test runs.
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Figure 6.11: NK std, 100000 generations, comparison of tselk 2 and tselk 10 - fitness

values for each combination of popsize, nk_n and nk_k

Figure 6.12 displays the comparison of two trr algorithm types. In this fig-

ure we can also see that the algorithm with tselk 2 achieved better results in most

test runs. In this case the difference between the results is smaller, but still signifi-

cant.

In the next step (Figure 6.13) I compared the averaged results in the same

way, as in previous sections. This comparison shows the dominance of the algo-
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Figure 6.12: NK trr, 100000 generations, comparison of tselk 2 and tselk 10 - fitness

values for each combination of popsize, nk_n and nk_k

rithms with tselk = 2 setting. The std algorithm with tselk = 2 type also achieved

better results than the trr with tselk = 10.
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Figure 6.13: NK std, trr, 100000 generations, comparison of tselk 2 and tselk 10 -

average fitness values after finishing certain number of test runs
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This indeed brings us to an important conclusion. Using the archive can pos-

itively influence the results achieved by the GA, but the standard GA parameters

still have the major influence on GA performance.

6.4 Experiments with MAX-SAT problem

The next set of tests were performed with MAX-SAT problem instances. A closer

description of the MAX-SAT problem is written in Section 4.4. Unlike the other test

functions, this problem is not intended to be solved with genetic algorithms. The

tests were performed on two types of test instances:

• AIM instances - instances solved better with complete algorithms, but harder

for local search algorithms because of big plateaus

• II instances - instances more difficult for complete algorithms, but easier for

local search algorithms

6.4.1 Paramaters for MAX-SAT problem

There are three no special parameters defined for the MAX-SAT problem. The only

uncommon parameter is the instance type, which should be solved.

6.4.2 Testresults - MAX-SAT problem

Test 1 - AIM instances

Table 6.15: MAX-SAT test - AIM instances - parameter settings

paramater name possible values

algorithm type std, tnd, tnr, trd, trr

tgen 1000, 5000

tselk 4

popsize 200

instance type AIM

instance count 8

runs per instance 50
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The testing of the algorithms on the AIM instances was done with the param-

eters listed in Table 6.15. I performed 50 test runs with parameter on each of the

eight AIM instances which are described in Section 4.4. I performed two different

tests. In the first, each test run lasted 1000 generations. The second test was per-

formed with 5000 generations. Every solution gained fitness value according to the

number of unsatisfied instances. This problem should be minimized. That means

that the better results are the lower ones. Therefore, the p-value of the Wilcoxon

test needs to be interpreted inversely.

Table 6.16: Wilcoxon test - fitness value comparison: MAX-SAT - AIM instances,

1000 generations
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 5.7350 1.3581 0.07 0.0438 0.2150 0.0304 0.4898

tnd 5.5625 1.4039 0.11 4.55 0.9562 0.9347 0.4122 0.9730

tnr 5.6775 1.3958 0.11 4.40 0.7852 0.0654 0.0569 0.7705

trd 5.5600 1.3513 0.17 4.55 0.9696 0.5881 0.9431 0.9775

trr 5.7350 1.4141 0.17 4.28 0.5104 0.0270 0.2297 0.0225

Table 6.17: Wilcoxon test - fitness value comparison: MAX-SAT - AIM instances,

5000 generations
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 1.7725 0.8200 0.16 0.4684 0.2800 0.4567 0.4817

tnd 1.7675 0.8247 0.24 60.10 0.5321 0.2985 0.4969 0.5097

tnr 1.7450 0.8010 0.24 64.08 0.7204 0.7020 0.7796 0.7245

trd 1.7700 0.7639 0.39 58.78 0.5438 0.5037 0.2209 0.5103

trr 1.7725 0.7889 0.38 60.69 0.5189 0.4909 0.2759 0.4903

Table 6.16 and Table 6.17 display the test results. For this problem, the GA

with the use of the archive does not achieve significantly better results in most

cases. This is probably caused by the AIM instances structure. Wide plateaus

make finding of the optimal solution harder and 100 variables are too many for the

GA with the use of the archive to gain the significant advantage. The number of

revisits in the case of MAX-SAT problem is very low, probably because many solu-

tions have the same fitness value. The large search space and the low efficiency of

mutation are the main reasons for bad success of ealib archive in this test.

Test 2 - II instances

The testing of the algorithms on the II instances was done with the parameters

listed in Table 6.18. I performed 50 test runs with parameter on each of the eight II

instances which are described in Section 4.4. I made two different tests. In the first,
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Table 6.18: MAX-SAT test - II instances - parameter settings

paramater name possible values

algorithm type std, tnd, tnr, trd, trr

tgen 1000, 5000

tselk 4

popsize 200

instance type II

instance count 8

runs per instance 50

each test run lasted 1000 generations. The second test was performed with 5000

generations. Again, every solution gained fitness value according to the number

of unsatisfied instances.

Table 6.19: Wilcoxon test - fitness value comparison: MAX-SAT - II instances, 1000

generations
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 35.0475 32.8319 0.31 0.0243 0.0188 0.0136 0.0076

tnd 34.3225 31.4474 0.41 4.48 0.9757 0.1440 0.1516 0.2984

tnr 33.6250 31.0560 0.41 4.42 0.9812 0.8561 0.4627 0.4581

trd 33.6800 30.8307 0.58 4.50 0.9864 0.8486 0.5375 0.5941

trr 33.9325 31.4162 0.58 4.39 0.9924 0.7018 0.5421 0.4061

Table 6.20: Wilcoxon test - fitness value comparison: MAX-SAT - II instances, 5000

generations
alg mean sd time revisits w_p-vs.std w_p.vs.tnd w_p-vs.tnr w_p-vs.trd w_p.vs.trr

std 6.8500 5.0736 0.91 0.0024 0.0707 0.1110 0.5470

tnd 6.5025 4.6931 1.19 76.68 0.9976 0.7771 0.8686 0.9740

tnr 6.6275 4.8794 1.21 73.70 0.9295 0.2233 0.6674 0.9262

trd 6.6750 4.9193 1.70 74.64 0.8893 0.1317 0.3331 0.8606

trr 6.8025 4.9921 1.69 73.47 0.4535 0.0260 0.0740 0.1396

Table 6.19 and Table 6.20 display the average test results for all 50 runs for

each algorithm type and their Wilcoxon test comparison. The results show that the

performance of the GA with the archive is significant better than without the GA.

However, in the test with 5000 generations we can see, that the archives, which

use randomized trie structure have worse performance than the other archives.

Also, the trr archive achieves only the results of the std algorithm. This is probably

only a coincidence, because the number of revisits in comparison to number of

visited solutions is very low. Searching in the "promissing" parts of the search

space brings better results than small search allover in the search space. But this

turns out to be impossible in this case, because there are wide plateaus of solutions
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with the same fitness value in the sarch space. Therefore the GA does not provide

the needed selection pressure.

6.5 Evaluation

The tests have shown dominance of the GAs with the use of the ealib archive in

most test cases. The archive has brought significant contributions especially when

it was used for the solving of GA-specific problems (Royal Road function and NK

landscapes problem).

GAs with the use of the trie brought equivalent or worse results in the cases

where the discovery of the better solutions was more or less random (Royal Road

function with higher rrbase parameter) or where the number of revisits was too

small in comparison to the search space size (MAX-SAT problem with a very large

amount of variables).

The main advantage of the ealib trie is that it visits more solutions within

same number of generations. The GA can profit out of this property when the

ratio between the number of visited solutions and solutions in the search space is

relevant. The second advantage of the ealib trie archive is higher mutation rate in

the most visited parts of the search space. The GA can take advantage out of this

when the mutation has higher chances to influence the fitness value of the solution.

Therefore, the algorithm with the use of the ealib archive achieves better results

easier in the cases with higher selection pressure.

As expected, the use of the ealib archive insures not that the GA finds the

best solutions in general for the given problem, but that the use of it can lead

only to a betterment of the solutions found by the standard GA. The standard GA

parameters like population size, tournament size, number of generations, etc. still

have a major influence on the fitness values of the found solutions.

Even though the ealib archive does not give us the general insurance of find-

ing the best possible solution, its use can significantly increase the chances of

finding it. Therefore, the use of this archive should at least be considered for ev-

ery application of the GA.



Chapter 7

Conclusion

In this work, I have presented a complete archive for GAs, named ealib trie. It is

an archive based on the trie structure, which can be used to enhance any GA. Its

purpose is to store all visited solutions, avoid revisits of the solutions by suggesting

unvisited ones, and in this manner improve the ability to find a better solution for

each GA.

After giving a short introduction to the problem statement in Chapter 1, I

described the previous work (Chapter 2). There, I described approaches which

dealt with the problem of archiving the visited solutions or avoiding the revisits.

In Chapter 3, I have introduced and discussed the implemented structure of

the archive. Based on a the short comparison, I chose the trie data structure as the

most fitting structure for this purpose. Further, I have introduced how the visited

solutions are stored in the most efficient way. Also the mechanism of the handling

of revisits was presented. In this part I also introduced special properties and the

functionality of the ealib archive. These were randomized structure and special

algorithms for the handling of the revisits.

The test problems, which I used for performance comparison of the GA with

and without use of archive, have been described in Chapter 4.

A description of the implementation of the ealib trie archive has been given

in Chapter 5. Here, the basic packages and object structures have been described.

Finally, the performed tests and their results were discussed in Chapter 6.

In this chapter, I have compared the results achieved by the standard GA to the

results achieved by GAs which have used the ealib trie archive.
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The tests have shown dominance of the GAs with the use of the ealib archive

in most test cases. The archive had brought significant contributions especially

when it was used for the solving of GA-specific problems (Royal Road function

and NK landscapes problem). Generally the using of the ealib trie can be recom-

mended, however for some GA parameter constellations it can bring a betterment

with higher probability. For example, when the selection pressure is higher, then

the using of the trie has a higher contribution to the overall result.

The main advantage of the ealib trie is that it visits more solutions within

same number of generations. The GA can profit out of this property when the

ratio between the number of visited solutions and solutions in the search space is

relevant. The second advantage of the ealib trie archive is higher mutation rate

in the most visited parts of the search space. The GA can take advantage out of

this when the mutation has higher chances to influence the fitness value of the

solution.

The achieved test results also prove that the implemented improvements

(randomized trie structure, suggestion changed in a random place) reach better

results than the standard ealib archive without use of these improvements.

Some results have also shown that the contribution of the ealib archive does

not always have to be positive. Tests of the MAX-SAT problem revealed that the

betterment of the GA cannot always be ensured. These or similar test problems

have to be studied in a more detailed way in the future to unfold the reasons for

these results.

It could be interesting to test the archive for GAs which are combined with

another metaheuristic. For example, to use the ealib archive for GAs enhanced by

local search algorithm [64].
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